1
|
Formstone C, Aldeiri B, Davenport M, Francis-West P. Ventral body wall closure: Mechanistic insights from mouse models and translation to human pathology. Dev Dyn 2024. [PMID: 39319771 DOI: 10.1002/dvdy.735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 08/17/2024] [Accepted: 08/21/2024] [Indexed: 09/26/2024] Open
Abstract
The ventral body wall (VBW) that encloses the thoracic and abdominal cavities arises by extensive cell movements and morphogenetic changes during embryonic development. These morphogenetic processes include embryonic folding generating the primary body wall; the initial ventral cover of the embryo, followed by directed mesodermal cell migrations, contributing to the secondary body wall. Clinical anomalies in VBW development affect approximately 1 in 3000 live births. However, the cell interactions and critical cellular behaviors that control VBW development remain little understood. Here, we describe the embryonic origins of the VBW, the cellular and morphogenetic processes, and key genes, that are essential for VBW development. We also provide a clinical overview of VBW anomalies, together with environmental and genetic influences, and discuss the insight gained from over 70 mouse models that exhibit VBW defects, and their relevance, with respect to human pathology. In doing so we propose a phenotypic framework for researchers in the field which takes into account the clinical picture. We also highlight cases where there is a current paucity of mouse models for particular clinical defects and key gaps in knowledge about embryonic VBW development that need to be addressed to further understand mechanisms of human VBW pathologies.
Collapse
Affiliation(s)
- Caroline Formstone
- Department of Clinical, Pharmaceutical and Biological Sciences, University of Hertfordshire, Hatfield, UK
| | - Bashar Aldeiri
- Department of Paediatric Surgery, Chelsea and Westminster Hospital, London, UK
| | - Mark Davenport
- Department of Paediatric Surgery, King's College Hospital, London, UK
| | | |
Collapse
|
2
|
Beaman GM, Cervellione RM, Keene D, Reutter H, Newman WG. The Genomic Architecture of Bladder Exstrophy Epispadias Complex. Genes (Basel) 2021; 12:genes12081149. [PMID: 34440323 PMCID: PMC8391660 DOI: 10.3390/genes12081149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 07/21/2021] [Indexed: 11/16/2022] Open
Abstract
The bladder exstrophy-epispadias complex (BEEC) is an abdominal midline malformation comprising a spectrum of congenital genitourinary abnormalities of the abdominal wall, pelvis, urinary tract, genitalia, anus, and spine. The vast majority of BEEC cases are classified as non-syndromic and the etiology of this malformation is still unknown. This review presents the current knowledge on this multifactorial disorder, including phenotypic and anatomical characterization, epidemiology, proposed developmental mechanisms, existing animal models, and implicated genetic and environmental components.
Collapse
Affiliation(s)
- Glenda M. Beaman
- Division of Evolution and Genomic Sciences, Faculty of Biology, School of Biological Sciences, Medicine and Health, University of Manchester, Manchester M13 9PL, UK;
- Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Manchester M13 9WL, UK
| | - Raimondo M. Cervellione
- Royal Manchester Children’s Hospital, Manchester University NHS Foundation Trust, Manchester M13 9WL, UK; (R.M.C.); (D.K.)
| | - David Keene
- Royal Manchester Children’s Hospital, Manchester University NHS Foundation Trust, Manchester M13 9WL, UK; (R.M.C.); (D.K.)
| | - Heiko Reutter
- Department of Neonatology and Paediatric Intensive Care, University Hospital Erlangen, 91054 Erlangen, Germany;
| | - William G. Newman
- Division of Evolution and Genomic Sciences, Faculty of Biology, School of Biological Sciences, Medicine and Health, University of Manchester, Manchester M13 9PL, UK;
- Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Manchester M13 9WL, UK
- Correspondence:
| |
Collapse
|
3
|
New Insights on the Basic Science of Bladder Exstrophy-epispadias Complex. Urology 2020; 147:256-263. [PMID: 33049233 DOI: 10.1016/j.urology.2020.10.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/29/2020] [Accepted: 10/01/2020] [Indexed: 11/20/2022]
Abstract
The exstrophy-epispadias complex is a rare congenital anomaly presenting as a wide spectrum of disorders. The complex nature of this malformation leads to continuous investigations of the basic science concepts behind it. Elucidating these concepts allows one to fully understand the mechanisms behind the disease in order to improve diagnosis, management, and treatment ultimately leading to improvement in patient quality of life. Multiple technological advancements within the last 10 years have been made allowing for new studies to be conducted. Herein, the authors conduct a literature review of studies from 2009 to 2019, considering novel theories regarding the genetics, embryology, bladder, bony pelvis, prostate, and genitalia of patients with bladder exstrophy-epispadias complex.
Collapse
|
4
|
Jackson AR, Ching CB, McHugh KM, Becknell B. Roles for urothelium in normal and aberrant urinary tract development. Nat Rev Urol 2020; 17:459-468. [PMID: 32647226 DOI: 10.1038/s41585-020-0348-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2020] [Indexed: 12/11/2022]
Abstract
Congenital anomalies of the kidney and urinary tract (CAKUTs) represent the leading cause of chronic kidney disease and end-stage kidney disease in children. Increasing evidence points to critical roles for the urothelium in the developing urinary tract and in the genesis of CAKUTs. The involvement of the urothelium in patterning the urinary tract is supported by evidence that CAKUTs can arise as a result of abnormal urothelial development. Emerging evidence indicates that congenital urinary tract obstruction triggers urothelial remodelling that stabilizes the obstructed kidney and limits renal injury. Finally, the diagnostic potential of radiological findings and urinary biomarkers derived from the urothelium of patients with CAKUTs might aid their contribution to clinical care.
Collapse
Affiliation(s)
- Ashley R Jackson
- Nephrology and Urology Research Affinity Group, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA.,Center for Clinical and Translational Research, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Christina B Ching
- Nephrology and Urology Research Affinity Group, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA.,Center for Clinical and Translational Research, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA.,Division of Pediatric Urology, Department of Surgery, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Kirk M McHugh
- Nephrology and Urology Research Affinity Group, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA.,Center for Clinical and Translational Research, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA.,Department of Anatomy, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Brian Becknell
- Nephrology and Urology Research Affinity Group, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA. .,Center for Clinical and Translational Research, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA. .,Nephrology Division, Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA.
| |
Collapse
|
5
|
Patino M, Chandrakantan A. Midgestational Fetal Procedures. CASE STUDIES IN PEDIATRIC ANESTHESIA 2019:197-201. [DOI: 10.1017/9781108668736.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
6
|
Beaman GM, Woolf AS, Cervellione RM, Keene D, Mushtaq I, Urquhart JE, Stuart HM, Newman WG. 22q11.2 duplications in a UK cohort with bladder exstrophy–epispadias complex. Am J Med Genet A 2019; 179:404-409. [DOI: 10.1002/ajmg.a.61032] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 11/19/2018] [Accepted: 12/07/2018] [Indexed: 11/09/2022]
Affiliation(s)
- Glenda M. Beaman
- Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and HealthUniversity of Manchester Manchester United Kingdom
- Manchester Centre for Genomic MedicineManchester University NHS Foundation Trust Manchester United Kingdom
| | - Adrian S. Woolf
- Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and HealthUniversity of Manchester Manchester United Kingdom
- Royal Manchester Children's Hospital, Manchester University NHS Foundation Trust Manchester United Kingdom
| | - Raimondo M. Cervellione
- Royal Manchester Children's Hospital, Manchester University NHS Foundation Trust Manchester United Kingdom
| | - David Keene
- Royal Manchester Children's Hospital, Manchester University NHS Foundation Trust Manchester United Kingdom
| | - Imran Mushtaq
- Department of Paediatric UrologyGreat Ormond Street Hospital for Children NHS Foundation Trust London United Kingdom
| | - Jill E. Urquhart
- Manchester Centre for Genomic MedicineManchester University NHS Foundation Trust Manchester United Kingdom
| | - Helen M. Stuart
- Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and HealthUniversity of Manchester Manchester United Kingdom
- Manchester Centre for Genomic MedicineManchester University NHS Foundation Trust Manchester United Kingdom
| | - William G. Newman
- Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and HealthUniversity of Manchester Manchester United Kingdom
- Manchester Centre for Genomic MedicineManchester University NHS Foundation Trust Manchester United Kingdom
- Peking University Health Sciences Center Beijing PR China
| |
Collapse
|
7
|
Dudek AM, Vermeulen SH, Kolev D, Grotenhuis AJ, Kiemeney LALM, Verhaegh GW. Identification of an enhancer region within the TP63/LEPREL1 locus containing genetic variants associated with bladder cancer risk. Cell Oncol (Dordr) 2018; 41:555-568. [PMID: 29956121 PMCID: PMC6153957 DOI: 10.1007/s13402-018-0393-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2018] [Indexed: 12/24/2022] Open
Abstract
Purpose Genome-wide association studies (GWAS) have led to the identification of a bladder cancer susceptibility variant (rs710521) in a non-coding intergenic region between the TP63 and LEPREL1 genes on chromosome 3q28, suggesting a role in the transcriptional regulation of these genes. In this study, we aimed to functionally characterize the 3q28 bladder cancer risk locus. Methods Fine-mapping was performed by focusing on the region surrounding rs710521, and variants were prioritized for further experiments using ENCODE regulatory data. The enhancer activity of the identified region was evaluated using dual-luciferase assays. CRISPR/Cas9-mediated deletion of the enhancer region was performed and the effect of this deletion on cell proliferation and gene expression levels was evaluated using CellTiter-Glo and RT-qPCR, respectively. Results Fine-mapping of the GWAS signal region led to the identification of twenty SNPs that showed a stronger association with bladder cancer risk than rs710521. Using publicly available data on regulatory elements and sequences, an enhancer region containing the bladder cancer risk variants was identified. Through reporter assays, we found that the presence of the enhancer region significantly increased ΔNTP63 promoter activity in bladder cancer-derived cell lines. CRISPR/Cas9-mediated deletion of the enhancer region reduced the viability of bladder cancer cells by decreasing the expression of ΔNTP63 and p63 target genes. Conclusions Taken together, our data show that bladder cancer risk-associated variants on chromosome 3q28 are located in an active enhancer region. Further characterization of the allele-specific activity of the identified enhancer and its target genes may lead to the identification of novel signaling pathways involved in bladder carcinogenesis. Electronic supplementary material The online version of this article (10.1007/s13402-018-0393-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Aleksandra M Dudek
- Department of Urology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 28, 6525 GA, Nijmegen, The Netherlands
| | - Sita H Vermeulen
- Department for Health Evidence, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Dimitar Kolev
- Department for Health Evidence, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Anne J Grotenhuis
- Department for Health Evidence, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Lambertus A L M Kiemeney
- Department of Urology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 28, 6525 GA, Nijmegen, The Netherlands
- Department for Health Evidence, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Gerald W Verhaegh
- Department of Urology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 28, 6525 GA, Nijmegen, The Netherlands.
| |
Collapse
|
8
|
Arenas Hoyos J, Pedraza Bermeo A, Pérez Niño J. Experiencia en el abordaje de pacientes con complejo extrofia-epispadias en un centro de alto nivel de complejidad en Colombia, 10 años. UROLOGÍA COLOMBIANA 2018. [DOI: 10.1016/j.uroco.2017.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Objetivos El complejo extrofia-epispadias (CEE) se considera una de las malformaciones más severas de la línea media de compromiso multisistémico. La extrofia vesical es la presentación más frecuente en el espectro del complejo. Esta patología tiene un alto impacto en la calidad de vida. A pesar de la relación entre un cierre primario temprano y mejores resultados, en nuestro medio la remisión es tardía y la experiencia es escasa. El objetivo del siguiente estudio es mostrar la experiencia en el abordaje de CEE en los últimos 10 años en una institución de alto nivel de complejidad y remisión en Colombia.Materiales y métodos Se realiza un estudio observacional descriptivo, con una serie de casos del 2006 al 2016.Resultados En 10 años, se presentaron 5 casos de CEE en un centro de alta complejidad y remisión en Colombia. La mayoría de los pacientes han tenido múltiples intervenciones; la edad del primer procedimiento fue 829 días en promedio (27,6 meses). Se ha tenido un seguimiento postoperatorio promedio de 2,8 años. No se han presentado neoplasias en el seguimiento. Las comorbilidades más frecuentes son infección y litiasis. Ninguno de los pacientes contactados reportó inicio de vida sexual. La escala International Consultation on Incontinence Questionnaire-Urinary Incontinence-Short Form (ICIQ-UI-SF) tuvo un promedio de 9 puntos. Existen factores sociales asociados en nuestro medio.Conclusión El CEE requiere un abordaje temprano y multidisciplinario en instituciones con experiencia; los resultados en continencia urinaria, función sexual, desarrollo psicosocial y calidad de vida están sujetos a tratamiento oportuno de la patología.
Collapse
Affiliation(s)
- Juliana Arenas Hoyos
- Estudiante de Medicina, quinto año, División de Investigación en Urología y Genética, Departamento de Urología, Hospital Universitario San Ignacio, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Adriana Pedraza Bermeo
- Residente de Urología, tercer año, Pontificia Universidad Javeriana, Hospital Universitario San Ignacio, Bogotá, Colombia
| | - Jaime Pérez Niño
- Especialista en Urología, jefe del Departamento de Urología, Hospital Universitario San Ignacio, Pontificia Universidad Javeriana, Hospital Universitario San Ignacio-Fundación Santa Fe de Bogotá, Bogotá, Colombia
| |
Collapse
|
9
|
Keppler-Noreuil KM, Conway KM, Shen D, Rhoads AJ, Carey JC, Romitti PA. Clinical and risk factor analysis of cloacal defects in the National Birth Defects Prevention Study. Am J Med Genet A 2017; 173:2873-2885. [PMID: 28960693 PMCID: PMC5650529 DOI: 10.1002/ajmg.a.38469] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 08/02/2017] [Accepted: 08/12/2017] [Indexed: 12/20/2022]
Abstract
Cloacal exstrophy (CE) and persistent cloaca (PC) (alternatively termed urorectal septum malformation sequence [URSMS]), represent two major cloacal defects (CDs). Clinical characteristics and risk factors often are studied for both defects combined, rather than exploring if these defects have different etiologies. We enumerated clinical features for 47 CE and 54 PC (inclusive of URSMS) cases from the National Birth Defects Prevention Study. Thirty-three CE cases were classified as isolated and 14 as multiple (presence of unassociated major defects); respective totals for PC cases were 26 and 28. We compared selected child and maternal characteristics between 11,829 non-malformed controls and CE and PC cases using chi-square or Fisher's exact tests. Compared to controls, CE and PC cases were statistically more likely (p < 0.05) to be preterm; CE cases were more likely to be multiple births. We conducted logistic regression analysis to estimate odds ratios and 95% confidence intervals for any CD, CE, and PC with selected self-reported maternal prepregnancy and periconceptional (one month prior to 3 months following conception) exposures. In crude and adjusted analyses, we observed significant positive associations for any CD, CE, and PC with use of any fertility medication or assisted reproductive technology procedure. Significant positive associations observed only in crude analyses were any CD with maternal obesity or use of progesterone, any CD and CE with any x-ray, and any CD and PC with use of folate antagonist medications. Our findings provide some of the first insights into potential differing etiologies for CE and PC.
Collapse
MESH Headings
- Abnormalities, Multiple/diagnosis
- Abnormalities, Multiple/epidemiology
- Abnormalities, Multiple/physiopathology
- Adult
- Anus, Imperforate/diagnosis
- Anus, Imperforate/epidemiology
- Anus, Imperforate/physiopathology
- Bladder Exstrophy/diagnosis
- Bladder Exstrophy/epidemiology
- Bladder Exstrophy/physiopathology
- Cloaca/physiopathology
- Congenital Abnormalities/diagnosis
- Congenital Abnormalities/epidemiology
- Congenital Abnormalities/physiopathology
- Female
- Hernia, Umbilical/diagnosis
- Hernia, Umbilical/epidemiology
- Hernia, Umbilical/physiopathology
- Humans
- Infant
- Infant, Newborn
- Male
- Pregnancy
- Risk Factors
- Scoliosis/diagnosis
- Scoliosis/epidemiology
- Scoliosis/physiopathology
- Urogenital Abnormalities/diagnosis
- Urogenital Abnormalities/epidemiology
- Urogenital Abnormalities/physiopathology
Collapse
Affiliation(s)
- Kim M. Keppler-Noreuil
- Medical Genomics & Metabolic Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Kristin M. Conway
- Department of Epidemiology, University of Iowa College of Public Health, Iowa City, Iowa
| | - Dereck Shen
- Department of Epidemiology, University of Iowa College of Public Health, Iowa City, Iowa
| | - Anthony J. Rhoads
- Department of Epidemiology, University of Iowa College of Public Health, Iowa City, Iowa
| | - John C. Carey
- Division of Medical Genetics, Department of Pediatrics, University of Utah Health Sciences Center, Salt Lake City, Utah
| | - Paul A. Romitti
- Department of Epidemiology, University of Iowa College of Public Health, Iowa City, Iowa
| | | |
Collapse
|
10
|
Zhang R, Knapp M, Kause F, Reutter H, Ludwig M. Role of the LF-SINE-Derived Distal ISL1 Enhancer in Patients with Classic Bladder Exstrophy. J Pediatr Genet 2017; 6:169-173. [PMID: 28794909 DOI: 10.1055/s-0037-1602387] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 03/20/2017] [Indexed: 10/19/2022]
Abstract
A genome-wide association study and meta-analysis identified ISL1 as the first genome-wide significant susceptibility gene for classic bladder exstrophy (CBE). A short interspersed repetitive element (SINE), first detected in lobe-finned fishes (LF-SINE), was shown to drive Isl1 expression in embryonic mouse genital eminence. Hence, we assumed this enhancer a conclusive target for mutations associated with CBE formation and analyzed a cohort of 200 CBE patients. Although we identified two enhancer variants in five CBE patients, their clinical significance seems unlikely, implying that sequence variants in the ISL1 LF-SINE enhancer are not frequently associated with CBE.
Collapse
Affiliation(s)
- Rong Zhang
- Institute of Human Genetics, University of Bonn, Bonn, Germany
| | - Michael Knapp
- Institute of Medical Biometry, Informatics, and Epidemiology, University of Bonn, Bonn, Germany
| | - Franziska Kause
- Institute of Human Genetics, University of Bonn, Bonn, Germany
| | - Heiko Reutter
- Institute of Human Genetics, University of Bonn, Bonn, Germany.,Department of Neonatology and Pediatric Intensive Care, Children's Hospital, University of Bonn, Bonn, Germany
| | - Michael Ludwig
- Department of Clinical Chemistry and Clinical Pharmacology, University of Bonn, Bonn, Germany
| |
Collapse
|
11
|
ISL1 is a major susceptibility gene for classic bladder exstrophy and a regulator of urinary tract development. Sci Rep 2017; 7:42170. [PMID: 28176844 PMCID: PMC5296905 DOI: 10.1038/srep42170] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 01/06/2017] [Indexed: 01/05/2023] Open
Abstract
Previously genome-wide association methods in patients with classic bladder exstrophy (CBE) found association with ISL1, a master control gene expressed in pericloacal mesenchyme. This study sought to further explore the genetics in a larger set of patients following-up on the most promising genomic regions previously reported. Genotypes of 12 markers obtained from 268 CBE patients of Australian, British, German Italian, Spanish and Swedish origin and 1,354 ethnically matched controls and from 92 CBE case-parent trios from North America were analysed. Only marker rs6874700 at the ISL1 locus showed association (p = 2.22 × 10−08). A meta-analysis of rs6874700 of our previous and present study showed a p value of 9.2 × 10−19. Developmental biology models were used to clarify the location of ISL1 activity in the forming urinary tract. Genetic lineage analysis of Isl1-expressing cells by the lineage tracer mouse model showed Isl1-expressing cells in the urinary tract of mouse embryos at E10.5 and distributed in the bladder at E15.5. Expression of isl1 in zebrafish larvae staged 48 hpf was detected in a small region of the developing pronephros. Our study supports ISL1 as a major susceptibility gene for CBE and as a regulator of urinary tract development.
Collapse
|
12
|
de Graaf P, van der Linde EM, Rosier PFWM, Izeta A, Sievert KD, Bosch JLHR, de Kort LMO. Systematic Review to Compare Urothelium Differentiation with Urethral Epithelium Differentiation in Fetal Development, as a Basis for Tissue Engineering of the Male Urethra. TISSUE ENGINEERING PART B-REVIEWS 2016; 23:257-267. [PMID: 27809709 DOI: 10.1089/ten.teb.2016.0352] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Tissue-engineered (TE) urethra is desirable in men with urethral disease (stricture or hypospadias) and shortage of local tissue. Although ideally a TE graft would contain urethral epithelium cells, currently, bladder epithelium (urothelium) is widely used, but morphologically different. Understanding the differences and similarities of urothelium and urethral epithelium could help design a protocol for in vitro generation of urethral epithelium to be used in TE grafts for the urethra. PURPOSE To understand the development toward urethral epithelium or urothelium to improve TE of the urethra. METHODS A literature search was done following PRISMA guidelines. Articles describing urethral epithelium and bladder urothelium development in laboratory animals and humans were selected. RESULTS Twenty-nine studies on development of urethral epithelium and 29 studies on development of urothelium were included. Both tissue linings derive from endoderm and although adult urothelium and urethral epithelium are characterized by different gene expression profiles, the signaling pathways underlying their development are similar, including Shh, BMP, Wnt, and FGF. The progenitor of the urothelium and the urethral epithelium is the early fetal urogenital sinus (UGS). The urethral plate and the urothelium are both formed from the p63+ cells of the UGS. Keratin 20 and uroplakins are exclusively expressed in urothelium, not in the urethral epithelium. Further research has to be done on unique markers for the urethral epithelium. CONCLUSION This review has summarized the current knowledge about embryonic development of urothelium versus urethral epithelium and especially focuses on the influencing factors that are potentially specific for the eventual morphological differences of both cell linings, to be a basis for developmental or tissue engineering of urethral tissue.
Collapse
Affiliation(s)
- Petra de Graaf
- 1 Department of Urology, University Medical Centre Utrecht , Utrecht, The Netherlands .,2 Regenerative Medicine Center Utrecht , Utrecht, The Netherlands
| | | | - Peter F W M Rosier
- 1 Department of Urology, University Medical Centre Utrecht , Utrecht, The Netherlands
| | - Ander Izeta
- 3 Tissue Engineering Laboratory, Bioengineering Area, Instituto Biodonostia, Hospital Universitario Donostia , San Sebastián, Spain .,4 Department of Biomedical Engineering, School of Engineering, Tecnun-University of Navarra , San Sebastián, Spain
| | | | - J L H Ruud Bosch
- 1 Department of Urology, University Medical Centre Utrecht , Utrecht, The Netherlands
| | - Laetitia M O de Kort
- 1 Department of Urology, University Medical Centre Utrecht , Utrecht, The Netherlands
| |
Collapse
|
13
|
Çöllü M, Yüksel Ş, Şirin BK, Abbasoğlu L, Alanay Y. Is 1p36 deletion associated with anterior body wall defects? Am J Med Genet A 2016; 170:1889-94. [DOI: 10.1002/ajmg.a.37666] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 03/27/2016] [Indexed: 11/09/2022]
Affiliation(s)
- Medis Çöllü
- Intern; Department of Pediatrics; Acibadem University School of Medicine; Istanbul Turkey
| | - Şirin Yüksel
- Department of Molecular Biology and Genetics; Acibadem University Faculty of Arts and Sciences; Istanbul Turkey
| | | | - Latif Abbasoğlu
- Department of Pediatric Surgery; Acibadem University School of Medicine; Istanbul Turkey
| | - Yasemin Alanay
- Pediatric Genetics Unit; Department of Pediatrics; Acibadem University School of Medicine; Istanbul Turkey
| |
Collapse
|
14
|
Reutter H, Keppler-Noreuil K, E Keegan C, Thiele H, Yamada G, Ludwig M. Genetics of Bladder-Exstrophy-Epispadias Complex (BEEC): Systematic Elucidation of Mendelian and Multifactorial Phenotypes. Curr Genomics 2016; 17:4-13. [PMID: 27013921 PMCID: PMC4780475 DOI: 10.2174/1389202916666151014221806] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 06/25/2015] [Accepted: 06/30/2015] [Indexed: 12/15/2022] Open
Abstract
The Bladder-Exstrophy-Epispadias Complex (BEEC) represents the severe end of the uro-rectal malformation spectrum, and has a profound impact on continence, and on sexual and renal function. While previous reports of familial occurrence, in-creased recurrence among first-degree relatives, high concordance rates among monozygotic twins, and chromosomal aberra-tions were suggestive of causative genetic factors, the recent identification of copy number variations (CNVs), susceptibility regions and genes through the systematic application of array based analysis, candidate gene and genome-wide association studies (GWAS) provide strong evidence. These findings in human BEEC cohorts are underscored by the recent description of BEEC(-like) murine knock-out models. Here, we discuss the current knowledge of the potential molecular mechanisms, mediating abnormal uro-rectal development leading to the BEEC, demonstrating the importance of ISL1-pathway in human and mouse and propose SLC20A1 and CELSR3 as the first BEEC candidate genes, identified through systematic whole-exome sequencing (WES) in BEEC patients.
Collapse
Affiliation(s)
- Heiko Reutter
- Department of Neonatology and Pediatric Intensive Care; Institute of Human Genetics, University of Bonn, Bonn, Germany
| | - Kim Keppler-Noreuil
- Human Development Section, National Human Genome Research Institute, Bethesda, MD, USA
| | - Catherine E Keegan
- Department of Pediatric Genetics, University of Michigan Medical Center, Michigan, USA
| | - Holger Thiele
- Cologne Center for Genomics, University of Cologne, Cologne, Germany
| | - Gen Yamada
- Developmental Genetics, Institute of Advanced Medicine, Wakayama Medical University, Japan
| | - Michael Ludwig
- Department of Clinical Chemistry and Clinical Pharmacology, University of Bonn, Bonn, Germany
| |
Collapse
|
15
|
Stuhldreher PP, Inouye B, Gearhart JP. Exstrophy-Epispadias Complex. CURRENT BLADDER DYSFUNCTION REPORTS 2015. [DOI: 10.1007/s11884-015-0306-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
Draaken M, Knapp M, Pennimpede T, Schmidt JM, Ebert AK, Rösch W, Stein R, Utsch B, Hirsch K, Boemers TM, Mangold E, Heilmann S, Ludwig KU, Jenetzky E, Zwink N, Moebus S, Herrmann BG, Mattheisen M, Nöthen MM, Ludwig M, Reutter H. Genome-wide association study and meta-analysis identify ISL1 as genome-wide significant susceptibility gene for bladder exstrophy. PLoS Genet 2015; 11:e1005024. [PMID: 25763902 PMCID: PMC4357422 DOI: 10.1371/journal.pgen.1005024] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 01/26/2015] [Indexed: 11/18/2022] Open
Abstract
The bladder exstrophy-epispadias complex (BEEC) represents the severe end of the uro-rectal malformation spectrum, and is thought to result from aberrant embryonic morphogenesis of the cloacal membrane and the urorectal septum. The most common form of BEEC is isolated classic bladder exstrophy (CBE). To identify susceptibility loci for CBE, we performed a genome-wide association study (GWAS) of 110 CBE patients and 1,177 controls of European origin. Here, an association was found with a region of approximately 220kb on chromosome 5q11.1. This region harbors the ISL1 (ISL LIM homeobox 1) gene. Multiple markers in this region showed evidence for association with CBE, including 84 markers with genome-wide significance. We then performed a meta-analysis using data from a previous GWAS by our group of 98 CBE patients and 526 controls of European origin. This meta-analysis also implicated the 5q11.1 locus in CBE risk. A total of 138 markers at this locus reached genome-wide significance in the meta-analysis, and the most significant marker (rs9291768) achieved a P value of 2.13 × 10-12. No other locus in the meta-analysis achieved genome-wide significance. We then performed murine expression analyses to follow up this finding. Here, Isl1 expression was detected in the genital region within the critical time frame for human CBE development. Genital regions with Isl1 expression included the peri-cloacal mesenchyme and the urorectal septum. The present study identified the first genome-wide significant locus for CBE at chromosomal region 5q11.1, and provides strong evidence for the hypothesis that ISL1 is the responsible candidate gene in this region.
Collapse
Affiliation(s)
- Markus Draaken
- Institute of Human Genetics, University of Bonn, Bonn, Germany
- Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany
- * E-mail:
| | - Michael Knapp
- Institute of Medical Biometry, Informatics, and Epidemiology, University of Bonn, Bonn, Germany
- * E-mail:
| | - Tracie Pennimpede
- Department of Developmental Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany
- * E-mail:
| | | | - Anne-Karolin Ebert
- Department of Urology and Pediatric Urology, University Hospital of Ulm, Germany
| | - Wolfgang Rösch
- Department of Pediatric Urology, St. Hedwig Hospital Barmherzige Brüder, Regensburg, Germany
| | - Raimund Stein
- Department of Urology, Division of Pediatric Urology, University of Mainz, Mainz, Germany
| | - Boris Utsch
- Department of General Pediatrics and Neonatology, Justus Liebig University, Giessen, Germany
| | - Karin Hirsch
- Department of Urology, Division of Paediatric Urology, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Thomas M. Boemers
- Department of Pediatric Surgery and Pediatric Urology, Children’s Hospital of Cologne, Cologne, Germany
| | | | - Stefanie Heilmann
- Institute of Human Genetics, University of Bonn, Bonn, Germany
- Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany
| | - Kerstin U. Ludwig
- Institute of Human Genetics, University of Bonn, Bonn, Germany
- Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany
| | - Ekkehart Jenetzky
- Department of Clinical Epidemiology and Aging Research, German Cancer Research Center, Heidelberg, Germany
- Department of Child and Adolescent Psychiatry and Psychotherapy, Johannes-Gutenberg University, Mainz, Germany
| | - Nadine Zwink
- Department of Clinical Epidemiology and Aging Research, German Cancer Research Center, Heidelberg, Germany
| | - Susanne Moebus
- Institute of Medical Informatics, Biometry, and Epidemiology, University Hospital of Essen, University Duisburg-Essen, Essen, Germany
| | - Bernhard G. Herrmann
- Department of Developmental Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Manuel Mattheisen
- Department of Biostatistics, Harvard School of Public Health, Boston, Massachusetts, United States of America
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Genomic Mathematics, University of Bonn, Bonn, Germany
| | - Markus M. Nöthen
- Institute of Human Genetics, University of Bonn, Bonn, Germany
- Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany
| | - Michael Ludwig
- Department of Clinical Chemistry and Clinical Pharmacology, University of Bonn, Bonn, Germany
| | - Heiko Reutter
- Institute of Human Genetics, University of Bonn, Bonn, Germany
- Department of Neonatology, Children's Hospital, University of Bonn, Bonn, Germany
- * E-mail:
| |
Collapse
|
17
|
Hutson JM, Grover SR, O'Connell M, Pennell SD. Malformation syndromes associated with disorders of sex development. Nat Rev Endocrinol 2014; 10:476-87. [PMID: 24913517 DOI: 10.1038/nrendo.2014.83] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
When embryological development of the internal and/or external genitalia is disrupted, the patient presents with a disorder of sex development (DSD) in the neonatal period or sometime later in life. Some of these patients have other, nongenital malformations, which makes their overall management more complex than if they just had a DSD. This Review summarises these malformation syndromes and discusses the recent research into their aetiology. The genetic causes of these malformation syndromes, when they are known, will also be described. Many specific genetic mutations are now known in malformation syndromes with a defect in hormonal function. By contrast, the genetic causes remain unknown in many nonhormonal morphological anomalies that affect the genitalia.
Collapse
Affiliation(s)
- John M Hutson
- Department of Urology, The Royal Children's Hospital, Flemington Road, Melbourne, VIC 3051, Australia
| | - Sonia R Grover
- Department of Gynaecology, The Royal Children's Hospital, Flemington Road, Melbourne, VIC 3051, Australia
| | - Michele O'Connell
- Department of Endocrinology, The Royal Children's Hospital, Flemington Road, Melbourne, VIC 3051, Australia
| | - Samuel D Pennell
- Department of Surgery, Austin Hospital, Studley Park Road, Heidelberg, Melbourne, VIC 3058, Australia
| |
Collapse
|
18
|
Reutter H, Draaken M, Pennimpede T, Wittler L, Brockschmidt FF, Ebert AK, Bartels E, Rösch W, Boemers TM, Hirsch K, Schmiedeke E, Meesters C, Becker T, Stein R, Utsch B, Mangold E, Nordenskjöld A, Barker G, Kockum CC, Zwink N, Holmdahl G, Läckgren G, Jenetzky E, Feitz WFJ, Marcelis C, Wijers CHW, Van Rooij IALM, Gearhart JP, Herrmann BG, Ludwig M, Boyadjiev SA, Nöthen MM, Mattheisen M. Genome-wide association study and mouse expression data identify a highly conserved 32 kb intergenic region between WNT3 and WNT9b as possible susceptibility locus for isolated classic exstrophy of the bladder. Hum Mol Genet 2014; 23:5536-44. [PMID: 24852367 DOI: 10.1093/hmg/ddu259] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Bladder exstrophy-epispadias complex (BEEC), the severe end of the urorectal malformation spectrum, has a profound impact on continence as well as sexual and renal functions. It is widely accepted that for the majority of cases the genetic basis appears to be multifactorial. Here, we report the first study which utilizes genome-wide association methods to analyze a cohort comprising patients presenting the most common BEEC form, classic bladder exstrophy (CBE), to identify common variation associated with risk for isolated CBE. We employed discovery and follow-up samples comprising 218 cases/865 controls and 78 trios in total, all of European descent. Our discovery sample identified a marker near SALL1, showing genome-wide significant association with CBE. However, analyses performed on follow-up samples did not add further support to these findings. We were also able to identify an association with CBE across our study samples (discovery: P = 8.88 × 10(-5); follow-up: P = 0.0025; combined: 1.09 × 10(-6)) in a highly conserved 32 kb intergenic region containing regulatory elements between WNT3 and WNT9B. Subsequent analyses in mice revealed expression for both genes in the genital region during stages relevant to the development of CBE in humans. Unfortunately, we were not able to replicate the suggestive signal for WNT3 and WNT9B in a sample that was enriched for non-CBE BEEC cases (P = 0.51). Our suggestive findings support the hypothesis that larger samples are warranted to identify association of common variation with CBE.
Collapse
Affiliation(s)
- Heiko Reutter
- Institute of Human Genetics Department of Neonatology, University of Bonn, Bonn, Germany
| | - Markus Draaken
- Institute of Human Genetics Department of Genomics, Life & Brain Center, Bonn, Germany
| | - Tracie Pennimpede
- Developmental Genetics Department, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Lars Wittler
- Developmental Genetics Department, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Felix F Brockschmidt
- Institute of Human Genetics Department of Genomics, Life & Brain Center, Bonn, Germany
| | - Anne-Karolin Ebert
- Department of Urology and Pediatric Urology, University of Ulm, Ulm, Germany
| | | | - Wolfgang Rösch
- Department of Pediatric Urology, St. Hedwig Hospital Barmherzige Brüder, Regensburg, Germany
| | - Thomas M Boemers
- Department of Pediatric Surgery and Pediatric Urology, Children's Hospital of Cologne, Cologne, Germany
| | - Karin Hirsch
- Division of Paediatric Urology, Clinic of Urology, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Eberhard Schmiedeke
- Department of Pediatric Surgery and Urology, Center for Child and Adolescent Health, Hospital Bremen-Mitte, Bremen, Germany
| | - Christian Meesters
- Institute of Medical Biometry, Informatics, and Epidemiology, University of Bonn, Bonn, Germany
| | - Tim Becker
- Institute of Medical Biometry, Informatics, and Epidemiology, University of Bonn, Bonn, Germany German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Raimund Stein
- Division of Pediatric Urology, University of Mainz, Mainz, Germany
| | - Boris Utsch
- Department of General Pediatrics and Neonatology, Center for Pediatric and Adolescent Care, Justus Liebig University, Gießen, Germany
| | | | - Agneta Nordenskjöld
- Woman and Child Health, Karolinska Institutet, Stockholm, Sweden Department of Pediatric Surgery, Astrid Lindgren Children Hospital, Stockholm, Sweden
| | - Gillian Barker
- Department of Women's and Children's Health, Pediatric Surgery, Uppsala University, Sweden
| | | | - Nadine Zwink
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center, Heidelberg, Germany
| | - Gundula Holmdahl
- Department of Pediatric Surgery, Queen Silvia Children's Hospital, Gothenburg, Sweden
| | - Göran Läckgren
- Section of Urology, Uppsala Academic Children Hospital, Uppsala, Sweden
| | - Ekkehart Jenetzky
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center, Heidelberg, Germany Department of Child and Adolescent Psychiatry and Psychotherapy, Johannes-Gutenberg University, Mainz, Germany
| | - Wouter F J Feitz
- Department of Urology, Pediatric Urology Center, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | | | - Charlotte H W Wijers
- Department for Health Evidence, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | - Iris A L M Van Rooij
- Department for Health Evidence, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | - John P Gearhart
- Department of Urology, The James Buchanan Brady Urological Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Bernhard G Herrmann
- Developmental Genetics Department, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Michael Ludwig
- Department of Clinical Chemistry and Clinical Pharmacology, University of Bonn, Bonn, Germany
| | - Simeon A Boyadjiev
- Section of Genetics, Department of Pediatrics, University of California Davis, Sacramento, USA
| | - Markus M Nöthen
- Institute of Human Genetics Department of Neonatology, University of Bonn, Bonn, Germany
| | - Manuel Mattheisen
- Department of Biostatistics, Harvard School of Public Health, Boston, MA, USA Department of Genomic Mathematics, University of Bonn, Bonn, Germany Department of Biomedicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
19
|
Draaken M, Baudisch F, Timmermann B, Kuhl H, Kerick M, Proske J, Wittler L, Pennimpede T, Ebert AK, Rösch W, Stein R, Bartels E, von Lowtzow C, Boemers TM, Herms S, Gearhart JP, Lakshmanan Y, Kockum CC, Holmdahl G, Läckgren G, Nordenskjöld A, Boyadjiev SA, Herrmann BG, Nöthen MM, Ludwig M, Reutter H. Classic bladder exstrophy: Frequent 22q11.21 duplications and definition of a 414 kb phenocritical region. ACTA ACUST UNITED AC 2014; 100:512-7. [DOI: 10.1002/bdra.23249] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 03/18/2014] [Accepted: 03/27/2014] [Indexed: 01/06/2023]
Affiliation(s)
- Markus Draaken
- Institute of Human Genetics; University of Bonn; Bonn Germany
- Department of Genomics; Life & Brain Center; University of Bonn; Bonn Germany
| | - Friederike Baudisch
- Institute of Human Genetics; University of Bonn; Bonn Germany
- Department of Clinical Chemistry and Clinical Pharmacology; University of Bonn; Bonn Germany
| | - Bernd Timmermann
- Next Generation Sequencing Group; Max Planck Institute for Molecular Genetics; Berlin Germany
| | - Heiner Kuhl
- Next Generation Sequencing Group; Max Planck Institute for Molecular Genetics; Berlin Germany
| | - Martin Kerick
- Next Generation Sequencing Group; Max Planck Institute for Molecular Genetics; Berlin Germany
| | - Judith Proske
- Department of Developmental Genetics; Max Planck Institute for Molecular Genetics; Berlin Germany
| | - Lars Wittler
- Department of Developmental Genetics; Max Planck Institute for Molecular Genetics; Berlin Germany
| | - Tracie Pennimpede
- Department of Developmental Genetics; Max Planck Institute for Molecular Genetics; Berlin Germany
| | | | - Wolfgang Rösch
- Department of Pediatric Urology; St. Hedwig Hospital Barmherzige Brμder; Regensburg Germany
| | - Raimund Stein
- Department of Urology; University of Mainz; Mainz Germany
| | - Enrika Bartels
- Institute of Human Genetics; University of Bonn; Bonn Germany
| | - Catharina von Lowtzow
- Institute of Human Genetics; University of Bonn; Bonn Germany
- Department of Genomics; Life & Brain Center; University of Bonn; Bonn Germany
| | - Thomas M. Boemers
- Department of Pediatric Surgery and Pediatric Urology; Children's Hospital Cologne; Cologne Germany
| | - Stefan Herms
- Institute of Human Genetics; University of Bonn; Bonn Germany
- Department of Genomics; Life & Brain Center; University of Bonn; Bonn Germany
- Division of Medical Genetics and Department of Biomedicine; University of Basel; Basel Switzerland
| | - John P. Gearhart
- Division of Urology; The James Buchanan Brady Urological Institute; Johns Hopkins University School of Medicine; Baltimore
| | - Yegappan Lakshmanan
- Children's Hospital of Michigan; Department of Pediatric Urology; Detroit Michigan
| | | | - Gundela Holmdahl
- Department of Pediatric Surgery; Queen Silvia Children's Hospital; Gothenburg Sweden
| | - Göran Läckgren
- Section of Urology; Uppsala Academic Children Hospital; Uppsala Sweden
| | - Agnetha Nordenskjöld
- Department of Women's and Children's Health; Center for Molecular Medicine; Karolinska Institute; Stockholm Sweden
- Department of Pediatric Surgery; Astrid Lindgren Children's Hospital; Karolinska University Hospital; Stockholm Sweden
| | - Simeon A. Boyadjiev
- Section of Genetics; Department of Pediatrics; University of California Davis; Sacramento California
| | - Bernhard G. Herrmann
- Department of Developmental Genetics; Max Planck Institute for Molecular Genetics; Berlin Germany
| | - Markus M. Nöthen
- Institute of Human Genetics; University of Bonn; Bonn Germany
- Department of Genomics; Life & Brain Center; University of Bonn; Bonn Germany
| | - Michael Ludwig
- Department of Clinical Chemistry and Clinical Pharmacology; University of Bonn; Bonn Germany
| | - Heiko Reutter
- Institute of Human Genetics; University of Bonn; Bonn Germany
- Department of Neonatology; Children's Hospital; University of Bonn; Bonn Germany
| |
Collapse
|
20
|
Tourchi A, Inouye BM, Di Carlo HN, Young E, Ko J, Gearhart JP. New advances in the pathophysiologic and radiologic basis of the exstrophy spectrum. J Pediatr Urol 2014; 10:212-8. [PMID: 24461194 DOI: 10.1016/j.jpurol.2013.11.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 11/25/2013] [Indexed: 11/29/2022]
Abstract
The exstrophy-epispadias complex is a rare spectrum of anomalies affecting the genitourinary system, anterior abdominal wall, and pelvis. Recent advances in the repair of classic bladder exstrophy (CBE) and cloacal exstrophy (CE) have resulted in significant changes in outcomes of surgical management (including higher continence rate, fewer surgical complications, and better cosmesis) and health-related quality of life in these patients. These noteworthy changes resulted from advances in the pathophysiological and genetic backgrounds of this disease and better radiologic assessment of the three-dimensional anatomy of the bony pelvis and its musculature. A PubMed search was performed with the keyword exstrophy. The resulting literature pertaining to genetics, stem cells, imaging, tissue engineering, epidemiology, and endocrinology was reviewed. The following represents an overview of the advances in basic science understanding and imaging of the exstrophy-epispadias spectrum and discusses their possible and future effects on the management of CBE and CE.
Collapse
Affiliation(s)
- Ali Tourchi
- Robert D Jeffs Division of Pediatric Urology, James Buchanan Brady Urological Institute, the Johns Hopkins University School of Medicine, 1800 Orleans St. Suite 7304, Baltimore, MD 21287, USA.
| | - Brian M Inouye
- Robert D Jeffs Division of Pediatric Urology, James Buchanan Brady Urological Institute, the Johns Hopkins University School of Medicine, 1800 Orleans St. Suite 7304, Baltimore, MD 21287, USA
| | - Heather N Di Carlo
- Robert D Jeffs Division of Pediatric Urology, James Buchanan Brady Urological Institute, the Johns Hopkins University School of Medicine, 1800 Orleans St. Suite 7304, Baltimore, MD 21287, USA
| | - Ezekiel Young
- Robert D Jeffs Division of Pediatric Urology, James Buchanan Brady Urological Institute, the Johns Hopkins University School of Medicine, 1800 Orleans St. Suite 7304, Baltimore, MD 21287, USA
| | - Joan Ko
- Robert D Jeffs Division of Pediatric Urology, James Buchanan Brady Urological Institute, the Johns Hopkins University School of Medicine, 1800 Orleans St. Suite 7304, Baltimore, MD 21287, USA
| | - John P Gearhart
- Robert D Jeffs Division of Pediatric Urology, James Buchanan Brady Urological Institute, the Johns Hopkins University School of Medicine, 1800 Orleans St. Suite 7304, Baltimore, MD 21287, USA.
| |
Collapse
|
21
|
Genetics of human congenital urinary bladder disease. Pediatr Nephrol 2014; 29:353-60. [PMID: 23584850 DOI: 10.1007/s00467-013-2472-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Revised: 03/19/2013] [Accepted: 03/20/2013] [Indexed: 01/23/2023]
Abstract
Lower urinary tract and/or kidney malformations are collectively the most common cause of end-stage renal disease in children, and they are also likely to account for a major subset of young adults requiring renal replacement therapy. Advances have been made regarding the discovery of the genetic causes of human kidney malformations. Indeed, testing for mutations of key nephrogenesis genes is now feasible for patients seen in nephrology clinics. Unfortunately, less is known about defined genetic bases of human lower urinary tract anomalies. The focus of this review is the genetic bases of congenital structural and functional disorders of the urinary bladder. Three are highlighted. First, prune belly syndrome, where mutations of CHRM3, encoding an acetylcholine receptor, HNF1B, encoding a transcription factor, and ACTA2, encoding a cytoskeletal protein, have been reported. Second, the urofacial syndrome, where mutations of LRIG2 and HPSE2, encoding proteins localised in nerves invading the fetal bladder, have been defined. Finally, we review emerging evidence that bladder exstrophy may have genetic bases, including variants in the TP63 promoter. These genetic discoveries provide a new perspective on a group of otherwise poorly understood diseases.
Collapse
|
22
|
Modern management of the exstrophy-epispadias complex. Surg Res Pract 2014; 2014:587064. [PMID: 25374956 PMCID: PMC4208497 DOI: 10.1155/2014/587064] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 10/28/2013] [Accepted: 12/09/2013] [Indexed: 11/23/2022] Open
Abstract
The exstrophy-epispadias complex is a rare spectrum of malformations affecting the genitourinary system, anterior abdominal wall, and pelvis. Historically, surgical outcomes were poor in patients with classic bladder exstrophy and cloacal exstrophy, the two more severe presentations. However, modern techniques to repair epispadias, classic bladder exstrophy, and cloacal exstrophy have increased the success of achieving urinary continence, satisfactory cosmesis, and quality of life. Unfortunately, these procedures are not without their own complications. This review provides readers with an overview of the management of the exstrophy-epispadias complex and potential surgical complications.
Collapse
|
23
|
Mahfuz I, Darling T, Wilkins S, White S, Cheng W. New insights into the pathogenesis of bladder exstrophy-epispadias complex. J Pediatr Urol 2013; 9:996-1005. [PMID: 23743131 DOI: 10.1016/j.jpurol.2013.05.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2012] [Accepted: 05/01/2013] [Indexed: 02/02/2023]
Abstract
Bladder exstrophy-epispadias complex (BEEC) is a complex and debilitating congenital disease. Familial and twin studies suggest a possible genetic component in BEEC pathogenesis. Bladder mesenchyme (detrusor) development requires induction by a signal from bladder urothelium, and we and others have shown the Shh-Gli-Bmp4 signalling pathway is likely to be involved. P63 is a master regulator in epithelial stratification and is expressed in urothelium. We have shown that p63 knock-out mice undergo excessive urothelial apoptosis. Failure of mesenchymal induction by epithelium leads to BEEC. We further demonstrated that insertion/deletion (in/del) polymorphisms (1 base pair (bp) ins and 4 bp ins., and 12 bp del) in the ΔNP63 promoter reduce transcriptional efficiency, and are associated with a statistically significant increase in the risk of BEEC in humans. Furthermore, a Genome-Wide Expression Profiling (GWEP) study suggests possible involvement of PERP in human BEEC. Intriguingly, PERP is a direct target of p63 during development, and is also involved in epithelial stratification. PERP co-localizes with desmosome, and both PERP and desmosome are essential for maintaining tissue integrity by cellular adhesion and epithelial stratification. A recent study showed that PERP and desmosome expression levels are abnormal in human BEEC patients. This review describes the role of the P63 > PERP > desmosome pathway in the development of human bladder during embryogenesis. We hypothesize that disruption of this pathway may increase the risk of BEEC.
Collapse
Affiliation(s)
- Istiak Mahfuz
- Monash Institute of Medical Research, Faculty of Medicine, Nursing and Health Sciences, Monash University, Australia
| | | | | | | | | |
Collapse
|
24
|
Darling T, Mahfuz I, White SJ, Cheng W. No TAP63 promoter mutation is detected in bladder exstrophy-epispadias complex patients. J Pediatr Surg 2013; 48:2393-400. [PMID: 24314177 DOI: 10.1016/j.jpedsurg.2013.08.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 08/26/2013] [Indexed: 02/07/2023]
Abstract
BACKGROUND/PURPOSE Bladder exstrophy-epispadias complex (BEEC) is thought to have a genetic component in its pathogenesis. Previously we found that p63(-/-) mice show increased ventral apoptosis and develop a BEEC phenotype. Down-regulation of the anti-apoptotic ΔNP63 and an up-regulation of pro-apoptotic TAP63 isoforms have been demonstrated in BEEC patient bladder tissues. We have previously shown that insertion/deletion polymorphisms of the ΔNp63 promoter are associated with an increased risk of BEEC. In this study, we specifically examined the TAP63 promoter to see if any sequence changes might lead to up-regulation of TAP63 and exaggerated apoptosis in BEEC patients. METHODS i) Bioinformatic analysis of the TAP63 promoter was performed to identify putative regulatory regions. ii) High-resolution Melt and Sanger sequencing was used to screen targeted regions in 112 BEEC patient DNA samples for potential sequence variants. iii) Sequence variation was analysed for significance against normal population frequency data. RESULTS i) We identified multiple epigenetic markers of transcriptional regulation within highly conserved areas of the TAP63 promoter sequence. ii) Of the 112 buccal swab DNA samples, adequate and successful screening ranged between 48 and 67 for each region. iii) No novel sequence variation or mutation was uncovered. iv) Two known SNPs were identified. However, allele frequency analysis was not statistically significant. CONCLUSION Our data do not associate genetic variation within the TAP63 promoter region with an increased risk of BEEC. Our data so far suggests that only ΔNP63 promoter aberration is involved in BEEC pathogenesis.
Collapse
Affiliation(s)
- Tom Darling
- Monash Institute of Medical Research, Monash University, Melbourne, Australia
| | | | | | | |
Collapse
|
25
|
Tai G, Ranjzad P, Marriage F, Rehman S, Denley H, Dixon J, Mitchell K, Day PJR, Woolf AS. Cytokeratin 15 marks basal epithelia in developing ureters and is upregulated in a subset of urothelial cell carcinomas. PLoS One 2013; 8:e81167. [PMID: 24260555 PMCID: PMC3832456 DOI: 10.1371/journal.pone.0081167] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 10/09/2013] [Indexed: 11/29/2022] Open
Abstract
The mammalian ureter contains a water-tight epithelium surrounded by smooth muscle. Key molecules have been defined which regulate ureteric bud initiation and drive the differentiation of ureteric mesenchyme into peristaltic smooth muscle. Less is known about mechanisms underlying the developmental patterning of the multilayered epithelium characterising the mature ureter. In skin, which also contains a multilayered epithelium, cytokeratin 15 (CK15), an acidic intermediate filament protein, marks cells whose progeny contribute to epidermal regeneration following wounding. Moreover, CK15+ precursor cells in skin can give rise to basal cell carcinomas. In the current study, using transcriptome microarrays of embryonic wild type mouse ureters, Krt15, coding for CK15, was detected. Quantitative polymerase chain reaction analyses confirmed the initial finding and demonstrated that Krt15 levels increased during the fetal period when the ureteric epithelium becomes multilayered. CK15 protein was undetectable in the ureteric bud, the rudiment from which the ureter grows. Nevertheless, later in fetal development, CK15 was immunodetected in a subset of basal urothelial cells in the ureteric stalk. Superficial epithelial cells, including those positive for the differentiation marker uroplakin III, were CK15-. Transformation-related protein 63 (P63) has been implicated in epithelial differentiation in murine fetal urinary bladders. In wild type fetal ureters, CK15+ cells were positive for P63, and p63 homozygous null mutant ureters lacked CK15+ cells. In these mutant ureters, sections of the urothelium were monolayered versus the uniform multilayering found in wild type littermates. Human urothelial cell carcinomas account for considerable morbidity and mortality. CK15 was upregulated in a subset of invasive ureteric and urinary bladder cancers. Thus, in ureter development, the absence of CK15 is associated with a structurally simplified urothelium whereas, postnatally, increased CK15 levels feature in malignant urothelial overgrowth. CK15 may be a novel marker for urinary tract epithelial precursor cells.
Collapse
Affiliation(s)
- Guangping Tai
- Faculty of Medical and Human Sciences, University of Manchester, Manchester, United Kingdom ; Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Qi L, Wang M, Yagnik G, Mattheisen M, Gearhart JP, lakshmanan Y, Ebert AK, Rösch W, Ludwig M, Draaken M, Reutter H, Boyadjiev SA. Candidate gene association study implicatesp63in the etiology of nonsyndromic bladder-exstrophy-epispadias complex. ACTA ACUST UNITED AC 2013; 97:759-63. [DOI: 10.1002/bdra.23161] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2013] [Revised: 05/15/2013] [Accepted: 05/29/2013] [Indexed: 11/10/2022]
Affiliation(s)
- Lihong Qi
- Department of Public Health Sciences; School of Medicine, University of California; Davis California
| | - Mei Wang
- Department of Population Health and Reproduction; University of California; Davis California
| | - Garima Yagnik
- Section of Genetics, Department of Pediatrics; University of California Davis; Sacramento California
| | | | - John P. Gearhart
- Department of Urology; The James Buchanan Brady Urological Institute; Johns Hopkins University; Baltimore Maryland
| | - Yegappan lakshmanan
- Children's Hospital of Michigan; Department of Pediatric Urology; Detroit Michigan
| | - Anne-Karolin Ebert
- Department of Pediatric Urology; St. Hedwig Hospital Barmherzige Brüder; Regensburg Germany
| | - Wolfgang Rösch
- Department of Pediatric Urology; St. Hedwig Hospital Barmherzige Brüder; Regensburg Germany
- Department of Pediatric Urology; University Medical Center Regensburg; Germany
| | - Michael Ludwig
- Department of Clinical Chemistry and Clinical Pharmacology; University of Bonn; Bonn Germany
| | - Markus Draaken
- Department of Genomics; Life and Brain Center, University of Bonn; Bonn Germany
- Institute of Human Genetics, University of Bonn; Bonn Germany
| | - Heiko Reutter
- Institute of Human Genetics, University of Bonn; Bonn Germany
- Department of Neonatology; Children's Hospital; University of Bonn; Bonn Germany
| | - Simeon A. Boyadjiev
- Department of Urology; The James Buchanan Brady Urological Institute; Johns Hopkins University; Baltimore Maryland
- Section of Genetics, Department of Pediatrics; University of California Davis; Sacramento California
| |
Collapse
|