1
|
Reyes R, Rodriguez-Muñoz R, Nahmad M. Cell recruitment and the origins of Anterior-Posterior asymmetries in the Drosophila wing. PLoS One 2025; 20:e0313067. [PMID: 39752433 PMCID: PMC11698434 DOI: 10.1371/journal.pone.0313067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 10/17/2024] [Indexed: 01/06/2025] Open
Abstract
The mechanisms underlying the establishment of asymmetric structures during development remain elusive. The wing of Drosophila is asymmetric along the Anterior-Posterior (AP) axis, but the developmental origins of this asymmetry is unknown. Here, we investigate the contribution of cell recruitment, a process that drives cell fate differentiation in the Drosophila wing disc, to the asymmetric shape and pattern of the adult wing. Genetic impairment of cell recruitment in the wing disc results in a significant gain of AP symmetry, which results from a reduction of the region between longitudinal vein 5 and the wing margin (L5-M) in the adult wing. Morphometric analysis confirms that blocking of cell recruitment results in a more symmetric wing with respect to controls, suggesting a contribution of cell recruitment to the establishment of asymmetry in the adult wing. In order to verify if this phenotype is originated during the time in which cell recruitment occurs during larval development, we examined the expression of a reporter for the selector gene vestigial (vg) in the corresponding pro-vein regions of the wing disc, but our findings could not explain our findings in adult wings. However, the circularity of the Vg pattern significantly increases in recruitment-impaired wing discs, suggesting that cell recruitment may contribute to AP asymmetries in the adult wing shape by altering the roundness of the Vg pattern. We conclude that cell recruitment, a widespread mechanism that participates in growth and patterning of several developing systems, may contribute, at least partially, to the asymmetric shape of the Drosophila wing.
Collapse
Affiliation(s)
- Rosalío Reyes
- Department of Physiology, Biophysics, and Neurosciences; Center for Research and Advanced Studies (Cinvestav), Mexico City, Mexico
- Interdisciplinary Polytechnic Unit of Biotechnology of the National Polytechnic Institute, Mexico City, Mexico
| | - Rafael Rodriguez-Muñoz
- Department of Physiology, Biophysics, and Neurosciences; Center for Research and Advanced Studies (Cinvestav), Mexico City, Mexico
| | - Marcos Nahmad
- Department of Physiology, Biophysics, and Neurosciences; Center for Research and Advanced Studies (Cinvestav), Mexico City, Mexico
| |
Collapse
|
2
|
Niehrs C, Zapparoli E, Lee H. 'Three signals - three body axes' as patterning principle in bilaterians. Cells Dev 2024:203944. [PMID: 39121910 DOI: 10.1016/j.cdev.2024.203944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/05/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
In vertebrates, the three orthogonal body axes, anteroposterior (AP), dorsoventral (DV) and left-right (LR) are determined at gastrula and neurula stages by the Spemann-Mangold organizer and its equivalents. A common feature of AP and DV axis formation is that an evolutionary conserved interplay between growth factors (Wnt, BMP) and their extracellular antagonists (e.g. Dkk1, Chordin) creates signaling gradients for axial patterning. Recent work showed that LR patterning in Xenopus follows the same principle, with R-spondin 2 (Rspo2) as an extracellular FGF antagonist, which creates a signaling gradient that determines the LR vector. That a triad of anti-FGF, anti-BMP, and anti-Wnt governs LR, DV, and AP axis formation reveals a unifying principle in animal development. We discuss how cross-talk between these three signals confers integrated AP-DV-LR body axis patterning underlying developmental robustness, size scaling, and harmonious regulation. We propose that Urbilateria featured three orthogonal body axes that were governed by a Cartesian coordinate system of orthogonal Wnt/AP, BMP/DV, and FGF/LR signaling gradients.
Collapse
Affiliation(s)
- Christof Niehrs
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, Deutsches Krebsforschungszentrum (DKFZ), 69120 Heidelberg, Germany; Institute of Molecular Biology (IMB), 55128 Mainz, Germany.
| | | | - Hyeyoon Lee
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, Deutsches Krebsforschungszentrum (DKFZ), 69120 Heidelberg, Germany
| |
Collapse
|
3
|
Massri AJ, Berrio A, Afanassiev A, Greenstreet L, Pipho K, Byrne M, Schiebinger G, McClay DR, Wray GA. Single-cell transcriptomics reveals evolutionary reconfiguration of embryonic cell fate specification in the sea urchin Heliocidaris erythrogramma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.30.591752. [PMID: 38746376 PMCID: PMC11092583 DOI: 10.1101/2024.04.30.591752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Altered regulatory interactions during development likely underlie a large fraction of phenotypic diversity within and between species, yet identifying specific evolutionary changes remains challenging. Analysis of single-cell developmental transcriptomes from multiple species provides a powerful framework for unbiased identification of evolutionary changes in developmental mechanisms. Here, we leverage a "natural experiment" in developmental evolution in sea urchins, where a major life history switch recently evolved in the lineage leading to Heliocidaris erythrogramma, precipitating extensive changes in early development. Comparative analyses of scRNA-seq developmental time courses from H. erythrogramma and Lytechinus variegatus (representing the derived and ancestral states respectively) reveals numerous evolutionary changes in embryonic patterning. The earliest cell fate specification events, and the primary signaling center are co-localized in the ancestral dGRN but remarkably, in H. erythrogramma they are spatially and temporally separate. Fate specification and differentiation are delayed in most embryonic cell lineages, although in some cases, these processes are conserved or even accelerated. Comparative analysis of regulator-target gene co-expression is consistent with many specific interactions being preserved but delayed in H. erythrogramma, while some otherwise widely conserved interactions have likely been lost. Finally, specific patterning events are directly correlated with evolutionary changes in larval morphology, suggesting that they are directly tied to the life history shift. Together, these findings demonstrate that comparative scRNA-seq developmental time courses can reveal a diverse set of evolutionary changes in embryonic patterning and provide an efficient way to identify likely candidate regulatory interactions for subsequent experimental validation.
Collapse
Affiliation(s)
- Abdull J Massri
- Department of Biology, Duke University, Durham, NC 27701 USA
| | | | - Anton Afanassiev
- Department of Mathematics, University of British Colombia, Vancouver, BC V6T 1Z4 Canada
| | - Laura Greenstreet
- Department of Mathematics, University of British Colombia, Vancouver, BC V6T 1Z4 Canada
| | - Krista Pipho
- Department of Biology, Duke University, Durham, NC 27701 USA
| | - Maria Byrne
- School of Life and Environmental Sciences, Sydney University, Sydney, NSW Australia
| | - Geoffrey Schiebinger
- Department of Mathematics, University of British Colombia, Vancouver, BC V6T 1Z4 Canada
| | - David R McClay
- Department of Biology, Duke University, Durham, NC 27701 USA
| | - Gregory A Wray
- Department of Biology, Duke University, Durham, NC 27701 USA
| |
Collapse
|
4
|
Konrad KD, Arnott M, Testa M, Suarez S, Song JL. microRNA-124 directly suppresses Nodal and Notch to regulate mesodermal development. Dev Biol 2023; 502:50-62. [PMID: 37419400 PMCID: PMC10719910 DOI: 10.1016/j.ydbio.2023.06.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 05/27/2023] [Accepted: 06/22/2023] [Indexed: 07/09/2023]
Abstract
MicroRNAs regulate gene expression post-transcriptionally by destabilizing and/or inhibiting translation of target mRNAs in animal cells. MicroRNA-124 (miR-124) has been examined mostly in the context of neurogenesis. This study discovers a novel role of miR-124 in regulating mesodermal cell differentiation in the sea urchin embryo. The expression of miR-124 is first detectable at 12hours post fertilization at the early blastula stage, during endomesodermal specification. Mesodermally-derived immune cells come from the same progenitor cells that give rise to blastocoelar cells (BCs) and pigment cells (PCs) that must make a binary fate decision. We determined that miR-124 directly represses Nodal and Notch to regulate BC and PC differentiation. miR-124 inhibition does not impact the dorsal-ventral axis formation, but result in a significant increase in number of cells expressing BC-specific transcription factors (TFs) and a concurrent reduction of differentiated PCs. In general, removing miR-124's suppression of Nodal phenocopies miR124 inhibition. Interestingly, removing miR-124's suppression of Notch leads to an increased number of both BCs and PCs, with a subset of hybrid cells that express both BC- and PC-specific TFs in the larvae. Removal of miR-124's suppression of Notch not only affects differentiation of both BCs and PCs, but also induces cell proliferation of these cells during the first wave of Notch signaling. This study demonstrates that post-transcriptional regulation by miR-124 impacts differentiation of BCs and PCs by regulating the Nodal and Notch signaling pathways.
Collapse
Affiliation(s)
- Kalin D Konrad
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Malcolm Arnott
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Michael Testa
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Santiago Suarez
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA; Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | - Jia L Song
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA.
| |
Collapse
|
5
|
Massri AJ, McDonald B, Wray GA, McClay DR. Feedback circuits are numerous in embryonic gene regulatory networks and offer a stabilizing influence on evolution of those networks. EvoDevo 2023; 14:10. [PMID: 37322563 DOI: 10.1186/s13227-023-00214-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 06/06/2023] [Indexed: 06/17/2023] Open
Abstract
The developmental gene regulatory networks (dGRNs) of two sea urchin species, Lytechinus variegatus (Lv) and Strongylocentrotus purpuratus (Sp), have remained remarkably similar despite about 50 million years since a common ancestor. Hundreds of parallel experimental perturbations of transcription factors with similar outcomes support this conclusion. A recent scRNA-seq analysis suggested that the earliest expression of several genes within the dGRNs differs between Lv and Sp. Here, we present a careful reanalysis of the dGRNs in these two species, paying close attention to timing of first expression. We find that initial expression of genes critical for cell fate specification occurs during several compressed time periods in both species. Previously unrecognized feedback circuits are inferred from the temporally corrected dGRNs. Although many of these feedbacks differ in location within the respective GRNs, the overall number is similar between species. We identify several prominent differences in timing of first expression for key developmental regulatory genes; comparison with a third species indicates that these heterochronies likely originated in an unbiased manner with respect to embryonic cell lineage and evolutionary branch. Together, these results suggest that interactions can evolve even within highly conserved dGRNs and that feedback circuits may buffer the effects of heterochronies in the expression of key regulatory genes.
Collapse
Affiliation(s)
| | - Brennan McDonald
- Department of Biology, Duke University, Box 90338, Durham, NC, 27708, USA
| | - Gregory A Wray
- Department of Biology, Duke University, Box 90338, Durham, NC, 27708, USA
| | - David R McClay
- Department of Biology, Duke University, Box 90338, Durham, NC, 27708, USA.
| |
Collapse
|
6
|
Zito F, Bonaventura R, Costa C, Russo R. Carbonic anhydrases in development: morphological observations and gene expression profiling in sea urchin embryos exposed to acetazolamide. Open Biol 2023; 13:220254. [PMID: 36597694 PMCID: PMC9811153 DOI: 10.1098/rsob.220254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Carbonic anhydrases (CANs) are conserved metalloenzymes catalysing the reversible hydration of carbon dioxide into protons and bicarbonate, with important roles in cells physiology. Some CAN-coding genes were found in sea urchin genome, although only one involved in embryonic skeletogenesis was described in Paracentrotus lividus. Here, we investigated gene expression patterns of P. lividus embryos cultured in the presence of acetazolamide (AZ), a CAN inhibitor, to combine morphological defects with their molecular underpinning. CAN inhibition blocked skeletogenesis, affected the spatial/temporal expression of some biomineralization-related genes, inhibited embryos swimming. A comparative analysis on the expression of 127 genes in control and 3 h/24 h AZ-treated embryos, using NanoString technology, showed the differential expression of genes encoding for structural/regulatory proteins, with different embryonic roles: biomineralization, transcriptional regulation, signalling, development and defence response. The study of the differentially expressed genes and the signalling pathways affected, besides in silico analyses and a speculative 'interactomic model', leads to predicting the presence of various CAN isoforms, possibly involved in different physiological processes/activities in sea urchin embryo, and their potential target genes/proteins. Our findings provide new valuable molecular data for further studies in several biological fields: developmental biology (biomineralization, axes patterning), cell differentiation (neural development) and drug toxicology (AZ effects on embryos/tissues).
Collapse
Affiliation(s)
- Francesca Zito
- Istituto per la Ricerca e l'Innovazione Biomedica, Consiglio Nazionale delle Ricerche, via Ugo La Malfa 153, Palermo 90146, Italy
| | - Rosa Bonaventura
- Istituto per la Ricerca e l'Innovazione Biomedica, Consiglio Nazionale delle Ricerche, via Ugo La Malfa 153, Palermo 90146, Italy
| | - Caterina Costa
- Istituto per la Ricerca e l'Innovazione Biomedica, Consiglio Nazionale delle Ricerche, via Ugo La Malfa 153, Palermo 90146, Italy
| | - Roberta Russo
- Istituto per la Ricerca e l'Innovazione Biomedica, Consiglio Nazionale delle Ricerche, via Ugo La Malfa 153, Palermo 90146, Italy
| |
Collapse
|
7
|
Wynen H, Taylor E, Heyland A. Thyroid hormone-induced cell death in sea urchin metamorphic development. J Exp Biol 2022; 225:284353. [PMID: 36412991 PMCID: PMC10112870 DOI: 10.1242/jeb.244560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 11/07/2022] [Indexed: 11/23/2022]
Abstract
Thyroid hormones (THs) are important regulators of development, metabolism and homeostasis in metazoans. Specifically, they have been shown to regulate the metamorphic transitions of vertebrates and invertebrates alike. Indirectly developing sea urchin larvae accelerate the formation of juvenile structures in response to thyroxine (T4) treatment, while reducing their larval arm length. The mechanisms underlying larval arm reduction are unknown and we hypothesized that programmed cell death (PCD) is linked to this process. To test this hypothesis, we measured larval arm retraction in response to different THs (T4, T3, rT3, Tetrac) and assessed cell death in larvae using three different methods (TUNEL, YO-PRO-1 and caspase-3 activity) in the sea urchin Strongylocentrotus purpuratus. We also compared the extent of PCD in response to TH treatment before and after the invagination of the larval ectoderm, which marks the initiation of juvenile development in larval sea urchin species. We found that T4 treatment results in the strongest reduction of larval arms but detected a significant increase of PCD in response to T4, T3 and Tetrac in post-ingression but not pre-ingression larvae. As post-ingression larvae have initiated metamorphic development and therefore allocate resources to both larval and the juvenile structures, these results provide evidence that THs regulate larval development differentially via PCD. PCD in combination with cell proliferation likely has a key function in sea urchin development.
Collapse
Affiliation(s)
- Hannah Wynen
- University of Guelph, Integrative Biology, Guelph, ON, Canada, N1G 2W1
| | - Elias Taylor
- University of Guelph, Integrative Biology, Guelph, ON, Canada, N1G 2W1
| | - Andreas Heyland
- University of Guelph, Integrative Biology, Guelph, ON, Canada, N1G 2W1
| |
Collapse
|
8
|
Baba T, Miyahara C, Yamanaka A, Kitazawa C. Revealing the cells fated to form the cell mass in embryos of temnopleurid sea urchins. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2022; 338:254-269. [PMID: 35255188 DOI: 10.1002/jez.b.23126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 01/13/2022] [Accepted: 01/23/2022] [Indexed: 06/14/2023]
Abstract
Larvae of temnopleurid sea urchins form a cell mass (CM) instead of an amniotic cavity on the left side at the early developmental stage for formation of the adult rudiment. However, the cell lineage and the mechanisms that form the CM are still unknown. We analyzed the potential to form a CM in partial embryos resulting from microsurgeries, using two temnopleurid species, Mespilia globulus (L.) and Temnopleurus toreumaticus (Leske). CM formation was completed 28-34 h after fertilization at 24°C, corresponding to the period from the late prism to the two-armed pluteus larval stages in both species. In the case of specimens dissected horizontally during the mesenchyme blastula to prism stages, the CM was formed in partial embryos containing enough of the an2 region, a part of the precursor cells that differentiate the ectoderm. The proportion of specimens with a CM was higher in T. toreumaticus than in M. globulus. Additionally, all larvae derived from half embryos obtained from dissection along the animal-vegetal axis at the mesenchyme blastula stage formed the CM. Transplantation of a stained animal or vegetal hemisphere at the 16-cell stage into a nonstained vegetal or animal embryo indicated that the CM derives from the animal half. Exogastrulae vegetalized by lithium chloride treatment did not form the CM. These results indicate that the CM formation is dependent not only on the an2 region but also on signals from the vegetal region after the mesenchyme blastula stage.
Collapse
Affiliation(s)
- Tomomi Baba
- Biological Institute, Faculty of Education, Yamaguchi University, Yamaguchi, Japan
| | - Chisato Miyahara
- Biological Institute, Faculty of Education, Yamaguchi University, Yamaguchi, Japan
| | - Akira Yamanaka
- Department of Biology & Chemistry, Faculty of Science, Yamaguchi University, Yamaguchi, Japan
- Department of Biology, Graduate School of Science and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan
| | - Chisato Kitazawa
- Biological Institute, Faculty of Education, Yamaguchi University, Yamaguchi, Japan
- Social System Analysis, The Graduate School of East Asian Studies, Yamaguchi University, Yamaguchi, Japan
| |
Collapse
|
9
|
Watanabe K, Yasui Y, Kurose Y, Fujii M, Yamamoto T, Sakamoto N, Awazu A. Partial exogastrulation due to apical‐basal polarity of F‐actin distribution disruption in sea urchin embryo by omeprazole. Genes Cells 2022; 27:392-408. [PMID: 35347809 PMCID: PMC9325501 DOI: 10.1111/gtc.12934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/25/2022] [Accepted: 03/25/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Kaichi Watanabe
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi‐Hiroshima Japan
| | - Yuhei Yasui
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi‐Hiroshima Japan
| | - Yuta Kurose
- Department of Mathematical and Life Sciences Graduate School of Science, Hiroshima University, Higashi‐Hiroshima Japan
| | - Masashi Fujii
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi‐Hiroshima Japan
| | - Takashi Yamamoto
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi‐Hiroshima Japan
| | - Naoaki Sakamoto
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi‐Hiroshima Japan
| | - Akinori Awazu
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi‐Hiroshima Japan
- Research Center for the Mathematics on Chromatin Live Dynamics Hiroshima University, Higashi‐Hiroshima Hiroshima Japan
| |
Collapse
|
10
|
Martino C, Chianese T, Chiarelli R, Roccheri MC, Scudiero R. Toxicological Impact of Rare Earth Elements (REEs) on the Reproduction and Development of Aquatic Organisms Using Sea Urchins as Biological Models. Int J Mol Sci 2022; 23:ijms23052876. [PMID: 35270017 PMCID: PMC8911218 DOI: 10.3390/ijms23052876] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/02/2022] [Accepted: 03/04/2022] [Indexed: 02/04/2023] Open
Abstract
The growing presence of lanthanides in the environment has drawn the attention of the scientific community on their safety and toxicity. The sources of lanthanides in the environment include diagnostic medicine, electronic devices, permanent magnets, etc. Their exponential use and the poor management of waste disposal raise serious concerns about the quality and safety of the ecosystems at a global level. This review focused on the impact of lanthanides in marine organisms on reproductive fitness, fertilization and embryonic development, using the sea urchin as a biological model system. Scientific evidence shows that exposure to lanthanides triggers a wide variety of toxic insults, including reproductive performance, fertilization, redox metabolism, embryogenesis, and regulation of embryonic gene expression. This was thoroughly demonstrated for gadolinium, the most widely used lanthanide in diagnostic medicine, whose uptake in sea urchin embryos occurs in a time- and concentration-dependent manner, correlates with decreased calcium absorption and primarily affects skeletal growth, with incorrect regulation of the skeletal gene regulatory network. The results collected on sea urchin embryos demonstrate a variable sensitivity of the early life stages of different species, highlighting the importance of testing the effects of pollution in different species. The accumulation of lanthanides and their emerging negative effects make risk assessment and consequent legislative intervention on their disposal mandatory.
Collapse
Affiliation(s)
- Chiara Martino
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Building 16, 90128 Palermo, Italy; (C.M.); (R.C.); (M.C.R.)
| | - Teresa Chianese
- Department of Biology, University Federico II, Via Cintia 21, 80126 Napoli, Italy;
| | - Roberto Chiarelli
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Building 16, 90128 Palermo, Italy; (C.M.); (R.C.); (M.C.R.)
| | - Maria Carmela Roccheri
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Building 16, 90128 Palermo, Italy; (C.M.); (R.C.); (M.C.R.)
| | - Rosaria Scudiero
- Department of Biology, University Federico II, Via Cintia 21, 80126 Napoli, Italy;
- Correspondence:
| |
Collapse
|
11
|
Byrne M, Koop D, Strbenac D, Cisternas P, Yang JYH, Davidson PL, Wray G. Transcriptomic analysis of Nodal - and BMP- associated genes during development to the juvenile seastar in Parvulastra exigua (Asterinidae). Mar Genomics 2021; 59:100857. [PMID: 33676872 DOI: 10.1016/j.margen.2021.100857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 10/22/2022]
Abstract
The molecular mechanisms underlying development of the pentameral body of adult echinoderms are poorly understood but are important to solve with respect to evolution of a unique body plan that contrasts with the bilateral body plan of other deuterostomes. As Nodal and BMP2/4 signalling is involved in axis formation in larvae and development of the echinoderm body plan, we used the developmental transcriptome generated for the asterinid seastar Parvulastra exigua to investigate the temporal expression patterns of Nodal and BMP2/4 genes from the embryo and across metamorphosis to the juvenile. For echinoderms, the Asteroidea represents the basal-type body architecture with a distinct (separated) ray structure. Parvulastra exigua has lecithotrophic development forming the juvenile soon after gastrulation providing ready access to the developing adult stage. We identified 39 genes associated with the Nodal and BMP2/4 network in the P. exigua developmental transcriptome. Clustering analysis of these genes resulted in 6 clusters with similar temporal expression patterns across development. A co-expression analysis revealed genes that have similar expression profiles as Nodal and BMP2/4. These results indicated genes that may have a regulatory relationship in patterning morphogenesis of the juvenile seastar. Developmental RNA-seq analyses of Parvulastra exigua show changes in Nodal and BMP2/4 signalling genes across the metamorphic transition. We provide the foundation for detailed analyses of this cascade in the evolution of the unusual pentameral echinoderm body and its deuterostome affinities.
Collapse
Affiliation(s)
- Maria Byrne
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia.
| | - Demian Koop
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Dario Strbenac
- School of Mathematics and Statistics, The University of Sydney, Sydney, NSW 2006, Australia
| | - Paula Cisternas
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Jean Yee Hwa Yang
- School of Mathematics and Statistics, The University of Sydney, Sydney, NSW 2006, Australia
| | - Phillip L Davidson
- Department of Biology and Center for Genomic and Computational Biology, Duke University, Durham, NC 27708, USA
| | - Gregory Wray
- Department of Biology and Center for Genomic and Computational Biology, Duke University, Durham, NC 27708, USA
| |
Collapse
|
12
|
Masullo T, Biondo G, Natale MD, Tagliavia M, Bennici CD, Musco M, Ragusa MA, Costa S, Cuttitta A, Nicosia A. Gene Expression Changes after Parental Exposure to Metals in the Sea Urchin Affect Timing of Genetic Programme of Embryo Development. BIOLOGY 2021; 10:biology10020103. [PMID: 33535713 PMCID: PMC7912929 DOI: 10.3390/biology10020103] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/20/2021] [Accepted: 01/30/2021] [Indexed: 12/14/2022]
Abstract
It is widely accepted that phenotypic traits can be modulated at the epigenetic level so that some conditions can affect the progeny of exposed individuals. To assess if the exposure of adult animals could result in effects on the offspring, the Mediterranean sea urchin and its well-characterized gene regulatory networks (GRNs) was chosen as a model. Adult animals were exposed to known concentrations of zinc and cadmium (both individually and in combination) for 10 days, and the resulting embryos were followed during the development. The oxidative stress occurring in parental gonads, embryo phenotypes and mortality, and the expression level of a set of selected genes, including members of the skeletogenic and endodermal GRNs, were evaluated. Increased oxidative stress at F0, high rates of developmental aberration with impaired gastrulation, in association to deregulation of genes involved in skeletogenesis (dri, hex, sm50, p16, p19, msp130), endodermal specification (foxa, hox11/13b, wnt8) and epigenetic regulation (kat2A, hdac1, ehmt2, phf8 and UBE2a) occurred either at 24 or 48 hpf. Results strongly indicate that exposure to environmental pollutants can affect not only directly challenged animals but also their progeny (at least F1), influencing optimal timing of genetic programme of embryo development, resulting in an overall impairment of developmental success.
Collapse
Affiliation(s)
- Tiziana Masullo
- Institute for Studies on the Mediterranean-National Research Council (ISMED-CNR), Detached Unit of Palermo, Via Filippo Parlatore 65, 90145 Palermo, Italy; (T.M.); (M.D.N.); (C.D.B.); (M.M.)
| | - Girolama Biondo
- Institute for Anthropic Impacts and Sustainability in Marine Environment-National Research Council (IAS-CNR), Detached Unit of Capo Granitola, Via del mare 3, 91021 Campobello di Mazara, Italy;
| | - Marilena Di Natale
- Institute for Studies on the Mediterranean-National Research Council (ISMED-CNR), Detached Unit of Palermo, Via Filippo Parlatore 65, 90145 Palermo, Italy; (T.M.); (M.D.N.); (C.D.B.); (M.M.)
- Department of Earth and Marine Science (DiSTeM), University of Palermo, Via Archirafi 20, 90123 Palermo, Italy
| | - Marcello Tagliavia
- Institute for Biomedical Research and Innovation-National Research Council-(IRIB-CNR), Via Ugo La Malfa 153, 90146 Palermo, Italy;
| | - Carmelo Daniele Bennici
- Institute for Studies on the Mediterranean-National Research Council (ISMED-CNR), Detached Unit of Palermo, Via Filippo Parlatore 65, 90145 Palermo, Italy; (T.M.); (M.D.N.); (C.D.B.); (M.M.)
| | - Marianna Musco
- Institute for Studies on the Mediterranean-National Research Council (ISMED-CNR), Detached Unit of Palermo, Via Filippo Parlatore 65, 90145 Palermo, Italy; (T.M.); (M.D.N.); (C.D.B.); (M.M.)
| | - Maria Antonietta Ragusa
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze Ed. 16, 90128 Palermo, Italy; (M.A.R.); (S.C.)
| | - Salvatore Costa
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze Ed. 16, 90128 Palermo, Italy; (M.A.R.); (S.C.)
| | - Angela Cuttitta
- Institute for Studies on the Mediterranean-National Research Council (ISMED-CNR), Detached Unit of Palermo, Via Filippo Parlatore 65, 90145 Palermo, Italy; (T.M.); (M.D.N.); (C.D.B.); (M.M.)
- Correspondence: (A.C.); (A.N.)
| | - Aldo Nicosia
- Institute for Biomedical Research and Innovation-National Research Council-(IRIB-CNR), Via Ugo La Malfa 153, 90146 Palermo, Italy;
- Correspondence: (A.C.); (A.N.)
| |
Collapse
|
13
|
Li Y, Omori A, Flores RL, Satterfield S, Nguyen C, Ota T, Tsurugaya T, Ikuta T, Ikeo K, Kikuchi M, Leong JCK, Reich A, Hao M, Wan W, Dong Y, Ren Y, Zhang S, Zeng T, Uesaka M, Uchida Y, Li X, Shibata TF, Bino T, Ogawa K, Shigenobu S, Kondo M, Wang F, Chen L, Wessel G, Saiga H, Cameron RA, Livingston B, Bradham C, Wang W, Irie N. Genomic insights of body plan transitions from bilateral to pentameral symmetry in Echinoderms. Commun Biol 2020; 3:371. [PMID: 32651448 PMCID: PMC7351957 DOI: 10.1038/s42003-020-1091-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 06/19/2020] [Indexed: 12/13/2022] Open
Abstract
Echinoderms are an exceptional group of bilaterians that develop pentameral adult symmetry from a bilaterally symmetric larva. However, the genetic basis in evolution and development of this unique transformation remains to be clarified. Here we report newly sequenced genomes, developmental transcriptomes, and proteomes of diverse echinoderms including the green sea urchin (L. variegatus), a sea cucumber (A. japonicus), and with particular emphasis on a sister group of the earliest-diverged echinoderms, the feather star (A. japonica). We learned that the last common ancestor of echinoderms retained a well-organized Hox cluster reminiscent of the hemichordate, and had gene sets involved in endoskeleton development. Further, unlike in other animal groups, the most conserved developmental stages were not at the body plan establishing phase, and genes normally involved in bilaterality appear to function in pentameric axis development. These results enhance our understanding of the divergence of protostomes and deuterostomes almost 500 Mya. Li et al. investigate the evolution and genetic basis of the adult pentameral body plan in echinoderms using genomic, transcriptomic, and proteomic data. They determine that the last common ancestor of echinoderms contained an organized Hox cluster and endoskeleton genes, and suggest that cooption of bilateral development genes was involved in evolution of the pentameric body plan.
Collapse
Affiliation(s)
- Yongxin Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Akihito Omori
- Sado Island Center for Ecological Sustainability, Niigata University, Niigata, Japan
| | - Rachel L Flores
- Dept. of Biological Sciences, California State Univesity, Long Beach, CA, USA
| | - Sheri Satterfield
- Dept. of Biological Sciences, California State Univesity, Long Beach, CA, USA
| | - Christine Nguyen
- Dept. of Biological Sciences, California State Univesity, Long Beach, CA, USA
| | | | | | - Tetsuro Ikuta
- Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Kanagawa, Japan.,Tokyo Metropolitan University, Yokosuka, Tokyo, Japan
| | | | | | - Jason C K Leong
- Dept. of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Adrian Reich
- Providence Institute of Molecular Oogenesis, Brown University, Providence, RI, USA
| | - Meng Hao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Wenting Wan
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Yang Dong
- Yunnan Agricultural University, Kunming, China
| | - Yaondong Ren
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Si Zhang
- Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Tao Zeng
- Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Masahiro Uesaka
- RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Hyogo, Japan
| | - Yui Uchida
- Dept. of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan.,Universal Biology Institute, University of Tokyo, Tokyo, Japan
| | - Xueyan Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Tomoko F Shibata
- Dept. of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Takahiro Bino
- NIBB Core Research Facilities, National Institute of Basic Biology, Okazaki, Aichi, Japan
| | - Kota Ogawa
- Faculty of Social and Cultural Studies, Kyushu University, Fukuoka, Japan
| | - Shuji Shigenobu
- NIBB Core Research Facilities, National Institute of Basic Biology, Okazaki, Aichi, Japan
| | - Mariko Kondo
- Dept. of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Fayou Wang
- Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Luonan Chen
- Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.,Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou, China
| | - Gary Wessel
- Providence Institute of Molecular Oogenesis, Brown University, Providence, RI, USA
| | - Hidetoshi Saiga
- Tokyo Metropolitan University, Yokosuka, Tokyo, Japan.,Dept. of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan.,Chuo University, Tokyo, Japan
| | - R Andrew Cameron
- Beckman Institute, Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Brian Livingston
- Dept. of Biological Sciences, California State Univesity, Long Beach, CA, USA
| | | | - Wen Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China. .,School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China.
| | - Naoki Irie
- Dept. of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan. .,Universal Biology Institute, University of Tokyo, Tokyo, Japan.
| |
Collapse
|
14
|
Kipryushina YO, Yakovlev KV. Maternal control of early patterning in sea urchin embryos. Differentiation 2020; 113:28-37. [PMID: 32371341 DOI: 10.1016/j.diff.2020.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 04/10/2020] [Accepted: 04/17/2020] [Indexed: 02/06/2023]
Abstract
Sea urchin development has been studied extensively for more than a century and considered regulative since the first experimental evidence. Further investigations have repeatedly supported this standpoint by revealing the presence of inductive mechanisms that alter cell fate decisions at early cleavage stages and flexibility of development in response to environmental conditions. Some features indicate that sea urchin development is not completely regulative, but actually includes determinative events. In 16-cell embryos, mesomeres and macromeres represent multipotency, while the cell fate of most vegetal micromeres is restricted. It is known that the mature sea urchin eggs are polarized by the asymmetrical distribution of some maternal mRNAs and proteins. Spatially-distributed maternal factors are necessary for the orientation of the primary animal-vegetal axis, which is established by both maternal and zygotic mechanisms later in development. The secondary dorsal-ventral axis is conditionally specified later in development. Dorsal-ventral polarity is very liable during the early cleavages, though more recent data argue that its direction may be oriented by maternal asymmetry. In this review, we focus on the role of maternal factors in initial embryonic patterning during the first cleavages of sea urchin embryos before activation of the embryonic genome.
Collapse
Affiliation(s)
- Yulia O Kipryushina
- Laboratory of Cytotechnology, National Scientific Center of Marine Biology, Far Eastern Branch of the Russian Academy of Sciences, Palchevsky St. 17, 690041, Vladivostok, Russia
| | - Konstantin V Yakovlev
- Laboratory of Cytotechnology, National Scientific Center of Marine Biology, Far Eastern Branch of the Russian Academy of Sciences, Palchevsky St. 17, 690041, Vladivostok, Russia; Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia.
| |
Collapse
|
15
|
Abstract
Gastrulation is arguably the most important evolutionary innovation in the animal kingdom. This process provides the basic embryonic architecture, an inner layer separated from an outer layer, from which all animal forms arise. An extraordinarily simple and elegant process of gastrulation is observed in the sea urchin embryo. The cells participating in sea urchin gastrulation are specified early during cleavage. One outcome of that specification is the expression of transcription factors that control each of the many subsequent morphogenetic changes. The first of these movements is an epithelial-mesenchymal transition (EMT) of skeletogenic mesenchyme cells, then EMT of pigment cell progenitors. Shortly thereafter, invagination of the archenteron occurs. At the end of archenteron extension, a second wave of EMT occurs to release immune cells into the blastocoel and primordial germ cells that will home to the coelomic pouches. The archenteron then remodels to establish the three parts of the gut, and at the anterior end, the gut fuses with the stomodaeum to form the through-gut. As part of the anterior remodeling, mesodermal coelomic pouches bud off the lateral sides of the archenteron tip. Multiple cell biological processes conduct each of these movements and in some cases the upstream transcription factors controlling this process have been identified. Remarkably, each event seamlessly occurs at the right time to orchestrate formation of the primitive body plan. This review covers progress toward understanding many of the molecular mechanisms underlying this sequence of morphogenetic events.
Collapse
|
16
|
Molina MD, Gache C, Lepage T. Expression of exogenous mRNAs to study gene function in echinoderm embryos. Methods Cell Biol 2019; 151:239-282. [PMID: 30948011 DOI: 10.1016/bs.mcb.2018.10.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
With the completion of the genome sequencing projects, a new challenge for developmental biologists is to assign a function to the thousands of genes identified. Expression of exogenous mRNAs is a powerful, versatile and rapid technique that can be used to study gene function during development of the sea urchin. This chapter describes how this technique can be used to analyze gene function in echinoderm embryos, how it can be combined with cell transplantation to perform mosaic analysis and how it can be applied to identify downstream targets genes of transcription factors and signaling pathways. We describe specific examples of the use of overexpression of mRNA to analyze gene function, mention the benefits and current limitations of the technique and emphasize the importance of using different controls to assess the specificity of the effects observed. Finally, this chapter details the different steps, vectors and protocols for in vitro production of mRNA and phenotypic analysis.
Collapse
Affiliation(s)
| | - Christian Gache
- Université Pierre et Marie Curie, Observatoire Océanologique de Villefranche sur Mer, UMR7009 CNRS, Paris, France
| | - Thierry Lepage
- Université Côte d'Azur, CNRS, INSERM, iBV, Nice, France.
| |
Collapse
|
17
|
Suzuki H, Yaguchi S. Transforming growth factor-β signal regulates gut bending in the sea urchin embryo. Dev Growth Differ 2018; 60:216-225. [PMID: 29878318 DOI: 10.1111/dgd.12434] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 03/17/2018] [Accepted: 03/29/2018] [Indexed: 12/22/2022]
Abstract
During gastrulation, one of the most important morphogenetic events in sea urchin embryogenesis, the gut bends toward the ventral side to form an open mouth. Although the involvement of transforming growth factor-β (TGF-β) signals in the cell-fate specification of the ectoderm and endoderm along the dorsal-ventral axis has been well reported, it remains unclear what controls the morphogenetic behavior of gut bending. Here, using two sea urchin species, Hemicentrotus pulcherrimus and Temnopleurus reevesii, we show that TGF-β signals are required for gut bending toward the ventral side. To search for the common morphogenetic cue in these two species, we initially confirmed the expression patterns of the dorsal-ventral regulatory TGF-β members, nodal, lefty, bmp2/4, and chordin, in T. reevesii because these factors are appropriate candidates to investigate the cue that starts gut bending, although genetic information about the body axes is entirely lacking in this species. Based on their expression patterns and a functional analysis of Nodal, the dorsal-ventral axis formation of T. reevesii is likely regulated by these TGF-β members, as in other sea urchins. When the Alk4/5/7 signal was inhibited by its specific inhibitor, SB431542, before the late gastrula stage of T. reevesii, the gut was extended straight toward the anterior tip region, although the ectodermal dorsal-ventral polarity was normal. By contrast, H. pulcherrimus gut bending was sensitive to SB431542 until the prism stage. These data clearly indicate that gut bending is commonly dependent on a TGF-β signal in sea urchins, but the timing of the response varies in different species.
Collapse
Affiliation(s)
- Haruka Suzuki
- Shimoda Marine Research Center, University of Tsukuba, Shimoda, Japan
| | - Shunsuke Yaguchi
- Shimoda Marine Research Center, University of Tsukuba, Shimoda, Japan
| |
Collapse
|
18
|
Kasahara M, Kobayashi C, Sakaguchi C, Miyahara C, Yamanaka A, Kitazawa C. Effects of Nodal inhibition on development of temnopleurid sea urchins. Evol Dev 2018; 20:91-99. [PMID: 29806731 DOI: 10.1111/ede.12254] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Adult rudiment formation in some temnopleurids begins with the formation of a cell mass that is pinched off the left ectoderm in early larval development. The cell mass forms the adult rudiment with the left coelomic pouch of the mesodermal region. However, details of the mechanisms to establish position of the cell mass are still unknown. We analyzed the inhibiting effect of Nodal, a factor for morphogenesis of the oral region and right side, for location of the cell mass, in four temnopleurids. Pulse inhibition, at least 5 min inhibition, during coelomic pouch formation allowed a cell mass to form on both sides, whereas treatments after that period did not. These results indicate that Nodal signaling controls the oral-aboral axis before gastrulation and then affects the position of the cell mass and adult rudiment up to coelomic pouch formation. They also indicate that the position of the adult rudiment under Nodal signaling pathways is conserved in temnopleurids, as adult rudiment formation is dependent on the cell mass.
Collapse
Affiliation(s)
- Mami Kasahara
- Biological Institute, Faculty of Education, Yamaguchi University, Yamaguchi, Japan
| | - Chiaki Kobayashi
- Biological Institute, Faculty of Education, Yamaguchi University, Yamaguchi, Japan
| | - Chikara Sakaguchi
- Biological Institute, Faculty of Education, Yamaguchi University, Yamaguchi, Japan
| | - Chisato Miyahara
- Biological Institute, Faculty of Education, Yamaguchi University, Yamaguchi, Japan
| | - Akira Yamanaka
- Faculty of Science, Department of Biology and Chemistry, Yamaguchi University, Yamaguchi, Japan.,Department of Biology, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan
| | - Chisato Kitazawa
- Biological Institute, Faculty of Education, Yamaguchi University, Yamaguchi, Japan.,Social System Analysis, The Graduate School of East Asian Studies, Yamaguchi University, Yamaguchi, Japan
| |
Collapse
|
19
|
Soukup V, Kozmik Z. The Bmp signaling pathway regulates development of left-right asymmetry in amphioxus. Dev Biol 2018; 434:164-174. [PMID: 29224891 DOI: 10.1016/j.ydbio.2017.12.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 12/05/2017] [Accepted: 12/05/2017] [Indexed: 01/31/2023]
Abstract
Establishment of asymmetry along the left-right (LR) body axis in vertebrates requires interplay between Nodal and Bmp signaling pathways. In the basal chordate amphioxus, the left-sided activity of the Nodal signaling has been attributed to the asymmetric morphogenesis of paraxial structures and pharyngeal organs, however the role of Bmp signaling in LR asymmetry establishment has not been addressed to date. Here, we show that Bmp signaling is necessary for the development of LR asymmetric morphogenesis of amphioxus larvae through regulation of Nodal signaling. Loss of Bmp signaling results in loss of the left-sided expression of Nodal, Gdf1/3, Lefty and Pitx and in gain of ectopic expression of Cerberus on the left side. As a consequence, the larvae display loss of the offset arrangement of axial structures, loss of the left-sided pharyngeal organs including the mouth, and ectopic development of the right-sided organs on the left side. Bmp inhibition thus phenocopies inhibition of Nodal signaling and results in the right isomerism. We conclude that Bmp and Nodal pathways act in concert to specify the left side and that Bmp signaling plays a fundamental role during LR development in amphioxus.
Collapse
Affiliation(s)
- Vladimir Soukup
- Institute of Molecular Genetics, The Czech Academy of Sciences, Videnska 1083, 14220 Prague, Czech Republic.
| | - Zbynek Kozmik
- Institute of Molecular Genetics, The Czech Academy of Sciences, Videnska 1083, 14220 Prague, Czech Republic
| |
Collapse
|
20
|
Martino C, Costa C, Roccheri MC, Koop D, Scudiero R, Byrne M. Gadolinium perturbs expression of skeletogenic genes, calcium uptake and larval development in phylogenetically distant sea urchin species. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 194:57-66. [PMID: 29156215 DOI: 10.1016/j.aquatox.2017.11.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 11/06/2017] [Accepted: 11/09/2017] [Indexed: 06/07/2023]
Abstract
Chelates of Gadolinium (Gd), a lanthanide metal, are employed as contrast agents for magnetic resonance imaging and are released into the aquatic environment where they are an emerging contaminant. We studied the effects of environmentally relevant Gd concentrations on the development of two phylogenetically and geographically distant sea urchin species: the Mediterranean Paracentrotus lividus and the Australian Heliocidaris tuberculata. We found a general delay of embryo development at 24h post-fertilization, and a strong inhibition of skeleton growth at 48h. Total Gd and Ca content in the larvae showed a time- and concentration-dependent increase in Gd, in parallel with a reduction in Ca. To investigate the impact of Gd on the expression of genes involved in the regulation of skeletogenesis, we performed comparative RT-PCR analysis and found a misregulation of several genes involved in the skeletogenic and left-right axis specification gene regulatory networks. Species-specific differences in the biomineralization response were evident, likely due to differences in the skeletal framework of the larvae and the amount of biomineral produced. Our results highlight the hazard of Gd for marine organisms.
Collapse
Affiliation(s)
- Chiara Martino
- Dipartimento Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Università di Palermo, Viale delle Scienze, Ed. 16, 90128, Palermo, Italy; Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Via Ugo La Malfa 153, 90146, Palermo, Italy.
| | - Caterina Costa
- Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Via Ugo La Malfa 153, 90146, Palermo, Italy
| | - Maria Carmela Roccheri
- Dipartimento Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Università di Palermo, Viale delle Scienze, Ed. 16, 90128, Palermo, Italy
| | - Demian Koop
- Department of Anatomy and Histology, F13, University of Sydney, NSW, Australia
| | - Rosaria Scudiero
- Dipartimento di Biologia, Università di Napoli Federico II, via Mezzocannone 8, 80134, Napoli, Italy
| | - Maria Byrne
- Department of Anatomy and Histology, F13, University of Sydney, NSW, Australia
| |
Collapse
|
21
|
Schweickert A, Ott T, Kurz S, Tingler M, Maerker M, Fuhl F, Blum M. Vertebrate Left-Right Asymmetry: What Can Nodal Cascade Gene Expression Patterns Tell Us? J Cardiovasc Dev Dis 2017; 5:jcdd5010001. [PMID: 29367579 PMCID: PMC5872349 DOI: 10.3390/jcdd5010001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 12/25/2017] [Accepted: 12/25/2017] [Indexed: 11/16/2022] Open
Abstract
Laterality of inner organs is a wide-spread characteristic of vertebrates and beyond. It is ultimately controlled by the left-asymmetric activation of the Nodal signaling cascade in the lateral plate mesoderm of the neurula stage embryo, which results from a cilia-driven leftward flow of extracellular fluids at the left-right organizer. This scenario is widely accepted for laterality determination in wildtype specimens. Deviations from this norm come in different flavors. At the level of organ morphogenesis, laterality may be inverted (situs inversus) or non-concordant with respect to the main body axis (situs ambiguus or heterotaxia). At the level of Nodal cascade gene activation, expression may be inverted, bilaterally induced, or absent. In a given genetic situation, patterns may be randomized or predominantly lacking laterality (absence or bilateral activation). We propose that the distributions of patterns observed may be indicative of the underlying molecular defects, with randomizations being primarily caused by defects in the flow-generating ciliary set-up, and symmetrical patterns being the result of impaired flow sensing, on the left, the right, or both sides. This prediction, the reasoning of which is detailed in this review, pinpoints functions of genes whose role in laterality determination have remained obscure.
Collapse
Affiliation(s)
- Axel Schweickert
- Institute of Zoology, University of Hohenheim, 70593 Stuttgart, Germany.
| | - Tim Ott
- Institute of Zoology, University of Hohenheim, 70593 Stuttgart, Germany.
| | - Sabrina Kurz
- Institute of Zoology, University of Hohenheim, 70593 Stuttgart, Germany.
| | - Melanie Tingler
- Institute of Zoology, University of Hohenheim, 70593 Stuttgart, Germany.
| | - Markus Maerker
- Institute of Zoology, University of Hohenheim, 70593 Stuttgart, Germany.
| | - Franziska Fuhl
- Institute of Zoology, University of Hohenheim, 70593 Stuttgart, Germany.
| | - Martin Blum
- Institute of Zoology, University of Hohenheim, 70593 Stuttgart, Germany.
| |
Collapse
|
22
|
McDowell G, Rajadurai S, Levin M. From cytoskeletal dynamics to organ asymmetry: a nonlinear, regulative pathway underlies left-right patterning. Philos Trans R Soc Lond B Biol Sci 2017; 371:rstb.2015.0409. [PMID: 27821521 DOI: 10.1098/rstb.2015.0409] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2016] [Indexed: 12/25/2022] Open
Abstract
Consistent left-right (LR) asymmetry is a fundamental aspect of the bodyplan across phyla, and errors of laterality form an important class of human birth defects. Its molecular underpinning was first discovered as a sequential pathway of left- and right-sided gene expression that controlled positioning of the heart and visceral organs. Recent data have revised this picture in two important ways. First, the physical origin of chirality has been identified; cytoskeletal dynamics underlie the asymmetry of single-cell behaviour and patterning of the LR axis. Second, the pathway is not linear: early disruptions that alter the normal sidedness of upstream asymmetric genes do not necessarily induce defects in the laterality of the downstream genes or in organ situs Thus, the LR pathway is a unique example of two fascinating aspects of biology: the interplay of physics and genetics in establishing large-scale anatomy, and regulative (shape-homeostatic) pathways that correct molecular and anatomical errors over time. Here, we review aspects of asymmetry from its intracellular, cytoplasmic origins to the recently uncovered ability of the LR control circuitry to achieve correct gene expression and morphology despite reversals of key 'determinant' genes. We provide novel functional data, in Xenopus laevis, on conserved elements of the cytoskeleton that drive asymmetry, and comparatively analyse it together with previously published results in the field. Our new observations and meta-analysis demonstrate that despite aberrant expression of upstream regulatory genes, embryos can progressively normalize transcriptional cascades and anatomical outcomes. LR patterning can thus serve as a paradigm of how subcellular physics and gene expression cooperate to achieve developmental robustness of a body axis.This article is part of the themed issue 'Provocative questions in left-right asymmetry'.
Collapse
Affiliation(s)
- Gary McDowell
- Biology Department, Tufts University, 200 Boston Avenue, Suite 4600, Medford, MA 02155-4243, USA.,Allen Discovery Center, Tufts University, 200 Boston Avenue, Suite 4600, Medford, MA 02155-4243, USA
| | - Suvithan Rajadurai
- Biology Department, Tufts University, 200 Boston Avenue, Suite 4600, Medford, MA 02155-4243, USA.,Allen Discovery Center, Tufts University, 200 Boston Avenue, Suite 4600, Medford, MA 02155-4243, USA
| | - Michael Levin
- Biology Department, Tufts University, 200 Boston Avenue, Suite 4600, Medford, MA 02155-4243, USA .,Allen Discovery Center, Tufts University, 200 Boston Avenue, Suite 4600, Medford, MA 02155-4243, USA
| |
Collapse
|
23
|
Pai VP, Willocq V, Pitcairn EJ, Lemire JM, Paré JF, Shi NQ, McLaughlin KA, Levin M. HCN4 ion channel function is required for early events that regulate anatomical left-right patterning in a nodal and lefty asymmetric gene expression-independent manner. Biol Open 2017; 6:1445-1457. [PMID: 28818840 PMCID: PMC5665463 DOI: 10.1242/bio.025957] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 08/12/2017] [Indexed: 12/13/2022] Open
Abstract
Laterality is a basic characteristic of all life forms, from single cell organisms to complex plants and animals. For many metazoans, consistent left-right asymmetric patterning is essential for the correct anatomy of internal organs, such as the heart, gut, and brain; disruption of left-right asymmetry patterning leads to an important class of birth defects in human patients. Laterality functions across multiple scales, where early embryonic, subcellular and chiral cytoskeletal events are coupled with asymmetric amplification mechanisms and gene regulatory networks leading to asymmetric physical forces that ultimately result in distinct left and right anatomical organ patterning. Recent studies have suggested the existence of multiple parallel pathways regulating organ asymmetry. Here, we show that an isoform of the hyperpolarization-activated cyclic nucleotide-gated (HCN) family of ion channels (hyperpolarization-activated cyclic nucleotide-gated channel 4, HCN4) is important for correct left-right patterning. HCN4 channels are present very early in Xenopus embryos. Blocking HCN channels (Ih currents) with pharmacological inhibitors leads to errors in organ situs. This effect is only seen when HCN4 channels are blocked early (pre-stage 10) and not by a later block (post-stage 10). Injections of HCN4-DN (dominant-negative) mRNA induce left-right defects only when injected in both blastomeres no later than the 2-cell stage. Analysis of key asymmetric genes' expression showed that the sidedness of Nodal, Lefty, and Pitx2 expression is largely unchanged by HCN4 blockade, despite the randomization of subsequent organ situs, although the area of Pitx2 expression was significantly reduced. Together these data identify a novel, developmental role for HCN4 channels and reveal a new Nodal-Lefty-Pitx2 asymmetric gene expression-independent mechanism upstream of organ positioning during embryonic left-right patterning.
Collapse
Affiliation(s)
- Vaibhav P Pai
- Allen Discovery Center at Tufts University, 200 Boston Ave, Suite 4600, Medford, MA 02155, USA
| | - Valerie Willocq
- Allen Discovery Center at Tufts University, 200 Boston Ave, Suite 4600, Medford, MA 02155, USA
| | - Emily J Pitcairn
- Allen Discovery Center at Tufts University, 200 Boston Ave, Suite 4600, Medford, MA 02155, USA
| | - Joan M Lemire
- Allen Discovery Center at Tufts University, 200 Boston Ave, Suite 4600, Medford, MA 02155, USA
| | - Jean-François Paré
- Allen Discovery Center at Tufts University, 200 Boston Ave, Suite 4600, Medford, MA 02155, USA
| | - Nian-Qing Shi
- Department of Medicine at University of Wisconsin-Madison, Madison, WI 53792, USA
| | - Kelly A McLaughlin
- Allen Discovery Center at Tufts University, 200 Boston Ave, Suite 4600, Medford, MA 02155, USA
| | - Michael Levin
- Allen Discovery Center at Tufts University, 200 Boston Ave, Suite 4600, Medford, MA 02155, USA
| |
Collapse
|
24
|
Boutet A. The evolution of asymmetric photosensitive structures in metazoans and the Nodal connection. Mech Dev 2017; 147:49-60. [PMID: 28986126 DOI: 10.1016/j.mod.2017.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 07/26/2017] [Accepted: 09/25/2017] [Indexed: 01/12/2023]
Abstract
Asymmetries are observed in a great number of taxa in metazoans. More particularly, functional lateralization and neuroanatomical asymmetries within the central nervous system have been a matter of intense research for at least two hundred years. While asymmetries of some paired structures/organs (e.g. eyes, ears, kidneys, legs, arms) constitute random deviations from a pure bilateral symmetry, brain asymmetries such as those observed in the cortex and epithalamus are directional. This means that molecular and anatomical features located on one side of a given structure are observed in most individuals. For instance, in humans, the neuronal tract connecting the language areas is enlarged in the left hemisphere. When asymmetries are fixed, their molecular mechanisms can be studied using mutants displaying different phenotypes: left or right isomerism of the structure, reversed asymmetry or random asymmetry. Our understanding of asymmetry in the nervous system has been widely enriched thanks to the characterization of mutants affecting epithalamus asymmetry. Furthermore, two decades ago, pioneering studies revealed that a specific morphogen, Nodal, active only on one side of the embryo during development is an important molecule in asymmetry patterning. In this review, I have gathered important data bringing insight into the origin and evolution of epithalamus asymmetry and the role of Nodal in metazoans. After a short introduction on brain asymmetries (chapter I), I secondly focus on the molecular and anatomical characteristics of the epithalamus in vertebrates and explore some functional aspects such as its photosensitive ability related to the pineal complex (chapter II). Third, I discuss homology relationship of the parapineal organ among vertebrates (chapter III). Fourth, I discuss the possible origin of the epithalamus, presenting cells displaying photosensitive properties and/or asymmetry in the anterior part of the body in non-vertebrates (chapter IV). Finally, I report Nodal signaling expression data and functional experiments performed in different metazoan groups (chapter V).
Collapse
Affiliation(s)
- Agnès Boutet
- Sorbonne Universités, UPMC Univ Paris 06, CNRS UMR 8227, Laboratoire de Biologie Intégrative des Modèles Marins, Station Biologique, F-29688 Roscoff, France.
| |
Collapse
|
25
|
Kitazawa C, Nakano M, Yamaguchi T, Miyahara C, Yamanaka A. Specification of Larval Axes of Partial Embryos in the Temnopleurid Temnopleurus toreumaticus and the Strongylocentroid Hemicentrotus pulcherrimus. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2017; 328:533-545. [PMID: 28744964 DOI: 10.1002/jez.b.22751] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 04/22/2017] [Accepted: 04/27/2017] [Indexed: 11/11/2022]
Abstract
Many sea urchins, including the strongylocentroid Hemicentrotus pulcherrimus, produce an amniotic cavity on the left for adult rudiment formation at the late larval stage. In contrast, temnopleurids form a cell mass at the early larval stage instead of an amniotic cavity. Although the mechanisms establishing left-right polarity of the amniotic cavity involve cell-cell interactions and signaling pathways, corresponding pathways for the cell mass are unknown. We analyzed the effects of blastomere isolation on the specification of larval axes in the temnopleurid Temnopleurus toreumaticus and compared them to those in H. pulcherrimus. Blastomere isolation at the two- or four-cell stages in T. toreumaticus disturbed the location of the cell mass and adult rudiment in approximately 10-20% of specimens. In contrast, isolation at the two-cell stage in H. pulcherrimus caused the left-right polarity to become random. When blastomeres isolated at the two-cell stage were cultured as pairs, approximately 20% of pairs had atypical polarity in both species. Following isolation at the four-cell stage, 71.4% of quartets produced larvae with atypical polarity in T. toreumaticus. Thus, cell-cell interaction between two daughter blastomeres after the second cleavage may be involved in the mechanism determining left-right polarity. Dye injection into a blastomere and subsequent observations indicated that the location of the boundary of the first cleavage showed similar patterns in both species. These observations suggest that species-specific mechanisms establish the larval axes and blastomeres at the two- and four-cell stages redistribute their cytoplasm, forming gradients that establish left-right polarity.
Collapse
Affiliation(s)
- Chisato Kitazawa
- Biological Institute, Faculty of Education, Yamaguchi University, Yamaguchi, Japan.,Social System Analysis, The Graduate School of East Asian Studies, Yamaguchi University, Yamaguchi, Japan
| | - Michihiro Nakano
- Biological Institute, Faculty of Education, Yamaguchi University, Yamaguchi, Japan
| | - Tadashi Yamaguchi
- Biological Institute, Faculty of Education, Yamaguchi University, Yamaguchi, Japan
| | - Chisato Miyahara
- Biological Institute, Faculty of Education, Yamaguchi University, Yamaguchi, Japan
| | - Akira Yamanaka
- Department of Biology & Chemistry, Faculty of Science, Yamaguchi University, Yamaguchi, Japan.,Department of Biology, Graduate School of Science and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan
| |
Collapse
|
26
|
Koop D, Cisternas P, Morris VB, Strbenac D, Yang JYH, Wray GA, Byrne M. Nodal and BMP expression during the transition to pentamery in the sea urchin Heliocidaris erythrogramma: insights into patterning the enigmatic echinoderm body plan. BMC DEVELOPMENTAL BIOLOGY 2017; 17:4. [PMID: 28193178 PMCID: PMC5307799 DOI: 10.1186/s12861-017-0145-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 01/26/2017] [Indexed: 12/27/2022]
Abstract
BACKGROUND The molecular mechanisms underlying the development of the unusual echinoderm pentameral body plan and their likeness to mechanisms underlying the development of the bilateral plans of other deuterostomes are of interest in tracing body plan evolution. In this first study of the spatial expression of genes associated with Nodal and BMP2/4 signalling during the transition to pentamery in sea urchins, we investigate Heliocidaris erythrogramma, a species that provides access to the developing adult rudiment within days of fertilization. RESULTS BMP2/4, and the putative downstream genes, Six1/2, Eya, Tbx2/3 and Msx were expressed in the earliest morphological manifestation of pentamery during development, the five hydrocoele lobes. The formation of the vestibular ectoderm, the specialized region overlying the left coelom that forms adult ectoderm, involved the expression of putative Nodal target genes Chordin, Gsc and BMP2/4 and putative BMP2/4 target genes Dlx, Msx and Tbx. The expression of Nodal, Lefty and Pitx2 in the right ectoderm, and Pitx2 in the right coelom, was as previously observed in other sea urchins. CONCLUSION That genes associated with Nodal and BMP2/4 signalling are expressed in the hydrocoele lobes, indicates that they have a role in the developmental transition to pentamery, contributing to our understanding of how the most unusual body plan in the Bilateria may have evolved. We suggest that the Nodal and BMP2/4 signalling cascades might have been duplicated or split during the evolution to pentamery.
Collapse
Affiliation(s)
- Demian Koop
- School of Medical Science and Bosch Institute, The University of Sydney, Sydney, NSW 2006 Australia
| | - Paula Cisternas
- School of Medical Science and Bosch Institute, The University of Sydney, Sydney, NSW 2006 Australia
| | - Valerie B. Morris
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006 Australia
| | - Dario Strbenac
- School of Mathematics and Statistics, The University of Sydney, Sydney, NSW 2006 Australia
| | - Jean Yee Hwa Yang
- School of Mathematics and Statistics, The University of Sydney, Sydney, NSW 2006 Australia
| | - Gregory A. Wray
- Department of Biology and Center for Genomic and Computational Biology, Duke University, Durham, NC 27708 USA
| | - Maria Byrne
- School of Medical Science and Bosch Institute, The University of Sydney, Sydney, NSW 2006 Australia
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006 Australia
| |
Collapse
|
27
|
Tisler M, Wetzel F, Mantino S, Kremnyov S, Thumberger T, Schweickert A, Blum M, Vick P. Cilia are required for asymmetric nodal induction in the sea urchin embryo. BMC DEVELOPMENTAL BIOLOGY 2016; 16:28. [PMID: 27553781 PMCID: PMC4994401 DOI: 10.1186/s12861-016-0128-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 07/29/2016] [Indexed: 01/22/2023]
Abstract
Background Left-right (LR) organ asymmetries are a common feature of metazoan animals. In many cases, laterality is established by a conserved asymmetric Nodal signaling cascade during embryogenesis. In most vertebrates, asymmetric nodal induction results from a cilia-driven leftward fluid flow at the left-right organizer (LRO), a ciliated epithelium present during gastrula/neurula stages. Conservation of LRO and flow beyond the vertebrates has not been reported yet. Results Here we study sea urchin embryos, which use nodal to establish larval LR asymmetry as well. Cilia were found in the archenteron of embryos undergoing gastrulation. Expression of foxj1 and dnah9 suggested that archenteron cilia were motile. Cilia were polarized to the posterior pole of cells, a prerequisite of directed flow. High-speed videography revealed rotating cilia in the archenteron slightly before asymmetric nodal induction. Removal of cilia through brief high salt treatments resulted in aberrant patterns of nodal expression. Our data demonstrate that cilia - like in vertebrates - are required for asymmetric nodal induction in sea urchin embryos. Conclusions Based on these results we argue that the anterior archenteron represents a bona fide LRO and propose that cilia-based symmetry breakage is a synapomorphy of the deuterostomes. Electronic supplementary material The online version of this article (doi:10.1186/s12861-016-0128-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Matthias Tisler
- University of Hohenheim, Institute of Zoology, 70593, Stuttgart, Germany
| | - Franziska Wetzel
- University of Hohenheim, Institute of Zoology, 70593, Stuttgart, Germany
| | - Sabrina Mantino
- University of Hohenheim, Institute of Zoology, 70593, Stuttgart, Germany
| | - Stanislav Kremnyov
- Department of Embryology, Lomonosov Moscow State University, Moscow, Russia
| | - Thomas Thumberger
- University of Hohenheim, Institute of Zoology, 70593, Stuttgart, Germany.,Present Address: Centre for Organismal Studies, Im Neuenheimer Feld 230, Heidelberg University, 69120, Heidelberg, Germany
| | - Axel Schweickert
- University of Hohenheim, Institute of Zoology, 70593, Stuttgart, Germany
| | - Martin Blum
- University of Hohenheim, Institute of Zoology, 70593, Stuttgart, Germany
| | - Philipp Vick
- University of Hohenheim, Institute of Zoology, 70593, Stuttgart, Germany.
| |
Collapse
|
28
|
Piacentino ML, Chung O, Ramachandran J, Zuch DT, Yu J, Conaway EA, Reyna AE, Bradham CA. Zygotic LvBMP5-8 is required for skeletal patterning and for left–right but not dorsal–ventral specification in the sea urchin embryo. Dev Biol 2016; 412:44-56. [DOI: 10.1016/j.ydbio.2016.02.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 01/31/2016] [Accepted: 02/18/2016] [Indexed: 01/25/2023]
|
29
|
Takemoto A, Miyamoto T, Simono F, Kurogi N, Shirae-Kurabayashi M, Awazu A, Suzuki KIT, Yamamoto T, Sakamoto N. Cilia play a role in breaking left-right symmetry of the sea urchin embryo. Genes Cells 2016; 21:568-78. [DOI: 10.1111/gtc.12362] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 02/25/2016] [Indexed: 11/29/2022]
Affiliation(s)
- Ayumi Takemoto
- Department of Mathematical and Life Sciences; Graduate School of Science; Hiroshima University; Higashi-Hiroshima 739-8526 Japan
| | - Tatsuo Miyamoto
- Department of Genetics and Cell Biology; Research Institute for Radiation Biology and Medicine; Hiroshima University; Hiroshima 734-8553 Japan
| | - Fumie Simono
- Hiroshima Prefectural Hiroshima Kokutaiji High School; Hiroshima 730-0042 Japan
- An Educational Project for Exciting Science Learning for Pupils; Hiroshima University; Higashi-Hiroshima 739-8524 Japan
| | - Nao Kurogi
- Department of Mathematical and Life Sciences; Graduate School of Science; Hiroshima University; Higashi-Hiroshima 739-8526 Japan
| | - Maki Shirae-Kurabayashi
- Sugashima Marine Biological Laboratory; Graduate School of Science; Nagoya University; Mie 517-0004 Japan
| | - Akinori Awazu
- Department of Mathematical and Life Sciences; Graduate School of Science; Hiroshima University; Higashi-Hiroshima 739-8526 Japan
- Research Center for the Mathematics on Chromatin Live Dynamics; Hiroshima University; Higashi-Hiroshima 739-8526 Japan
| | - Ken-ichi T. Suzuki
- Department of Mathematical and Life Sciences; Graduate School of Science; Hiroshima University; Higashi-Hiroshima 739-8526 Japan
| | - Takashi Yamamoto
- Department of Mathematical and Life Sciences; Graduate School of Science; Hiroshima University; Higashi-Hiroshima 739-8526 Japan
- Research Center for the Mathematics on Chromatin Live Dynamics; Hiroshima University; Higashi-Hiroshima 739-8526 Japan
| | - Naoaki Sakamoto
- Department of Mathematical and Life Sciences; Graduate School of Science; Hiroshima University; Higashi-Hiroshima 739-8526 Japan
- Research Center for the Mathematics on Chromatin Live Dynamics; Hiroshima University; Higashi-Hiroshima 739-8526 Japan
| |
Collapse
|
30
|
Martik ML, Lyons DC, McClay DR. Developmental gene regulatory networks in sea urchins and what we can learn from them. F1000Res 2016; 5. [PMID: 26962438 PMCID: PMC4765714 DOI: 10.12688/f1000research.7381.1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/19/2016] [Indexed: 12/21/2022] Open
Abstract
Sea urchin embryos begin zygotic transcription shortly after the egg is fertilized. Throughout the cleavage stages a series of transcription factors are activated and, along with signaling through a number of pathways, at least 15 different cell types are specified by the beginning of gastrulation. Experimentally, perturbation of contributing transcription factors, signals and receptors and their molecular consequences enabled the assembly of an extensive gene regulatory network model. That effort, pioneered and led by Eric Davidson and his laboratory, with many additional insights provided by other laboratories, provided the sea urchin community with a valuable resource. Here we describe the approaches used to enable the assembly of an advanced gene regulatory network model describing molecular diversification during early development. We then provide examples to show how a relatively advanced authenticated network can be used as a tool for discovery of how diverse developmental mechanisms are controlled and work.
Collapse
Affiliation(s)
- Megan L Martik
- Biology Department, Duke University, Durham, North Carolina, 27708, USA
| | - Deirdre C Lyons
- Biology Department, Duke University, Durham, North Carolina, 27708, USA
| | - David R McClay
- Biology Department, Duke University, Durham, North Carolina, 27708, USA
| |
Collapse
|
31
|
Warner JF, Miranda EL, McClay DR. Contribution of hedgehog signaling to the establishment of left-right asymmetry in the sea urchin. Dev Biol 2016; 411:314-324. [PMID: 26872875 DOI: 10.1016/j.ydbio.2016.02.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 02/06/2016] [Accepted: 02/08/2016] [Indexed: 01/22/2023]
Abstract
Most bilaterians exhibit a left-right asymmetric distribution of their internal organs. The sea urchin larva is notable in this regard since most adult structures are generated from left sided embryonic structures. The gene regulatory network governing this larval asymmetry is still a work in progress but involves several conserved signaling pathways including Nodal, and BMP. Here we provide a comprehensive analysis of Hedgehog signaling and it's contribution to left-right asymmetry. We report that Hh signaling plays a conserved role to regulate late asymmetric expression of Nodal and that this regulation occurs after Nodal breaks left-right symmetry in the mesoderm. Thus, while Hh functions to maintain late Nodal expression, the molecular asymmetry of the future coelomic pouches is locked in. Furthermore we report that cilia play a role only insofar as to transduce Hh signaling and do not have an independent effect on the asymmetry of the mesoderm. From this, we are able to construct a more complete regulatory network governing the establishment of left-right asymmetry in the sea urchin.
Collapse
Affiliation(s)
- Jacob F Warner
- Duke University Department of Biology, Durham, NC, United States
| | - Esther L Miranda
- Duke University Department of Biology, Durham, NC, United States
| | - David R McClay
- Duke University Department of Biology, Durham, NC, United States.
| |
Collapse
|
32
|
Byrne M, Martinez P, Morris V. Evolution of a pentameral body plan was not linked to translocation of anterior Hox genes: the echinoderm HOX cluster revisited. Evol Dev 2016; 18:137-43. [DOI: 10.1111/ede.12172] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Maria Byrne
- Schools of Medical and Biological SciencesThe University of SydneySydneyNSW2006Australia
| | - Pedro Martinez
- Departament de GenèticaUniversitat de BarcelonaAv. Diagonal, 643Barcelona08028Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA)Passeig Lluís Companys, 23Barcelona08010Spain
| | - Valerie Morris
- School of Biological SciencesThe University of SydneySydneyNSW2006Australia
| |
Collapse
|
33
|
Quantitative developmental transcriptomes of the Mediterranean sea urchin Paracentrotus lividus. Mar Genomics 2015; 25:89-94. [PMID: 26671332 DOI: 10.1016/j.margen.2015.11.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 11/26/2015] [Accepted: 11/26/2015] [Indexed: 01/28/2023]
Abstract
Embryonic development progresses through the timely activation of thousands of differentially activated genes. Quantitative developmental transcriptomes provide the means to relate global patterns of differentially expressed genes to the emerging body plans they generate. The sea urchin is one of the classic model systems for embryogenesis and the models of its developmental gene regulatory networks are of the most comprehensive of their kind. Thus, the sea urchin embryo is an excellent system for studies of its global developmental transcriptional profiles. Here we produced quantitative developmental transcriptomes of the sea urchin Paracentrotus lividus (P. lividus) at seven developmental stages from the fertilized egg to prism stage. We generated de-novo reference transcriptome and identified 29,817 genes that are expressed at this time period. We annotated and quantified gene expression at the different developmental stages and confirmed the reliability of the expression profiles by QPCR measurement of a subset of genes. The progression of embryo development is reflected in the observed global expression patterns and in our principle component analysis. Our study illuminates the rich patterns of gene expression that participate in sea urchin embryogenesis and provide an essential resource for further studies of the dynamic expression of P. lividus genes.
Collapse
|
34
|
Byrne M, Koop D, Cisternas P, Strbenac D, Yang JYH, Wray GA. Transcriptomic analysis of Nodal- and BMP-associated genes during juvenile development of the sea urchin Heliocidaris erythrogramma. Mar Genomics 2015; 24 Pt 1:41-5. [DOI: 10.1016/j.margen.2015.05.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 05/30/2015] [Accepted: 05/30/2015] [Indexed: 10/23/2022]
|
35
|
Haillot E, Molina MD, Lapraz F, Lepage T. The Maternal Maverick/GDF15-like TGF-β Ligand Panda Directs Dorsal-Ventral Axis Formation by Restricting Nodal Expression in the Sea Urchin Embryo. PLoS Biol 2015; 13:e1002247. [PMID: 26352141 PMCID: PMC4564238 DOI: 10.1371/journal.pbio.1002247] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 08/05/2015] [Indexed: 01/26/2023] Open
Abstract
Specification of the dorsal-ventral axis in the highly regulative sea urchin embryo critically relies on the zygotic expression of nodal, but whether maternal factors provide the initial spatial cue to orient this axis is not known. Although redox gradients have been proposed to entrain the dorsal-ventral axis by acting upstream of nodal, manipulating the activity of redox gradients only has modest consequences, suggesting that other factors are responsible for orienting nodal expression and defining the dorsal-ventral axis. Here we uncover the function of Panda, a maternally provided transforming growth factor beta (TGF-β) ligand that requires the activin receptor-like kinases (Alk) Alk3/6 and Alk1/2 receptors to break the radial symmetry of the embryo and orient the dorsal-ventral axis by restricting nodal expression. We found that the double inhibition of the bone morphogenetic protein (BMP) type I receptors Alk3/6 and Alk1/2 causes a phenotype dramatically more severe than the BMP2/4 loss-of-function phenotype, leading to extreme ventralization of the embryo through massive ectopic expression of nodal, suggesting that an unidentified signal acting through BMP type I receptors cooperates with BMP2/4 to restrict nodal expression. We identified this ligand as the product of maternal Panda mRNA. Double inactivation of panda and bmp2/4 led to extreme ventralization, mimicking the phenotype caused by inactivation of the two BMP receptors. Inhibition of maternal panda mRNA translation disrupted the early spatial restriction of nodal, leading to persistent massive ectopic expression of nodal on the dorsal side despite the presence of Lefty. Phylogenetic analysis indicates that Panda is not a prototypical BMP ligand but a member of a subfamily of TGF-β distantly related to Inhibins, Lefty, and TGF-β that includes Maverick from Drosophila and GDF15 from vertebrates. Indeed, overexpression of Panda does not appear to directly or strongly activate phosphoSmad1/5/8 signaling, suggesting that although this TGF-β may require Alk1/2 and/or Alk3/6 to antagonize nodal expression, it may do so by sequestering a factor essential for Nodal signaling, by activating a non-Smad pathway downstream of the type I receptors, or by activating extremely low levels of pSmad1/5/8. We provide evidence that, although panda mRNA is broadly distributed in the early embryo, local expression of panda mRNA efficiently orients the dorsal-ventral axis and that Panda activity is required locally in the early embryo to specify this axis. Taken together, these findings demonstrate that maternal panda mRNA is both necessary and sufficient to orient the dorsal-ventral axis. These results therefore provide evidence that in the highly regulative sea urchin embryo, the activity of spatially restricted maternal factors regulates patterning along the dorsal-ventral axis.
Collapse
Affiliation(s)
- Emmanuel Haillot
- Institut de Biologie Valrose, iBV, UMR 7277 CNRS, Inserm U1091, UNS, University of Nice Sophia Antipolis, Nice, France
| | - Maria Dolores Molina
- Institut de Biologie Valrose, iBV, UMR 7277 CNRS, Inserm U1091, UNS, University of Nice Sophia Antipolis, Nice, France
| | - François Lapraz
- Institut de Biologie Valrose, iBV, UMR 7277 CNRS, Inserm U1091, UNS, University of Nice Sophia Antipolis, Nice, France
| | - Thierry Lepage
- Institut de Biologie Valrose, iBV, UMR 7277 CNRS, Inserm U1091, UNS, University of Nice Sophia Antipolis, Nice, France
| |
Collapse
|
36
|
Röttinger E, DuBuc TQ, Amiel AR, Martindale MQ. Nodal signaling is required for mesodermal and ventral but not for dorsal fates in the indirect developing hemichordate, Ptychodera flava. Biol Open 2015; 4:830-42. [PMID: 25979707 PMCID: PMC4571091 DOI: 10.1242/bio.011809] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Nodal signaling plays crucial roles in vertebrate developmental processes such as endoderm and mesoderm formation, and axial patterning events along the anteroposterior, dorsoventral and left-right axes. In echinoderms, Nodal plays an essential role in the establishment of the dorsoventral axis and left-right asymmetry, but not in endoderm or mesoderm induction. In protostomes, Nodal signaling appears to be involved only in establishing left-right asymmetry. Hence, it is hypothesized that Nodal signaling has been co-opted to pattern the dorsoventral axis of deuterostomes and for endoderm, mesoderm formation as well as anteroposterior patterning in chordates. Hemichordata, together with echinoderms, represent the sister taxon to chordates. In this study, we analyze the role of Nodal signaling in the indirect developing hemichordate Ptychodera flava. In particular, we show that during gastrulation nodal transcripts are detected in a ring of cells at the vegetal pole that gives rise to endomesoderm and in the ventral ectoderm at later stages of development. Inhibition of Nodal function disrupts dorsoventral fates and also blocks formation of the larval mesoderm. Interestingly, molecular analysis reveals that only mesodermal, apical and ventral gene expression is affected while the dorsal side appears to be patterned correctly. Taken together, this study suggests that the co-option of Nodal signaling in mesoderm formation and potentially in anteroposterior patterning has occurred prior to the emergence of chordates and that Nodal signaling on the ventral side is uncoupled from BMP signaling on the dorsal side, representing a major difference from the molecular mechanisms of dorsoventral patterning events in echinoderms.
Collapse
Affiliation(s)
- Eric Röttinger
- Université Nice Sophia Antipolis, IRCAN, UMR 7284, 06107 Nice, France CNRS, IRCAN, UMR 7284, 06107 Nice, France INSERM, IRCAN, U1081, 06107 Nice, France
| | - Timothy Q DuBuc
- The Whitney Marine Laboratory for Marine Science, University of Florida, St. Augustine, FL 32080-8610, USA
| | - Aldine R Amiel
- Université Nice Sophia Antipolis, IRCAN, UMR 7284, 06107 Nice, France CNRS, IRCAN, UMR 7284, 06107 Nice, France INSERM, IRCAN, U1081, 06107 Nice, France
| | - Mark Q Martindale
- The Whitney Marine Laboratory for Marine Science, University of Florida, St. Augustine, FL 32080-8610, USA
| |
Collapse
|
37
|
Piacentino ML, Ramachandran J, Bradham CA. Late Alk4/5/7 signaling is required for anterior skeletal patterning in sea urchin embryos. Development 2015; 142:943-52. [PMID: 25633352 DOI: 10.1242/dev.114322] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Skeletal patterning in the sea urchin embryo requires a conversation between the skeletogenic primary mesenchyme cells (PMCs) and the overlying pattern-dictating ectoderm; however, our understanding of the molecular basis for this process remains incomplete. Here, we show that TGF-β-receptor signaling is required during gastrulation to pattern the anterior skeleton. To block TGF-β signaling, we used SB431542 (SB43), a specific inhibitor of the TGF-β type I receptor Alk4/5/7. Treatment with SB43 during gastrulation blocks anterior PMC positioning and the formation of the anterior skeleton, but does not perturb general ectoderm specification or development. This is the first example of a signaling event required for patterning of a specific part of the skeleton. Alk4/5/7 inhibition does not prevent the formation of a mouth, although SB43-treated plutei display reduced feeding ability, presumably due to the loss of the structural support for the mouth conferred by the anterior skeleton. Both Univin and Nodal are potential ligands for Alk4/5/7; however, Nodal is unilaterally expressed on only the right side, whereas Univin is bilaterally expressed in the ectoderm adjacent to the anterior skeleton during the relevant time period. Our results demonstrate that Univin is both necessary and sufficient for secondary skeletal development in a control background, consistent with the hypothesis that Univin is a relevant Alk4/5/7 ligand for anterior skeletal patterning. Taken together, our data demonstrate that Alk4/5/7 signaling during gastrulation is required to direct PMCs to the oral hood, and suggest that Univin is a relevant ligand for this signaling event.
Collapse
Affiliation(s)
- Michael L Piacentino
- Department of Biology, Boston University, Boston, MA 02215, USA Program in Molecular Biology, Cell Biology and Biochemistry, Boston University, Boston, MA 02215, USA
| | | | - Cynthia A Bradham
- Department of Biology, Boston University, Boston, MA 02215, USA Program in Molecular Biology, Cell Biology and Biochemistry, Boston University, Boston, MA 02215, USA Program in Bioinformatics, Boston University, Boston, MA 02215, USA
| |
Collapse
|
38
|
Levin M. Endogenous bioelectrical networks store non-genetic patterning information during development and regeneration. J Physiol 2015; 592:2295-305. [PMID: 24882814 DOI: 10.1113/jphysiol.2014.271940] [Citation(s) in RCA: 137] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Pattern formation, as occurs during embryogenesis or regeneration, is the crucial link between genotype and the functions upon which selection operates. Even cancer and aging can be seen as challenges to the continuous physiological processes that orchestrate individual cell activities toward the anatomical needs of an organism. Thus, the origin and maintenance of complex biological shape is a fundamental question for cell, developmental, and evolutionary biology, as well as for biomedicine. It has long been recognized that slow bioelectrical gradients can control cell behaviors and morphogenesis. Here, I review recent molecular data that implicate endogenous spatio-temporal patterns of resting potentials among non-excitable cells as instructive cues in embryogenesis, regeneration, and cancer. Functional data have implicated gradients of resting potential in processes such as limb regeneration, eye induction, craniofacial patterning, and head-tail polarity, as well as in metastatic transformation and tumorigenesis. The genome is tightly linked to bioelectric signaling, via ion channel proteins that shape the gradients, downstream genes whose transcription is regulated by voltage, and transduction machinery that converts changes in bioelectric state to second-messenger cascades. However, the data clearly indicate that bioelectric signaling is an autonomous layer of control not reducible to a biochemical or genetic account of cell state. The real-time dynamics of bioelectric communication among cells are not fully captured by transcriptomic or proteomic analyses, and the necessary-and-sufficient triggers for specific changes in growth and form can be physiological states, while the underlying gene loci are free to diverge. The next steps in this exciting new field include the development of novel conceptual tools for understanding the anatomical semantics encoded in non-neural bioelectrical networks, and of improved biophysical tools for reading and writing electrical state information into somatic tissues. Cracking the bioelectric code will have transformative implications for developmental biology, regenerative medicine, and synthetic bioengineering.
Collapse
Affiliation(s)
- Michael Levin
- Biology Department, Center for Regenerative and Developmental Biology, Tufts University, Medford, MA, USA
| |
Collapse
|
39
|
Cavalieri V, Spinelli G. Early asymmetric cues triggering the dorsal/ventral gene regulatory network of the sea urchin embryo. eLife 2014; 3:e04664. [PMID: 25457050 PMCID: PMC4273433 DOI: 10.7554/elife.04664] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 12/01/2014] [Indexed: 12/16/2022] Open
Abstract
Dorsal/ventral (DV) patterning of the sea urchin embryo relies on a ventrally-localized organizer expressing Nodal, a pivotal regulator of the DV gene regulatory network. However, the inceptive mechanisms imposing the symmetry-breaking are incompletely understood. In Paracentrotus lividus, the Hbox12 homeodomain-containing repressor is expressed by prospective dorsal cells, spatially facing and preceding the onset of nodal transcription. We report that Hbox12 misexpression provokes DV abnormalities, attenuating nodal and nodal-dependent transcription. Reciprocally, impairing hbox12 function disrupts DV polarity by allowing ectopic expression of nodal. Clonal loss-of-function, inflicted by blastomere transplantation or gene-transfer assays, highlights that DV polarization requires Hbox12 action in dorsal cells. Remarkably, the localized knock-down of nodal restores DV polarity of embryos lacking hbox12 function. Finally, we show that hbox12 is a dorsal-specific negative modulator of the p38-MAPK activity, which is required for nodal expression. Altogether, our results suggest that Hbox12 function is essential for proper positioning of the DV organizer.
Collapse
Affiliation(s)
- Vincenzo Cavalieri
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
| | - Giovanni Spinelli
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
| |
Collapse
|
40
|
Ohtsuka Y, Matsumoto J, Katsuyama Y, Okamura Y. Nodal signaling regulates specification of ascidian peripheral neurons through control of the BMP signal. Development 2014; 141:3889-99. [PMID: 25231764 DOI: 10.1242/dev.110213] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The neural crest and neurogenic placodes are thought to be a vertebrate innovation that gives rise to much of the peripheral nervous system (PNS). Despite their importance for understanding chordate evolution and vertebrate origins, little is known about the evolutionary origin of these structures. Here, we investigated the mechanisms underlying the development of ascidian trunk epidermal sensory neurons (ESNs), which are thought to function as mechanosensory neurons in the rostral-dorsal trunk epidermis. We found that trunk ESNs are derived from the anterior and lateral neural plate border, as is the case in the vertebrate PNS. Pharmacological experiments indicated that intermediate levels of bone morphogenetic protein (BMP) signal induce formation of ESNs from anterior ectodermal cells. Gene knockdown experiments demonstrated that HrBMPa (60A-subclass BMP) and HrBMPb (dpp-subclass BMP) act to induce trunk ESNs at the tailbud stage and that anterior trunk ESN specification requires Chordin-mediated antagonism of the BMP signal, but posterior trunk ESN specification does not. We also found that Nodal functions as a neural plate border inducer in ascidians. Nodal signaling regulates expression of HrBMPs and HrChordin in the lateral neural plate, and consequently specifies trunk ESNs. Collectively, these findings show that BMP signaling that is regulated spatiotemporally by Nodal signaling is required for trunk ESN specification, which clearly differs from the BMP gradient model proposed for vertebrate neural induction.
Collapse
Affiliation(s)
- Yukio Ohtsuka
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 6, Higashi 1-1-1, Tsukuba, Ibaraki 305-8566, Japan
| | - Jun Matsumoto
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 6, Higashi 1-1-1, Tsukuba, Ibaraki 305-8566, Japan
| | - You Katsuyama
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 6, Higashi 1-1-1, Tsukuba, Ibaraki 305-8566, Japan
| | - Yasushi Okamura
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 6, Higashi 1-1-1, Tsukuba, Ibaraki 305-8566, Japan
| |
Collapse
|
41
|
Blum M, Schweickert A, Vick P, Wright CVE, Danilchik MV. Symmetry breakage in the vertebrate embryo: when does it happen and how does it work? Dev Biol 2014; 393:109-23. [PMID: 24972089 PMCID: PMC4481729 DOI: 10.1016/j.ydbio.2014.06.014] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 06/08/2014] [Accepted: 06/17/2014] [Indexed: 10/25/2022]
Abstract
Asymmetric development of the vertebrate embryo has fascinated embryologists for over a century. Much has been learned since the asymmetric Nodal signaling cascade in the left lateral plate mesoderm was detected, and began to be unraveled over the past decade or two. When and how symmetry is initially broken, however, has remained a matter of debate. Two essentially mutually exclusive models prevail. Cilia-driven leftward flow of extracellular fluids occurs in mammalian, fish and amphibian embryos. A great deal of experimental evidence indicates that this flow is indeed required for symmetry breaking. An alternative model has argued, however, that flow simply acts as an amplification step for early asymmetric cues generated by ion flux during the first cleavage divisions. In this review we critically evaluate the experimental basis of both models. Although a number of open questions persist, the available evidence is best compatible with flow-based symmetry breakage as the archetypical mode of symmetry breakage.
Collapse
Affiliation(s)
- Martin Blum
- University of Hohenheim, Institute of Zoology (220), Garbenstrasse 30, D-70593 Stuttgart, Germany.
| | - Axel Schweickert
- University of Hohenheim, Institute of Zoology (220), Garbenstrasse 30, D-70593 Stuttgart, Germany
| | - Philipp Vick
- University of Hohenheim, Institute of Zoology (220), Garbenstrasse 30, D-70593 Stuttgart, Germany
| | - Christopher V E Wright
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232-0494, USA
| | - Michael V Danilchik
- Department of Integrative Biosciences, Oregon Health & Science University, Portland, OR 97239-3098, USA
| |
Collapse
|
42
|
Mustard J, Levin M. Bioelectrical Mechanisms for Programming Growth and Form: Taming Physiological Networks for Soft Body Robotics. Soft Robot 2014. [DOI: 10.1089/soro.2014.0011] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Jessica Mustard
- Department of Biology and Center for Regenerative and Developmental Biology, Tufts University, Medford, Massachusetts
| | - Michael Levin
- Department of Biology and Center for Regenerative and Developmental Biology, Tufts University, Medford, Massachusetts
| |
Collapse
|
43
|
Wessel GM, Brayboy L, Fresques T, Gustafson EA, Oulhen N, Ramos I, Reich A, Swartz SZ, Yajima M, Zazueta V. The biology of the germ line in echinoderms. Mol Reprod Dev 2014; 81:679-711. [PMID: 23900765 PMCID: PMC4102677 DOI: 10.1002/mrd.22223] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Accepted: 07/23/2013] [Indexed: 12/16/2022]
Abstract
The formation of the germ line in an embryo marks a fresh round of reproductive potential. The developmental stage and location within the embryo where the primordial germ cells (PGCs) form, however, differs markedly among species. In many animals, the germ line is formed by an inherited mechanism, in which molecules made and selectively partitioned within the oocyte drive the early development of cells that acquire this material to a germ-line fate. In contrast, the germ line of other animals is fated by an inductive mechanism that involves signaling between cells that directs this specialized fate. In this review, we explore the mechanisms of germ-line determination in echinoderms, an early-branching sister group to the chordates. One member of the phylum, sea urchins, appears to use an inherited mechanism of germ-line formation, whereas their relatives, the sea stars, appear to use an inductive mechanism. We first integrate the experimental results currently available for germ-line determination in the sea urchin, for which considerable new information is available, and then broaden the investigation to the lesser-known mechanisms in sea stars and other echinoderms. Even with this limited insight, it appears that sea stars, and perhaps the majority of the echinoderm taxon, rely on inductive mechanisms for germ-line fate determination. This enables a strongly contrasted picture for germ-line determination in this phylum, but one for which transitions between different modes of germ-line determination might now be experimentally addressed.
Collapse
Affiliation(s)
- Gary M. Wessel
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, Rhode Island
| | - Lynae Brayboy
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, Rhode Island
| | - Tara Fresques
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, Rhode Island
| | - Eric A. Gustafson
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, Rhode Island
| | - Nathalie Oulhen
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, Rhode Island
| | - Isabela Ramos
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, Rhode Island
| | - Adrian Reich
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, Rhode Island
| | - S. Zachary Swartz
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, Rhode Island
| | - Mamiko Yajima
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, Rhode Island
| | - Vanessa Zazueta
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, Rhode Island
| |
Collapse
|
44
|
Stratification of gene coexpression patterns and GO function mining for a RNA-Seq data series. BIOMED RESEARCH INTERNATIONAL 2014; 2014:969768. [PMID: 24955372 PMCID: PMC4052503 DOI: 10.1155/2014/969768] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Revised: 04/05/2014] [Accepted: 04/06/2014] [Indexed: 11/17/2022]
Abstract
RNA-Seq is emerging as an increasingly important tool in biological research, and it provides the most direct evidence of the relationship between the physiological state and molecular changes in cells. A large amount of RNA-Seq data across diverse experimental conditions have been generated and deposited in public databases. However, most developed approaches for coexpression analyses focus on the coexpression pattern mining of the transcriptome, thereby ignoring the magnitude of gene differences in one pattern. Furthermore, the functional relationships of genes in one pattern, and notably among patterns, were not always recognized. In this study, we developed an integrated strategy to identify differential coexpression patterns of genes and probed the functional mechanisms of the modules. Two real datasets were used to validate the method and allow comparisons with other methods. One of the datasets was selected to illustrate the flow of a typical analysis. In summary, we present an approach to robustly detect coexpression patterns in transcriptomes and to stratify patterns according to their relative differences. Furthermore, a global relationship between patterns and biological functions was constructed. In addition, a freely accessible web toolkit “coexpression pattern mining and GO functional analysis” (COGO) was developed.
Collapse
|
45
|
Blum M, Feistel K, Thumberger T, Schweickert A. The evolution and conservation of left-right patterning mechanisms. Development 2014; 141:1603-13. [PMID: 24715452 DOI: 10.1242/dev.100560] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Morphological asymmetry is a common feature of animal body plans, from shell coiling in snails to organ placement in humans. The signaling protein Nodal is key for determining this laterality. Many vertebrates, including humans, use cilia for breaking symmetry during embryonic development: rotating cilia produce a leftward flow of extracellular fluids that induces the asymmetric expression of Nodal. By contrast, Nodal asymmetry can be induced flow-independently in invertebrates. Here, we ask when and why flow evolved. We propose that flow was present at the base of the deuterostomes and that it is required to maintain organ asymmetry in otherwise perfectly bilaterally symmetrical vertebrates.
Collapse
Affiliation(s)
- Martin Blum
- Institute of Zoology, University of Hohenheim, 70593 Stuttgart, Germany
| | | | | | | |
Collapse
|
46
|
Fresques T, Zazueta-Novoa V, Reich A, Wessel GM. Selective accumulation of germ-line associated gene products in early development of the sea star and distinct differences from germ-line development in the sea urchin. Dev Dyn 2014; 243:568-87. [PMID: 24038550 PMCID: PMC3996927 DOI: 10.1002/dvdy.24038] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 08/12/2013] [Accepted: 08/16/2013] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Echinodermata is a diverse phylum, a sister group to chordates, and contains diverse organisms that may be useful to understand varied mechanisms of germ-line specification. RESULTS We tested 23 genes in development of the sea star Patiria miniata that fall into five categories: (1) Conserved germ-line factors; (2) Genes involved in the inductive mechanism of germ-line specification; (3) Germ-line associated genes; (4) Molecules involved in left-right asymmetry; and (5) Genes involved in regulation and maintenance of the genome during early embryogenesis. Overall, our results support the contention that the posterior enterocoel is a source of the germ line in the sea star P. miniata. CONCLUSIONS The germ line in this organism appears to be specified late in embryogenesis, and in a pattern more consistent with inductive interactions amongst cells. This is distinct from the mechanism seen in sea urchins, a close relative of the sea star clad. We propose that P. miniata may serve as a valuable model to study inductive mechanisms of germ-cell specification and when compared with germ-line formation in the sea urchin S. purpuratus may reveal developmental transitions that occur in the evolution of inherited and inductive mechanisms of germ-line specification.
Collapse
Affiliation(s)
| | | | - Adrian Reich
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence RI 02912 USA
| | - Gary M. Wessel
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence RI 02912 USA
| |
Collapse
|
47
|
Affiliation(s)
- Jacob F. Warner
- Department of Biology; Duke University; Durham North Carolina
| | - David R. McClay
- Department of Biology; Duke University; Durham North Carolina
| |
Collapse
|
48
|
Kitazawa C, Sakaguchi C, Nishimura H, Kobayashi C, Baba T, Yamanaka A. Development of the sea urchins Temnopleurus toreumaticus Leske, 1778 and Temnopleurus reevesii Gray, 1855 (Camarodonta: Temnopleuridae). Zool Stud 2014. [DOI: 10.1186/1810-522x-53-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
49
|
Su YH. Telling left from right: Left-right asymmetric controls in sea urchins. Genesis 2014; 52:269-78. [DOI: 10.1002/dvg.22739] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 12/20/2013] [Accepted: 12/31/2013] [Indexed: 12/30/2022]
Affiliation(s)
- Yi-Hsien Su
- Institute of Cellular and Organismic Biology; Academia Sinica; Nankang Taipei Taiwan
| |
Collapse
|
50
|
Vandenberg LN, Lemire JM, Levin M. It's never too early to get it Right: A conserved role for the cytoskeleton in left-right asymmetry. Commun Integr Biol 2013; 6:e27155. [PMID: 24505508 PMCID: PMC3912007 DOI: 10.4161/cib.27155] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 11/08/2013] [Accepted: 11/11/2013] [Indexed: 01/08/2023] Open
Abstract
For centuries, scientists and physicians have been captivated by the consistent left-right (LR) asymmetry of the heart, viscera, and brain. A recent study implicated tubulin proteins in establishing laterality in several experimental models, including asymmetric chemosensory receptor expression in C. elegans neurons, polarization of HL-60 human neutrophil-like cells in culture, and asymmetric organ placement in Xenopus. The same mutations that randomized asymmetry in these diverse systems also affect chirality in Arabidopsis, revealing a remarkable conservation of symmetry-breaking mechanisms among kingdoms. In Xenopus, tubulin mutants only affected LR patterning very early, suggesting that this axis is established shortly after fertilization. This addendum summarizes and extends the knowledge of the cytoskeleton's role in the patterning of the LR axis. Results from many species suggest a conserved role for the cytoskeleton as the initiator of asymmetry, and indicate that symmetry is first broken during early embryogenesis by an intracellular process.
Collapse
Affiliation(s)
- Laura N Vandenberg
- Biology Department; Center for Regenerative and Developmental Biology; Tufts University; Medford, MA USA ; Current affiliation: Department of Public Health; Division of Environmental Health Sciences; University of Massachusetts, Amherst; Amherst, MA USA
| | - Joan M Lemire
- Biology Department; Center for Regenerative and Developmental Biology; Tufts University; Medford, MA USA
| | - Michael Levin
- Biology Department; Center for Regenerative and Developmental Biology; Tufts University; Medford, MA USA
| |
Collapse
|