1
|
Lee I, Knickerbocker AC, Depew CR, Martin EL, Dicent J, Miller GW, Bucher ML. Effect of altered production and storage of dopamine on development and behavior in C. elegans. FRONTIERS IN TOXICOLOGY 2024; 6:1374866. [PMID: 39219718 PMCID: PMC11363549 DOI: 10.3389/ftox.2024.1374866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 07/08/2024] [Indexed: 09/04/2024] Open
Abstract
Introduction The nematode, Caenorhabditis elegans (C. elegans), is an advantageous model for studying developmental toxicology due to its well-defined developmental stages and homology to humans. It has been established that across species, dopaminergic neurons are highly vulnerable to neurotoxicant exposure, resulting in developmental neuronal dysfunction and age-induced degeneration. C. elegans, with genetic perturbations in dopamine system proteins, can provide insight into the mechanisms of dopaminergic neurotoxicants. In this study, we present a comprehensive analysis on the effect of gene mutations in dopamine-related proteins on body size, development, and behavior in C. elegans. Methods We studied C. elegans that lack the ability to sequester dopamine (OK411) and that overproduce dopamine (UA57) and a novel strain (MBIA) generated by the genetic crossing of OK411 and UA57, which both lack the ability to sequester dopamine into vesicles and, additionally, endogenously overproduce dopamine. The MBIA strain was generated to address the hypothesis that an endogenous increase in the production of dopamine can rescue deficits caused by a lack of vesicular dopamine sequestration. These strains were analyzed for body size, developmental stage, reproduction, egg laying, motor behaviors, and neuronal health utilizing multiple methods. Results Our results further implicate proper dopamine synthesis and sequestration in the regulation of C. elegans body size, development through larval stages into gravid adulthood, and motor functioning. Furthermore, our analyses demonstrate that body size in terms of length is distinct from the developmental stage as fully developed gravid adult C. elegans with disruptions in the dopamine system have decreased body lengths. Thus, body size should not be used as a proxy for the developmental stage when designing experiments. Discussion Our results provide additional evidence that the dopamine system impacts the development, growth, and reproduction in C. elegans. Furthermore, our data suggest that endogenously increasing the production of dopamine mitigates deficits in C. elegans lacking the ability to package dopamine into synaptic vesicles. The novel strain, MBIA, and novel analyses of development and reproduction presented here can be utilized in developmental neurotoxicity experiments.
Collapse
Affiliation(s)
- Irene Lee
- Department of Environmental Health Sciences, Mailman School of Public Health at Columbia University, New York, NY, United States
| | - Ava C. Knickerbocker
- Department of Environmental Health Sciences, Mailman School of Public Health at Columbia University, New York, NY, United States
| | - Charlotte R. Depew
- Department of Environmental Health Sciences, Mailman School of Public Health at Columbia University, New York, NY, United States
| | - Elizabeth L. Martin
- Department of Environmental Health Sciences, Mailman School of Public Health at Columbia University, New York, NY, United States
| | - Jocelyn Dicent
- Department of Environmental Health Sciences, Mailman School of Public Health at Columbia University, New York, NY, United States
| | - Gary W. Miller
- Department of Environmental Health Sciences, Mailman School of Public Health at Columbia University, New York, NY, United States
- Department of Molecular Pharmacology and Therapeutics, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, NY, United States
| | - Meghan L. Bucher
- Department of Environmental Health Sciences, Mailman School of Public Health at Columbia University, New York, NY, United States
| |
Collapse
|
2
|
Wan Y, Macias LH, Garcia LR. Unraveling the hierarchical structure of posture and muscle activity changes during mating of Caenorhabditis elegans. PNAS NEXUS 2024; 3:pgae032. [PMID: 38312221 PMCID: PMC10837012 DOI: 10.1093/pnasnexus/pgae032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/16/2024] [Indexed: 02/06/2024]
Abstract
One goal of neurobiology is to explain how decision-making in neuromuscular circuits produces behaviors. However, two obstacles complicate such efforts: individual behavioral variability and the challenge of simultaneously assessing multiple neuronal activities during behavior. Here, we circumvent these obstacles by analyzing whole animal behavior from a library of Caenorhabditis elegans male mating recordings. The copulating males express the GCaMP calcium sensor in the muscles, allowing simultaneous recording of posture and muscle activities. Our library contains wild type and males with selective neuronal desensitization in serotonergic neurons, which include male-specific posterior cord motor/interneurons and sensory ray neurons that modulate mating behavior. Incorporating deep learning-enabled computer vision, we developed a software to automatically quantify posture and muscle activities. By modeling, the posture and muscle activity data are classified into stereotyped modules, with the behaviors represented by serial executions and transitions among the modules. Detailed analysis of the modules reveals previously unidentified subtypes of the male's copulatory spicule prodding behavior. We find that wild-type and serotonergic neurons-suppressed males had different usage preferences for those module subtypes, highlighting the requirement of serotonergic neurons in the coordinated function of some muscles. In the structure of the behavior, bi-module repeats coincide with most of the previously described copulation steps, suggesting a recursive "repeat until success/give up" program is used for each step during mating. On the other hand, the transition orders of the bi-module repeats reveal the sub-behavioral hierarchy males employ to locate and inseminate hermaphrodites.
Collapse
Affiliation(s)
- Yufeng Wan
- Department of Biology, Texas A&M University, 3258 TAMU, College Station, TX 77843, USA
| | - Luca Henze Macias
- Department of Biology, Texas A&M University, 3258 TAMU, College Station, TX 77843, USA
| | - Luis Rene Garcia
- Department of Biology, Texas A&M University, 3258 TAMU, College Station, TX 77843, USA
| |
Collapse
|
3
|
Lee I, Knickerbocker AC, Depew CR, Martin E, Dicent J, Miller GW, Bucher ML. Effect of altered production and storage of dopamine on development and behavior in C. elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.07.561350. [PMID: 37873331 PMCID: PMC10592695 DOI: 10.1101/2023.10.07.561350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
The nematode, Caenorhabditis elegans, is an advantageous model for studying developmental toxicology due to its homology to humans and well-defined developmental stages. Similarly to humans, C. elegans utilize dopamine as a neurotransmitter to regulate motor behavior. We have previously reported behavioral deficits in a genetic model of C. elegans (OK411) that lack the neurotransmitter transporter necessary for packaging dopamine into synaptic vesicles. Anecdotally, we observed these C. elegans appeared to have a smaller body size, which is supported by prior studies that observed a larger body size in C. elegans that lack the enzyme that catalyzes dopamine synthesis, suggesting a complex regulatory system in which dopamine mediates body size in C. elegans. However, the question of whether body size abnormalities apparent in C. elegans with disruptions to their dopamine system are developmental or purely based on body size remains unanswered. Here, we present data characterizing the effect of gene mutations in dopamine-related proteins on body size, development, and behavior. We analyzed C. elegans that lack the ability to sequester dopamine (OK411), that overproduce dopamine (UA57), and a novel strain (MBIA) generated through crossing OK411 and UA57, which lacks the ability to sequester dopamine into vesicles and additionally endogenously overproduces dopamine. This novel strain was generated to address the hypothesis that an endogenous increase in production of dopamine can rescue deficits caused by a lack of vesicular dopamine sequestration. Compared to wild type, OK411 have shorter body lengths and behavioral deficits in early life stages. In contrast, the MBIA strain have similar body lengths to wild-type by early adulthood and display similar behavior to wild-type by early adulthood. Our data suggests that endogenously increasing the production of dopamine is able to mitigate deficits in C. elegans lacking the ability to package dopamine into synaptic vesicles. These results provide evidence that the dopamine system impacts development, growth, and reproduction in C. elegans.
Collapse
Affiliation(s)
- Irene Lee
- Department of Environmental Health Sciences, Mailman School of Public Health at Columbia University, New York, NY 10032, USA
| | - Ava C Knickerbocker
- Department of Environmental Health Sciences, Mailman School of Public Health at Columbia University, New York, NY 10032, USA
| | - Charlotte Rose Depew
- Department of Environmental Health Sciences, Mailman School of Public Health at Columbia University, New York, NY 10032, USA
| | - Elizabeth Martin
- Department of Environmental Health Sciences, Mailman School of Public Health at Columbia University, New York, NY 10032, USA
| | - Jocelyn Dicent
- Department of Environmental Health Sciences, Mailman School of Public Health at Columbia University, New York, NY 10032, USA
| | - Gary W Miller
- Department of Environmental Health Sciences, Mailman School of Public Health at Columbia University, New York, NY 10032, USA
| | - Meghan L Bucher
- Department of Environmental Health Sciences, Mailman School of Public Health at Columbia University, New York, NY 10032, USA
| |
Collapse
|
4
|
Ke T, Santamaria A, Junior FB, Rocha JBT, Bowman AB, Aschner M. Methylmercury exposure-induced reproductive effects are mediated by dopamine in Caenorhabditis elegans. Neurotoxicol Teratol 2022; 93:107120. [PMID: 35987454 DOI: 10.1016/j.ntt.2022.107120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 11/28/2022]
Abstract
Methylmercury (MeHg) is a neurotoxicant that exists in the natural environment, which level can be greatly increased because of human activity. MeHg exposures have the risk of being detrimental to the development of the nervous system. Studies on MeHg toxicity have largely focused on the mechanisms of its neurotoxicity following developmental exposures. Additionally, reproductive toxicity of developmental MeHg exposures has been noted in rodent models. The model organism Caenorhabditis elegans (C. elegans) is a self-fertilizing animal which has a short lifespan around 20 days. Most C. elegans are hermaphrodites that can generate both sperm and oocytes. To investigate the effects of developmental MeHg exposures on the reproduction in C. elegans, larvae stage 1 worms were exposed to MeHg (0, 0.01 or 0.05 μM) for 24 h. The laid eggs and oocytes were compared during each day at adult stages for 6 days. We showed that MeHg exposure significantly induced an increased number of eggs in day 1 adults without an effect on the timing of egg laying or the total number of eggs or oocytes over the 6-day period. The expression of dat-1 and cat-2 and dopamine levels were increased in worms exposed to MeHg. Supplementation with 100 μM dopamine recapitulated the effect of MeHg on the number of eggs present in day 1 adults. Furthermore, the effect of MeHg on the number of eggs was abrogated in the cat-2 mutant worms CB1112. The number of oocytes in the 6-day adult stages was decreased by MeHg in the dat-1 mutant RM2702. MeHg exposures did not change the mating rate or the number of offspring from mating. Combined, these novel findings show that developmental exposure to low levels of MeHg has limited effects on the reproduction in C. elegans. Furthermore, our data support a modulatory role of dopamine in MeHg-induced effects on reproduction in this model system.
Collapse
Affiliation(s)
- Tao Ke
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, United States
| | - Abel Santamaria
- Laboratorio de Aminoácidos Excitadores/Laboratorio de Neurofarmacología Molecular y Nanotecnología, Instituto Nacional de Neurología y Neurocirugía, 14269 Mexico City, Mexico
| | - Fernando Barbosa Junior
- Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP 14040-900, Brazil
| | - João B T Rocha
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, 97105900 Santa Maria, RS, Brazil
| | - Aaron B Bowman
- School of Health Sciences, Purdue University, West Lafayette, IN 47907-2051, United States
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, United States.
| |
Collapse
|
5
|
Goncalves J, Wan Y, Garcia LR. Stearoyl-CoA desaturases sustain cholinergic excitation and copulatory robustness in metabolically aging C. elegansmales. iScience 2022; 25:104082. [PMID: 35372802 PMCID: PMC8968053 DOI: 10.1016/j.isci.2022.104082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 02/02/2022] [Accepted: 03/14/2022] [Indexed: 01/22/2023] Open
Abstract
Regulated metabolism is required for behaviors as adults age. To understand how lipid usage affects motor coordination, we studied male Caenorhabditis elegans copulation as a model of energy-intensive behavior. Copulation performance drops after 48 h of adulthood. We found that 12–24 h before behavioral decline, males prioritize exploring and copulation behavior over feeding, suggesting that catabolizing stored metabolites, such as lipids, occurs during this period. Because fat-6/7-encoded stearoyl-CoA desaturases are essential for converting the ingested fatty acids to lipid storage, we examined the copulation behavior and neural calcium transients of fat-6(lf); fat-7(lf) mutants. In wild-type males, intestinal and epithelial fat-6/7 expression increases during the first 48 h of adulthood. The fat-6(lf); fat-7(lf) behavioral and metabolic defects indicate that in aging wild-type males, the increased expression of stearoyl-CoA desaturases in the epidermis may indirectly modulate the levels of EAG-family K+ channels in the reproductive cholinergic neurons and muscles. Tissue distribution of fat-6-encoded stearoyl-CoA desaturase changes in adulthood Markov modeling shows reduced feeding linked with more exploring in day 2 males fat-6(lf); fat-7(lf) disrupted behavior can be rescued by epidermal FAT-6 fat-6(lf); fat-7(lf) alters neural and muscular ERG and EAG K+ channel expression
Collapse
Affiliation(s)
- Jimmy Goncalves
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
| | - Yufeng Wan
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
| | - L René Garcia
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
6
|
Jewett E, Arnott G, Connolly L, Vasudevan N, Kevei E. Microplastics and Their Impact on Reproduction-Can we Learn From the C. elegans Model? FRONTIERS IN TOXICOLOGY 2022; 4:748912. [PMID: 35399297 PMCID: PMC8987311 DOI: 10.3389/ftox.2022.748912] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 02/15/2022] [Indexed: 12/17/2022] Open
Abstract
Biologically active environmental pollutants have significant impact on ecosystems, wildlife, and human health. Microplastic (MP) and nanoplastic (NP) particles are pollutants that are present in the terrestrial and aquatic ecosystems at virtually every level of the food chain. Moreover, recently, airborne microplastic particles have been shown to reach and potentially damage respiratory systems. Microplastics and nanoplastics have been shown to cause increased oxidative stress, inflammation, altered metabolism leading to cellular damage, which ultimately affects tissue and organismal homeostasis in numerous animal species and human cells. However, the full impact of these plastic particles on living organisms is not completely understood. The ability of MPs/NPs to carry contaminants, toxic chemicals, pesticides, and bioactive compounds, such as endocrine disrupting chemicals, present an additional risk to animal and human health. This review will discusses the current knowledge on pathways by which microplastic and nanoplastic particles impact reproduction and reproductive behaviors from the level of the whole organism down to plastics-induced cellular defects, while also identifying gaps in current knowledge regarding mechanisms of action. Furthermore, we suggest that the nematode Caenorhabditis elegans provides an advantageous high-throughput model system for determining the effect of plastic particles on animal reproduction, using reproductive behavioral end points and cellular readouts.
Collapse
Affiliation(s)
- Elysia Jewett
- School of Biological Sciences, University of Reading, Reading, United Kingdom
| | - Gareth Arnott
- The Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Northern Ireland, United Kingdom
| | - Lisa Connolly
- The Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Northern Ireland, United Kingdom
| | - Nandini Vasudevan
- School of Biological Sciences, University of Reading, Reading, United Kingdom
| | - Eva Kevei
- School of Biological Sciences, University of Reading, Reading, United Kingdom
| |
Collapse
|
7
|
Jiang Y, Gaur U, Cao Z, Hou ST, Zheng W. Dopamine D1- and D2-like receptors oppositely regulate lifespan via a dietary restriction mechanism in Caenorhabditis elegans. BMC Biol 2022; 20:71. [PMID: 35317792 PMCID: PMC8941781 DOI: 10.1186/s12915-022-01272-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 03/04/2022] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Despite recent progress in understanding the molecular mechanisms regulating aging and lifespan, and the pathways involved being conserved in different species, a full understanding of the aging process has not been reached. In particular, increasing evidence suggests an active role for the nervous system in lifespan regulation, with sensory neurons, as well as serotonin and GABA signaling, having been shown to regulate lifespan in Caenorhabditis elegans (C. elegans). However, the contribution of additional neural factors, and a broad understanding of the role of the nervous system in regulating aging remains to be established. Here, we examine the impact of the dopamine system in regulating aging in C. elegans. RESULTS We report that mutations of DOP-4, a dopamine D1-like receptor (D1R), and DOP-2, a dopamine D2-like receptor (D2R) oppositely affected lifespan, fast body movement span, reproductive lifespan, and developmental rate in C. elegans. Activation of D2R using aripiprazole, an antipsychotic drug, robustly extended both lifespan and healthspan. Conversely, inhibition of D2R using quetiapine shortened worm lifespan, further supporting the role of dopamine receptors in lifespan regulation. Mechanistically, D2R signaling regulates lifespan through a dietary restriction mechanism mediated by the AAK-2-DAF-16 pathway. The DAG-PKC/PKD pathway links signaling between dopamine receptors and the downstream AAK-2-DAF-16 pathway to transmit longevity signals. CONCLUSIONS These data demonstrated a novel role of dopamine receptors in lifespan and dietary restriction regulation. The clinically approved antipsychotic aripiprazole holds potential as a novel anti-aging drug.
Collapse
Affiliation(s)
- Yizhou Jiang
- Centre of Reproduction, Development & Aging and Institute of Translation Medicine, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau, China
- Brain Research Centre and Department of Biology, Southern University of Science and Technology, 1088 Xueyuan Blvd, Nanshan District, Shenzhen, Guangdong Province, China
| | - Uma Gaur
- Centre of Reproduction, Development & Aging and Institute of Translation Medicine, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau, China
| | - Zhibai Cao
- Centre of Reproduction, Development & Aging and Institute of Translation Medicine, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau, China
| | - Sheng-Tao Hou
- Brain Research Centre and Department of Biology, Southern University of Science and Technology, 1088 Xueyuan Blvd, Nanshan District, Shenzhen, Guangdong Province, China.
| | - Wenhua Zheng
- Centre of Reproduction, Development & Aging and Institute of Translation Medicine, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau, China.
| |
Collapse
|
8
|
Bhat US, Shahi N, Surendran S, Babu K. Neuropeptides and Behaviors: How Small Peptides Regulate Nervous System Function and Behavioral Outputs. Front Mol Neurosci 2021; 14:786471. [PMID: 34924955 PMCID: PMC8674661 DOI: 10.3389/fnmol.2021.786471] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/11/2021] [Indexed: 11/13/2022] Open
Abstract
One of the reasons that most multicellular animals survive and thrive is because of the adaptable and plastic nature of their nervous systems. For an organism to survive, it is essential for the animal to respond and adapt to environmental changes. This is achieved by sensing external cues and translating them into behaviors through changes in synaptic activity. The nervous system plays a crucial role in constantly evaluating environmental cues and allowing for behavioral plasticity in the organism. Multiple neurotransmitters and neuropeptides have been implicated as key players for integrating sensory information to produce the desired output. Because of its simple nervous system and well-established neuronal connectome, C. elegans acts as an excellent model to understand the mechanisms underlying behavioral plasticity. Here, we critically review how neuropeptides modulate a wide range of behaviors by allowing for changes in neuronal and synaptic signaling. This review will have a specific focus on feeding, mating, sleep, addiction, learning and locomotory behaviors in C. elegans. With a view to understand evolutionary relationships, we explore the functions and associated pathophysiology of C. elegans neuropeptides that are conserved across different phyla. Further, we discuss the mechanisms of neuropeptidergic signaling and how these signals are regulated in different behaviors. Finally, we attempt to provide insight into developing potential therapeutics for neuropeptide-related disorders.
Collapse
Affiliation(s)
- Umer Saleem Bhat
- Centre for Neuroscience, Indian Institute of Science, Bengaluru, India
- Department of Biological Sciences, Indian Institute of Science Education and Research, Mohali, India
| | - Navneet Shahi
- Centre for Neuroscience, Indian Institute of Science, Bengaluru, India
| | - Siju Surendran
- Centre for Neuroscience, Indian Institute of Science, Bengaluru, India
| | - Kavita Babu
- Centre for Neuroscience, Indian Institute of Science, Bengaluru, India
| |
Collapse
|
9
|
Bowles SN, Johnson CM. Inferences of glia-mediated control in Caenorhabditis elegans. J Neurosci Res 2021; 99:1191-1206. [PMID: 33559247 PMCID: PMC8005477 DOI: 10.1002/jnr.24803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 01/12/2021] [Indexed: 12/22/2022]
Abstract
Astrocytes modulate synaptic transmission; yet, it remains unclear how glia influence complex behaviors. Here, we explore the effects of Caenorhabditis elegans astrocyte-like cephalic glia (CEPglia ) and the glia-specific bHLH transcription factor HLH-17 on mating behavior and the defecation motor program (DMP). In C. elegans, male mating has been explicitly described through the male tail circuit and is characterized by coordination of multiple independent behaviors to ensure that copulation is achieved. Furthermore, the sex-specific male mating circuitry shares similar components with the DMP, which is complex and rhythmic, and requires a fixed sequence of behaviors to be activated periodically. We found that loss of CEPglia reduced persistence in executing mating behaviors and hindered copulation, while males that lacked HLH-17 demonstrated repetitive prodding behavior that increased the time spent in mating but did not hinder copulation. During the DMP, we found that posterior body wall contractions (pBocs) and enteric muscle contractions (EMCs) were differentially affected by loss of HLH-17 or CEPglia in males and hermaphrodites. pBocs and EMCs required HLH-17 activity in both sexes, whereas loss of CEPglia alone did not affect DMP in males. Our data suggest that CEPglia mediate complex behaviors by signaling to the GABAergic DVB neuron, and that HLH-17 activity influences those discrete steps within those behaviors. Collectively, these data provide evidence of glia as a link in cooperative regulation of complex and rhythmic behavior that, in C. elegans links circuitry in the head and the tail.
Collapse
Affiliation(s)
- Stephanie N. Bowles
- Department of Biology, Georgia State University, Atlanta, GA, 30303, United States
| | - Casonya M. Johnson
- Department of Biology, Georgia State University, Atlanta, GA, 30303, United States
- Department of Biology, James Madison University, Harrisonburg, VA, 22807
| |
Collapse
|
10
|
Ke T, Prince LM, Bowman AB, Aschner M. Latent alterations in swimming behavior by developmental methylmercury exposure are modulated by the homolog of tyrosine hydroxylase in Caenorhabditis elegans. Neurotoxicol Teratol 2021; 85:106963. [PMID: 33626374 DOI: 10.1016/j.ntt.2021.106963] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/11/2021] [Accepted: 02/12/2021] [Indexed: 12/18/2022]
Abstract
Methylmercury (MeHg) is a persistent environmental neurotoxicant that may cause adverse neurodevelopmental effects. Previous studies showed that developmental MeHg exposure caused damage to brain functions that were unmasked after a silent period of years or decades. However, the underlying mechanisms of the latent neurotoxicity associated with MeHg exposure from earlier developmental stages have yet to be fully understood. Herein, we established a Caenorhabditis elegans (C. elegans) model of developmental MeHg latent toxicity. Synchronized L1 stage worms were exposed to MeHg (0, 0.05, 0.5 and 5 μM) for 48 h. Swimming moving speeds at adulthood were analyzed in worms exposed to MeHg exposure at early larvae stages. Worms developmentally exposed to MeHg had a significant decline in swimming moving speed on day 10 adult stage, but not on day 1 or 5 adult stage, even though the mercury level in the worms exposed to 0.05 or 0.5 μM MeHg were below the quantification limit on day 10 adult. Day 10 adult worms treated with MeHg showed a significant decrease in bending angle and bending frequency during swimming. Furthermore, their reduced moving speeds tended to increase during the 300-s swimming experiment. Dopamine signaling is known to be involved in the regulation of worms' moving speed. Accordingly, the moving speed of worms with cat-2 (mammalian tyrosine hydroxylase homolog) mutation or dat-1 deletion were assayed on day 10 adult. The cat-2 mutant worms did not show a decline in moving speeds, body bends or bending angles during swimming on day 10 adult stage. Analyses of moving speeds of worms with dat-1 deletion showed that the moving speeds were further reduced after MeHg exposure. However, the effects of MeHg and dat-1 deletion were not synergistic, as the interaction between these parameters did not attain statistical significance. Altogether, our results suggest that developmental MeHg exposure reduced moving speed, and this latent toxicity was less pronounced in the context of deficient production of dopamine synthesis. Tyrosine hydroxylase plays an important role in regulating dopamine-mediated modulation of neurobehavioral functions. These findings uncovered a pivotal role of dopamine and its metabolism in the latent neurotoxic effects of MeHg.
Collapse
Affiliation(s)
- Tao Ke
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, United States
| | - Lisa M Prince
- School of Health Sciences, Purdue University, West Lafayette, IN 47907-2051, United States
| | - Aaron B Bowman
- School of Health Sciences, Purdue University, West Lafayette, IN 47907-2051, United States
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, United States; IM Sechenov First Moscow State Medical University, Sechenov University, Moscow, Russia.
| |
Collapse
|
11
|
Pandey P, Singh A, Kaur H, Ghosh-Roy A, Babu K. Increased dopaminergic neurotransmission results in ethanol dependent sedative behaviors in Caenorhabditis elegans. PLoS Genet 2021; 17:e1009346. [PMID: 33524034 PMCID: PMC7877767 DOI: 10.1371/journal.pgen.1009346] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 02/11/2021] [Accepted: 01/06/2021] [Indexed: 12/19/2022] Open
Abstract
Ethanol is a widely used drug, excessive consumption of which could lead to medical conditions with diverse symptoms. Ethanol abuse causes dysfunction of memory, attention, speech and locomotion across species. Dopamine signaling plays an essential role in ethanol dependent behaviors in animals ranging from C. elegans to humans. We devised an ethanol dependent assay in which mutants in the dopamine autoreceptor, dop-2, displayed a unique sedative locomotory behavior causing the animals to move in circles while dragging the posterior half of their body. Here, we identify the posterior dopaminergic sensory neuron as being essential to modulate this behavior. We further demonstrate that in dop-2 mutants, ethanol exposure increases dopamine secretion and functions in a DVA interneuron dependent manner. DVA releases the neuropeptide NLP-12 that is known to function through cholinergic motor neurons and affect movement. Thus, DOP-2 modulates dopamine levels at the synapse and regulates alcohol induced movement through NLP-12.
Collapse
Affiliation(s)
- Pratima Pandey
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Mohali, India
| | - Anuradha Singh
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Mohali, India
| | - Harjot Kaur
- National Brain Research Centre, Gurgaon, India
| | | | - Kavita Babu
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Mohali, India
- Centre for Neuroscience, Indian Institute of Science (IISc), Bangalore, India
| |
Collapse
|
12
|
Molina-García L, Lloret-Fernández C, Cook SJ, Kim B, Bonnington RC, Sammut M, O'Shea JM, Gilbert SPR, Elliott DJ, Hall DH, Emmons SW, Barrios A, Poole RJ. Direct glia-to-neuron transdifferentiation gives rise to a pair of male-specific neurons that ensure nimble male mating. eLife 2020; 9:e48361. [PMID: 33138916 PMCID: PMC7609048 DOI: 10.7554/elife.48361] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 10/02/2020] [Indexed: 12/20/2022] Open
Abstract
Sexually dimorphic behaviours require underlying differences in the nervous system between males and females. The extent to which nervous systems are sexually dimorphic and the cellular and molecular mechanisms that regulate these differences are only beginning to be understood. We reveal here a novel mechanism by which male-specific neurons are generated in Caenorhabditis elegans through the direct transdifferentiation of sex-shared glial cells. This glia-to-neuron cell fate switch occurs during male sexual maturation under the cell-autonomous control of the sex-determination pathway. We show that the neurons generated are cholinergic, peptidergic, and ciliated putative proprioceptors which integrate into male-specific circuits for copulation. These neurons ensure coordinated backward movement along the mate's body during mating. One step of the mating sequence regulated by these neurons is an alternative readjustment movement performed when intromission becomes difficult to achieve. Our findings reveal programmed transdifferentiation as a developmental mechanism underlying flexibility in innate behaviour.
Collapse
Affiliation(s)
- Laura Molina-García
- Department of Cell and Developmental Biology, University College LondonLondonUnited Kingdom
| | - Carla Lloret-Fernández
- Department of Cell and Developmental Biology, University College LondonLondonUnited Kingdom
| | - Steven J Cook
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of MedicineNew YorkUnited States
| | - Byunghyuk Kim
- Department of Genetics, Albert Einstein College of MedicineNew YorkUnited States
| | - Rachel C Bonnington
- Department of Cell and Developmental Biology, University College LondonLondonUnited Kingdom
| | - Michele Sammut
- Department of Cell and Developmental Biology, University College LondonLondonUnited Kingdom
| | - Jack M O'Shea
- Department of Cell and Developmental Biology, University College LondonLondonUnited Kingdom
| | - Sophie PR Gilbert
- Department of Cell and Developmental Biology, University College LondonLondonUnited Kingdom
| | - David J Elliott
- Department of Cell and Developmental Biology, University College LondonLondonUnited Kingdom
| | - David H Hall
- Department of Genetics, Albert Einstein College of MedicineNew YorkUnited States
| | - Scott W Emmons
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of MedicineNew YorkUnited States
- Department of Genetics, Albert Einstein College of MedicineNew YorkUnited States
| | - Arantza Barrios
- Department of Cell and Developmental Biology, University College LondonLondonUnited Kingdom
| | - Richard J Poole
- Department of Cell and Developmental Biology, University College LondonLondonUnited Kingdom
| |
Collapse
|
13
|
LeBoeuf B, Chen X, Garcia LR. WNT regulates programmed muscle remodeling through PLC-β and calcineurin in Caenorhabditis elegans males. Development 2020; 147:dev181305. [PMID: 32317273 PMCID: PMC10679511 DOI: 10.1242/dev.181305] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 03/31/2020] [Indexed: 11/29/2023]
Abstract
The ability of a muscle to break down and reform fibers is vital for development; however, if unregulated, abnormal muscle remodeling can occur, such as in the heart following cardiac infarction. To study how normal developmental remodeling is mediated, we used fluorescently tagged actin, mutant analyses, Ca2+ imaging and controlled Ca2+ release to determine the mechanisms regulating a conspicuous muscle change that occurs in Caenorhabditis elegans males. In hermaphrodites and larval males, the single cell anal depressor muscle, used for waste expulsion, contains bilateral dorsal-ventral sarcomeres. However, prior to male adulthood, the muscle sex-specifically remodels its sarcomeres anteriorly-posteriorly to promote copulation behavior. Although WNT signaling and calcineurin have been implicated separately in muscle remodeling, we unexpectedly found that they participate in the same pathway. We show that WNT signaling through Gαo and PLC-β results in sustained Ca2+ release via IP3 and ryanodine receptors to activate calcineurin. These results highlight the utility of this new model in identifying additional molecules involved in muscle remodeling.
Collapse
Affiliation(s)
- Brigitte LeBoeuf
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
| | - Xin Chen
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
| | - Luis Rene Garcia
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
14
|
Suo S, Harada K, Matsuda S, Kyo K, Wang M, Maruyama K, Awaji T, Tsuboi T. Sexually Dimorphic Regulation of Behavioral States by Dopamine in Caenorhabditis elegans. J Neurosci 2019; 39:4668-4683. [PMID: 30988167 PMCID: PMC6561698 DOI: 10.1523/jneurosci.2985-18.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 03/22/2019] [Accepted: 03/26/2019] [Indexed: 11/21/2022] Open
Abstract
Sex differences in behavior allow animals to effectively mate and reproduce. However, the mechanism by which biological sex regulates behavioral states, which underlie the regulation of sex-shared behaviors, such as locomotion, is largely unknown. In this study, we studied sex differences in the behavioral states of Caenorhabditis elegans and found that males spend less time in a low locomotor activity state than hermaphrodites and that dopamine generates this sex difference. In males, dopamine reduces the low activity state by acting in the same pathway as polycystic kidney disease-related genes that function in male-specific neurons. In hermaphrodites, dopamine increases the low activity state by suppression of octopamine signaling in the sex-shared SIA neurons, which have reduced responsiveness to octopamine in males. Furthermore, dopamine promotes exploration both inside and outside of bacterial lawn (the food source) in males and suppresses it in hermaphrodites. These results demonstrate that sexually dimorphic signaling allows the same neuromodulator to promote adaptive behavior for each sex.SIGNIFICANCE STATEMENT The mechanisms that generate sex differences in sex-shared behaviors, including locomotion, are not well understood. We show that there are sex differences in the regulation of behavioral states in the model animal Caenorhabditis elegans Dopamine promotes the high locomotor activity state in males, which must search for mates to reproduce, and suppresses it in self-fertilizing hermaphrodites through distinct molecular mechanisms. This study demonstrates that sex-specific signaling generates sex differences in the regulation of behavioral states, which in turn modulates the locomotor activity to suit reproduction for each sex.
Collapse
Affiliation(s)
- Satoshi Suo
- Department of Pharmacology, Faculty of Medicine, Saitama Medical University, Saitama, 350-0495, Japan,
| | - Kazuki Harada
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Tokyo, 153-8902, Japan
| | - Shogo Matsuda
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo, 113-0033, Japan, and
| | - Koki Kyo
- Department of Human Sciences, Obihiro University of Agriculture and Veterinary Medicine, Hokkaido, 080-8555, Japan
| | - Min Wang
- Department of Pharmacology, Faculty of Medicine, Saitama Medical University, Saitama, 350-0495, Japan
| | - Kei Maruyama
- Department of Pharmacology, Faculty of Medicine, Saitama Medical University, Saitama, 350-0495, Japan
| | - Takeo Awaji
- Department of Pharmacology, Faculty of Medicine, Saitama Medical University, Saitama, 350-0495, Japan
| | - Takashi Tsuboi
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Tokyo, 153-8902, Japan
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo, 113-0033, Japan, and
| |
Collapse
|
15
|
Loucks CM, Park K, Walker DS, McEwan AH, Timbers TA, Ardiel EL, Grundy LJ, Li C, Johnson JL, Kennedy J, Blacque OE, Schafer W, Rankin CH, Leroux MR. EFHC1, implicated in juvenile myoclonic epilepsy, functions at the cilium and synapse to modulate dopamine signaling. eLife 2019; 8:37271. [PMID: 30810526 PMCID: PMC6392500 DOI: 10.7554/elife.37271] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 02/06/2019] [Indexed: 01/03/2023] Open
Abstract
Neurons throughout the mammalian brain possess non-motile cilia, organelles with varied functions in sensory physiology and cellular signaling. Yet, the roles of cilia in these neurons are poorly understood. To shed light into their functions, we studied EFHC1, an evolutionarily conserved protein required for motile cilia function and linked to a common form of inherited epilepsy in humans, juvenile myoclonic epilepsy (JME). We demonstrate that C. elegans EFHC-1 functions within specialized non-motile mechanosensory cilia, where it regulates neuronal activation and dopamine signaling. EFHC-1 also localizes at the synapse, where it further modulates dopamine signaling in cooperation with the orthologue of an R-type voltage-gated calcium channel. Our findings unveil a previously undescribed dual-regulation of neuronal excitability at sites of neuronal sensory input (cilium) and neuronal output (synapse). Such a distributed regulatory mechanism may be essential for establishing neuronal activation thresholds under physiological conditions, and when impaired, may represent a novel pathomechanism for epilepsy.
Collapse
Affiliation(s)
- Catrina M Loucks
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, Canada.,Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, Canada
| | - Kwangjin Park
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, Canada.,Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, Canada
| | - Denise S Walker
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Andrea H McEwan
- Djavad Mowfaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
| | - Tiffany A Timbers
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, Canada.,Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, Canada
| | - Evan L Ardiel
- Djavad Mowfaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
| | - Laura J Grundy
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Chunmei Li
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, Canada.,Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, Canada
| | - Jacque-Lynne Johnson
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, Canada.,Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, Canada
| | - Julie Kennedy
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - Oliver E Blacque
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - William Schafer
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Catharine H Rankin
- Djavad Mowfaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada.,Department of Psychology, University of British Columbia, Vancouver, Canada
| | - Michel R Leroux
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, Canada.,Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, Canada
| |
Collapse
|
16
|
Koelle MR. Neurotransmitter signaling through heterotrimeric G proteins: insights from studies in C. elegans. WORMBOOK : THE ONLINE REVIEW OF C. ELEGANS BIOLOGY 2018; 2018:1-52. [PMID: 26937633 PMCID: PMC5010795 DOI: 10.1895/wormbook.1.75.2] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Neurotransmitters signal via G protein coupled receptors (GPCRs) to modulate activity of neurons and muscles. C. elegans has ∼150 G protein coupled neuropeptide receptor homologs and 28 additional GPCRs for small-molecule neurotransmitters. Genetic studies in C. elegans demonstrate that neurotransmitters diffuse far from their release sites to activate GPCRs on distant cells. Individual receptor types are expressed on limited numbers of cells and thus can provide very specific regulation of an individual neural circuit and behavior. G protein coupled neurotransmitter receptors signal principally via the three types of heterotrimeric G proteins defined by the G alpha subunits Gαo, Gαq, and Gαs. Each of these G alpha proteins is found in all neurons plus some muscles. Gαo and Gαq signaling inhibit and activate neurotransmitter release, respectively. Gαs signaling, like Gαq signaling, promotes neurotransmitter release. Many details of the signaling mechanisms downstream of Gαq and Gαs have been delineated and are consistent with those of their mammalian orthologs. The details of the signaling mechanism downstream of Gαo remain a mystery. Forward genetic screens in C. elegans have identified new molecular components of neural G protein signaling mechanisms, including Regulators of G protein Signaling (RGS proteins) that inhibit signaling, a new Gαq effector (the Trio RhoGEF domain), and the RIC-8 protein that is required for neuronal Gα signaling. A model is presented in which G proteins sum up the variety of neuromodulator signals that impinge on a neuron to calculate its appropriate output level.
Collapse
Affiliation(s)
- Michael R Koelle
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven CT 06520 USA
| |
Collapse
|
17
|
Abstract
The recently determined connectome of the Caenorhabditis elegans adult male, together with the known connectome of the hermaphrodite, opens up the possibility for a comprehensive description of sexual dimorphism in this species and the identification and study of the neural circuits underlying sexual behaviors. The C. elegans nervous system consists of 294 neurons shared by both sexes plus neurons unique to each sex, 8 in the hermaphrodite and 91 in the male. The sex-specific neurons are well integrated within the remainder of the nervous system; in the male, 16% of the input to the shared component comes from male-specific neurons. Although sex-specific neurons are involved primarily, but not exclusively, in controlling sex-unique behavior—egg-laying in the hermaphrodite and copulation in the male—these neurons act together with shared neurons to make navigational choices that optimize reproductive success. Sex differences in general behaviors are underlain by considerable dimorphism within the shared component of the nervous system itself, including dimorphism in synaptic connectivity.
Collapse
Affiliation(s)
- Scott W. Emmons
- Department of Genetics and Dominick Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| |
Collapse
|
18
|
Neurexin controls plasticity of a mature, sexually dimorphic neuron. Nature 2018; 553:165-170. [PMID: 29323291 PMCID: PMC5968453 DOI: 10.1038/nature25192] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 12/05/2017] [Indexed: 12/15/2022]
Abstract
During development and adulthood, brain plasticity is evident at several
levels, from synaptic structure and function to outgrowth of dendrites and
axons. Whether and how sex impinges on neuronal plasticity is poorly understood.
Here we show that the C. elegans sex-shared GABAergic DVB
neuron displays experience-dependent and sexually dimorphic morphologic
plasticity, characterized by the stochastic and dynamic addition of multiple
neurites in adult males. These added neurites enable synaptic rewiring of the
DVB neuron, instructing a functional switch of the neuron and directly modifying
a step of male mating behavior, both of which are altered by experience and
post-synaptic activity manipulations. We show that the outgrowth of DVB neurites
is promoted by presynaptic NRX-1/neurexin and restricted by postsynaptic
NLG-1/neuroligin, providing a novel context in which these two molecules
operate.
Collapse
|
19
|
Caenorhabditis elegans Male Copulation Circuitry Incorporates Sex-Shared Defecation Components To Promote Intromission and Sperm Transfer. G3-GENES GENOMES GENETICS 2017; 7:647-662. [PMID: 28031243 PMCID: PMC5295609 DOI: 10.1534/g3.116.036756] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Sexual dimorphism can be achieved using a variety of mechanisms, including sex-specific circuits and sex-specific function of shared circuits, though how these work together to produce sexually dimorphic behaviors requires further investigation. Here, we explore how components of the sex-shared defecation circuitry are incorporated into the sex-specific male mating circuitry in Caenorhabditis elegans to produce successful copulation. Using behavioral studies, calcium imaging, and genetic manipulation, we show that aspects of the defecation system are coopted by the male copulatory circuitry to facilitate intromission and ejaculation. Similar to hermaphrodites, male defecation is initiated by an intestinal calcium wave, but circuit activity is coordinated differently during mating. In hermaphrodites, the tail neuron DVB promotes expulsion of gut contents through the release of the neurotransmitter GABA onto the anal depressor muscle. However, in the male, both neuron and muscle take on modified functions to promote successful copulation. Males require calcium-dependent activator protein for secretion (CAPS)/unc-31, a dense core vesicle exocytosis activator protein, in the DVB to regulate copulatory spicule insertion, while the anal depressor is remodeled to promote release of sperm into the hermaphrodite. This work shows how sex-shared circuitry is modified in multiple ways to contribute to sex-specific mating.
Collapse
|
20
|
Jee C, Goncalves JF, LeBoeuf B, Garcia LR. CRF-like receptor SEB-3 in sex-common interneurons potentiates stress handling and reproductive drive in C. elegans. Nat Commun 2016; 7:11957. [PMID: 27321013 PMCID: PMC4915151 DOI: 10.1038/ncomms11957] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 05/13/2016] [Indexed: 02/08/2023] Open
Abstract
Environmental conditions can modulate innate behaviours. Although male Caenorhabditis elegans copulation can be perturbed in the presence of stress, the mechanisms underlying its decision to sustain copulation are unclear. Here we describe a mating interference assay, which quantifies the persistence of male C. elegans copulation in noxious blue light. We show that between copulations, the male escapes from blue light illumination at intensities over 370 μW mm−2. This response is attenuated in mutants with constitutive activation of the corticotropin-releasing factor receptor family homologue SEB-3. We show that activation of this receptor causes sex-common glutamatergic lumbar ganglion interneurons (LUA) to potentiate downstream male-specific reproduction circuits, allowing copulatory behaviours to partially override the light-induced escape responses in the male. SEB-3 activation in LUA also potentiates copulation during mild starvation. We suggest that SEB-3 activation allows C. elegans to acclimate to the environment and thus continue to execute innate behaviours even under non-optimal conditions. Innate animal behaviours can be negatively regulated by environmental stressors. Jee et al. show that suppression of male C. elegans copulation behaviour by noxious light can be overcome by activation of SEB-3, a homologue of the stress-associated mammalian corticotropin-releasing factor receptor family.
Collapse
Affiliation(s)
- Changhoon Jee
- Department of Biology, Howard Hughes Medical Institute, Texas A&M University, 3258 TAMU, College Station, Texas 77843-3258, USA
| | - Jimmy F Goncalves
- Department of Biology, Howard Hughes Medical Institute, Texas A&M University, 3258 TAMU, College Station, Texas 77843-3258, USA
| | - Brigitte LeBoeuf
- Department of Biology, Howard Hughes Medical Institute, Texas A&M University, 3258 TAMU, College Station, Texas 77843-3258, USA
| | - L Rene Garcia
- Department of Biology, Howard Hughes Medical Institute, Texas A&M University, 3258 TAMU, College Station, Texas 77843-3258, USA
| |
Collapse
|
21
|
DOP-2 D2-Like Receptor Regulates UNC-7 Innexins to Attenuate Recurrent Sensory Motor Neurons during C. elegans Copulation. J Neurosci 2015; 35:9990-10004. [PMID: 26156999 DOI: 10.1523/jneurosci.0940-15.2015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
UNLABELLED Neuromodulation of self-amplifying circuits directs context-dependent behavioral executions. Although recurrent networks are found throughout the Caenorhabditis elegans connectome, few reports describe the mechanisms that regulate reciprocal neural activity during complex behavior. We used C. elegans male copulation to dissect how a goal-oriented motor behavior is regulated by recurrently wired sensory-motor neurons. As the male tail presses against the hermaphrodite's vulva, cholinergic and glutamatergic reciprocal innervations of post cloaca sensilla (PCS) neurons (PCA, PCB, and PCC), hook neurons (HOA, HOB), and their postsynaptic sex muscles execute rhythmic copulatory spicule thrusts. These repetitive spicule movements continue until the male shifts off the vulva or genital penetration is accomplished. However, the signaling mechanism that temporally and spatially restricts repetitive intromission attempts to vulva cues was unclear. Here, we report that confinement of spicule insertion attempts to the vulva is facilitated by D2-like receptor modulation of gap-junctions between PCB and the hook sensillum. We isolated a missense mutation in the UNC-7(L) gap-junction isoform, which perturbs DOP-2 signaling in the PCB neuron and its electrical partner, HOA. The glutamate-gated chloride channel AVR-14 is expressed in HOA. Our analysis of the unc-7 mutant allele indicates that when DOP-2 promotes UNC-7 electrical communication, AVR-14-mediated inhibitory signals pass from HOA to PCB. As a consequence, PCB is less receptive to be stimulated by its recurrent synaptic partner, PCA. Behavioral observations suggest that dopamine neuromodulation of UNC-7 ensures attenuation of recursive intromission attempts when the male disengages or is dislodged from the hermaphrodite genitalia. SIGNIFICANCE STATEMENT Using C. elegans male copulation as a model, we found that the neurotransmitter dopamine stimulates D2-like receptors in two sensory circuits to terminate futile behavioral loops. The D2-like receptors promote inhibitory electrical junction activity between a chemosensory and a mechanosensory circuit. Therefore, both systems are attenuated and the animal ceases the recursive behavior.
Collapse
|
22
|
Zhang L, Gualberto DG, Guo X, Correa P, Jee C, Garcia LR. TMC-1 attenuates C. elegans development and sexual behaviour in a chemically defined food environment. Nat Commun 2015; 6:6345. [PMID: 25695879 DOI: 10.1038/ncomms7345] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 01/21/2015] [Indexed: 01/22/2023] Open
Abstract
Although diet affects growth and behaviour, the adaptive mechanisms that coordinate these processes in non-optimal food sources are unclear. Here we show that the C. elegans tmc-1 channel, which is homologous to the mammalian tmc deafness genes, attenuates development and inhibits sexual behaviour in non-optimal food, the synthetic CeMM medium. In CeMM medium, signalling from the pharyngeal MC neurons and body wall muscles slows larval development. However, in the non-standard diet, mutation in tmc-1 accelerates development, by impairing the excitability of these cells. The tmc-1 larva can immediately generate ATP when fed CeMM, and their fast development requires insulin signalling. Our findings suggest that the tmc-1 channel indirectly affects metabolism in wild-type animals. In addition to regulating the development, we show that mutating tmc-1 can relax diet-induced inhibition of male sexual behaviour, thus indicating that a single regulator can be genetically modified to promote growth rate and reproductive success in new environments.
Collapse
Affiliation(s)
- Liusuo Zhang
- Department of Biology, Howard Hughes Medical Institute, Texas A&M University, 3258 TAMU College Station, Texas 77843-3258, USA
| | - Daisy G Gualberto
- Department of Biology, Howard Hughes Medical Institute, Texas A&M University, 3258 TAMU College Station, Texas 77843-3258, USA
| | - Xiaoyan Guo
- Department of Biology, Howard Hughes Medical Institute, Texas A&M University, 3258 TAMU College Station, Texas 77843-3258, USA
| | - Paola Correa
- Department of Biology, Howard Hughes Medical Institute, Texas A&M University, 3258 TAMU College Station, Texas 77843-3258, USA
| | - Changhoon Jee
- Department of Biology, Howard Hughes Medical Institute, Texas A&M University, 3258 TAMU College Station, Texas 77843-3258, USA
| | - L Rene Garcia
- Department of Biology, Howard Hughes Medical Institute, Texas A&M University, 3258 TAMU College Station, Texas 77843-3258, USA
| |
Collapse
|
23
|
Wang D, Yu Y, Li Y, Wang Y, Wang D. Dopamine receptors antagonistically regulate behavioral choice between conflicting alternatives in C. elegans. PLoS One 2014; 9:e115985. [PMID: 25536037 PMCID: PMC4275273 DOI: 10.1371/journal.pone.0115985] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 12/03/2014] [Indexed: 11/18/2022] Open
Abstract
Caenorhabditis elegans is a useful model to study the neuronal or molecular basis for behavioral choice, a specific form of decision-making. Although it has been implied that both D1-like and D2-like dopamine receptors may contribute to the control of decision-making in mammals, the genetic interactions between D1-like and D2-like dopamine receptors in regulating decision-making are still largely unclear. In the present study, we investigated the molecular control of behavioral choice between conflicting alternatives (diacetyl and Cu2+) by D1-like and D2-like dopamine receptors and their possible genetic interactions with C. elegans as the assay system. In the behavioral choice assay system, mutation of dop-1 gene encoding D1-like dopamine receptor resulted in the enhanced tendency to cross the Cu2+ barrier compared with wild-type. In contrast, mutations of dop-2 or dop-3 gene encoding D2-like dopamine receptor caused the weak tendency to cross the Cu2+ barrier compared with wild-type. During the control of behavioral choice, DOP-3 antagonistically regulated the function of DOP-1. The behavioral choice phenotype of dop-2; dop-1dop-3 triple mutant further confirmed the possible antagonistic function of D2-like dopamine receptor on D1-like dopamine receptor in regulating behavioral choice. The genetic assays further demonstrate that DOP-3 might act through Gαo signaling pathway encoded by GOA-1 and EGL-10, and DOP-1 might act through Gαq signaling pathway encoded by EGL-30 and EAT-16 to regulate the behavioral choice. DOP-1 might function in cholinergic neurons to regulate the behavioral choice, whereas DOP-3 might function in GABAergic neurons, RIC, and SIA neurons to regulate the behavioral choice. In this study, we provide the genetic evidence to indicate the antagonistic relationship between D1-like dopamine receptor and D2-like dopamine receptor in regulating the decision-making of animals. Our data will be useful for understanding the complex functions of dopamine receptors in regulating decision-making in animals.
Collapse
Affiliation(s)
- Daoyong Wang
- Key Laboratory of Developmental Genes and Human Disease in Ministry of Education, Medical School of Southeast University, Nanjing, 210009, China
| | - Yonglin Yu
- Key Laboratory of Developmental Genes and Human Disease in Ministry of Education, Medical School of Southeast University, Nanjing, 210009, China
| | - Yinxia Li
- Key Laboratory of Developmental Genes and Human Disease in Ministry of Education, Medical School of Southeast University, Nanjing, 210009, China
| | - Yang Wang
- Key Laboratory of Developmental Genes and Human Disease in Ministry of Education, Medical School of Southeast University, Nanjing, 210009, China
| | - Dayong Wang
- Key Laboratory of Developmental Genes and Human Disease in Ministry of Education, Medical School of Southeast University, Nanjing, 210009, China
- * E-mail:
| |
Collapse
|
24
|
Chen X, René García L. Developmental alterations of the C. elegans male anal depressor morphology and function require sex-specific cell autonomous and cell non-autonomous interactions. Dev Biol 2014; 398:24-43. [PMID: 25498482 DOI: 10.1016/j.ydbio.2014.11.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 10/30/2014] [Accepted: 11/11/2014] [Indexed: 11/17/2022]
Abstract
We studied the Caenorhabditis elegans anal depressor development in larval males and hermaphrodites to address how a differentiated cell sex-specifically changes its morphology prior to adulthood. In both sexes, the larval anal depressor muscle is used for defecation behavior. However in the adult males, the muscle's sarcomere is reorganized to facilitate copulation. To address when the changes occur in the anal depressor, we used YFP:actin to monitor, and mutant analysis, laser-ablation and transgenic feminization to perturb the cell's morphological dynamics. In L1 and L2 stage larva, the muscle of both sexes has similar sarcomere morphology, but the hermaphrodite sex-determination system promotes more growth. The male anal depressor begins to change in the L3 stage, first by retracting its muscle arm from the neurons of the defecation circuit. Then the muscle's ventral region develops a slit that demarcates an anterior and posterior domain. This demarcation is not dependent on the anal depressor's intrinsic genetic sex, but is influenced by extrinsic interactions with the developing male sex muscles. However, subsequent changes are dependent on the cell's sex. In the L4 stage, the anterior domain first disassembles the dorsal-ventral sarcomere region and develops filopodia that elongates anteriorly towards the spicule muscles. Later, the posterior domain dissembles the remnants of its sarcomere, but still retains a vestigial attachment to the ventral body wall. Finally, the anterior domain attaches to the sex muscles, and then reassembles an anterior-posteriorly oriented sarcomere. Our work identifies key steps in the dimorphic re-sculpting of the anal depressor that are regulated by genetic sex and by cell-cell signaling.
Collapse
Affiliation(s)
- Xin Chen
- Department of Biology, Texas A&M University, 3258 TAMU, College Station, TX 77843-3258, USA
| | - L René García
- Department of Biology, Texas A&M University, 3258 TAMU, College Station, TX 77843-3258, USA.
| |
Collapse
|
25
|
García LR. Regulation of sensory motor circuits used in C. elegans male intromission behavior. Semin Cell Dev Biol 2014; 33:42-9. [DOI: 10.1016/j.semcdb.2014.05.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 04/25/2014] [Accepted: 05/07/2014] [Indexed: 11/15/2022]
|
26
|
Sherlekar AL, Lints R. Nematode Tango Milonguero – The C. elegans male's search for the hermaphrodite vulva. Semin Cell Dev Biol 2014; 33:34-41. [DOI: 10.1016/j.semcdb.2014.05.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 04/24/2014] [Accepted: 05/07/2014] [Indexed: 12/31/2022]
|
27
|
LeBoeuf B, Correa P, Jee C, García LR. Caenorhabditis elegans male sensory-motor neurons and dopaminergic support cells couple ejaculation and post-ejaculatory behaviors. eLife 2014; 3. [PMID: 24915976 PMCID: PMC4103683 DOI: 10.7554/elife.02938] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 06/09/2014] [Indexed: 12/03/2022] Open
Abstract
The circuit structure and function underlying post-coital male behaviors remain poorly understood. Using mutant analysis, laser ablation, optogenetics, and Ca2+ imaging, we observed that following C. elegans male copulation, the duration of post-coital lethargy is coupled to cellular events involved in ejaculation. We show that the SPV and SPD spicule-associated sensory neurons and the spicule socket neuronal support cells function with intromission circuit components, including the cholinergic SPC and PCB and the glutamatergic PCA sensory-motor neurons, to coordinate sex muscle contractions with initiation and continuation of sperm movement. Our observations suggest that the SPV and SPD and their associated dopamine-containing socket cells sense the intrauterine environment through cellular endings exposed at the spicule tips and regulate both sperm release into the hermaphrodite and the recovery from post-coital lethargy. DOI:http://dx.doi.org/10.7554/eLife.02938.001 The nematode worm, C. elegans, is roughly 1 mm long, made up of around 1000 cells and has two sexes: male and hermaphrodite. Hermaphrodite worms produce both eggs and sperm and can self-fertilize to generate around 300 offspring each time. Fertilization by a male, on the other hand, results in three times as many progeny and introduces genetic diversity into the population. However, it also reduces the lifespan of the hermaphrodite. Mating also incurs a cost for males: it requires a lot of energy, which prevents male works from engaging in other activities, such as feeding, and it also increases their risk of predation. In many species, including C. elegans, the frequency with which a male can mate is limited by a period of reduced mating drive and ability that follows each instance of successful mating. However, the molecular and cellular basis of this ‘refractory period’ remains largely unclear. Using a range of techniques, LeBoeuf et al. have now identified the circuits that regulate male mating behavior in C. elegans. When male worms were introduced into a Petri dish containing 15 hermaphrodites, most males initiated mating within about 2 min. The length of the refractory period varied between worms, but averaged roughly 12 min. This consisted of a period of disinterest, in which males did not approach hermaphrodites, followed by a period in which males attempted mating but were slower and less efficient, suggesting that the neural circuits controlling mating behaviors had yet to recover completely. Males with longer refractory periods produced more progeny in their second mating than those with shorter refractory periods, suggesting that the interval also enables males to replenish their sperm levels. Further experiments revealed that a chemical transmitter called dopamine promotes ejaculation and then immediately reduces the worm's activity levels, giving rise to the refractory period. By enforcing a delay between matings, the refractory period may also increase the likelihood that successive matings will be with different hermaphrodites, helping to maximize the number and diversity of offspring. Some aspects of the neural circuitry that controls the refractory period in C. elegans resemble those seen in mammals, suggesting that insights gained from an animal with 1000 cells could also be relevant to more complex species. DOI:http://dx.doi.org/10.7554/eLife.02938.002
Collapse
Affiliation(s)
- Brigitte LeBoeuf
- Department of Biology, Howard Hughes Medical Institute, Texas A&M University, College Station, United States
| | - Paola Correa
- Department of Biology, Howard Hughes Medical Institute, Texas A&M University, College Station, United States
| | - Changhoon Jee
- Department of Biology, Howard Hughes Medical Institute, Texas A&M University, College Station, United States
| | - L René García
- Department of Biology, Howard Hughes Medical Institute, Texas A&M University, College Station, United States
| |
Collapse
|
28
|
Guo X, García LR. SIR-2.1 integrates metabolic homeostasis with the reproductive neuromuscular excitability in early aging male Caenorhabditis elegans. eLife 2014; 3:e01730. [PMID: 24755287 PMCID: PMC3989601 DOI: 10.7554/elife.01730] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 03/16/2014] [Indexed: 01/29/2023] Open
Abstract
The decline of aging C. elegans male's mating behavior is correlated with the increased excitability of the cholinergic circuitry that executes copulation. In this study, we show that the mating circuits' functional durability depends on the metabolic regulator SIR-2.1, a NAD(+)-dependent histone deacetylase. Aging sir-2.1(0) males display accelerated mating behavior decline due to premature hyperexcitability of cholinergic circuits used for intromission and ejaculation. In sir-2.1(0) males, the hypercontraction of the spicule-associated muscles pinch the vas deferens opening, thus blocking sperm release. The hyperexcitability is aggravated by reactive oxygen species (ROS). Our genetic, pharmacological, and behavioral analyses suggest that in sir-2.1(0) and older wild-type males, enhanced catabolic enzymes expression, coupled with the reduced expression of ROS-scavengers contribute to the behavioral decline. However, as a compensatory response to reduce altered catabolism/ROS production, anabolic enzymes expression levels are also increased, resulting in higher gluconeogenesis and lipid synthesis. DOI: http://dx.doi.org/10.7554/eLife.01730.001.
Collapse
Affiliation(s)
- Xiaoyan Guo
- Department of Biology, Texas A&M University, College Station, United States
| | - L René García
- Department of Biology, Texas A&M University, College Station, United States
- Howard Hughes Medical Institute, Texas A&M University, Texas, United States
| |
Collapse
|