1
|
Bessa MH, Gottschalk MS, Robe LJ. Whole genome phylogenomics helps to resolve the phylogenetic position of the Zygothrica genus group (Diptera, Drosophilidae) and the causes of previous incongruences. Mol Phylogenet Evol 2024; 199:108158. [PMID: 39025321 DOI: 10.1016/j.ympev.2024.108158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/28/2024] [Accepted: 07/14/2024] [Indexed: 07/20/2024]
Abstract
Incomplete Lineage Sorting (ILS) and introgression are among the two main factors causing incongruence between gene and species trees. Advances in phylogenomic studies have allowed us to overcome most of these issues, providing reliable phylogenetic hypotheses while revealing the underlying evolutionary scenario. Across the last century, many incongruent phylogenetic reconstructions were recovered for Drosophilidae, employing a limited sampling of genetic markers or species. In these studies, the monophyly and the phylogenetic positioning of the Zygothrica genus group stood out as one of the most controversial questions. Thus, here, we addressed these issues using a phylogenomic approach, while accessing the influence of ILS and introgressions on the diversification of these species and addressing the spatio-temporal scenario associated with their evolution. For this task, the genomes of nine specimens from six Neotropical species belonging to the Zygothrica genus group were sequenced and evaluated in a phylogenetic framework encompassing other 39 species of Drosophilidae. Nucleotide and amino acid sequences recovered for a set of 2,534 single-copy genes by BUSCO were employed to reconstruct maximum likelihood (ML) concatenated and multi-species coalescent (MSC) trees. Likelihood mapping, quartet sampling, and reticulation tests were employed to infer the level and causes of incongruence. Lastly, a penalized-likelihood molecular clock strategy with fossil calibrations was performed to infer divergence times. Taken together, our results recovered the subdivision of Drosophila into six different lineages, one of which clusters species of the Zygothrica genus group (except for H. duncani). The divergence of this lineage was dated to Oligocene ∼ 31 Mya and seems to have occurred in the same timeframe as other key diversification within Drosophila. According to the concatenated and MSC strategies, this lineage is sister to the clade joining Drosophila (Siphlodora) with the Hawaiian Drosophila and Scaptomyza. Likelihood mapping, quartet sampling, reticulation reconstructions as well as introgression tests revealed that this lineage was the target of several hybridization events involving the ancestors of different Drosophila lineages. Thus, our results generally show introgression as a major source of previous incongruence. Nevertheless, the similar diversification times recovered for several of the Neotropical Drosophila lineages also support the scenario of multiple and simultaneous diversifications taking place at the base of Drosophilidae phylogeny, at least in the Neotropics.
Collapse
Affiliation(s)
- Maiara Hartwig Bessa
- Programa de Pós-Graduação em Biodiversidade Animal (PPGBA), Universidade Federal de Santa Maria (UFSM), Brazil
| | - Marco Silva Gottschalk
- Programa de Pós-Graduação em Biodiversidade Animal (PPGBDiv), Instituto de Biologia, Universidade Federal de Pelotas (UFPel), Brazil
| | - Lizandra Jaqueline Robe
- Programa de Pós-Graduação em Biodiversidade Animal (PPGBA), Universidade Federal de Santa Maria (UFSM), Brazil.
| |
Collapse
|
2
|
Jiang LJ, Zhao J, Wang JG, Landrein S, Shi JP, Huang CJ, Luo M, Zhou XM, Niu HB, He ZR. Deciphering the evolution and biogeography of Ant-ferns Lecanopteris s.s. Mol Phylogenet Evol 2024:108199. [PMID: 39278383 DOI: 10.1016/j.ympev.2024.108199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 09/03/2024] [Accepted: 09/11/2024] [Indexed: 09/18/2024]
Abstract
Southeast Asia is a biodiversity hotspot characterized by a complex paleogeography, and its Polypodiopsida flora is particularly diverse. While hybridization is recognized as common in ferns, further research is needed to investigate the relationship between hybridization events and fern diversity. Lecanopteris s.s., an ant-associated fern, has been subject to debate regarding species delimitations primarily due to limited DNA markers and species sampling. Our study integrates 22 newly generated plastomes, 22 transcriptomes, and flow cytometry of all native species along with two cultivated hybrids. Our objective is to elucidate the reticulate evolutionary history within Lecanopteris s.s. through the integration of phylobiogeographic reconstruction, gene flow inference, and genome size estimation. Key findings of our study include: (1) An enlarged plastome size (178-187 Kb) in Lecanopteris, attributed to extreme expansion of the Inverted Repeat (IR) regions; (2) The traditional 'pumila' and 'crustacea' groups are paraphyletic; (3) Significant cytonuclear discordance attributed to gene flow; (4) Natural hybridization and introgression in the 'pumila' and 'darnaedii' groups; (5) L. luzonensis is the maternal parent of L. 'Yellow Tip', with L. pumila suggested as a possible paternal parent; (6) L. 'Tatsuta' is a hybrid between L. luzonensis and L. crustacea; (7) Lecanopteris first diverged during the Neogene and then during the middle Miocene climatic optimum in the Indochina and Sundaic regions. In conclusion, the biogeographic history and speciation of Lecanopteris have been profoundly shaped by past climate changes and geodynamics of Southeast Asia. Dispersals, hybridization and introgression between species act as pivotal factors in the evolutionary trajectory of Lecanopteris. This research provides a robust framework for further exploration and understanding of the complex dynamics driving the diversification and distribution patterns within Polypodiaceae subfamily Microsoroideae.
Collapse
Affiliation(s)
- Li-Ju Jiang
- Gardening and Horticulture Centre, Xishuangbanna Tropic Botanical Garden, Chinese Academy of Sciences, Mengla 666303, Yunnan, China
| | - Jing Zhao
- School of Ecology and Environmental Science, Yunnan University, Kunming 650504, Yunnan, China
| | - Jia-Guan Wang
- School of Ecology and Environmental Science, Yunnan University, Kunming 650504, Yunnan, China
| | - Sven Landrein
- Kadoorie Farm and Botanic Garden, Lam Kam Road, Tai Po, New Territories, Hong Kong Special Administrative Region of China
| | - Ji-Pu Shi
- Gardening and Horticulture Centre, Xishuangbanna Tropic Botanical Garden, Chinese Academy of Sciences, Mengla 666303, Yunnan, China
| | - Chuan-Jie Huang
- School of Ecology and Environmental Science, Yunnan University, Kunming 650504, Yunnan, China
| | - Miao Luo
- School of Ecology and Environmental Science, Yunnan University, Kunming 650504, Yunnan, China
| | - Xin-Mao Zhou
- School of Ecology and Environmental Science, Yunnan University, Kunming 650504, Yunnan, China.
| | - Hong-Bin Niu
- Gardening and Horticulture Centre, Xishuangbanna Tropic Botanical Garden, Chinese Academy of Sciences, Mengla 666303, Yunnan, China.
| | - Zhao-Rong He
- School of Life Sciences, Yunnan University, East Outer Ring Road, Chenggong District, Kunming 650500, Yunnan, China.
| |
Collapse
|
3
|
Pezzi PH, Wheeler LC, Freitas LB, Smith SD. Incomplete lineage sorting and hybridization underlie tree discordance in Petunia and related genera (Petunieae, Solanaceae). Mol Phylogenet Evol 2024; 198:108136. [PMID: 38909873 DOI: 10.1016/j.ympev.2024.108136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/06/2024] [Accepted: 06/17/2024] [Indexed: 06/25/2024]
Abstract
Despite the overarching history of species divergence, phylogenetic studies often reveal distinct topologies across regions of the genome. The sources of these gene tree discordances are variable, but incomplete lineage sorting (ILS) and hybridization are among those with the most biological importance. Petunia serves as a classic system for studying hybridization in the wild. While field studies suggest that hybridization is frequent, the extent of reticulation within Petunia and its closely related genera has never been examined from a phylogenetic perspective. In this study, we used transcriptomic data from 11 Petunia, 16 Calibrachoa, and 10 Fabiana species to illuminate the relationships between these species and investigate whether hybridization played a significant role in the diversification of the clade. We inferred that gene tree discordance within genera is linked to hybridization events along with high levels of ILS due to their rapid diversification. Moreover, network analyses estimated deeper hybridization events between Petunia and Calibrachoa, genera that have different chromosome numbers. Although these genera cannot hybridize at the present time, ancestral hybridization could have played a role in their parallel radiations, as they share the same habitat and life history.
Collapse
Affiliation(s)
- Pedro H Pezzi
- Department of Genetics, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| | - Lucas C Wheeler
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, USA
| | - Loreta B Freitas
- Department of Genetics, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Stacey D Smith
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, USA
| |
Collapse
|
4
|
Boom AF, Migliore J, Ojeda Alayon DI, Kaymak E, Hardy OJ. Phylogenomics of Brachystegia: Insights into the origin of African miombo woodlands. AMERICAN JOURNAL OF BOTANY 2024; 111:e16352. [PMID: 38853465 DOI: 10.1002/ajb2.16352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 03/29/2024] [Accepted: 04/01/2024] [Indexed: 06/11/2024]
Abstract
PREMISE Phylogenetic approaches can provide valuable insights on how and when a biome emerged and developed using its structuring species. In this context, Brachystegia Benth, a dominant genus of trees in miombo woodlands, appears as a key witness of the history of the largest woodland and savanna biome of Africa. METHODS We reconstructed the evolutionary history of the genus using targeted-enrichment sequencing on 60 Brachystegia specimens for a nearly complete species sampling. Phylogenomic inferences used supermatrix (RAxML-NG) and summary-method (ASTRAL-III) approaches. Conflicts between species and gene trees were assessed, and the phylogeny was time-calibrated in BEAST. Introgression between species was explored using Phylonet. RESULTS The phylogenies were globally congruent regardless of the method used. Most of the species were recovered as monophyletic, unlike previous plastid phylogenetic reconstructions where lineages were shared among geographically close individuals independently of species identity. Still, most of the individual gene trees had low levels of phylogenetic information and, when informative, were mostly in conflict with the reconstructed species trees. These results suggest incomplete lineage sorting and/or reticulate evolution, which was supported by network analyses. The BEAST analysis supported a Pliocene origin for current Brachystegia lineages, with most of the diversification events dated to the Pliocene-Pleistocene. CONCLUSIONS These results suggest a recent origin of species of the miombo, congruently with their spatial expansion documented from plastid data. Brachystegia species appear to behave potentially as a syngameon, a group of interfertile but still relatively well-delineated species, an aspect that deserves further investigations.
Collapse
Affiliation(s)
- Arthur F Boom
- Royal Museum for Central Africa, Biology Department, Section Vertebrates, Tervuren, Belgium
- Université Libre de Bruxelles, Faculté des Sciences, Service Evolution Biologique et Ecologie, Bruxelles, Belgium
| | - Jérémy Migliore
- Université Libre de Bruxelles, Faculté des Sciences, Service Evolution Biologique et Ecologie, Bruxelles, Belgium
- Muséum départemental du Var, Toulon, France
| | - Dario I Ojeda Alayon
- Muséum départemental du Var, Toulon, France
- Department of Forest Biodiversity, Norwegian Institute of Bioeconomy Research, Ås, Norway
| | - Esra Kaymak
- Université Libre de Bruxelles, Faculté des Sciences, Service Evolution Biologique et Ecologie, Bruxelles, Belgium
- Institute of Science and Technology (OIST), Okinawa, Japan
| | - Olivier J Hardy
- Université Libre de Bruxelles, Faculté des Sciences, Service Evolution Biologique et Ecologie, Bruxelles, Belgium
| |
Collapse
|
5
|
Pang XX, Zhang DY. Detection of Ghost Introgression Requires Exploiting Topological and Branch Length Information. Syst Biol 2024; 73:207-222. [PMID: 38224495 PMCID: PMC11129598 DOI: 10.1093/sysbio/syad077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 12/17/2023] [Accepted: 12/27/2023] [Indexed: 01/17/2024] Open
Abstract
In recent years, the study of hybridization and introgression has made significant progress, with ghost introgression-the transfer of genetic material from extinct or unsampled lineages to extant species-emerging as a key area for research. Accurately identifying ghost introgression, however, presents a challenge. To address this issue, we focused on simple cases involving 3 species with a known phylogenetic tree. Using mathematical analyses and simulations, we evaluated the performance of popular phylogenetic methods, including HyDe and PhyloNet/MPL, and the full-likelihood method, Bayesian Phylogenetics and Phylogeography (BPP), in detecting ghost introgression. Our findings suggest that heuristic approaches relying on site-pattern counts or gene-tree topologies struggle to differentiate ghost introgression from introgression between sampled non-sister species, frequently leading to incorrect identification of donor and recipient species. The full-likelihood method BPP uses multilocus sequence alignments directly-hence taking into account both gene-tree topologies and branch lengths, by contrast, is capable of detecting ghost introgression in phylogenomic datasets. We analyzed a real-world phylogenomic dataset of 14 species of Jaltomata (Solanaceae) to showcase the potential of full-likelihood methods for accurate inference of introgression.
Collapse
Affiliation(s)
- Xiao-Xu Pang
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Da-Yong Zhang
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
6
|
Allman ES, Baños H, Mitchell JD, Rhodes JA. TINNiK: Inference of the Tree of Blobs of a Species Network Under the Coalescent. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.20.590418. [PMID: 38712257 PMCID: PMC11071406 DOI: 10.1101/2024.04.20.590418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
The tree of blobs of a species network shows only the tree-like aspects of relationships of taxa on a network, omitting information on network substructures where hybridization or other types of lateral transfer of genetic information occur. By isolating such regions of a network, inference of the tree of blobs can serve as a starting point for a more detailed investigation, or indicate the limit of what may be inferrable without additional assumptions. Building on our theoretical work on the identifiability of the tree of blobs from gene quartet distributions under the Network Multispecies Coalescent model, we develop an algorithm, TINNiK, for statistically consistent tree of blobs inference. We provide examples of its application to both simulated and empirical datasets, utilizing an implementation in the MSCquartets 2.0 R package.
Collapse
Affiliation(s)
- Elizabeth S. Allman
- Department of Mathematics and Statistics, University of Alaska, Fairbanks, AK, USA
| | - Hector Baños
- Department of Mathematics, California State University San Bernadino, San Bernadino, CA, USA
| | - Jonathan D. Mitchell
- School of Natural Sciences (Mathematics), University of Tasmania, Hobart, TAS, Australia
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, University of Tasmania, Hobart, TAS, Australia
| | - John A. Rhodes
- Department of Mathematics and Statistics, University of Alaska, Fairbanks, AK, USA
| |
Collapse
|
7
|
Mirarab S, Rivas-González I, Feng S, Stiller J, Fang Q, Mai U, Hickey G, Chen G, Brajuka N, Fedrigo O, Formenti G, Wolf JBW, Howe K, Antunes A, Schierup MH, Paten B, Jarvis ED, Zhang G, Braun EL. A region of suppressed recombination misleads neoavian phylogenomics. Proc Natl Acad Sci U S A 2024; 121:e2319506121. [PMID: 38557186 PMCID: PMC11009670 DOI: 10.1073/pnas.2319506121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/07/2024] [Indexed: 04/04/2024] Open
Abstract
Genomes are typically mosaics of regions with different evolutionary histories. When speciation events are closely spaced in time, recombination makes the regions sharing the same history small, and the evolutionary history changes rapidly as we move along the genome. When examining rapid radiations such as the early diversification of Neoaves 66 Mya, typically no consistent history is observed across segments exceeding kilobases of the genome. Here, we report an exception. We found that a 21-Mb region in avian genomes, mapped to chicken chromosome 4, shows an extremely strong and discordance-free signal for a history different from that of the inferred species tree. Such a strong discordance-free signal, indicative of suppressed recombination across many millions of base pairs, is not observed elsewhere in the genome for any deep avian relationships. Although long regions with suppressed recombination have been documented in recently diverged species, our results pertain to relationships dating circa 65 Mya. We provide evidence that this strong signal may be due to an ancient rearrangement that blocked recombination and remained polymorphic for several million years prior to fixation. We show that the presence of this region has misled previous phylogenomic efforts with lower taxon sampling, showing the interplay between taxon and locus sampling. We predict that similar ancient rearrangements may confound phylogenetic analyses in other clades, pointing to a need for new analytical models that incorporate the possibility of such events.
Collapse
Affiliation(s)
- Siavash Mirarab
- Electrical and Computer Engineering Department, University of California, San Diego, CA95032
| | | | - Shaohong Feng
- Center for Evolutionary & Organismal Biology, Zhejiang University School of Medicine, Hangzhou310058, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou311121, China
| | - Josefin Stiller
- Section for Ecology & Evolution, Department of Biology, University of Copenhagen, København2100, Denmark
| | - Qi Fang
- BGI-Research, Shenzhen518083, China
| | - Uyen Mai
- Electrical and Computer Engineering Department, University of California, San Diego, CA95032
| | - Glenn Hickey
- Genomics Institute, University of California, Santa Cruz, CA96064
| | - Guangji Chen
- Center for Evolutionary & Organismal Biology, Zhejiang University School of Medicine, Hangzhou310058, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou311121, China
| | - Nadolina Brajuka
- Vertebrate Genome Lab, Rockefeller University, New York, NY10065
| | - Olivier Fedrigo
- Vertebrate Genome Lab, Rockefeller University, New York, NY10065
| | - Giulio Formenti
- Vertebrate Genome Lab, Rockefeller University, New York, NY10065
| | - Jochen B. W. Wolf
- Division of Evolutionary Biology, Faculty of Biology, Ludwig-Maximillians-Universität, Munich82152, Germany
| | - Kerstin Howe
- Tree of Life Division, Wellcome Sanger Institute, CambridgeCB10 1RQ, United Kingdom
| | - Agostinho Antunes
- Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto4099-002, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, Porto4099-002, Portugal
| | | | - Benedict Paten
- Genomics Institute, University of California, Santa Cruz, CA96064
| | - Erich D. Jarvis
- Vertebrate Genome Lab, Rockefeller University, New York, NY10065
| | - Guojie Zhang
- Center for Evolutionary & Organismal Biology, Zhejiang University School of Medicine, Hangzhou310058, China
| | - Edward L. Braun
- Department of Biology, University of Florida, Gainesville, FL32611
| |
Collapse
|
8
|
Ané C, Fogg J, Allman ES, Baños H, Rhodes JA. Anomalous networks under the multispecies coalescent: theory and prevalence. J Math Biol 2024; 88:29. [PMID: 38372830 DOI: 10.1007/s00285-024-02050-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 01/18/2024] [Accepted: 01/21/2024] [Indexed: 02/20/2024]
Abstract
Reticulations in a phylogenetic network represent processes such as gene flow, admixture, recombination and hybrid speciation. Extending definitions from the tree setting, an anomalous network is one in which some unrooted tree topology displayed in the network appears in gene trees with a lower frequency than a tree not displayed in the network. We investigate anomalous networks under the Network Multispecies Coalescent Model with possible correlated inheritance at reticulations. Focusing on subsets of 4 taxa, we describe a new algorithm to calculate quartet concordance factors on networks of any level, faster than previous algorithms because of its focus on 4 taxa. We then study topological properties required for a 4-taxon network to be anomalous, uncovering the key role of [Formula: see text]-cycles: cycles of 3 edges parent to a sister group of 2 taxa. Under the model of common inheritance, that is, when each gene tree coalesces within a species tree displayed in the network, we prove that 4-taxon networks are never anomalous. Under independent and various levels of correlated inheritance, we use simulations under realistic parameters to quantify the prevalence of anomalous 4-taxon networks, finding that truly anomalous networks are rare. At the same time, however, we find a significant fraction of networks close enough to the anomaly zone to appear anomalous, when considering the quartet concordance factors observed from a few hundred genes. These apparent anomalies may challenge network inference methods.
Collapse
Affiliation(s)
- Cécile Ané
- Department of Statistics, University of Wisconsin - Madison, Madison, WI, 53706, USA.
- Department of Botany, University of Wisconsin - Madison, Madison, WI, 53706, USA.
| | - John Fogg
- Department of Statistics, University of Wisconsin - Madison, Madison, WI, 53706, USA
| | - Elizabeth S Allman
- Department of Mathematics and Statistics, University of Alaska Fairbanks, Fairbanks, AK, 99775-6660, USA
| | - Hector Baños
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, NS, Canada
- Department of Mathematics and Statistics, Dalhousie University, Halifax, NS, Canada
| | - John A Rhodes
- Department of Mathematics and Statistics, University of Alaska Fairbanks, Fairbanks, AK, 99775-6660, USA
| |
Collapse
|
9
|
Huang DQ, Ma XG, Sun H. Phylogenomic analyses and chromosome ploidy identification reveal multiple cryptic species in Allium sikkimense complex (Amaryllidaceae). FRONTIERS IN PLANT SCIENCE 2024; 14:1268546. [PMID: 38239226 PMCID: PMC10794568 DOI: 10.3389/fpls.2023.1268546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 12/06/2023] [Indexed: 01/22/2024]
Abstract
Polyploidization is a process that typically leads to instantaneous reproductive isolation and has, therefore, been considered as one of the major evolutionary forces in the species-rich Hengduan Mountains (HM), yet this topic remains poorly studied in the region. Allium sikkimense and its relatives (about eight species) compose a natural diploid-polyploid complex with the highest diversity in the HM and adjacent areas. A combination of nuclear ribosomal DNA (nrDNA), plastome, transcriptome, and ploidy identification through chromosome counting and flow cytometry is employed to reconstruct the phylogenetic relationships in this complex and to investigate the frequency and the evolutionary significance of polyploidy in the complex. The plastome failed to resolve the phylogenetic relationships of the different species in the A. sikkimense complex, and the phylogenetic tree based on nrDNA also has limited resolution. However, our study reveals a well-resolved phylogenetic framework for species in the A. sikkimense complex using more than 1,000 orthologous genes from the transcriptome data. Previously recognized morphospecies A. sikkimense are non-monophyletic and comprise at least two independently evolved lineages (i.e., cryptic species), each forming a clade with different diploid species in this complex. The embedded pattern of octoploid A. jichouense and tetraploid A. sp. nov. within different polyploid samples of A. sikkimense supports a possible scenario of budding speciation (via niche divergence). Furthermore, our results reveal that co-occurring species in the A. sikkimense complex usually have different ploidy levels, suggesting that polyploidy is an important process for reproductive isolation of sympatric Allium species. Phylogenetic network analyses suggested that the phylogenetic relationships of the A. sikkimense complex, allowing for reticulation events, always fit the dataset better than a simple bifurcating tree. In addition, the included or exserted filaments, which have long been used to delimit species, are highly unreliable taxonomically due to their extensive parallel and convergent evolution.
Collapse
Affiliation(s)
- De-Qing Huang
- College of Pharmacy, Guilin Medical University, Guilin, China
| | - Xiang-Guang Ma
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Hang Sun
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
10
|
Rodríguez-Machado S, Elías DJ, McMahan CD, Gruszkiewicz-Tolli A, Piller KR, Chakrabarty P. Disentangling historical relationships within Poeciliidae (Teleostei: Cyprinodontiformes) using ultraconserved elements. Mol Phylogenet Evol 2024; 190:107965. [PMID: 37977500 DOI: 10.1016/j.ympev.2023.107965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/18/2023] [Accepted: 11/12/2023] [Indexed: 11/19/2023]
Abstract
Poeciliids (Cyprinodontiformes: Poeciliidae), commonly known as livebearers, are popular fishes in the aquarium trade (e.g., guppies, mollies, swordtails) that are widely distributed in the Americas, with 274 valid species in 27 genera. This group has undergone various taxonomic changes recently, spurred by investigations using traditional genetic markers. Here we used over 1,000 ultraconserved loci to infer the relationships within Poeciliidae in the first attempt at understanding their diversification based on genome-scale data. We explore gene tree discordance and investigate potential incongruence between concatenation and coalescent inference methods. Our aim is to examine the influence of incomplete lineage sorting and reticulate evolution on the poeciliids' evolutionary history and how these factors contribute to the observed gene tree discordace. Our concatenated and coalescent phylogenomic inferences recovered four major clades within Poeciliidae. Most supra-generic level relationships we inferred were congruent with previous molecular studies, but we found some disagreements; the Middle American taxa Phallichthys and Poecilia (Mollienesia) were recovered as non-monophyletic, and unlike other recent molecular studies, we recovered Brachyrhaphis as monophyletic. Our study is the first to provide signatures of reticulate evolution in Poeciliidae at the family level; however, continued finer-scale investigations are needed to understand the complex evolutionary history of the family along with a much-needed taxonomic re-evaluation.
Collapse
Affiliation(s)
- Sheila Rodríguez-Machado
- Museum of Natural Science, Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, United States.
| | - Diego J Elías
- Museum of Natural Science, Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, United States; Field Museum of Natural History, Chicago, IL 60605, United States
| | - Caleb D McMahan
- Field Museum of Natural History, Chicago, IL 60605, United States
| | - Anna Gruszkiewicz-Tolli
- Department of Biological Sciences, Southeastern Louisiana University, Hammond, LA 70402, United States
| | - Kyle R Piller
- Department of Biological Sciences, Southeastern Louisiana University, Hammond, LA 70402, United States
| | - Prosanta Chakrabarty
- Museum of Natural Science, Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, United States
| |
Collapse
|
11
|
Li Y, Li X, Nie S, Zhang M, Yang Q, Xu W, Duan Y, Wang X. Reticulate evolution of the tertiary relict Osmanthus. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:145-160. [PMID: 37837261 DOI: 10.1111/tpj.16480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 09/10/2023] [Accepted: 09/13/2023] [Indexed: 10/15/2023]
Abstract
When interspecific gene flow is common, species relationships are more accurately represented by a phylogenetic network than by a bifurcating tree. This study aimed to uncover the role of introgression in the evolution of Osmanthus, the only genus of the subtribe Oleinae (Oleaceae) with its distribution center in East Asia. We built species trees, detected introgression, and constructed networks using multiple kinds of sequencing data (whole genome resequencing, transcriptome sequencing, and Sanger sequencing of nrDNA) combined with concatenation and coalescence approaches. Then, based on well-understood species relationships, historical biogeographic analyses and diversification rate estimates were employed to reveal the history of Osmanthus. Osmanthus originated in mid-Miocene Europe and dispersed to the eastern Tibetan Plateau in the late Miocene. Thereafter, it continued to spread eastwards. Phylogenetic conflict is common within the 'Core Osmanthus' clade and is seen at both early and late stages of diversification, leading to hypotheses of net-like species relationships. Incomplete lineage sorting proved ineffective in explaining phylogenetic conflicts and thus supported introgression as the main cause of conflicts. This study elucidates the diversification history of a relict genus in the subtropical regions of eastern Asia and reveals that introgression had profound effects on its evolutionary history.
Collapse
Affiliation(s)
- Yongfu Li
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, International Cultivar Registration Center for Osmanthus, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Xuan Li
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, International Cultivar Registration Center for Osmanthus, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Shuai Nie
- Rice Research Institute, Guangdong Academy of Agricultural Sciences & Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs & Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong, China
| | - Min Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, International Cultivar Registration Center for Osmanthus, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Qinghua Yang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, International Cultivar Registration Center for Osmanthus, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Wenbin Xu
- Wuhan Botanical Garden, the Chinese Academy of Sciences, Wuhan, 430074, Hubei, China
| | - Yifan Duan
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, International Cultivar Registration Center for Osmanthus, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Xianrong Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, International Cultivar Registration Center for Osmanthus, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| |
Collapse
|
12
|
Ané C, Fogg J, Allman ES, Baños H, Rhodes JA. ANOMALOUS NETWORKS UNDER THE MULTISPECIES COALESCENT: THEORY AND PREVALENCE. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.18.553582. [PMID: 37662314 PMCID: PMC10473666 DOI: 10.1101/2023.08.18.553582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Reticulations in a phylogenetic network represent processes such as gene flow, admixture, recombination and hybrid speciation. Extending definitions from the tree setting, an anomalous network is one in which some unrooted tree topology displayed in the network appears in gene trees with a lower frequency than a tree not displayed in the network. We investigate anomalous networks under the Network Multispecies Coalescent Model with possible correlated inheritance at reticulations. Focusing on subsets of 4 taxa, we describe a new algorithm to calculate quartet concordance factors on networks of any level, faster than previous algorithms because of its focus on 4 taxa. We then study topological properties required for a 4-taxon network to be anomalous, uncovering the key role of 32-cycles: cycles of 3 edges parent to a sister group of 2 taxa. Under the model of common inheritance, that is, when each gene tree coalesces within a species tree displayed in the network, we prove that 4-taxon networks are never anomalous. Under independent and various levels of correlated inheritance, we use simulations under realistic parameters to quantify the prevalence of anomalous 4-taxon networks, finding that truly anomalous networks are rare. At the same time, however, we find a significant fraction of networks close enough to the anomaly zone to appear anomalous, when considering the quartet concordance factors observed from a few hundred genes. These apparent anomalies may challenge network inference methods.
Collapse
Affiliation(s)
- Cécile Ané
- Department of Statistics, University of Wisconsin - Madison, WI, 53706, USA
- Department of Botany, University of Wisconsin - Madison, WI, 53706, USA
| | - John Fogg
- Department of Statistics, University of Wisconsin - Madison, WI, 53706, USA
| | - Elizabeth S Allman
- Department of Mathematics and Statistics, University of Alaska - Fairbanks, AK, 99775-6660, USA
| | - Hector Baños
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Mathematics and Statistics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - John A Rhodes
- Department of Mathematics and Statistics, University of Alaska - Fairbanks, AK, 99775-6660, USA
| |
Collapse
|
13
|
Thawornwattana Y, Huang J, Flouri T, Mallet J, Yang Z. Inferring the Direction of Introgression Using Genomic Sequence Data. Mol Biol Evol 2023; 40:msad178. [PMID: 37552932 PMCID: PMC10439365 DOI: 10.1093/molbev/msad178] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/10/2023] Open
Abstract
Genomic data are informative about the history of species divergence and interspecific gene flow, including the direction, timing, and strength of gene flow. However, gene flow in opposite directions generates similar patterns in multilocus sequence data, such as reduced sequence divergence between the hybridizing species. As a result, inference of the direction of gene flow is challenging. Here, we investigate the information about the direction of gene flow present in genomic sequence data using likelihood-based methods under the multispecies-coalescent-with-introgression model. We analyze the case of two species, and use simulation to examine cases with three or four species. We find that it is easier to infer gene flow from a small population to a large one than in the opposite direction, and easier to infer inflow (gene flow from outgroup species to an ingroup species) than outflow (gene flow from an ingroup species to an outgroup species). It is also easier to infer gene flow if there is a longer time of separate evolution between the initial divergence and subsequent introgression. When introgression is assumed to occur in the wrong direction, the time of introgression tends to be correctly estimated and the Bayesian test of gene flow is often significant, while estimates of introgression probability can be even greater than the true probability. We analyze genomic sequences from Heliconius butterflies to demonstrate that typical genomic datasets are informative about the direction of interspecific gene flow, as well as its timing and strength.
Collapse
Affiliation(s)
| | - Jun Huang
- School of Biomedical Engineering, Capital Medical University, Beijing 100069, P.R. China
| | - Tomáš Flouri
- Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK
| | - James Mallet
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
- Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK
| | - Ziheng Yang
- Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK
| |
Collapse
|
14
|
Zhao J, Zhou X, Fang S, Zhu Z, Li Y, Yu H, He Z. Transcriptome-Based Study on the Phylogeny and Hybridization of Marattialean Ferns (Marattiaceae). PLANTS (BASEL, SWITZERLAND) 2023; 12:2237. [PMID: 37375862 DOI: 10.3390/plants12122237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/07/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023]
Abstract
Marattiaceae is a phylogenetically isolated family of tropical eusporangiate ferns including six genera with more than one-hundred species. In Marattiaceae, monophyly of genera has been well-supported phylogenetically. However, the phylogenetic relationships among them were elusive and controversial. Here, a dataset of 26 transcriptomes (including 11 newly generated) were used to assess single-copy nuclear genes and to obtain the organelle gene sequences. Through phylotranscriptomic analysis, the phylogeny and hybridization events of Marattiaceae were explored and a robust phylogenomic framework for the evolution of Marattiaceae was provided. Using both concatenation- and coalescent-based phylogenies, the gene-tree discordance, incomplete lineage sorting (ILS) simulations, and network inference were examined. Except the low support with mitochondrial genes of Marattiaceae, nuclear genes and chloroplast genes strongly supported a sister relationship between Marattiaceae and leptosporangiate ferns. At the genus level, all phylogenetic analysis based on nuclear genes datasets recovered five genera in Marattiaceae as monophyletic with strong support. Danaea and Ptisana were the first two diverged clades in turn. Christensenia was a sister clade to the clade Marattia + Angiopteris s.l. In Angiopteris s.l., three clades (Angiopteris s.s., the Archangiopteris group, and An. sparsisora) were well identified with maximum support. The Archangiopteris group was derived from Angiopteris s.s. at ca. 18 Ma. The putative hybrid species An. sparsisora between Angiopteris s.s. and the Archangiopteris group was verified by the species network analyses and the maternal plastid genes. This study will improve our understanding for using the phylotranscriptomic method to explore phylogeny and investigate hybridization events for difficult taxa in ferns.
Collapse
Affiliation(s)
- Jing Zhao
- School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China
- School of Life Sciences, Yunnan University, East Outer Ring Road, Chenggong District, Kunming 650500, China
| | - Xinmao Zhou
- School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China
| | - Shaoli Fang
- School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China
| | - Zhangming Zhu
- School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China
| | - Yuxin Li
- School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China
| | - Hong Yu
- School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China
| | - Zhaorong He
- School of Life Sciences, Yunnan University, East Outer Ring Road, Chenggong District, Kunming 650500, China
| |
Collapse
|
15
|
Peris D, Ubbelohde EJ, Kuang MC, Kominek J, Langdon QK, Adams M, Koshalek JA, Hulfachor AB, Opulente DA, Hall DJ, Hyma K, Fay JC, Leducq JB, Charron G, Landry CR, Libkind D, Gonçalves C, Gonçalves P, Sampaio JP, Wang QM, Bai FY, Wrobel RL, Hittinger CT. Macroevolutionary diversity of traits and genomes in the model yeast genus Saccharomyces. Nat Commun 2023; 14:690. [PMID: 36755033 PMCID: PMC9908912 DOI: 10.1038/s41467-023-36139-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 01/17/2023] [Indexed: 02/10/2023] Open
Abstract
Species is the fundamental unit to quantify biodiversity. In recent years, the model yeast Saccharomyces cerevisiae has seen an increased number of studies related to its geographical distribution, population structure, and phenotypic diversity. However, seven additional species from the same genus have been less thoroughly studied, which has limited our understanding of the macroevolutionary events leading to the diversification of this genus over the last 20 million years. Here, we show the geographies, hosts, substrates, and phylogenetic relationships for approximately 1,800 Saccharomyces strains, covering the complete genus with unprecedented breadth and depth. We generated and analyzed complete genome sequences of 163 strains and phenotyped 128 phylogenetically diverse strains. This dataset provides insights about genetic and phenotypic diversity within and between species and populations, quantifies reticulation and incomplete lineage sorting, and demonstrates how gene flow and selection have affected traits, such as galactose metabolism. These findings elevate the genus Saccharomyces as a model to understand biodiversity and evolution in microbial eukaryotes.
Collapse
Grants
- R01 GM080669 NIGMS NIH HHS
- T32 GM007133 NIGMS NIH HHS
- We thank the University of Wisconsin Biotechnology Center DNA Sequencing Facility for providing Illumina and Sanger sequencing facilities and services; Maria Sardi, Audrey Gasch, and Ursula Bond for providing strains; Sean McIlwain for providing guidance for genome ultra-scaffolding; Yury V. Bukhman for discussing applications of the Growth Curve Analysis Tool (GCAT); Mick McGee for HPLC analysis; Raúl Ortíz-Merino for assistance during YGAP annotations; Jessica Leigh for assistance with PopART; Cecile Ané for suggestions about BUCKy utilization and phylogenetic network analyses; Samina Naseeb and Daniela Delneri for sharing preliminary multi-locus Saccharomyces jurei data; and Branden Timm, Brian Kyle, and Dan Metzger for computational assistance. Some computations were performed on Tirant III of the Spanish Supercomputing Network (‘‘Servei d’Informàtica de la Universitat de València”) under the project BCV-2021-1-0001 granted to DP, while others were performed at the Wisconsin Energy Institute and the Center for High-Throughput Computing of the University of Wisconsin-Madison. During a portion of this project, DP was a researcher funded by the European Union’s Horizon 2020 research and innovation programme Marie Sklodowska-Curie, grant agreement No. 747775, the Research Council of Norway (RCN) grant Nos. RCN 324253 and 274337, and the Generalitat Valenciana plan GenT grant No. CIDEGENT/2021/039. DP is a recipient of an Illumina Grant for Illumina Sequencing Saccharomyces strains in this study. QKL was supported by the National Science Foundation under Grant No. DGE-1256259 (Graduate Research Fellowship) and the Predoctoral Training Program in Genetics, funded by the National Institutes of Health (5T32GM007133). This material is based upon work supported in part by the Great Lakes Bioenergy Research Center, Office of Science, Office of Biological and Environmental Research under Award Numbers DE-SC0018409 and DE-FC02-07ER64494; the National Science Foundation under Grant Nos. DEB-1253634, DEB-1442148, and DEB-2110403; and the USDA National Institute of Food and Agriculture Hatch Project Number 1020204. C.T.H. is an H. I. Romnes Faculty Fellow, supported by the Office of the Vice Chancellor for Research and Graduate Education with funding from Wisconsin Alumni Research Foundation. QMW was supported by the National Natural Science Foundation of China (NSFC) under Grant Nos. 31770018 and 31961133020. CRL holds the Canada Research Chair in Cellular Systems and Synthetic Biology, and his research on wild yeast is supported by a NSERC Discovery Grant.
Collapse
Affiliation(s)
- David Peris
- Laboratory of Genetics, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI, USA.
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, USA.
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Oslo, Norway.
- Department of Food Biotechnology, Institute of Agrochemistry and Food Technology (IATA), CSIC, Valencia, Spain.
| | - Emily J Ubbelohde
- Laboratory of Genetics, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI, USA
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Meihua Christina Kuang
- Laboratory of Genetics, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI, USA
| | - Jacek Kominek
- Laboratory of Genetics, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI, USA
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Quinn K Langdon
- Laboratory of Genetics, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI, USA
| | - Marie Adams
- Biotechnology Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Justin A Koshalek
- Biotechnology Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Amanda Beth Hulfachor
- Laboratory of Genetics, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI, USA
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Dana A Opulente
- Laboratory of Genetics, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI, USA
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Katie Hyma
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Justin C Fay
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Jean-Baptiste Leducq
- Departement des Sciences Biologiques, Université de Montréal, Montreal, QC, Canada
- Département de Biologie, PROTEO, Pavillon Charles‑Eugène‑Marchand, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, QC, Canada
| | - Guillaume Charron
- Canada Natural Resources, Laurentian Forestry Centre, Quebec City, QC, Canada
| | - Christian R Landry
- Département de Biologie, PROTEO, Pavillon Charles‑Eugène‑Marchand, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, QC, Canada
| | - Diego Libkind
- Centro de Referencia en Levaduras y Tecnología Cervecera (CRELTEC), Instituto Andino Patagónico de Tecnologías Biológicas y Geoambientales (IPATEC), Consejo Nacional de Investigaciones, Científicas y Técnicas (CONICET)-Universidad Nacional del Comahue, Bariloche, Argentina
| | - Carla Gonçalves
- Laboratory of Genetics, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI, USA
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- UCIBIO-i4HB, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
- Vanderbilt University, Department of Biological Sciences, Nashville, TN, USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN, USA
| | - Paula Gonçalves
- UCIBIO-i4HB, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - José Paulo Sampaio
- UCIBIO-i4HB, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Qi-Ming Wang
- Laboratory of Genetics, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI, USA
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, China
| | - Feng-Yan Bai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Russel L Wrobel
- Laboratory of Genetics, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI, USA
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Chris Todd Hittinger
- Laboratory of Genetics, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI, USA.
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
16
|
Allman ES, Baños H, Mitchell JD, Rhodes JA. The tree of blobs of a species network: identifiability under the coalescent. J Math Biol 2022; 86:10. [PMID: 36472708 PMCID: PMC10062380 DOI: 10.1007/s00285-022-01838-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 08/31/2022] [Accepted: 11/17/2022] [Indexed: 12/12/2022]
Abstract
Inference of species networks from genomic data under the Network Multispecies Coalescent Model is currently severely limited by heavy computational demands. It also remains unclear how complicated networks can be for consistent inference to be possible. As a step toward inferring a general species network, this work considers its tree of blobs, in which non-cut edges are contracted to nodes, so only tree-like relationships between the taxa are shown. An identifiability theorem, that most features of the unrooted tree of blobs can be determined from the distribution of gene quartet topologies, is established. This depends upon an analysis of gene quartet concordance factors under the model, together with a new combinatorial inference rule. The arguments for this theoretical result suggest a practical algorithm for tree of blobs inference, to be fully developed in a subsequent work.
Collapse
Affiliation(s)
- Elizabeth S Allman
- Department of Mathematics and Statistics, University of Alaska Fairbanks, Fairbanks, AK, 99775, USA
| | - Hector Baños
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
- Department of Mathematics and Statistics, Faculty of Science, Dalhousie University, Halifax, NS, Canada
| | - Jonathan D Mitchell
- Department of Mathematics and Statistics, University of Alaska Fairbanks, Fairbanks, AK, 99775, USA
- School of Natural Sciences (Mathematics), University of Tasmania, Hobart, TAS, 7001, Australia
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, University of Tasmania, Hobart, TAS, 7001, Australia
| | - John A Rhodes
- Department of Mathematics and Statistics, University of Alaska Fairbanks, Fairbanks, AK, 99775, USA.
| |
Collapse
|
17
|
Karbstein K, Tomasello S, Hodač L, Wagner N, Marinček P, Barke BH, Paetzold C, Hörandl E. Untying Gordian knots: unraveling reticulate polyploid plant evolution by genomic data using the large Ranunculus auricomus species complex. THE NEW PHYTOLOGIST 2022; 235:2081-2098. [PMID: 35633497 DOI: 10.1111/nph.18284] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 05/14/2022] [Indexed: 06/15/2023]
Abstract
Speciation via hybridization and polyploidization is a major evolutionary force in plant evolution but is still poorly understood for neopolyploid groups. Challenges are attributed to high heterozygosity, low genetic divergence, and missing information on progenitors, ploidy, and reproduction. We study the large Eurasian Ranunculus auricomus species complex and use a comprehensive workflow integrating reduced-representation sequencing (RRS) genomic data to unravel reticulate evolution, genome diversity and composition of polyploids. We rely on 97 312 restriction site-associated DNA sequencing (RAD-Seq) loci, 576 targeted nuclear genes (48 phased), and 71 plastid regions derived from 78 polyploid apomictic taxa and four diploid and one tetraploid putative sexual progenitor species. We applied (phylo)genomic structure, network, and single nucleotide polymorphism (SNP)-origin analyses. Results consistently showed only 3-5 supported and geographically structured polyploid genetic groups, each containing extant sexual and one unknown progenitor species. Combined analyses demonstrated predominantly allopolyploid origins, each involving 2-3 different diploid sexual progenitor species. Young allotetraploids were characterized by subgenome dominance and nonhybrid SNPs, suggesting substantial post-origin but little lineage-specific evolution. The biodiversity of neopolyploid complexes can result from multiple hybrid origins involving different progenitors and substantial post-origin evolution (e.g. homoeologous exchanges, hybrid segregation, gene flow). Reduced-representation sequencing genomic data including multi-approach information is efficient to delimit shallow reticulate relationships.
Collapse
Affiliation(s)
- Kevin Karbstein
- Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), Albrecht-von-Haller Institute for Plant Sciences, University of Göttingen, 37073, Göttingen, Germany
- Georg-August University School of Science (GAUSS), University of Göttingen, 37073, Göttingen, Germany
| | - Salvatore Tomasello
- Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), Albrecht-von-Haller Institute for Plant Sciences, University of Göttingen, 37073, Göttingen, Germany
| | - Ladislav Hodač
- Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), Albrecht-von-Haller Institute for Plant Sciences, University of Göttingen, 37073, Göttingen, Germany
- Department of Biogeochemical Integration, Max Planck Institute for Biogeochemistry, 07745, Jena, Germany
| | - Natascha Wagner
- Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), Albrecht-von-Haller Institute for Plant Sciences, University of Göttingen, 37073, Göttingen, Germany
| | - Pia Marinček
- Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), Albrecht-von-Haller Institute for Plant Sciences, University of Göttingen, 37073, Göttingen, Germany
| | - Birthe Hilkka Barke
- Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), Albrecht-von-Haller Institute for Plant Sciences, University of Göttingen, 37073, Göttingen, Germany
| | - Claudia Paetzold
- Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), Albrecht-von-Haller Institute for Plant Sciences, University of Göttingen, 37073, Göttingen, Germany
- Department of Botany and Molecular Evolution, Senckenberg Research Institute, 60325, Frankfurt (Main), Germany
| | - Elvira Hörandl
- Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), Albrecht-von-Haller Institute for Plant Sciences, University of Göttingen, 37073, Göttingen, Germany
| |
Collapse
|
18
|
Herrera ND, Bell KC, Callahan CM, Nordquist E, Sarver BAJ, Sullivan J, Demboski JR, Good JM. Genomic resolution of cryptic species diversity in chipmunks. Evolution 2022; 76:2004-2019. [PMID: 35778920 DOI: 10.1111/evo.14546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/01/2022] [Accepted: 06/06/2022] [Indexed: 01/22/2023]
Abstract
Discovery of cryptic species is essential to understand the process of speciation and assessing the impacts of anthropogenic stressors. Here, we used genomic data to test for cryptic species diversity within an ecologically well-known radiation of North American rodents, western chipmunks (Tamias). We assembled a de novo reference genome for a single species (Tamias minimus) combined with new and published targeted sequence-capture data for 21,551 autosomal and 493 X-linked loci sampled from 121 individuals spanning 22 species. We identified at least two cryptic lineages corresponding with an isolated subspecies of least chipmunk (T. minimus grisescens) and with a restricted subspecies of the yellow-pine chipmunk (Tamias amoenus cratericus) known only from around the extensive Craters of the Moon lava flow. Additional population-level sequence data revealed that the so-called Crater chipmunk is a distinct species that is abundant throughout the coniferous forests of southern Idaho. This cryptic lineage does not appear to be most closely related to the ecologically and phenotypically similar yellow-pine chipmunk but does show evidence for recurrent hybridization with this and other species.
Collapse
Affiliation(s)
- Nathanael D Herrera
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
| | - Kayce C Bell
- Natural History Museum of Los Angeles County, Los Angeles, California, USA
| | - Colin M Callahan
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
| | - Erin Nordquist
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
| | - Brice A J Sarver
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
| | - Jack Sullivan
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, USA.,Institute for Bioinformatics and Evolutionary Studies (IBEST), University of Idaho, Moscow, Idaho, USA
| | - John R Demboski
- Department of Zoology, Denver Museum of Nature & Sciences, Denver, Colorado, USA
| | - Jeffrey M Good
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA.,Wildlife Biology Program, University of Montana, Missoula, Montana, USA
| |
Collapse
|
19
|
LeMay M, Libeskind-Hadas R, Wu YC. A Polynomial-Time Algorithm for Minimizing the Deep Coalescence Cost for Level-1 Species Networks. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2022; 19:2642-2653. [PMID: 34406946 DOI: 10.1109/tcbb.2021.3105922] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Phylogenetic analyses commonly assume that the species history can be represented as a tree. However, in the presence of hybridization, the species history is more accurately captured as a network. Despite several advances in modeling phylogenetic networks, there is no known polynomial-time algorithm for parsimoniously reconciling gene trees with species networks while accounting for incomplete lineage sorting. To address this issue, we present a polynomial-time algorithm for the case of level-1 networks, in which no hybrid species is the direct ancestor of another hybrid species. This work enables more efficient reconciliation of gene trees with species networks, which in turn, enables more efficient reconstruction of species networks.
Collapse
|
20
|
Astudillo-Clavijo V, Stiassny MLJ, Ilves KL, Musilova Z, Salzburger W, López-Fernández H. Exon-based phylogenomics and the relationships of African cichlid fishes: tackling the challenges of reconstructing phylogenies with repeated rapid radiations. Syst Biol 2022; 72:134-149. [PMID: 35880863 DOI: 10.1093/sysbio/syac051] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 07/06/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
African cichlids (subfamily: Pseudocrenilabrinae) are among the most diverse vertebrates, and their propensity for repeated rapid radiation has made them a celebrated model system in evolutionary research. Nonetheless, despite numerous studies, phylogenetic uncertainty persists, and riverine lineages remain comparatively underrepresented in higher-level phylogenetic studies. Heterogeneous gene histories resulting from incomplete lineage sorting (ILS) and hybridization are likely sources of uncertainty, especially during episodes of rapid speciation. We investigate relationships of Pseudocrenilabrinae and its close relatives while accounting for multiple sources of genetic discordance using species tree and hybrid network analyses with hundreds of single-copy exons. We improve sequence recovery for distant relatives, thereby extending the taxonomic reach of our probes, with a hybrid reference guided/de novo assembly approach. Our analyses provide robust hypotheses for most higher-level relationships and reveal widespread gene heterogeneity, including in riverine taxa. ILS and past hybridization are identified as sources of genetic discordance in different lineages. Sampling of various Blenniiformes (formerly Ovalentaria) adds strong phylogenomic support for convict blennies (Pholidichthyidae) as sister to Cichlidae, and points to other potentially useful protein-coding markers across the order. A reliable phylogeny with representatives from diverse environments will support ongoing taxonomic and comparative evolutionary research in the cichlid model system.
Collapse
Affiliation(s)
- Viviana Astudillo-Clavijo
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, M5S 3B2, Canada.,Department of Natural History, Royal Ontario Museum, Toronto, M5S 2C6, Canada.,Department of Ecology and Evolutionary Biology and Museum of Zoology, University of Michigan, Ann Arbor, 48109, USA
| | - Melanie L J Stiassny
- Department of Ichthyology, American Museum of Natural History, New York, 10024-5102, USA
| | - Katriina L Ilves
- Research & Collections, Zoology, Canadian Museum of Nature, Ottawa, K1P 6P4, Canada
| | - Zuzana Musilova
- Department of Zoology, Charles University in Prague, Vinicna 7, Prague, CZ-128 44, Czech Republic
| | - Walter Salzburger
- Zoological Institute, University of Basel, Vesalgasse 1, CH-4051, Basel, Switzerland
| | - Hernán López-Fernández
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, M5S 3B2, Canada.,Department of Natural History, Royal Ontario Museum, Toronto, M5S 2C6, Canada.,Department of Ecology and Evolutionary Biology and Museum of Zoology, University of Michigan, Ann Arbor, 48109, USA
| |
Collapse
|
21
|
Pang XX, Zhang DY. Impact of Ghost Introgression on Coalescent-based Species Tree Inference and Estimation of Divergence Time. Syst Biol 2022; 72:35-49. [PMID: 35799362 DOI: 10.1093/sysbio/syac047] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 06/25/2022] [Accepted: 07/05/2022] [Indexed: 11/15/2022] Open
Abstract
The species studied in any evolutionary investigation generally constitute a small proportion of all the species currently existing or that have gone extinct. It is therefore likely that introgression, which is widespread across the tree of life, involves "ghosts," i.e., unsampled, unknown, or extinct lineages. However, the impact of ghost introgression on estimations of species trees has rarely been studied and is poorly understood. Here, we use mathematical analysis and simulations to examine the robustness of species tree methods based on the multispecies coalescent model to introgression from a ghost or extant lineage. We found that many results originally obtained for introgression between extant species can easily be extended to ghost introgression, such as the strongly interactive effects of incomplete lineage sorting (ILS) and introgression on the occurrence of anomalous gene trees (AGTs). The relative performance of the summary species tree method (ASTRAL) and the full-likelihood method (*BEAST) varies under different introgression scenarios, with the former being more robust to gene flow between non-sister species whereas the latter performing better under certain conditions of ghost introgression. When an outgroup ghost (defined as a lineage that diverged before the most basal species under investigation) acts as the donor of the introgressed genes, the time of root divergence among the investigated species generally was overestimated, whereas ingroup introgression, as commonly perceived, can only lead to underestimation. In many cases of ingroup introgression that may or may not involve ghost lineages, the stronger the ILS, the higher the accuracy achieved in estimating the time of root divergence, although the topology of the species tree is more prone to be biased by the effect of introgression.
Collapse
Affiliation(s)
- Xiao-Xu Pang
- State Key Laboratory of Earth Surface Processes and Resource Ecology and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Da-Yong Zhang
- State Key Laboratory of Earth Surface Processes and Resource Ecology and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
22
|
Tomasello S, Oberprieler C. Reticulate Evolution in the Western Mediterranean Mountain Ranges: The Case of the Leucanthemopsis Polyploid Complex. FRONTIERS IN PLANT SCIENCE 2022; 13:842842. [PMID: 35783934 PMCID: PMC9247603 DOI: 10.3389/fpls.2022.842842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 05/18/2022] [Indexed: 06/15/2023]
Abstract
Polyploidization is one of the most common speciation mechanisms in plants. This is particularly relevant in high mountain environments and/or in areas heavily affected by climatic oscillations. Although the role of polyploidy and the temporal and geographical frameworks of polyploidization have been intensively investigated in the alpine regions of the temperate and arctic biomes, fewer studies are available with a specific focus on the Mediterranean region. Leucanthemopsis (Asteraceae) consists of six to ten species with several infraspecific entities, mainly distributed in the western Mediterranean Basin. It is a polyploid complex including montane, subalpine, and strictly alpine lineages, which are locally distributed in different mountain ranges of Western Europe and North Africa. We used a mixed approach including Sanger sequencing and (Roche-454) high throughput sequencing of amplicons to gather information from single-copy nuclear markers and plastid regions. Nuclear regions were carefully tested for recombinants/PCR artifacts and for paralogy. Coalescent-based methods were used to infer the number of polyploidization events and the age of formation of polyploid lineages, and to reconstruct the reticulate evolution of the genus. Whereas the polyploids within the widespread Leucanthemopsis alpina are autopolyploids, the situation is more complex among the taxa endemic to the western Mediterranean. While the hexaploid, L. longipectinata, confined to the northern Moroccan mountain ranges (north-west Africa), is an autopolyploid, the Iberian polyploids are clearly of allopolyploid origins. At least two different polyploidization events gave rise to L. spathulifolia and to all other tetraploid Iberian taxa, respectively. The formation of the Iberian allopolyploids took place in the early Pleistocene and was probably caused by latitudinal and elevational range shifts that brought into contact previously isolated Leucanthemopsis lineages. Our study thus highlights the importance of the Pleistocene climatic oscillations and connected polyploidization events for the high plant diversity in the Mediterranean Basin.
Collapse
Affiliation(s)
- Salvatore Tomasello
- Department of Systematics, Biodiversity and Evolution of Plants (With Herbarium), University of Göttingen, Göttingen, Germany
| | - Christoph Oberprieler
- Evolutionary and Systematic Botany Group, Institute of Plant Sciences, University of Regensburg, Regensburg, Germany
| |
Collapse
|
23
|
Morales‐Briones DF, Lin N, Huang EY, Grossenbacher DL, Sobel JM, Gilmore CD, Tank DC, Yang Y. Phylogenomic analyses in Phrymaceae reveal extensive gene tree discordance in relationships among major clades. AMERICAN JOURNAL OF BOTANY 2022; 109:1035-1046. [PMID: 35462411 PMCID: PMC9328367 DOI: 10.1002/ajb2.1860] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 06/14/2023]
Abstract
PREMISE Phylogenomic datasets using genomes and transcriptomes provide rich opportunities beyond resolving bifurcating phylogenetic relationships. Monkeyflower (Phrymaceae) is a model system for evolutionary ecology. However, it lacks a well-supported phylogeny as a basis for a stable taxonomy and for macroevolutionary comparisons. METHODS We sampled 24 genomes and transcriptomes in Phrymaceae and closely related families, including eight newly sequenced transcriptomes. We reconstructed the phylogeny using IQ-TREE and ASTRAL, evaluated gene tree discordance using PhyParts, Quartet Sampling, and a cloudogram, and carried out reticulation analyses using PhyloNet and HyDe. We searched for whole genome duplication (WGD) events using chromosome numbers, synonymous distances, and gene duplication events as evidence. RESULTS Most gene trees support the monophyly of Phrymaceae and each of its tribes. Most gene trees also support tribe Mimuleae being sister to Phrymeae + Diplaceae + Leucocarpeae, with extensive gene tree discordance among the latter three. Despite the discordance, the monophyly of Mimulus s.l. is rejected, and no individual reticulation event among the Phrymaceae tribes is well-supported. Reticulation likely occurred among Erythranthe bicolor and closely related species. No ancient WGD was detected in Phrymaceae. Instead, small-scale duplications are among potential drivers of macroevolutionary diversification of Phrymaceae. CONCLUSIONS We show that analysis of reticulate evolution is sensitive to taxon sampling and methods used. We also demonstrate that phylogenomic datasets using genomes and transcriptomes present rich opportunities to investigate gene family evolution and genome duplication events involved in lineage diversification and adaptation.
Collapse
Affiliation(s)
- Diego F. Morales‐Briones
- Department of Plant and Microbial BiologyUniversity of Minnesota‐Twin Cities1445 Gortner AvenueSt. PaulMinnesota55108‐1095USA
- Systematics, Biodiversity and Evolution of Plants, Department of Biology I, Ludwig‐Maximilians‐Universität MünchenMenzinger Strasse 6780638MunichGermany
| | - Nan Lin
- Department of Plant and Microbial BiologyUniversity of Minnesota‐Twin Cities1445 Gortner AvenueSt. PaulMinnesota55108‐1095USA
- College of Life ScienceHenan Agricultural University63 Nongye RoadZhengzhouHenan450002China
| | - Eileen Y. Huang
- Department of Plant and Microbial BiologyUniversity of Minnesota‐Twin Cities1445 Gortner AvenueSt. PaulMinnesota55108‐1095USA
| | - Dena L. Grossenbacher
- Biological Sciences DepartmentCalifornia Polytechnic State University, 1 Grand Avenue, San Luis ObispoCalifornia93407USA
| | - James M. Sobel
- Department of Biological SciencesBinghamton University (State University of New York), 4400 Vestal Parkway E, BinghamtonNew York13902USA
| | - Caroline D. Gilmore
- Department of Biological SciencesBinghamton University (State University of New York), 4400 Vestal Parkway E, BinghamtonNew York13902USA
| | - David C. Tank
- Department of Botany & Rocky Mountain HerbariumUniversity of Wyoming, 1000 E. University Avenue, LaramieWyoming82071USA
| | - Ya Yang
- Department of Plant and Microbial BiologyUniversity of Minnesota‐Twin Cities1445 Gortner AvenueSt. PaulMinnesota55108‐1095USA
| |
Collapse
|
24
|
Wawerka M, Dąbkowski D, Rutecka N, Mykowiecka A, Górecki P. Embedding gene trees into phylogenetic networks by conflict resolution algorithms. Algorithms Mol Biol 2022; 17:11. [PMID: 35590416 PMCID: PMC9119282 DOI: 10.1186/s13015-022-00218-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 03/22/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Phylogenetic networks are mathematical models of evolutionary processes involving reticulate events such as hybridization, recombination, or horizontal gene transfer. One of the crucial notions in phylogenetic network modelling is displayed tree, which is obtained from a network by removing a set of reticulation edges. Displayed trees may represent an evolutionary history of a gene family if the evolution is shaped by reticulation events. RESULTS We address the problem of inferring an optimal tree displayed by a network, given a gene tree G and a tree-child network N, under the deep coalescence and duplication costs. We propose an O(mn)-time dynamic programming algorithm (DP) to compute a lower bound of the optimal displayed tree cost, where m and n are the sizes of G and N, respectively. In addition, our algorithm can verify whether the solution is exact. Moreover, it provides a set of reticulation edges corresponding to the obtained cost. If the cost is exact, the set induces an optimal displayed tree. Otherwise, the set contains pairs of conflicting edges, i.e., edges sharing a reticulation node. Next, we show a conflict resolution algorithm that requires [Formula: see text] invocations of DP in the worst case, where r is the number of reticulations. We propose a similar [Formula: see text]-time algorithm for level-k tree-child networks and a branch and bound solution to compute lower and upper bounds of optimal costs. We also extend the algorithms to a broader class of phylogenetic networks. Based on simulated data, the average runtime is [Formula: see text] under the deep-coalescence cost and [Formula: see text] under the duplication cost. CONCLUSIONS Despite exponential complexity in the worst case, our algorithms perform significantly well on empirical and simulated datasets, due to the strategy of resolving internal dissimilarities between gene trees and networks. Therefore, the algorithms are efficient alternatives to enumeration strategies commonly proposed in the literature and enable analyses of complex networks with dozens of reticulations.
Collapse
|
25
|
Kong S, Pons JC, Kubatko L, Wicke K. Classes of explicit phylogenetic networks and their biological and mathematical significance. J Math Biol 2022; 84:47. [PMID: 35503141 DOI: 10.1007/s00285-022-01746-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 01/18/2022] [Accepted: 03/31/2022] [Indexed: 11/24/2022]
Abstract
The evolutionary relationships among organisms have traditionally been represented using rooted phylogenetic trees. However, due to reticulate processes such as hybridization or lateral gene transfer, evolution cannot always be adequately represented by a phylogenetic tree, and rooted phylogenetic networks that describe such complex processes have been introduced as a generalization of rooted phylogenetic trees. In fact, estimating rooted phylogenetic networks from genomic sequence data and analyzing their structural properties is one of the most important tasks in contemporary phylogenetics. Over the last two decades, several subclasses of rooted phylogenetic networks (characterized by certain structural constraints) have been introduced in the literature, either to model specific biological phenomena or to enable tractable mathematical and computational analyses. In the present manuscript, we provide a thorough review of these network classes, as well as provide a biological interpretation of the structural constraints underlying these networks where possible. In addition, we discuss how imposing structural constraints on the network topology can be used to address the scalability and identifiability challenges faced in the estimation of phylogenetic networks from empirical data.
Collapse
Affiliation(s)
- Sungsik Kong
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH, USA
| | - Joan Carles Pons
- Department of Mathematics and Computer Science, University of the Balearic Islands, Palma, 07122, Spain
| | - Laura Kubatko
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH, USA.,Department of Statistics, The Ohio State University, Columbus, OH, USA
| | - Kristina Wicke
- Department of Mathematics, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
26
|
Yang Z, Flouri T. Estimation of Cross-Species Introgression Rates Using Genomic Data Despite Model Unidentifiability. Mol Biol Evol 2022; 39:msac083. [PMID: 35417543 PMCID: PMC9087891 DOI: 10.1093/molbev/msac083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Full-likelihood implementations of the multispecies coalescent with introgression (MSci) model treat genealogical fluctuations across the genome as a major source of information to infer the history of species divergence and gene flow using multilocus sequence data. However, MSci models are known to have unidentifiability issues, whereby different models or parameters make the same predictions about the data and cannot be distinguished by the data. Previous studies of unidentifiability have focused on heuristic methods based on gene trees and do not make an efficient use of the information in the data. Here we study the unidentifiability of MSci models under the full-likelihood methods. We characterize the unidentifiability of the bidirectional introgression (BDI) model, which assumes that gene flow occurs in both directions. We derive simple rules for arbitrary BDI models, which create unidentifiability of the label-switching type. In general, an MSci model with k BDI events has 2k unidentifiable modes or towers in the posterior, with each BDI event between sister species creating within-model parameter unidentifiability and each BDI event between nonsister species creating between-model unidentifiability. We develop novel algorithms for processing Markov chain Monte Carlo samples to remove label-switching problems and implement them in the bpp program. We analyze real and synthetic data to illustrate the utility of the BDI models and the new algorithms. We discuss the unidentifiability of heuristic methods and provide guidelines for the use of MSci models to infer gene flow using genomic data.
Collapse
Affiliation(s)
- Ziheng Yang
- Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK
| | | |
Collapse
|
27
|
Wang Y, Ruhsam M, Milne R, Graham SW, Li J, Tao T, Zhang Y, Mao K. Incomplete lineage sorting and local extinction shaped the complex evolutionary history of the Paleogene relict conifer genus, Chamaecyparis (Cupressaceae). Mol Phylogenet Evol 2022; 172:107485. [PMID: 35452840 DOI: 10.1016/j.ympev.2022.107485] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 03/26/2022] [Accepted: 04/05/2022] [Indexed: 11/24/2022]
Abstract
Inferring accurate biogeographic history of plant taxa with an East Asia (EA)-North America (NA) is usually hindered by conflicting phylogenies and a poor fossil record. The current distribution of Chamaecyparis (false cypress; Cupressaceae) with four species in EA, and one each in western and eastern NA, and its relatively rich fossil record, make it an excellent model for studying the EA-NA disjunction. Here we reconstruct phylogenomic relationships within Chamaecyparis using > 1400 homologous nuclear and 61 plastid genes. Our phylogenomic analyses using concatenated and coalescent approaches revealed strong cytonuclear discordance and conflicting topologies between nuclear gene trees. Incomplete lineage sorting (ILS) and hybridization are possible explanations of conflict; however, our coalescent analyses and simulations suggest that ILS is the major contributor to the observed phylogenetic discrepancies. Based on a well-resolved species tree and four fossil calibrations, the crown lineage of Chamaecyparis is estimated to have originated in the upper Cretaceous, followed by diversification events in the early and middle Paleogene. Ancestral area reconstructions suggest that Chamaecyparis had an ancestral range spanning both EA and NA. Fossil records further indicate that this genus is a relict of the "boreotropical" flora, and that local extinctions of European species were caused by global cooling. Overall, our results unravel a complex evolutionary history of a Paleogene relict conifer genus, which may have involved ILS, hybridization and the extinction of local species.
Collapse
Affiliation(s)
- Yi Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| | - Markus Ruhsam
- Royal Botanic Garden Edinburgh, 20A Inverleith Row, Edinburgh EH3 5LR, UK
| | - Richard Milne
- Institute of Molecular Plant Science, School of Biological Science, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Sean W Graham
- Department of Botany, University of British Columbia, Vancouver, V6T 1Z4, Canada
| | - Jialiang Li
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| | - Tongzhou Tao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| | - Yujiao Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| | - Kangshan Mao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, Sichuan, China; College of Science, Tibet University, Lhasa 850000, Xizang Autonomous Region, PR China.
| |
Collapse
|
28
|
Markin A, Wagle S, Anderson TK, Eulenstein O. RF-Net 2: fast inference of virus reassortment and hybridization networks. Bioinformatics 2022; 38:2144-2152. [PMID: 35150239 PMCID: PMC9004648 DOI: 10.1093/bioinformatics/btac075] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 01/26/2022] [Accepted: 02/07/2022] [Indexed: 02/04/2023] Open
Abstract
MOTIVATION A phylogenetic network is a powerful model to represent entangled evolutionary histories with both divergent (speciation) and convergent (e.g. hybridization, reassortment, recombination) evolution. The standard approach to inference of hybridization networks is to (i) reconstruct rooted gene trees and (ii) leverage gene tree discordance for network inference. Recently, we introduced a method called RF-Net for accurate inference of virus reassortment and hybridization networks from input gene trees in the presence of errors commonly found in phylogenetic trees. While RF-Net demonstrated the ability to accurately infer networks with up to four reticulations from erroneous input gene trees, its application was limited by the number of reticulations it could handle in a reasonable amount of time. This limitation is particularly restrictive in the inference of the evolutionary history of segmented RNA viruses such as influenza A virus (IAV), where reassortment is one of the major mechanisms shaping the evolution of these pathogens. RESULTS Here, we expand the functionality of RF-Net that makes it significantly more applicable in practice. Crucially, we introduce a fast extension to RF-Net, called Fast-RF-Net, that can handle large numbers of reticulations without sacrificing accuracy. In addition, we develop automatic stopping criteria to select the appropriate number of reticulations heuristically and implement a feature for RF-Net to output error-corrected input gene trees. We then conduct a comprehensive study of the original method and its novel extensions and confirm their efficacy in practice using extensive simulation and empirical IAV evolutionary analyses. AVAILABILITY AND IMPLEMENTATION RF-Net 2 is available at https://github.com/flu-crew/rf-net-2. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Alexey Markin
- Virus and Prion Research Unit, National Animal Disease Center, USDA-ARS, Ames, IA 50010, USA
| | - Sanket Wagle
- Department of Computer Science, Iowa State University, Ames, IA 50011, USA
| | - Tavis K Anderson
- Virus and Prion Research Unit, National Animal Disease Center, USDA-ARS, Ames, IA 50010, USA
| | - Oliver Eulenstein
- Department of Computer Science, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
29
|
Hibbins MS, Hahn MW. Phylogenomic approaches to detecting and characterizing introgression. Genetics 2022; 220:iyab173. [PMID: 34788444 PMCID: PMC9208645 DOI: 10.1093/genetics/iyab173] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 10/02/2021] [Indexed: 12/26/2022] Open
Abstract
Phylogenomics has revealed the remarkable frequency with which introgression occurs across the tree of life. These discoveries have been enabled by the rapid growth of methods designed to detect and characterize introgression from whole-genome sequencing data. A large class of phylogenomic methods makes use of data across species to infer and characterize introgression based on expectations from the multispecies coalescent. These methods range from simple tests, such as the D-statistic, to model-based approaches for inferring phylogenetic networks. Here, we provide a detailed overview of the various signals that different modes of introgression are expected leave in the genome, and how current methods are designed to detect them. We discuss the strengths and pitfalls of these approaches and identify areas for future development, highlighting the different signals of introgression, and the power of each method to detect them. We conclude with a discussion of current challenges in inferring introgression and how they could potentially be addressed.
Collapse
Affiliation(s)
- Mark S Hibbins
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Matthew W Hahn
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
- Department of Computer Science, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
30
|
Suvorov A, Kim BY, Wang J, Armstrong EE, Peede D, D'Agostino ERR, Price DK, Waddell P, Lang M, Courtier-Orgogozo V, David JR, Petrov D, Matute DR, Schrider DR, Comeault AA. Widespread introgression across a phylogeny of 155 Drosophila genomes. Curr Biol 2022; 32:111-123.e5. [PMID: 34788634 PMCID: PMC8752469 DOI: 10.1016/j.cub.2021.10.052] [Citation(s) in RCA: 105] [Impact Index Per Article: 52.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/29/2021] [Accepted: 10/22/2021] [Indexed: 01/12/2023]
Abstract
Genome-scale sequence data have invigorated the study of hybridization and introgression, particularly in animals. However, outside of a few notable cases, we lack systematic tests for introgression at a larger phylogenetic scale across entire clades. Here, we leverage 155 genome assemblies from 149 species to generate a fossil-calibrated phylogeny and conduct multilocus tests for introgression across 9 monophyletic radiations within the genus Drosophila. Using complementary phylogenomic approaches, we identify widespread introgression across the evolutionary history of Drosophila. Mapping gene-tree discordance onto the phylogeny revealed that both ancient and recent introgression has occurred across most of the 9 clades that we examined. Our results provide the first evidence of introgression occurring across the evolutionary history of Drosophila and highlight the need to continue to study the evolutionary consequences of hybridization and introgression in this genus and across the tree of life.
Collapse
Affiliation(s)
- Anton Suvorov
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA.
| | - Bernard Y Kim
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Jeremy Wang
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | - David Peede
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | - Donald K Price
- School of Life Sciences, University of Nevada, Las Vegas, NV 89119, USA
| | - Peter Waddell
- School of Fundamental Sciences, Massey University, Palmerston North 4442, New Zealand
| | - Michael Lang
- CNRS, Institut Jacques Monod, Université de Paris, Paris 75013, France
| | | | - Jean R David
- Laboratoire Evolution, Génomes, Comportement, Ecologie (EGCE) CNRS, IRD, Univ. Paris-sud, Université Paris-Saclay, Gif sur Yvette 91190, France; Institut de Systématique, Evolution, Biodiversité, CNRS, MNHN, UPMC, EPHE, Muséum National d'Histoire Naturelle, Sorbonne Universités, Paris 75005, France
| | - Dmitri Petrov
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Daniel R Matute
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Daniel R Schrider
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Aaron A Comeault
- Molecular Ecology & Evolution Group, School of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2DGA, UK.
| |
Collapse
|
31
|
Jiao X, Flouri T, Yang Z. Multispecies coalescent and its applications to infer species phylogenies and cross-species gene flow. Natl Sci Rev 2022; 8:nwab127. [PMID: 34987842 PMCID: PMC8692950 DOI: 10.1093/nsr/nwab127] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/10/2021] [Accepted: 07/11/2021] [Indexed: 02/06/2023] Open
Abstract
Multispecies coalescent (MSC) is the extension of the single-population coalescent model to multiple species. It integrates the phylogenetic process of species divergences and the population genetic process of coalescent, and provides a powerful framework for a number of inference problems using genomic sequence data from multiple species, including estimation of species divergence times and population sizes, estimation of species trees accommodating discordant gene trees, inference of cross-species gene flow and species delimitation. In this review, we introduce the major features of the MSC model, discuss full-likelihood and heuristic methods of species tree estimation and summarize recent methodological advances in inference of cross-species gene flow. We discuss the statistical and computational challenges in the field and research directions where breakthroughs may be likely in the next few years.
Collapse
Affiliation(s)
- Xiyun Jiao
- Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK
| | - Tomáš Flouri
- Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK
| | - Ziheng Yang
- Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK
| |
Collapse
|
32
|
Bedoya AM, Leaché AD, Olmstead RG. Andean uplift, drainage basin formation, and the evolution of plants living in fast-flowing aquatic ecosystems in northern South America. THE NEW PHYTOLOGIST 2021; 232:2175-2190. [PMID: 34318482 DOI: 10.1111/nph.17649] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 07/20/2021] [Indexed: 06/13/2023]
Abstract
Northern South America is a geologically dynamic and species-rich region. Fossil and stratigraphic data show that mountain uplift in the tropical Andes reconfigured river drainages. These landscape changes shaped the evolution of the flora in the region, yet the impacts on aquatic taxa have been overlooked. We explore the role of landscape change on the evolution of plants living strictly in rivers across drainage basins in northern South America by conducting population structure, phylogenetic inference, and divergence-dating analyses for two species in the genus Marathrum (Podostemaceae). Mountain uplift and drainage basin formation isolated populations of M. utile and M. foeniculaceum in northern South America and created barriers to gene flow across river drainages. Sympatric species hybridize and the hybrids show the phenotype of one parental line. We propose that the pattern of divergence of populations reflects the formation of river drainages, which was not complete until < 4.1 million yr ago (Ma). Our study provides a clear picture of the role of landscape change on the evolution of plants living strictly in rivers in northern South America. By shifting the focus to aquatic taxa, we provide a novel perspective on the processes shaping the evolution of the Neotropical flora.
Collapse
Affiliation(s)
- Ana M Bedoya
- Department of Biology and Burke Museum, University of Washington, Seattle, WA, 98195, USA
| | - Adam D Leaché
- Department of Biology and Burke Museum, University of Washington, Seattle, WA, 98195, USA
| | - Richard G Olmstead
- Department of Biology and Burke Museum, University of Washington, Seattle, WA, 98195, USA
| |
Collapse
|
33
|
Guo X, Fang D, Sahu SK, Yang S, Guang X, Folk R, Smith SA, Chanderbali AS, Chen S, Liu M, Yang T, Zhang S, Liu X, Xu X, Soltis PS, Soltis DE, Liu H. Chloranthus genome provides insights into the early diversification of angiosperms. Nat Commun 2021; 12:6930. [PMID: 34836973 PMCID: PMC8626473 DOI: 10.1038/s41467-021-26922-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 10/28/2021] [Indexed: 11/10/2022] Open
Abstract
Chloranthales remain the last major mesangiosperm lineage without a nuclear genome assembly. We therefore assemble a high-quality chromosome-level genome of Chloranthus spicatus to resolve enigmatic evolutionary relationships, as well as explore patterns of genome evolution among the major lineages of mesangiosperms (eudicots, monocots, magnoliids, Chloranthales, and Ceratophyllales). We find that synteny is highly conserved between genomic regions of Amborella, Vitis, and Chloranthus. We identify an ancient single whole-genome duplication (WGD) (κ) prior to the divergence of extant Chloranthales. Phylogenetic inference shows Chloranthales as sister to magnoliids. Furthermore, our analyses indicate that ancient hybridization may account for the incongruent phylogenetic placement of Chloranthales + magnoliids relative to monocots and eudicots in nuclear and chloroplast trees. Long genes and long introns are found to be prevalent in both Chloranthales and magnoliids compared to other angiosperms. Overall, our findings provide an improved context for understanding mesangiosperm relationships and evolution and contribute a valuable genomic resource for future investigations.
Collapse
Affiliation(s)
- Xing Guo
- grid.21155.320000 0001 2034 1839State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, 518083 China
| | - Dongming Fang
- grid.21155.320000 0001 2034 1839State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, 518083 China
| | - Sunil Kumar Sahu
- grid.21155.320000 0001 2034 1839State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, 518083 China
| | - Shuai Yang
- grid.21155.320000 0001 2034 1839State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, 518083 China
| | - Xuanmin Guang
- grid.21155.320000 0001 2034 1839State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, 518083 China
| | - Ryan Folk
- grid.260120.70000 0001 0816 8287Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762 United States of America
| | - Stephen A. Smith
- grid.214458.e0000000086837370Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48103 United States of America
| | - Andre S. Chanderbali
- grid.15276.370000 0004 1936 8091Florida Museum of Natural History, University of Florida, Gainesville, FL United States of America
| | - Sisi Chen
- grid.21155.320000 0001 2034 1839State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, 518083 China ,grid.9227.e0000000119573309South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong 510650 China
| | - Min Liu
- grid.21155.320000 0001 2034 1839State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, 518083 China
| | - Ting Yang
- grid.21155.320000 0001 2034 1839State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, 518083 China
| | - Shouzhou Zhang
- grid.9227.e0000000119573309Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen, Chinese Academy of Sciences, Shenzhen, 518004 China
| | - Xin Liu
- grid.21155.320000 0001 2034 1839State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, 518083 China ,grid.21155.320000 0001 2034 1839BGI-Fuyang, BGI-Shenzhen, Fuyang, 236009 China
| | - Xun Xu
- grid.21155.320000 0001 2034 1839State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, 518083 China ,grid.21155.320000 0001 2034 1839Guangdong Provincial Key Laboratory of Genome Read and Write, BGI-Shenzhen, Shenzhen, 518083 China
| | - Pamela S. Soltis
- grid.15276.370000 0004 1936 8091Florida Museum of Natural History, University of Florida, Gainesville, FL United States of America
| | - Douglas E. Soltis
- grid.15276.370000 0004 1936 8091Florida Museum of Natural History, University of Florida, Gainesville, FL United States of America ,grid.15276.370000 0004 1936 8091Department of Biology, University of Florida, Gainesville, FL 32611 United States of America
| | - Huan Liu
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, 518083, China. .,Department of Biology, University of Copenhagen, DK-2100, Copenhagen, Denmark.
| |
Collapse
|
34
|
Mirarab S, Nakhleh L, Warnow T. Multispecies Coalescent: Theory and Applications in Phylogenetics. ANNUAL REVIEW OF ECOLOGY, EVOLUTION, AND SYSTEMATICS 2021. [DOI: 10.1146/annurev-ecolsys-012121-095340] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Species tree estimation is a basic part of many biological research projects, ranging from answering basic evolutionary questions (e.g., how did a group of species adapt to their environments?) to addressing questions in functional biology. Yet, species tree estimation is very challenging, due to processes such as incomplete lineage sorting, gene duplication and loss, horizontal gene transfer, and hybridization, which can make gene trees differ from each other and from the overall evolutionary history of the species. Over the last 10–20 years, there has been tremendous growth in methods and mathematical theory for estimating species trees and phylogenetic networks, and some of these methods are now in wide use. In this survey, we provide an overview of the current state of the art, identify the limitations of existing methods and theory, and propose additional research problems and directions.
Collapse
Affiliation(s)
- Siavash Mirarab
- Electrical and Computer Engineering Department, University of California, San Diego, La Jolla, California 92093, USA
| | - Luay Nakhleh
- Department of Computer Science, Rice University, Houston, Texas 77005, USA
| | - Tandy Warnow
- Department of Computer Science, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA
| |
Collapse
|
35
|
Górniak M, Szlachetko DL, Olędrzyńska N, Naczk AM, Mieszkowska A, Boss L, Ziętara MS. Species Phylogeny versus Gene Trees: A Case Study of an Incongruent Data Matrix Based on Paphiopedilum Pfitz. (Orchidaceae). Int J Mol Sci 2021; 22:ijms222111393. [PMID: 34768824 PMCID: PMC8583834 DOI: 10.3390/ijms222111393] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 11/16/2022] Open
Abstract
The phylogeny of the genus Paphiopedilum based on the plastome is consistent with morphological analysis. However, to date, none of the analyzed nuclear markers has confirmed this. Topology incongruence among the trees of different nuclear markers concerns entire sections of the subgenus Paphiopedilum. The low-copy nuclear protein-coding gene PHYC was obtained for 22 species representing all sections and subgenera of Paphiopedilum. The nuclear-based phylogeny is supported by morphological characteristics and plastid data analysis. We assumed that an incongruence in nuclear gene trees is caused by ancestral homoploid hybridization. We present a model for inferring the phylogeny of the species despite the incongruence of the different tree topologies. Our analysis, based on six low-copy nuclear genes, is congruent with plastome phylogeny and has been confirmed by phylogenetic network analysis.
Collapse
Affiliation(s)
- Marcin Górniak
- Department of Evolutionary Genetics and Biosystematics, University of Gdańsk, 80-309 Gdańsk, Poland; (A.M.N.); (A.M.); (M.S.Z.)
- Correspondence:
| | - Dariusz L. Szlachetko
- Department of Plant Taxonomy and Nature Conservation, University of Gdańsk, 80-309 Gdańsk, Poland; (D.L.S.); (N.O.)
| | - Natalia Olędrzyńska
- Department of Plant Taxonomy and Nature Conservation, University of Gdańsk, 80-309 Gdańsk, Poland; (D.L.S.); (N.O.)
| | - Aleksandra M. Naczk
- Department of Evolutionary Genetics and Biosystematics, University of Gdańsk, 80-309 Gdańsk, Poland; (A.M.N.); (A.M.); (M.S.Z.)
| | - Agata Mieszkowska
- Department of Evolutionary Genetics and Biosystematics, University of Gdańsk, 80-309 Gdańsk, Poland; (A.M.N.); (A.M.); (M.S.Z.)
| | - Lidia Boss
- Department of Bacterial Molecular Genetics, University of Gdańsk, 80-309 Gdańsk, Poland;
| | - Marek S. Ziętara
- Department of Evolutionary Genetics and Biosystematics, University of Gdańsk, 80-309 Gdańsk, Poland; (A.M.N.); (A.M.); (M.S.Z.)
| |
Collapse
|
36
|
Yan Z, Cao Z, Liu Y, Ogilvie HA, Nakhleh L. Maximum Parsimony Inference of Phylogenetic Networks in the Presence of Polyploid Complexes. Syst Biol 2021; 71:706-720. [PMID: 34605924 PMCID: PMC9017653 DOI: 10.1093/sysbio/syab081] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 09/26/2021] [Accepted: 09/29/2021] [Indexed: 12/18/2022] Open
Abstract
Phylogenetic networks provide a powerful framework for modeling and analyzing reticulate
evolutionary histories. While polyploidy has been shown to be prevalent not only in plants
but also in other groups of eukaryotic species, most work done thus far on phylogenetic
network inference assumes diploid hybridization. These inference methods have been
applied, with varying degrees of success, to data sets with polyploid species, even though
polyploidy violates the mathematical assumptions underlying these methods. Statistical
methods were developed recently for handling specific types of polyploids and so were
parsimony methods that could handle polyploidy more generally yet while excluding
processes such as incomplete lineage sorting. In this article, we introduce a new method
for inferring most parsimonious phylogenetic networks on data that include polyploid
species. Taking gene tree topologies as input, the method seeks a phylogenetic network
that minimizes deep coalescences while accounting for polyploidy. We demonstrate the
performance of the method on both simulated and biological data. The inference method as
well as a method for evaluating evolutionary hypotheses in the form of phylogenetic
networks are implemented and publicly available in the PhyloNet software package.
[Incomplete lineage sorting; minimizing deep coalescences; multilabeled trees;
multispecies network coalescent; phylogenetic networks; polyploidy.]
Collapse
Affiliation(s)
- Zhi Yan
- Department of Computer Science, Rice University, Houston, 6100 Main Street, Houston, TX 77005, USA
| | - Zhen Cao
- Department of Computer Science, Rice University, Houston, 6100 Main Street, Houston, TX 77005, USA
| | - Yushu Liu
- Department of Computer Science, Rice University, Houston, 6100 Main Street, Houston, TX 77005, USA
| | - Huw A Ogilvie
- Department of Computer Science, Rice University, Houston, 6100 Main Street, Houston, TX 77005, USA
| | - Luay Nakhleh
- Department of Computer Science, Rice University, Houston, 6100 Main Street, Houston, TX 77005, USA
- Department of Biosciences, Rice University, Houston, 6100 Main Street, Houston, TX 77005, USA
| |
Collapse
|
37
|
Rabier CE, Berry V, Stoltz M, Santos JD, Wang W, Glaszmann JC, Pardi F, Scornavacca C. On the inference of complex phylogenetic networks by Markov Chain Monte-Carlo. PLoS Comput Biol 2021; 17:e1008380. [PMID: 34478440 PMCID: PMC8445492 DOI: 10.1371/journal.pcbi.1008380] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 09/16/2021] [Accepted: 07/13/2021] [Indexed: 11/19/2022] Open
Abstract
For various species, high quality sequences and complete genomes are nowadays available for many individuals. This makes data analysis challenging, as methods need not only to be accurate, but also time efficient given the tremendous amount of data to process. In this article, we introduce an efficient method to infer the evolutionary history of individuals under the multispecies coalescent model in networks (MSNC). Phylogenetic networks are an extension of phylogenetic trees that can contain reticulate nodes, which allow to model complex biological events such as horizontal gene transfer, hybridization and introgression. We present a novel way to compute the likelihood of biallelic markers sampled along genomes whose evolution involved such events. This likelihood computation is at the heart of a Bayesian network inference method called SnappNet, as it extends the Snapp method inferring evolutionary trees under the multispecies coalescent model, to networks. SnappNet is available as a package of the well-known beast 2 software. Recently, the MCMC_BiMarkers method, implemented in PhyloNet, also extended Snapp to networks. Both methods take biallelic markers as input, rely on the same model of evolution and sample networks in a Bayesian framework, though using different methods for computing priors. However, SnappNet relies on algorithms that are exponentially more time-efficient on non-trivial networks. Using simulations, we compare performances of SnappNet and MCMC_BiMarkers. We show that both methods enjoy similar abilities to recover simple networks, but SnappNet is more accurate than MCMC_BiMarkers on more complex network scenarios. Also, on complex networks, SnappNet is found to be extremely faster than MCMC_BiMarkers in terms of time required for the likelihood computation. We finally illustrate SnappNet performances on a rice data set. SnappNet infers a scenario that is consistent with previous results and provides additional understanding of rice evolution.
Collapse
Affiliation(s)
- Charles-Elie Rabier
- Institut des Sciences de l’Evolution (ISEM), Université de Montpellier, CNRS, EPHE, IRD, Montpellier, France
- Laboratoire d’Informatique, de Robotique et de Microélectronique de Montpellier (LIRMM), Université de Montpellier, CNRS, Montpellier, France
- Institut Montpelliérain Alexander Grothendieck (IMAG), Université de Montpellier, CNRS, Montpellier, France
| | - Vincent Berry
- Laboratoire d’Informatique, de Robotique et de Microélectronique de Montpellier (LIRMM), Université de Montpellier, CNRS, Montpellier, France
| | - Marnus Stoltz
- Institut des Sciences de l’Evolution (ISEM), Université de Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - João D. Santos
- CIRAD, UMR AGAP, Montpellier, France
- Amélioration Génétique et Adaptation des Plantes méditerranéennes et tropicales (AGAP), Université de Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Wensheng Wang
- Institute of Crop Sciences (ICS), Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jean-Christophe Glaszmann
- CIRAD, UMR AGAP, Montpellier, France
- Amélioration Génétique et Adaptation des Plantes méditerranéennes et tropicales (AGAP), Université de Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Fabio Pardi
- Laboratoire d’Informatique, de Robotique et de Microélectronique de Montpellier (LIRMM), Université de Montpellier, CNRS, Montpellier, France
| | - Celine Scornavacca
- Institut des Sciences de l’Evolution (ISEM), Université de Montpellier, CNRS, EPHE, IRD, Montpellier, France
| |
Collapse
|
38
|
Wang Y, Cao Z, Ogilvie HA, Nakhleh L. Phylogenomic assessment of the role of hybridization and introgression in trait evolution. PLoS Genet 2021; 17:e1009701. [PMID: 34407067 PMCID: PMC8405015 DOI: 10.1371/journal.pgen.1009701] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 08/30/2021] [Accepted: 07/07/2021] [Indexed: 11/30/2022] Open
Abstract
Trait evolution among a set of species-a central theme in evolutionary biology-has long been understood and analyzed with respect to a species tree. However, the field of phylogenomics, which has been propelled by advances in sequencing technologies, has ushered in the era of species/gene tree incongruence and, consequently, a more nuanced understanding of trait evolution. For a trait whose states are incongruent with the branching patterns in the species tree, the same state could have arisen independently in different species (homoplasy) or followed the branching patterns of gene trees, incongruent with the species tree (hemiplasy). Another evolutionary process whose extent and significance are better revealed by phylogenomic studies is gene flow between different species. In this work, we present a phylogenomic method for assessing the role of hybridization and introgression in the evolution of polymorphic or monomorphic binary traits. We apply the method to simulated evolutionary scenarios to demonstrate the interplay between the parameters of the evolutionary history and the role of introgression in a binary trait's evolution (which we call xenoplasy). Very importantly, we demonstrate, including on a biological data set, that inferring a species tree and using it for trait evolution analysis in the presence of gene flow could lead to misleading hypotheses about trait evolution.
Collapse
Affiliation(s)
- Yaxuan Wang
- Department of Computer Science, Rice University, Houston, Texas, United States of America
| | - Zhen Cao
- Department of Computer Science, Rice University, Houston, Texas, United States of America
| | - Huw A. Ogilvie
- Department of Computer Science, Rice University, Houston, Texas, United States of America
| | - Luay Nakhleh
- Department of Computer Science, Rice University, Houston, Texas, United States of America
- Department of BioSciences, Rice University, Houston, Texas, United States of America
| |
Collapse
|
39
|
Cai R, Ané C. Assessing the fit of the multi-species network coalescent to multi-locus data. Bioinformatics 2021; 37:634-641. [PMID: 33027508 DOI: 10.1093/bioinformatics/btaa863] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 09/14/2020] [Accepted: 09/22/2020] [Indexed: 01/25/2023] Open
Abstract
MOTIVATION With growing genome-wide molecular datasets from next-generation sequencing, phylogenetic networks can be estimated using a variety of approaches. These phylogenetic networks include events like hybridization, gene flow or horizontal gene transfer explicitly. However, the most accurate network inference methods are computationally heavy. Methods that scale to larger datasets do not calculate a full likelihood, such that traditional likelihood-based tools for model selection are not applicable to decide how many past hybridization events best fit the data. We propose here a goodness-of-fit test to quantify the fit between data observed from genome-wide multi-locus data, and patterns expected under the multi-species coalescent model on a candidate phylogenetic network. RESULTS We identified weaknesses in the previously proposed TICR test, and proposed corrections. The performance of our new test was validated by simulations on real-world phylogenetic networks. Our test provides one of the first rigorous tools for model selection, to select the adequate network complexity for the data at hand. The test can also work for identifying poorly inferred areas on a network. AVAILABILITY AND IMPLEMENTATION Software for the goodness-of-fit test is available as a Julia package at https://github.com/cecileane/QuartetNetworkGoodnessFit.jl. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Ruoyi Cai
- Department of Statistics, University of Wisconsin - Madison, Madison, WI 53706, USA
| | - Cécile Ané
- Department of Statistics, University of Wisconsin - Madison, Madison, WI 53706, USA.,Department of Botany, University of Wisconsin - Madison, Madison, WI 53706, USA
| |
Collapse
|
40
|
Congrains C, Zucchi RA, de Brito RA. Phylogenomic approach reveals strong signatures of introgression in the rapid diversification of neotropical true fruit flies (Anastrepha: Tephritidae). Mol Phylogenet Evol 2021; 162:107200. [PMID: 33984467 DOI: 10.1016/j.ympev.2021.107200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 01/30/2021] [Accepted: 05/03/2021] [Indexed: 01/08/2023]
Abstract
New sequencing techniques have allowed us to explore the variation on thousands of genes and elucidate evolutionary relationships of lineages even in complex scenarios, such as when there is rapid diversification. That seems to be the case of species in the genus Anastrepha, which shows great species diversity that has been divided into 21 species groups, several of which show wide geographical distribution. The fraterculus group has several economically important species and it is also an outstanding model for speciation studies, since it includes several lineages that have diverged recently possibly in the presence of interspecific gene flow. Our main goal is to test whether we can infer phylogenetic relationships of recently diverged taxa with gene flow, such as what is expected for the fraterculus group and determine whether certain genes remain informative even in this complex scenario. An analysis of thousands of orthologous genes derived from transcriptome datasets of 10 different lineages across the genus, including some of the economically most important pests, revealed signals of incomplete lineage sorting, vestiges of ancestral introgression between more distant lineages and ongoing gene flow between closely related lineages. Though these patterns affect the phylogenetic signal, the phylogenomic inferences consistently show that the morphologically identified species here investigated are in different evolutionary lineages, with the sole exception involving Brazilian lineages of A. fraterculus, which has been suggested to be a complex assembly of cryptic species. A tree space analysis suggested that genes with greater phylogenetic resolution have evolved under similar selection pressures and are more resilient to intraspecific gene flow, which would make it more likely that these genomic regions may be useful for identifying fraterculus group lineages. Our findings help establish relationships among the most important Anastrepha species groups, as well as bring further data to indicate that the diversification of fraterculus group lineages, and even other lineages in the genus Anastrepha, has been strongly influenced by interspecific gene flow.
Collapse
Affiliation(s)
- Carlos Congrains
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, Brazil.
| | - Roberto A Zucchi
- Escola Superior de Agricultura "Luiz de Queiroz" - ESALQ, Universidade de São Paulo - USP, Piracicaba, SP, Brazil
| | - Reinaldo A de Brito
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, Brazil
| |
Collapse
|
41
|
Ferreira MS, Jones MR, Callahan CM, Farelo L, Tolesa Z, Suchentrunk F, Boursot P, Mills LS, Alves PC, Good JM, Melo-Ferreira J. The Legacy of Recurrent Introgression during the Radiation of Hares. Syst Biol 2021; 70:593-607. [PMID: 33263746 PMCID: PMC8048390 DOI: 10.1093/sysbio/syaa088] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 11/06/2020] [Accepted: 11/13/2020] [Indexed: 12/30/2022] Open
Abstract
Hybridization may often be an important source of adaptive variation, but the extent and long-term impacts of introgression have seldom been evaluated in the phylogenetic context of a radiation. Hares (Lepus) represent a widespread mammalian radiation of 32 extant species characterized by striking ecological adaptations and recurrent admixture. To understand the relevance of introgressive hybridization during the diversification of Lepus, we analyzed whole exome sequences (61.7 Mb) from 15 species of hares (1-4 individuals per species), spanning the global distribution of the genus, and two outgroups. We used a coalescent framework to infer species relationships and divergence times, despite extensive genealogical discordance. We found high levels of allele sharing among species and show that this reflects extensive incomplete lineage sorting and temporally layered hybridization. Our results revealed recurrent introgression at all stages along the Lepus radiation, including recent gene flow between extant species since the last glacial maximum but also pervasive ancient introgression occurring since near the origin of the hare lineages. We show that ancient hybridization between northern hemisphere species has resulted in shared variation of potential adaptive relevance to highly seasonal environments, including genes involved in circadian rhythm regulation, pigmentation, and thermoregulation. Our results illustrate how the genetic legacy of ancestral hybridization may persist across a radiation, leaving a long-lasting signature of shared genetic variation that may contribute to adaptation. [Adaptation; ancient introgression; hybridization; Lepus; phylogenomics.].
Collapse
Affiliation(s)
- Mafalda S Ferreira
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal
- Division of Biological Sciences, University of Montana, Missoula, Montana, United States of America
| | - Matthew R Jones
- Division of Biological Sciences, University of Montana, Missoula, Montana, United States of America
| | - Colin M Callahan
- Division of Biological Sciences, University of Montana, Missoula, Montana, United States of America
| | - Liliana Farelo
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão, Portugal
| | - Zelalem Tolesa
- Department of Biology, Hawassa University, Hawassa, Ethiopia
| | - Franz Suchentrunk
- Department for Interdisciplinary Life Sciences, Research Institute of Wildlife Ecology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Pierre Boursot
- Institut des Sciences de l’Évolution Montpellier (ISEM), Université de Montpellier, CNRS, IRD, EPHE, France
| | - L Scott Mills
- Wildlife Biology Program, College of Forestry and Conservation, University of Montana, Missoula, Montana, United States of America
- Office of Research and Creative Scholarship, University of Montana, Missoula, Montana, United States of America; Jeffrey M. Good and José Melo-Ferreira shared the senior authorship
| | - Paulo C Alves
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal
- Wildlife Biology Program, College of Forestry and Conservation, University of Montana, Missoula, Montana, United States of America
| | - Jeffrey M Good
- Division of Biological Sciences, University of Montana, Missoula, Montana, United States of America
- Wildlife Biology Program, College of Forestry and Conservation, University of Montana, Missoula, Montana, United States of America
| | - José Melo-Ferreira
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal
| |
Collapse
|
42
|
Kim A, Rosenberg NA, Degnan JH. Probabilities of Unranked and Ranked Anomaly Zones under Birth-Death Models. Mol Biol Evol 2021; 37:1480-1494. [PMID: 31860090 DOI: 10.1093/molbev/msz305] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
A labeled gene tree topology that is more probable than the labeled gene tree topology matching a species tree is called "anomalous." Species trees that can generate such anomalous gene trees are said to be in the "anomaly zone." Here, probabilities of "unranked" and "ranked" gene tree topologies under the multispecies coalescent are considered. A ranked tree depicts not only the topological relationship among gene lineages, as an unranked tree does, but also the sequence in which the lineages coalesce. In this article, we study how the parameters of a species tree simulated under a constant-rate birth-death process can affect the probability that the species tree lies in the anomaly zone. We find that with more than five taxa, it is possible for species trees to have both anomalous unranked and ranked gene trees. The probability of being in either type of anomaly zone increases with more taxa. The probability of anomalous gene trees also increases with higher speciation rates. We observe that the probabilities of unranked anomaly zones are higher and grow much faster than those of ranked anomaly zones as the speciation rate increases. Our simulation shows that the most probable ranked gene tree is likely to have the same unranked topology as the species tree. We design the software PRANC, which computes probabilities of ranked gene tree topologies given a species tree under the coalescent model.
Collapse
Affiliation(s)
- Anastasiia Kim
- Department of Mathematics and Statistics, University of New Mexico, Albuquerque, NM
| | | | - James H Degnan
- Department of Mathematics and Statistics, University of New Mexico, Albuquerque, NM
| |
Collapse
|
43
|
Mullen SP, VanKuren NW, Zhang W, Nallu S, Kristiansen EB, Wuyun Q, Liu K, Hill RI, Briscoe AD, Kronforst MR. Disentangling Population History and Character Evolution among Hybridizing Lineages. Mol Biol Evol 2021; 37:1295-1305. [PMID: 31930401 DOI: 10.1093/molbev/msaa004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Understanding the origin and maintenance of adaptive phenotypic novelty is a central goal of evolutionary biology. However, both hybridization and incomplete lineage sorting can lead to genealogical discordance between the regions of the genome underlying adaptive traits and the remainder of the genome, decoupling inferences about character evolution from population history. Here, to disentangle these effects, we investigated the evolutionary origins and maintenance of Batesian mimicry between North American admiral butterflies (Limenitis arthemis) and their chemically defended model (Battus philenor) using a combination of de novo genome sequencing, whole-genome resequencing, and statistical introgression mapping. Our results suggest that balancing selection, arising from geographic variation in the presence or absence of the unpalatable model, has maintained two deeply divergent color patterning haplotypes that have been repeatedly sieved among distinct mimetic and nonmimetic lineages of Limenitis via introgressive hybridization.
Collapse
Affiliation(s)
- Sean P Mullen
- Department of Biology, Boston University, Boston, MA
| | | | - Wei Zhang
- School of Life Sciences, Peking University, Beijing, P.R. China
| | - Sumitha Nallu
- Department of Ecology and Evolution, University of Chicago, Chicago, IL
| | | | - Qiqige Wuyun
- Department of Computer Science and Engineering, Michigan State University, East Lansing, MI
| | - Kevin Liu
- Department of Computer Science and Engineering, Michigan State University, East Lansing, MI
| | - Ryan I Hill
- Department of Biological Sciences, University of the Pacific, Stockton, CA
| | - Adriana D Briscoe
- Department of Ecology and Evolutionary Biology, University of California-Irvine, Irvine, CA
| | | |
Collapse
|
44
|
Flouri T, Jiao X, Rannala B, Yang Z. A Bayesian Implementation of the Multispecies Coalescent Model with Introgression for Phylogenomic Analysis. Mol Biol Evol 2021; 37:1211-1223. [PMID: 31825513 PMCID: PMC7086182 DOI: 10.1093/molbev/msz296] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Recent analyses suggest that cross-species gene flow or introgression is common in nature, especially during species divergences. Genomic sequence data can be used to infer introgression events and to estimate the timing and intensity of introgression, providing an important means to advance our understanding of the role of gene flow in speciation. Here, we implement the multispecies-coalescent-with-introgression model, an extension of the multispecies-coalescent model to incorporate introgression, in our Bayesian Markov chain Monte Carlo program Bpp. The multispecies-coalescent-with-introgression model accommodates deep coalescence (or incomplete lineage sorting) and introgression and provides a natural framework for inference using genomic sequence data. Computer simulation confirms the good statistical properties of the method, although hundreds or thousands of loci are typically needed to estimate introgression probabilities reliably. Reanalysis of data sets from the purple cone spruce confirms the hypothesis of homoploid hybrid speciation. We estimated the introgression probability using the genomic sequence data from six mosquito species in the Anopheles gambiae species complex, which varies considerably across the genome, likely driven by differential selection against introgressed alleles.
Collapse
Affiliation(s)
- Tomáš Flouri
- Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Xiyun Jiao
- Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Bruce Rannala
- Department of Evolution and Ecology, University of California, Davis, Davis, CA
| | - Ziheng Yang
- Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| |
Collapse
|
45
|
Wu Y. Inference of population admixture network from local gene genealogies: a coalescent-based maximum likelihood approach. Bioinformatics 2021; 36:i326-i334. [PMID: 32657366 PMCID: PMC7355278 DOI: 10.1093/bioinformatics/btaa465] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Motivation Population admixture is an important subject in population genetics. Inferring population demographic history with admixture under the so-called admixture network model from population genetic data is an established problem in genetics. Existing admixture network inference approaches work with single genetic polymorphisms. While these methods are usually very fast, they do not fully utilize the information [e.g. linkage disequilibrium (LD)] contained in population genetic data. Results In this article, we develop a new admixture network inference method called GTmix. Different from existing methods, GTmix works with local gene genealogies that can be inferred from population haplotypes. Local gene genealogies represent the evolutionary history of sampled haplotypes and contain the LD information. GTmix performs coalescent-based maximum likelihood inference of admixture networks with inferred local genealogies based on the well-known multispecies coalescent (MSC) model. GTmix utilizes various techniques to speed up the likelihood computation on the MSC model and the optimal network search. Our simulations show that GTmix can infer more accurate admixture networks with much smaller data than existing methods, even when these existing methods are given much larger data. GTmix is reasonably efficient and can analyze population genetic datasets of current interests. Availability and implementation The program GTmix is available for download at: https://github.com/yufengwudcs/GTmix. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Yufeng Wu
- Department of Computer Science and Engineering, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
46
|
Truszkowski J, Scornavacca C, Pardi F. Computing the probability of gene trees concordant with the species tree in the multispecies coalescent. Theor Popul Biol 2020; 137:22-31. [PMID: 33333117 DOI: 10.1016/j.tpb.2020.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 12/04/2020] [Accepted: 12/08/2020] [Indexed: 10/22/2022]
Abstract
The multispecies coalescent process models the genealogical relationships of genes sampled from several species, enabling useful predictions about phenomena such as the discordance between a gene tree and the species phylogeny due to incomplete lineage sorting. Conversely, knowledge of large collections of gene trees can inform us about several aspects of the species phylogeny, such as its topology and ancestral population sizes. A fundamental open problem in this context is how to efficiently compute the probability of a gene tree topology, given the species phylogeny. Although a number of algorithms for this task have been proposed, they either produce approximate results, or, when they are exact, they do not scale to large data sets. In this paper, we present some progress towards exact and efficient computation of the probability of a gene tree topology. We provide a new algorithm that, given a species tree and the number of genes sampled for each species, calculates the probability that the gene tree topology will be concordant with the species tree. Moreover, we provide an algorithm that computes the probability of any specific gene tree topology concordant with the species tree. Both algorithms run in polynomial time and have been implemented in Python. Experiments show that they are able to analyze data sets where thousands of genes are sampled in a matter of minutes to hours.
Collapse
Affiliation(s)
| | - Celine Scornavacca
- ISEM, CNRS, Université Montpellier, Montpellier, France; Institut de Biologie Computationnelle, Montpellier, France
| | - Fabio Pardi
- LIRMM, CNRS, Université Montpellier, Montpellier, France; Institut de Biologie Computationnelle, Montpellier, France.
| |
Collapse
|
47
|
Hibbins MS, Gibson MJS, Hahn MW. Determining the probability of hemiplasy in the presence of incomplete lineage sorting and introgression. eLife 2020; 9:e63753. [PMID: 33345772 PMCID: PMC7800383 DOI: 10.7554/elife.63753] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 12/18/2020] [Indexed: 12/11/2022] Open
Abstract
The incongruence of character states with phylogenetic relationships is often interpreted as evidence of convergent evolution. However, trait evolution along discordant gene trees can also generate these incongruences - a phenomenon known as hemiplasy. Classic comparative methods do not account for discordance, resulting in incorrect inferences about the number, timing, and direction of trait transitions. Biological sources of discordance include incomplete lineage sorting (ILS) and introgression, but only ILS has received theoretical consideration in the context of hemiplasy. Here, we present a model that shows introgression makes hemiplasy more likely, such that methods that account for ILS alone will be conservative. We also present a method and software (HeIST) for making statistical inferences about the probability of hemiplasy and homoplasy in large datasets that contain both ILS and introgression. We apply our methods to two empirical datasets, finding that hemiplasy is likely to contribute to the observed trait incongruences in both.
Collapse
Affiliation(s)
- Mark S Hibbins
- Department of Biology, Indiana UniversityBloomingtonUnited States
| | | | - Matthew W Hahn
- Department of Biology, Indiana UniversityBloomingtonUnited States
- Department of Computer Science, Indiana UniversityBloomingtonUnited States
| |
Collapse
|
48
|
Koch H, DeGiorgio M. Maximum Likelihood Estimation of Species Trees from Gene Trees in the Presence of Ancestral Population Structure. Genome Biol Evol 2020; 12:3977-3995. [PMID: 32022857 PMCID: PMC7061232 DOI: 10.1093/gbe/evaa022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2020] [Indexed: 11/12/2022] Open
Abstract
Though large multilocus genomic data sets have led to overall improvements in phylogenetic inference, they have posed the new challenge of addressing conflicting signals across the genome. In particular, ancestral population structure, which has been uncovered in a number of diverse species, can skew gene tree frequencies, thereby hindering the performance of species tree estimators. Here we develop a novel maximum likelihood method, termed TASTI (Taxa with Ancestral structure Species Tree Inference), that can infer phylogenies under such scenarios, and find that it has increasing accuracy with increasing numbers of input gene trees, contrasting with the relatively poor performances of methods not tailored for ancestral structure. Moreover, we propose a supertree approach that allows TASTI to scale computationally with increasing numbers of input taxa. We use genetic simulations to assess TASTI's performance in the three- and four-taxon settings and demonstrate the application of TASTI on a six-species Afrotropical mosquito data set. Finally, we have implemented TASTI in an open-source software package for ease of use by the scientific community.
Collapse
Affiliation(s)
- Hillary Koch
- Department of Statistics, Pennsylvania State University
| | - Michael DeGiorgio
- Department of Computer and Electrical Engineering and Computer Science, Florida Atlantic University
| |
Collapse
|
49
|
Rancilhac L, Irisarri I, Angelini C, Arntzen JW, Babik W, Bossuyt F, Künzel S, Lüddecke T, Pasmans F, Sanchez E, Weisrock D, Veith M, Wielstra B, Steinfartz S, Hofreiter M, Philippe H, Vences M. Phylotranscriptomic evidence for pervasive ancient hybridization among Old World salamanders. Mol Phylogenet Evol 2020; 155:106967. [PMID: 33031928 DOI: 10.1016/j.ympev.2020.106967] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 07/09/2020] [Accepted: 09/28/2020] [Indexed: 11/18/2022]
Abstract
Hybridization can leave genealogical signatures in an organism's genome, originating from the parental lineages and persisting over time. This potentially confounds phylogenetic inference methods that aim to represent evolution as a strictly bifurcating tree. We apply a phylotranscriptomic approach to study the evolutionary history of, and test for inter-lineage introgression in the Salamandridae, a Holarctic salamanders group of interest in studies of toxicity and aposematism, courtship behavior, and molecular evolution. Although the relationships between the 21 currently recognized salamandrid genera have been the subject of numerous molecular phylogenetic studies, some branches have remained controversial and sometimes affected by discordances between mitochondrial vs. nuclear trees. To resolve the phylogeny of this family, and understand the source of mito-nuclear discordance, we generated new transcriptomic (RNAseq) data for 20 salamandrids and used these along with published data, including 28 mitochondrial genomes, to obtain a comprehensive nuclear and mitochondrial perspective on salamandrid evolution. Our final phylotranscriptomic data set included 5455 gene alignments for 40 species representing 17 of the 21 salamandrid genera. Using concatenation and species-tree phylogenetic methods, we find (1) Salamandrina sister to the clade of the "True Salamanders" (consisting of Chioglossa, Mertensiella, Lyciasalamandra, and Salamandra), (2) Ichthyosaura sister to the Near Eastern genera Neurergus and Ommatotriton, (3) Triturus sister to Lissotriton, and (4) Cynops paraphyletic with respect to Paramesotriton and Pachytriton. Combining introgression tests and phylogenetic networks, we find evidence for introgression among taxa within the clades of "Modern Asian Newts" and "Modern European Newts". However, we could not unambiguously identify the number, position, and direction of introgressive events. Combining evidence from nuclear gene analysis with the observed mito-nuclear phylogenetic discordances, we hypothesize a scenario with hybridization and mitochondrial capture among ancestral lineages of (1) Lissotriton into Ichthyosaura and (2) Triturus into Calotriton, plus introgression of nuclear genes from Triturus into Lissotriton. Furthermore, both mitochondrial capture and nuclear introgression may have occurred among lineages assigned to Cynops. More comprehensive genomic data will, in the future, allow testing this against alternative scenarios involving hybridization with other, extinct lineages of newts.
Collapse
Affiliation(s)
- Loïs Rancilhac
- Zoological Institute, Technische Universität Braunschweig, Mendelssohnstr. 4, 38106 Braunschweig, Germany.
| | - Iker Irisarri
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales, José Gutiérrez Abascal 2, 28006 Madrid, Spain
| | | | - Jan W Arntzen
- Naturalis Biodiversity Center, 2300 RA Leiden, the Netherlands
| | - Wiesław Babik
- Institute of Environmental Sciences, Jagiellonian University, ul. Gronostajowa 7, 30-387 Kraków, Poland
| | - Franky Bossuyt
- Amphibian Evolution Lab, Biology Department, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels Belgium
| | - Sven Künzel
- Max Planck Institute for Evolutionary Biology, 24306 Plön, Germany
| | - Tim Lüddecke
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Winchesterstr. 2, 35394 Gießen, Germany; LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt, Germany
| | - Frank Pasmans
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium
| | - Eugenia Sanchez
- Zoological Institute, Technische Universität Braunschweig, Mendelssohnstr. 4, 38106 Braunschweig, Germany; Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - David Weisrock
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA
| | - Michael Veith
- Biogeography Department, Trier University, 54286 Trier, Germany
| | - Ben Wielstra
- Institute of Biology Leiden, Leiden University, 2300 RA Leiden, the Netherlands
| | - Sebastian Steinfartz
- Institute of Biology, Molecular Evolution and Systematics of Animals, University of Leipzig, Talstrasse 33, 04103, Leipzig, Germany
| | - Michael Hofreiter
- Faculty of Mathematics and Natural Sciences, Institute for Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| | - Hervé Philippe
- Centre for Biodiversity Theory and Modelling, UMR CNRS 5321, Station of Theoretical and Experimental Ecology, 2 route du CNRS, 09200 Moulis, France
| | - Miguel Vences
- Zoological Institute, Technische Universität Braunschweig, Mendelssohnstr. 4, 38106 Braunschweig, Germany
| |
Collapse
|
50
|
Jiang Y, Yuan Z, Hu H, Ye X, Zheng Z, Wei Y, Zheng YL, Wang YG, Liu C. Differentiating homoploid hybridization from ancestral subdivision in evaluating the origin of the D lineage in wheat. THE NEW PHYTOLOGIST 2020; 228:409-414. [PMID: 32255512 DOI: 10.1111/nph.16578] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Accepted: 03/19/2020] [Indexed: 06/11/2023]
Affiliation(s)
- Yunfeng Jiang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
- CSIRO Agriculture and Food, St Lucia, Qld, 4067, Australia
| | - Zhongwei Yuan
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
- CSIRO Agriculture and Food, St Lucia, Qld, 4067, Australia
| | - Haiyan Hu
- CSIRO Agriculture and Food, St Lucia, Qld, 4067, Australia
- College of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, Henan, 453003, China
| | - Xueling Ye
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
- CSIRO Agriculture and Food, St Lucia, Qld, 4067, Australia
| | - Zhi Zheng
- CSIRO Agriculture and Food, St Lucia, Qld, 4067, Australia
| | - Yuming Wei
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - You-Liang Zheng
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - You-Gan Wang
- Science and Engineering Facility, Queensland University of Technology, Brisbane, Qld, 4000, Australia
| | - Chunji Liu
- CSIRO Agriculture and Food, St Lucia, Qld, 4067, Australia
| |
Collapse
|