1
|
Ernsberger U, Rohrer H. The sympathetic nervous system arose in the earliest vertebrates. Nature 2024; 629:46-48. [PMID: 38632426 DOI: 10.1038/d41586-024-01017-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
|
2
|
Chaudhry KA, Jacobi JJ, Gillard BM, Karasik E, Martin JC, da Silva Fernandes T, Hurley E, Feltri ML, Attwood KM, Twist CJ, Smiraglia DJ, Long MD, Bianchi-Smiraglia A. Aryl hydrocarbon receptor is a tumor promoter in MYCN-amplified neuroblastoma cells through suppression of differentiation. iScience 2023; 26:108303. [PMID: 38026169 PMCID: PMC10654598 DOI: 10.1016/j.isci.2023.108303] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/25/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Abstract
Neuroblastoma is the most common extracranial solid tumor in children. MYCN amplification is detected in almost half of high-risk cases and is associated with poorly differentiated tumors, poor patient prognosis and poor response to therapy, including retinoids. We identify the aryl hydrocarbon receptor (AhR) as a transcription factor promoting the growth and suppressing the differentiation of MYCN-amplified neuroblastoma. A neuroblastoma specific AhR transcriptional signature reveals an inverse correlation of AhR activity with patients' outcome, suggesting AhR activity is critical for disease progression. AhR modulates chromatin structures, reducing accessibility to regions responsive to retinoic acid. Genetic and pharmacological inhibition of AhR results in induction of differentiation. Importantly, AhR antagonism with clofazimine synergizes with retinoic acid in inducing differentiation both in vitro and in vivo. Thus, we propose AhR as a target for MYCN-amplified neuroblastoma and that its antagonism, combined with current standard-of-care, may result in a more durable response in patients.
Collapse
Affiliation(s)
- Kanita A. Chaudhry
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Justine J. Jacobi
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Bryan M. Gillard
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Ellen Karasik
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Jeffrey C. Martin
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | | | - Edward Hurley
- Department of Biochemistry and Neurology, Institute for Myelin and Glia Exploration, State University of New York at Buffalo, Buffalo, NY, USA
| | - Maria Laura Feltri
- Department of Biochemistry and Neurology, Institute for Myelin and Glia Exploration, State University of New York at Buffalo, Buffalo, NY, USA
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Foundation I.R.C.C.S. Carlo Besta Neurological Institute Milan, Italy
| | - Kristopher M. Attwood
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Clare J. Twist
- Department of Pediatric Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Dominic J. Smiraglia
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Mark D. Long
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Anna Bianchi-Smiraglia
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| |
Collapse
|
3
|
MacLean JE, Wertman JN, Prykhozhij SV, Chedrawe E, Langley S, Steele SL, Ban K, Blake K, Berman JN. phox2ba: The Potential Genetic Link behind the Overlap in the Symptomatology between CHARGE and Central Congenital Hypoventilation Syndromes. Genes (Basel) 2023; 14:genes14051086. [PMID: 37239446 DOI: 10.3390/genes14051086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 05/06/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
CHARGE syndrome typically results from mutations in the gene encoding chromodomain helicase DNA-binding protein 7 (CHD7). CHD7 is involved in regulating neural crest development, which gives rise to tissues of the skull/face and the autonomic nervous system (ANS). Individuals with CHARGE syndrome are frequently born with anomalies requiring multiple surgeries and often experience adverse events post-anesthesia, including oxygen desaturations, decreased respiratory rates, and heart rate abnormalities. Central congenital hypoventilation syndrome (CCHS) affects ANS components that regulate breathing. Its hallmark feature is hypoventilation during sleep, clinically resembling observations in anesthetized CHARGE patients. Loss of PHOX2B (paired-like homeobox 2b) underlies CCHS. Employing a chd7-null zebrafish model, we investigated physiologic responses to anesthesia and compared these to loss of phox2b. Heart rates were lower in chd7 mutants compared to the wild-type. Exposure to tricaine, a zebrafish anesthetic/muscle relaxant, revealed that chd7 mutants took longer to become anesthetized, with higher respiratory rates during recovery. chd7 mutant larvae demonstrated unique phox2ba expression patterns. The knockdown of phox2ba reduced larval heart rates similar to chd7 mutants. chd7 mutant fish are a valuable preclinical model to investigate anesthesia in CHARGE syndrome and reveal a novel functional link between CHARGE syndrome and CCHS.
Collapse
Affiliation(s)
- Jessica E MacLean
- Department of Pediatrics, Dalhousie University, Halifax, NS B3K 6R8, Canada
| | - Jaime N Wertman
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Sergey V Prykhozhij
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
| | - Emily Chedrawe
- Department of Pediatrics, Dalhousie University, Halifax, NS B3K 6R8, Canada
| | - Stewart Langley
- Department of Pediatrics, Dalhousie University, Halifax, NS B3K 6R8, Canada
| | - Shelby L Steele
- Department of Pediatrics, Dalhousie University, Halifax, NS B3K 6R8, Canada
| | - Kevin Ban
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
| | - Kim Blake
- Department of Pediatrics, Dalhousie University, Halifax, NS B3K 6R8, Canada
| | - Jason N Berman
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
- Departments of Pediatrics and Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| |
Collapse
|
4
|
Ren S, Zhang Z, Song Q, Ren Z, Xiao J, Li L, Zhang Q. Metabolic exploration of the developmental abnormalities and neurotoxicity of Esculentoside B, the main toxic factor in Phytolaccae radix. Food Chem Toxicol 2023; 176:113777. [PMID: 37080526 DOI: 10.1016/j.fct.2023.113777] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/31/2023] [Accepted: 04/10/2023] [Indexed: 04/22/2023]
Abstract
P: radix is a perennial herb, and its extracts have various biological properties that make it a potential candidate for the treatment of tumors, edema, and lymphatic stasis. However, the main factor contributing to its toxicity are not clear. Here, we used a zebrafish toxicological model to study the main toxicity factor of P. radix and explore the potential mechanisms involved. The results revealed that Esculentoside B was the major toxic factor of P. radix. Exposure of zebrafish larvae to Esculentoside B caused developmental abnormalities, neurotoxicity and altered locomotor behavior. The combination of AChE activity and the expression levels of genes relevant to CNS development demonstrated that Esculentoside B is neurotoxic to zebrafish larvae, impairs their CNS development, and that AChE may be a toxic target of Esculentoside B. Metabolomic analysis has revealed that Esculentoside B exposure can disrupt D-Amino acid metabolism, protein export, autophagy, and mTOR signaling pathways in zebrafish larvae. These findings provide insights into the molecular mechanisms underlying EsB-induced neurotoxicity in zebrafish, which can facilitate further research and development of P. radix for safe consumption.
Collapse
Affiliation(s)
- Sipei Ren
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, Shanxi, China
| | - Zhichao Zhang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, Shanxi, China
| | - Qinyang Song
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, Shanxi, China
| | - Zhaoyang Ren
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, Shanxi, China
| | - Jian Xiao
- Shaanxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji, 721013, China.
| | - Luqi Li
- Life Science Research Core Services, Northwest A&F University, Yangling, Xianyang, 712100, China
| | - Qiang Zhang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, Shanxi, China; Shaanxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji, 721013, China.
| |
Collapse
|
5
|
Subkhankulova T, Camargo Sosa K, Uroshlev LA, Nikaido M, Shriever N, Kasianov AS, Yang X, Rodrigues FSLM, Carney TJ, Bavister G, Schwetlick H, Dawes JHP, Rocco A, Makeev VJ, Kelsh RN. Zebrafish pigment cells develop directly from persistent highly multipotent progenitors. Nat Commun 2023; 14:1258. [PMID: 36878908 PMCID: PMC9988989 DOI: 10.1038/s41467-023-36876-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 02/17/2023] [Indexed: 03/08/2023] Open
Abstract
Neural crest cells are highly multipotent stem cells, but it remains unclear how their fate restriction to specific fates occurs. The direct fate restriction model hypothesises that migrating cells maintain full multipotency, whilst progressive fate restriction envisages fully multipotent cells transitioning to partially-restricted intermediates before committing to individual fates. Using zebrafish pigment cell development as a model, we show applying NanoString hybridization single cell transcriptional profiling and RNAscope in situ hybridization that neural crest cells retain broad multipotency throughout migration and even in post-migratory cells in vivo, with no evidence for partially-restricted intermediates. We find that leukocyte tyrosine kinase early expression marks a multipotent stage, with signalling driving iridophore differentiation through repression of fate-specific transcription factors for other fates. We reconcile the direct and progressive fate restriction models by proposing that pigment cell development occurs directly, but dynamically, from a highly multipotent state, consistent with our recently-proposed Cyclical Fate Restriction model.
Collapse
Affiliation(s)
| | - Karen Camargo Sosa
- Department of Life Sciences, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Leonid A Uroshlev
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Ul. Gubkina 3, Moscow, 119991, Russia
| | - Masataka Nikaido
- Department of Life Sciences, University of Bath, Claverton Down, Bath, BA2 7AY, UK
- Graduate School of Science, University of Hyogo, Ako-gun, Hyogo Pref., 678-1297, Japan
| | - Noah Shriever
- Department of Life Sciences, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Artem S Kasianov
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Ul. Gubkina 3, Moscow, 119991, Russia
- Department of Medical and Biological Physics, Moscow Institute of Physics and Technology, 9 Institutskiy per., Dolgoprudny, Moscow Region, 141701, Russia
- A.A. Kharkevich Institute for Information Transmission Problems (IITP), Russian Academy of Sciences, Bolshoy Karetny per. 19, build.1, Moscow, 127051, Russia
| | - Xueyan Yang
- Department of Life Sciences, University of Bath, Claverton Down, Bath, BA2 7AY, UK
- The MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, 200438, PR China
| | | | - Thomas J Carney
- Department of Life Sciences, University of Bath, Claverton Down, Bath, BA2 7AY, UK
- Lee Kong Chian School of Medicine, Experimental Medicine Building, Yunnan Garden Campus, Nanyang Technological University, 59 Nanyang Drive, Yunnan Garden, 636921, Singapore
| | - Gemma Bavister
- Department of Life Sciences, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Hartmut Schwetlick
- Department of Mathematical Sciences, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Jonathan H P Dawes
- Department of Mathematical Sciences, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Andrea Rocco
- Department of Microbial Sciences, FHMS, University of Surrey, GU2 7XH, Guildford, UK
- Department of Physics, FEPS, University of Surrey, GU2 7XH, Guildford, UK
| | - Vsevolod J Makeev
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Ul. Gubkina 3, Moscow, 119991, Russia
- Department of Medical and Biological Physics, Moscow Institute of Physics and Technology, 9 Institutskiy per., Dolgoprudny, Moscow Region, 141701, Russia
- Laboratory 'Regulatory Genomics', Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlyovskaya street, Kazan, 420008, Russia
| | - Robert N Kelsh
- Department of Life Sciences, University of Bath, Claverton Down, Bath, BA2 7AY, UK.
| |
Collapse
|
6
|
Gonzalez Malagon SG, Liu KJ. Linking neural crest development to neuroblastoma pathology. Development 2022; 149:276149. [DOI: 10.1242/dev.200331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
ABSTRACT
Although rare, childhood (paediatric) cancers are a major cause of death in young children. Unlike many adult cancers, paediatric cancers, such as neuroblastoma (NB), are developmental diseases that rarely show genetic predispositions. NB is the most common extracranial solid tumour in children, accounting for ∼15% of paediatric cancer deaths. This heterogeneous cancer arises from undifferentiated neural crest-derived progenitor cells. As neural crest cells are multipotent and migratory, they are often considered the embryonic paradigm of cancer stem cells. However, very little is known about the events that trigger tumour initiation and progression. Here, we discuss recent insights into sympathoadrenal lineage specification, as well as genetic factors associated with NB. With this in mind, we consider the molecular underpinnings of NB in the context of developmental trajectories of the neural crest lineage. This allows us to compare distinct subtypes of the disease and gene-function interactions during sensitive phases of neural crest development.
Collapse
Affiliation(s)
- Sandra Guadalupe Gonzalez Malagon
- Biomedical Research Institute, Foundation for Research and Technology, University of Ioannina Campus 1 , 45115 Ioannina , Greece
- School of Health Sciences and Institute of Biosciences, University Research Centre, University of Ioannina 2 Department of Biological Applications and Technology , , 45110 Ioannina , Greece
| | - Karen J. Liu
- Centre for Craniofacial and Regenerative Biology, King's College London 3 , London SE1 9RT , UK
| |
Collapse
|
7
|
Alhashem Z, Camargo-Sosa K, Kelsh RN, Linker C. Trunk Neural Crest Migratory Position and Asymmetric Division Predict Terminal Differentiation. Front Cell Dev Biol 2022; 10:887393. [PMID: 35756992 PMCID: PMC9214262 DOI: 10.3389/fcell.2022.887393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/25/2022] [Indexed: 11/29/2022] Open
Abstract
The generation of complex structures during embryogenesis requires the controlled migration and differentiation of cells from distant origins. How these processes are coordinated and impact each other to form functional structures is not fully understood. Neural crest cells migrate extensively giving rise to many cell types. In the trunk, neural crest cells migrate collectively forming chains comprised of cells with distinct migratory identities: one leader cell at the front of the group directs migration, while followers track the leader forming the body of the chain. Herein we analysed the relationship between trunk neural crest migratory identity and terminal differentiation. We found that trunk neural crest migration and fate allocation is coherent. Leader cells that initiate movement give rise to the most distal derivativities. Interestingly, the asymmetric division of leaders separates migratory identity and fate. The distal daughter cell retains the leader identity and clonally forms the Sympathetic Ganglia. The proximal sibling migrates as a follower and gives rise to Schwann cells. The sympathetic neuron transcription factor phox2bb is strongly expressed by leaders from early stages of migration, suggesting that specification and migration occur concomitantly and in coordination. Followers divide symmetrically and their fate correlates with their position in the chain.
Collapse
Affiliation(s)
- Zain Alhashem
- Randall Centre for Cell and Molecular Biophysics, Guy's Campus, King's College London, London, United Kingdom
| | - Karen Camargo-Sosa
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Robert N Kelsh
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Claudia Linker
- Randall Centre for Cell and Molecular Biophysics, Guy's Campus, King's College London, London, United Kingdom
| |
Collapse
|
8
|
Jiang YJ, Fann CSJ, Fuh JL, Chung MY, Huang HY, Chu KC, Wang YF, Hsu CL, Kao LS, Chen SP, Wang SJ. Genome-wide analysis identified novel susceptible genes of restless legs syndrome in migraineurs. J Headache Pain 2022; 23:39. [PMID: 35350973 PMCID: PMC8966278 DOI: 10.1186/s10194-022-01409-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 03/07/2022] [Indexed: 11/10/2022] Open
Abstract
Background Restless legs syndrome is a highly prevalent comorbidity of migraine; however, its genetic contributions remain unclear. Objectives To identify the genetic variants of restless legs syndrome in migraineurs and to investigate their potential pathogenic roles. Methods We conducted a two-stage genome-wide association study (GWAS) to identify susceptible genes for restless legs syndrome in 1,647 patients with migraine, including 264 with and 1,383 without restless legs syndrome, and also validated the association of lead variants in normal controls unaffected with restless legs syndrome (n = 1,053). We used morpholino translational knockdown (morphants), CRISPR/dCas9 transcriptional knockdown, transient CRISPR/Cas9 knockout (crispants) and gene rescue in one-cell stage embryos of zebrafish to study the function of the identified genes. Results We identified two novel susceptibility loci rs6021854 (in VSTM2L) and rs79823654 (in CCDC141) to be associated with restless legs syndrome in migraineurs, which remained significant when compared to normal controls. Two different morpholinos targeting vstm2l and ccdc141 in zebrafish demonstrated behavioural and cytochemical phenotypes relevant to restless legs syndrome, including hyperkinetic movements of pectoral fins and decreased number in dopaminergic amacrine cells. These phenotypes could be partially reversed with gene rescue, suggesting the specificity of translational knockdown. Transcriptional CRISPR/dCas9 knockdown and transient CRISPR/Cas9 knockout of vstm2l and ccdc141 replicated the findings observed in translationally knocked-down morphants. Conclusions Our GWAS and functional analysis suggest VSTM2L and CCDC141 are highly relevant to the pathogenesis of restless legs syndrome in migraineurs. Supplementary Information The online version contains supplementary material available at 10.1186/s10194-022-01409-9.
Collapse
Affiliation(s)
- Yun-Jin Jiang
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli County, 35053, Taiwan.,Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | | | - Jong-Ling Fuh
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, 11217, Taiwan.,School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
| | - Ming-Yi Chung
- Department of Life Sciences & Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan.,Department of Medical Research, Taipei Veterans General Hospital, Taipei, 11217, Taiwan
| | - Hui-Ying Huang
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli County, 35053, Taiwan
| | - Kuo-Chang Chu
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli County, 35053, Taiwan
| | - Yen-Feng Wang
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, 11217, Taiwan.,School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
| | - Chia-Lin Hsu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Lung-Sen Kao
- Department of Life Sciences & Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan.,Brain Research Center, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
| | - Shih-Pin Chen
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, 11217, Taiwan. .,School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan. .,Department of Medical Research, Taipei Veterans General Hospital, Taipei, 11217, Taiwan. .,Brain Research Center, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan. .,Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan.
| | - Shuu-Jiun Wang
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, 11217, Taiwan. .,School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan. .,Brain Research Center, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan.
| |
Collapse
|
9
|
Dawes JHP, Kelsh RN. Cell Fate Decisions in the Neural Crest, from Pigment Cell to Neural Development. Int J Mol Sci 2021; 22:13531. [PMID: 34948326 PMCID: PMC8706606 DOI: 10.3390/ijms222413531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 11/17/2022] Open
Abstract
The neural crest shows an astonishing multipotency, generating multiple neural derivatives, but also pigment cells, skeletogenic and other cell types. The question of how this process is controlled has been the subject of an ongoing debate for more than 35 years. Based upon new observations of zebrafish pigment cell development, we have recently proposed a novel, dynamic model that we believe goes some way to resolving the controversy. Here, we will firstly summarize the traditional models and the conflicts between them, before outlining our novel model. We will also examine our recent dynamic modelling studies, looking at how these reveal behaviors compatible with the biology proposed. We will then outline some of the implications of our model, looking at how it might modify our views of the processes of fate specification, differentiation, and commitment.
Collapse
Affiliation(s)
- Jonathan H. P. Dawes
- Centre for Networks and Collective Behaviour, University of Bath, Bath BA2 7AY, UK;
- Department of Mathematical Sciences, University of Bath, Bath BA2 7AY, UK
| | - Robert N. Kelsh
- Centre for Mathematical Biology, University of Bath, Bath BA2 7AY, UK
- Department of Biology & Biochemistry, University of Bath, Bath BA2 7AY, UK
| |
Collapse
|
10
|
Perri P, Ponzoni M, Corrias MV, Ceccherini I, Candiani S, Bachetti T. A Focus on Regulatory Networks Linking MicroRNAs, Transcription Factors and Target Genes in Neuroblastoma. Cancers (Basel) 2021; 13:5528. [PMID: 34771690 PMCID: PMC8582685 DOI: 10.3390/cancers13215528] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/26/2021] [Accepted: 10/28/2021] [Indexed: 12/17/2022] Open
Abstract
Neuroblastoma (NB) is a tumor of the peripheral sympathetic nervous system that substantially contributes to childhood cancer mortality. NB originates from neural crest cells (NCCs) undergoing a defective sympathetic neuronal differentiation and although the starting events leading to the development of NB remain to be fully elucidated, the master role of genetic alterations in key oncogenes has been ascertained: (1) amplification and/or over-expression of MYCN, which is strongly associated with tumor progression and invasion; (2) activating mutations, amplification and/or over-expression of ALK, which is involved in tumor initiation, angiogenesis and invasion; (3) amplification and/or over-expression of LIN28B, promoting proliferation and suppression of neuroblast differentiation; (4) mutations and/or over-expression of PHOX2B, which is involved in the regulation of NB differentiation, stemness maintenance, migration and metastasis. Moreover, altered microRNA (miRNA) expression takes part in generating pathogenetic networks, in which the regulatory loops among transcription factors, miRNAs and target genes lead to complex and aberrant oncogene expression that underlies the development of a tumor. In this review, we have focused on the circuitry linking the oncogenic transcription factors MYCN and PHOX2B with their transcriptional targets ALK and LIN28B and the tumor suppressor microRNAs let-7, miR-34 and miR-204, which should act as down-regulators of their expression. We have also looked at the physiologic role of these genetic and epigenetic determinants in NC development, as well as in terminal differentiation, with their pathogenic dysregulation leading to NB oncogenesis.
Collapse
Affiliation(s)
- Patrizia Perri
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (M.P.); (M.V.C.)
| | - Mirco Ponzoni
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (M.P.); (M.V.C.)
| | - Maria Valeria Corrias
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (M.P.); (M.V.C.)
| | - Isabella Ceccherini
- Laboratory of Genetics and Genomics of Rare Diseases, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy;
| | - Simona Candiani
- Department of Earth, Environment and Life Sciences, University of Genoa, 16132 Genoa, Italy;
| | - Tiziana Bachetti
- Laboratory of Genetics and Genomics of Rare Diseases, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy;
- Department of Earth, Environment and Life Sciences, University of Genoa, 16132 Genoa, Italy;
| |
Collapse
|
11
|
Kamenev D, Sunadome K, Shirokov M, Chagin AS, Singh A, Irion U, Adameyko I, Fried K, Dyachuk V. Schwann cell precursors generate sympathoadrenal system during zebrafish development. J Neurosci Res 2021; 99:2540-2557. [PMID: 34184294 DOI: 10.1002/jnr.24909] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/24/2021] [Accepted: 06/01/2021] [Indexed: 11/07/2022]
Abstract
The autonomic portion of the peripheral nervous system orchestrates tissue homeostasis through direct innervation of internal organs, and via release of adrenalin and noradrenalin into the blood flow. The developmental mechanisms behind the formation of autonomic neurons and chromaffin cells are not fully understood. Using genetic tracing, we discovered that a significant proportion of sympathetic neurons in zebrafish originates from Schwann cell precursors (SCPs) during a defined period of embryonic development. Moreover, SCPs give rise to the main portion of the chromaffin cells, as well as to a significant proportion of enteric and other autonomic neurons associated with internal organs. The conversion of SCPs into neuronal and chromaffin cells is ErbB receptor dependent, as the pharmacological inhibition of the ErbB pathway effectively perturbed this transition. Finally, using genetic ablations, we revealed that SCPs producing neurons and chromaffin cells migrate along spinal motor axons to reach appropriate target locations. This study reveals the evolutionary conservation of SCP-to-neuron and SCP-to-chromaffin cell transitions over significant growth periods in fish and highlights relevant cellular-genetic mechanisms. Based on this, we anticipate that multipotent SCPs might be present in postnatal vertebrate tissues, retaining the capacity to regenerate autonomic neurons and chromaffin cells.
Collapse
Affiliation(s)
- Dmitrii Kamenev
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Kazunori Sunadome
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Maxim Shirokov
- National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia
| | - Andrey S Chagin
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.,Institute for Regenerative Medicine, Sechenov University, Moscow, Russia
| | - Ajeet Singh
- Max-Planck-Institut für Entwicklungsbiologie, Tübingen, Germany
| | - Uwe Irion
- Max-Planck-Institut für Entwicklungsbiologie, Tübingen, Germany
| | - Igor Adameyko
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.,Center for Brain Research, Medical University Vienna, Vienna, Austria
| | - Kaj Fried
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Vyacheslav Dyachuk
- National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia
| |
Collapse
|
12
|
Mitsuzawa S, Suzuki N, Akiyama T, Ishikawa M, Sone T, Kawada J, Funayama R, Shirota M, Mitsuhashi H, Morimoto S, Ikeda K, Shijo T, Ohno A, Nakamura N, Ono H, Ono R, Osana S, Nakagawa T, Nishiyama A, Izumi R, Kaneda S, Ikeuchi Y, Nakayama K, Fujii T, Warita H, Okano H, Aoki M. Reduced PHOX2B stability causes axonal growth impairment in motor neurons with TARDBP mutations. Stem Cell Reports 2021; 16:1527-1541. [PMID: 34048688 PMCID: PMC8190591 DOI: 10.1016/j.stemcr.2021.04.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 04/26/2021] [Accepted: 04/28/2021] [Indexed: 01/22/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is an adult-onset incurable motor neuron (MN) disease. The reasons for selective MN vulnerability in ALS are unknown. Axonal pathology is among the earliest signs of ALS. We searched for novel modulatory genes in human MN axon shortening affected by TARDBP mutations. In transcriptome analysis of RNA present in the axon compartment of human-derived induced pluripotent stem cell (iPSC)-derived MNs, PHOX2B (paired-like homeobox protein 2B) showed lower expression in TARDBP mutant axons, which was consistent with axon qPCR and in situ hybridization. PHOX2B mRNA stability was reduced in TARDBP mutant MNs. Furthermore, PHOX2B knockdown reduced neurite length in human MNs. Finally, phox2b knockdown in zebrafish induced short spinal axons and impaired escape response. PHOX2B is known to be highly express in other types of neurons maintained after ALS progression. Collectively, TARDBP mutations induced loss of axonal resilience, which is an important ALS-related phenotype mediated by PHOX2B downregulation. Human iPSCs were established from a familial ALS with the TARDBP p.G376D mutation PHOX2B mRNA was identified to be decreased in TARDBP mutant MNs by RNA sequencing PHOX2B mRNA bind to TDP-43 and its stability was reduced in TARDBP mutant MNs PHOX2B knockdown reduced neurite length and impaired motor functions in vivo/vitro
Collapse
Affiliation(s)
- Shio Mitsuzawa
- Department of Neurology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | - Naoki Suzuki
- Department of Neurology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | - Tetsuya Akiyama
- Department of Neurology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | - Mitsuru Ishikawa
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Takefumi Sone
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Jiro Kawada
- Jiksak Bioengineering Inc. 7-7 Shinkawasaki, Saiwai-ku, Kawasaki 212-0032, Japan; Institute of Industrial Science, the University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Ryo Funayama
- Division of Cell Proliferation, United Centers for Advanced Research and Translational Medicine, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Matsuyuki Shirota
- Division of Interdisciplinary Medical Science, United Centers for Advanced Research and Translational Medicine, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Hiroaki Mitsuhashi
- Department of Applied Biochemistry, School of Engineering, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa 259-1292, Japan
| | - Satoru Morimoto
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Kensuke Ikeda
- Department of Neurology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | - Tomomi Shijo
- Department of Neurology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | - Akiyuki Ohno
- Department of Neurology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | - Naoko Nakamura
- Department of Neurology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | - Hiroya Ono
- Department of Neurology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | - Risako Ono
- Department of Neurology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | - Shion Osana
- Division of Biomedical Engineering for Health and Welfare, Graduate School of Biomedical Engineering, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Tadashi Nakagawa
- Division of Cell Proliferation, United Centers for Advanced Research and Translational Medicine, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan; Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, 1-1-1 Daigaku-Doori, Sanyo-Onoda, Yamaguchi 756-0884, Japan
| | - Ayumi Nishiyama
- Department of Neurology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | - Rumiko Izumi
- Department of Neurology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | - Shohei Kaneda
- Institute of Industrial Science, the University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan; Department of Mechanical Systems Engineering, Faculty of Engineering, Kogakuin University, 1-24-2 Nishishinjuku, Shinjuku-ku, Tokyo, 163-8677, Japan
| | - Yoshiho Ikeuchi
- Institute of Industrial Science, the University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan; Institute for AI and Beyond, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Keiko Nakayama
- Division of Cell Proliferation, United Centers for Advanced Research and Translational Medicine, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Teruo Fujii
- Institute of Industrial Science, the University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Hitoshi Warita
- Department of Neurology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Masashi Aoki
- Department of Neurology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan.
| |
Collapse
|
13
|
Zhou A, Rand CM, Hockney SM, Niewijk G, Reineke P, Speare V, Berry-Kravis EM, Zhou L, Jennings LJ, Yu M, Ceccherini I, Bachetti T, Pennock M, Yap KL, Weese-Mayer DE. Paired-like homeobox gene (PHOX2B) nonpolyalanine repeat expansion mutations (NPARMs): genotype-phenotype correlation in congenital central hypoventilation syndrome (CCHS). Genet Med 2021; 23:1656-1663. [PMID: 33958749 DOI: 10.1038/s41436-021-01178-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 04/02/2021] [Accepted: 04/02/2021] [Indexed: 11/09/2022] Open
Abstract
PURPOSE CCHS is an extremely rare congenital disorder requiring artificial ventilation as life support. Typically caused by heterozygous polyalanine repeat expansion mutations (PARMs) in the PHOX2B gene, identification of a relationship between PARM length and phenotype severity has enabled anticipatory management. However, for patients with non-PARMs in PHOX2B (NPARMs, ~10% of CCHS patients), a genotype-phenotype correlation has not been established. This comprehensive report of PHOX2B NPARMs and associated phenotypes, aims at elucidating potential genotype-phenotype correlations that will guide anticipatory management. METHODS An international collaboration (clinical, commercial, and research laboratories) was established to collect/share information on novel and previously published PHOX2B NPARM cases. Variants were categorized by type and gene location. Categorical data were analyzed with chi-square and Fisher's exact test; further pairwise comparisons were made on significant results. RESULTS Three hundred two individuals with PHOX2B NPARMs were identified, including 139 previously unreported cases. Findings demonstrate significant associations between key phenotypic manifestations of CCHS and variant type, location, and predicted effect on protein function. CONCLUSION This study presents the largest cohort of PHOX2B NPARMs and associated phenotype data to date, enabling genotype-phenotype studies that will advance personalized, anticipatory management and help elucidate pathological mechanisms. Further characterization of PHOX2B NPARMs demands longitudinal clinical follow-up through international registries.
Collapse
Affiliation(s)
- Amy Zhou
- Department of Pediatrics, Division of Autonomic Medicine, Center for Autonomic Medicine in Pediatrics (CAMP), Ann & Robert H. Lurie Children's Hospital of Chicago and Stanley Manne Children's Research Institute, Chicago, IL, USA
| | - Casey M Rand
- Department of Pediatrics, Division of Autonomic Medicine, Center for Autonomic Medicine in Pediatrics (CAMP), Ann & Robert H. Lurie Children's Hospital of Chicago and Stanley Manne Children's Research Institute, Chicago, IL, USA
| | - Sara M Hockney
- Department of Pediatrics, Division of Autonomic Medicine, Center for Autonomic Medicine in Pediatrics (CAMP), Ann & Robert H. Lurie Children's Hospital of Chicago and Stanley Manne Children's Research Institute, Chicago, IL, USA.,Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Grace Niewijk
- Department of Pediatrics, Division of Autonomic Medicine, Center for Autonomic Medicine in Pediatrics (CAMP), Ann & Robert H. Lurie Children's Hospital of Chicago and Stanley Manne Children's Research Institute, Chicago, IL, USA
| | | | | | - Elizabeth M Berry-Kravis
- Departments of Pediatrics, Neurology, and Biochemistry, Molecular Diagnostics Laboratory, Rush University Medical Center, Chicago, IL, USA
| | - Lili Zhou
- Departments of Pediatrics, Neurology, and Biochemistry, Molecular Diagnostics Laboratory, Rush University Medical Center, Chicago, IL, USA
| | - Lawrence J Jennings
- Department of Pathology, Molecular Diagnostics Laboratory, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA.,Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Min Yu
- Department of Pathology, Molecular Diagnostics Laboratory, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | | | - Tiziana Bachetti
- IRCCS Istituto Giannina Gaslini, Genoa, Italy.,Lab Neurobiologia dello Sviluppo, Dip. Scienze della Terra dell'Ambiente e della Vita (DISTAV), Università di Genova, Genova, Italy
| | | | - Kai Lee Yap
- Department of Pathology, Molecular Diagnostics Laboratory, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA.,Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Debra E Weese-Mayer
- Department of Pediatrics, Division of Autonomic Medicine, Center for Autonomic Medicine in Pediatrics (CAMP), Ann & Robert H. Lurie Children's Hospital of Chicago and Stanley Manne Children's Research Institute, Chicago, IL, USA. .,Northwestern University Feinberg School of Medicine, Chicago, IL, USA. .,Department of Pediatrics, Pediatric Autonomic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
14
|
Afanasyeva EA, Gartlgruber M, Ryl T, Decaesteker B, Denecker G, Mönke G, Toprak UH, Florez A, Torkov A, Dreidax D, Herrmann C, Okonechnikov K, Ek S, Sharma AK, Sagulenko V, Speleman F, Henrich KO, Westermann F. Kalirin-RAC controls nucleokinetic migration in ADRN-type neuroblastoma. Life Sci Alliance 2021; 4:e201900332. [PMID: 33658318 PMCID: PMC8017594 DOI: 10.26508/lsa.201900332] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 02/12/2021] [Accepted: 02/17/2021] [Indexed: 12/12/2022] Open
Abstract
The migrational propensity of neuroblastoma is affected by cell identity, but the mechanisms behind the divergence remain unknown. Using RNAi and time-lapse imaging, we show that ADRN-type NB cells exhibit RAC1- and kalirin-dependent nucleokinetic (NUC) migration that relies on several integral components of neuronal migration. Inhibition of NUC migration by RAC1 and kalirin-GEF1 inhibitors occurs without hampering cell proliferation and ADRN identity. Using three clinically relevant expression dichotomies, we reveal that most of up-regulated mRNAs in RAC1- and kalirin-GEF1-suppressed ADRN-type NB cells are associated with low-risk characteristics. The computational analysis shows that, in a context of overall gene set poverty, the upregulomes in RAC1- and kalirin-GEF1-suppressed ADRN-type cells are a batch of AU-rich element-containing mRNAs, which suggests a link between NUC migration and mRNA stability. Gene set enrichment analysis-based search for vulnerabilities reveals prospective weak points in RAC1- and kalirin-GEF1-suppressed ADRN-type NB cells, including activities of H3K27- and DNA methyltransferases. Altogether, these data support the introduction of NUC inhibitors into cancer treatment research.
Collapse
Affiliation(s)
- Elena A Afanasyeva
- Department of Neuroblastoma Genomics, Hopp-Children's Cancer Center at the (NCT) Nationales Centrum für Tumorerkrankungen Heidelberg (KiTZ), Heidelberg, Germany
| | - Moritz Gartlgruber
- Department of Neuroblastoma Genomics, Hopp-Children's Cancer Center at the (NCT) Nationales Centrum für Tumorerkrankungen Heidelberg (KiTZ), Heidelberg, Germany
| | - Tatsiana Ryl
- Department of Neurosurgery, University of Duisburg Essen, Essen, Germany
| | - Bieke Decaesteker
- Center for Medical Genetics, Ghent University, and Cancer Research Institute Ghent, Ghent, Belgium
| | - Geertrui Denecker
- Center for Medical Genetics, Ghent University, and Cancer Research Institute Ghent, Ghent, Belgium
| | - Gregor Mönke
- European Molecular Biology Laboratories, Heidelberg, Germany
| | - Umut H Toprak
- Department of Neuroblastoma Genomics, Hopp-Children's Cancer Center at the (NCT) Nationales Centrum für Tumorerkrankungen Heidelberg (KiTZ), Heidelberg, Germany
| | - Andres Florez
- Department of Neuroblastoma Genomics, Hopp-Children's Cancer Center at the (NCT) Nationales Centrum für Tumorerkrankungen Heidelberg (KiTZ), Heidelberg, Germany
- Center for Systems Biology, Faculty of Arts and Sciences, Harvard University, Cambridge, MA, USA
| | - Alica Torkov
- Department of Neuroblastoma Genomics, Hopp-Children's Cancer Center at the (NCT) Nationales Centrum für Tumorerkrankungen Heidelberg (KiTZ), Heidelberg, Germany
| | - Daniel Dreidax
- Department of Neuroblastoma Genomics, Hopp-Children's Cancer Center at the (NCT) Nationales Centrum für Tumorerkrankungen Heidelberg (KiTZ), Heidelberg, Germany
| | - Carl Herrmann
- Group of Cancer Regulatory Genomics B086, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Konstantin Okonechnikov
- Department of Pediatric Neurooncology, Hopp-Children's Cancer Center at the (NCT) Nationales Centrum für Tumorerkrankungen Heidelberg (KiTZ), Heidelberg, Germany
| | - Sara Ek
- Department of Immunotechnology, CREATE Health, Faculty of Engineering, Lund University, Lund, Sweden
| | - Ashwini Kumar Sharma
- Institute for Pharmacy and Molecular Biotechnology and BioQuant, Heidelberg University, Heidelberg, Germany
- Division of Theoretical Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Vitaliya Sagulenko
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Frank Speleman
- Center for Medical Genetics, Ghent University, and Cancer Research Institute Ghent, Ghent, Belgium
| | - Kai-Oliver Henrich
- Department of Neuroblastoma Genomics, Hopp-Children's Cancer Center at the (NCT) Nationales Centrum für Tumorerkrankungen Heidelberg (KiTZ), Heidelberg, Germany
| | - Frank Westermann
- Department of Neuroblastoma Genomics, Hopp-Children's Cancer Center at the (NCT) Nationales Centrum für Tumorerkrankungen Heidelberg (KiTZ), Heidelberg, Germany
| |
Collapse
|
15
|
Li S, Yeo KS, Levee TM, Howe CJ, Her ZP, Zhu S. Zebrafish as a Neuroblastoma Model: Progress Made, Promise for the Future. Cells 2021; 10:cells10030580. [PMID: 33800887 PMCID: PMC8001113 DOI: 10.3390/cells10030580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 12/24/2022] Open
Abstract
For nearly a decade, researchers in the field of pediatric oncology have been using zebrafish as a model for understanding the contributions of genetic alternations to the pathogenesis of neuroblastoma (NB), and exploring the molecular and cellular mechanisms that underlie neuroblastoma initiation and metastasis. In this review, we will enumerate and illustrate the key advantages of using the zebrafish model in NB research, which allows researchers to: monitor tumor development in real-time; robustly manipulate gene expression (either transiently or stably); rapidly evaluate the cooperative interactions of multiple genetic alterations to disease pathogenesis; and provide a highly efficient and low-cost methodology to screen for effective pharmaceutical interventions (both alone and in combination with one another). This review will then list some of the common challenges of using the zebrafish model and provide strategies for overcoming these difficulties. We have also included visual diagram and figures to illustrate the workflow of cancer model development in zebrafish and provide a summary comparison of commonly used animal models in cancer research, as well as key findings of cooperative contributions between MYCN and diverse singling pathways in NB pathogenesis.
Collapse
Affiliation(s)
- Shuai Li
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55902, USA; (S.L.); (K.S.Y.); (T.M.L.); (C.J.H.); (Z.P.H.)
| | - Kok Siong Yeo
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55902, USA; (S.L.); (K.S.Y.); (T.M.L.); (C.J.H.); (Z.P.H.)
| | - Taylor M. Levee
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55902, USA; (S.L.); (K.S.Y.); (T.M.L.); (C.J.H.); (Z.P.H.)
| | - Cassie J. Howe
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55902, USA; (S.L.); (K.S.Y.); (T.M.L.); (C.J.H.); (Z.P.H.)
| | - Zuag Paj Her
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55902, USA; (S.L.); (K.S.Y.); (T.M.L.); (C.J.H.); (Z.P.H.)
| | - Shizhen Zhu
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55902, USA; (S.L.); (K.S.Y.); (T.M.L.); (C.J.H.); (Z.P.H.)
- Department of Molecular Pharmacology & Experimental Therapeutics, Center for Individualized Medicine, Mayo Clinic College of Medicine, Rochester, MN 55902, USA
- Correspondence:
| |
Collapse
|
16
|
Fransson S, Martinez-Monleon A, Johansson M, Sjöberg RM, Björklund C, Ljungman G, Ek T, Kogner P, Martinsson T. Whole-genome sequencing of recurrent neuroblastoma reveals somatic mutations that affect key players in cancer progression and telomere maintenance. Sci Rep 2020; 10:22432. [PMID: 33384420 PMCID: PMC7775426 DOI: 10.1038/s41598-020-78370-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 11/24/2020] [Indexed: 11/23/2022] Open
Abstract
Neuroblastoma is the most common and deadly childhood tumor. Relapsed or refractory neuroblastoma has a very poor prognosis despite recent treatment advances. To investigate genomic alterations associated with relapse and therapy resistance, whole-genome sequencing was performed on diagnostic and relapsed lesions together with constitutional DNA from seven children. Sequencing of relapsed tumors indicates somatic alterations in diverse genes, including those involved in RAS-MAPK signaling, promoting cell cycle progression or function in telomere maintenance and immortalization. Among recurrent alterations, CCND1-gain, TERT-rearrangements, and point mutations in POLR2A, CDK5RAP, and MUC16 were shown in ≥ 2 individuals. Our cohort contained examples of converging genomic alterations in primary-relapse tumor pairs, indicating dependencies related to specific genetic lesions. We also detected rare genetic germline variants in DNA repair genes (e.g., BARD1, BRCA2, CHEK2, and WRN) that might cooperate with somatically acquired variants in these patients with highly aggressive recurrent neuroblastoma. Our data indicate the importance of monitoring recurrent neuroblastoma through sequential genomic characterization and that new therapeutic approaches combining the targeting of MAPK signaling, cell cycle progression, and telomere activity are required for this challenging patient group.
Collapse
Affiliation(s)
- Susanne Fransson
- Department of Laboratory Medicine, Institute of Biomedicine, University of Gothenburg, Box 445, 405 30, Gothenburg, Sweden.
| | - Angela Martinez-Monleon
- Department of Laboratory Medicine, Institute of Biomedicine, University of Gothenburg, Box 445, 405 30, Gothenburg, Sweden
| | | | - Rose-Marie Sjöberg
- Department of Laboratory Medicine, Institute of Biomedicine, University of Gothenburg, Box 445, 405 30, Gothenburg, Sweden
| | | | - Gustaf Ljungman
- Department of Women's and Children's Health, Children's University Hospital, University of Uppsala, Uppsala, Sweden
| | - Torben Ek
- Children's Cancer Center, Queen Silvia Children's Hospital, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Per Kogner
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Tommy Martinsson
- Department of Laboratory Medicine, Institute of Biomedicine, University of Gothenburg, Box 445, 405 30, Gothenburg, Sweden
| |
Collapse
|
17
|
Abstract
Neuroblastoma (NB) is a pediatric tumor of embryonic origin. About 1-2% of all NBs are familial cases, and genetic predisposition is suspected for the remaining cases. During the last decade, genome-wide association studies (GWAS) and high-throughput sequencing approaches have been used to identify associations among common and rare genetic variants and NB risk. Substantial data has been produced by large patient cohorts that implicate various genes in NB tumorigenesis, such as CASC15, BARD1, CHEK2, LMO1, LIN28B, AXIN2, BRCA1, TP53, SMARCA4, and CDK1NB. NB, as well as other pediatric cancers, has few recurrent mutations but several copy number variations (CNVs). Almost all NBs show both numerical and structural CNVs. The proportion between numerical and structural CNVs differs between localized and metastatic tumors, with a greater prevalence of structural CNVs in metastatic NB. This genomic chaos frequently identified in NBs suggests that chromosome instability (CIN) could be one of the major actors in NB oncogenesis. Interestingly, many NB-predisposing variants occur in genes involved in the control of genome stability, mitosis, and normal chromosome separation. Here, we discuss the relationship between genetic predisposition and CIN in NB.
Collapse
Affiliation(s)
- Gian Paolo Tonini
- Neuroblastoma Laboratory, Pediatric Research Institute, Città della Speranza, Corso Stati Uniti 4, 35127, Padova, Italy.
| | - Mario Capasso
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Univeristà degli Studi di Napoli Federico II, Naples, Italy. .,CEINGE Biotecnologie Avanzate, Naples, Italy.
| |
Collapse
|
18
|
Abstract
Neuroblastoma is the most common extracranial solid tumor diagnosed during childhood and gives rise to various heterogeneous tumors along the sympathoadrenal axis. Congenital neuroblastoma accounts for 5% of total neuroblastoma cases diagnosed annually, with the majority of cases diagnosed in the first month after birth. Interestingly, neonates demonstrate a unique disease trajectory compared with children older than 1 year of age. This article will provide information on the pathogenesis and variable clinical presentation of congenital neuroblastoma, along with the biological prognostic factors that predict long-term outcomes in affected neonates.
Collapse
Affiliation(s)
- Elena Minakova
- Department of Pediatrics, Division of Newborn Medicine, Washington University in St Louis, St Louis, MO
| | - Jordan Lang
- Mallinckrodt Institute of Radiology, Washington University in St Louis, St Louis, MO
| |
Collapse
|
19
|
Bachetti T, Ceccherini I. Causative and commonPHOX2Bvariants define a broad phenotypic spectrum. Clin Genet 2019; 97:103-113. [DOI: 10.1111/cge.13633] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/31/2019] [Accepted: 08/15/2019] [Indexed: 11/25/2022]
Affiliation(s)
- Tiziana Bachetti
- Laboratorio Neurobiologia dello Sviluppo, Dipartimento di Scienze della Terra dell'Ambiente e della Vita (DISTAV)Università di Genova Genova Italy
| | | |
Collapse
|
20
|
Zhao J, Zhu Y, Xie X, Yao Y, Zhang J, Zhang R, Huang L, Cheng J, Xia H, He J, Zhang Y. Pleiotropic effect of common PHOX2B variants in Hirschsprung disease and neuroblastoma. Aging (Albany NY) 2019; 11:1252-1261. [PMID: 30799307 PMCID: PMC6402522 DOI: 10.18632/aging.101834] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 02/17/2019] [Indexed: 02/07/2023]
Abstract
Hirschsprung disease (HSCR) is a heterogeneous congenital disorder that affects the enteric nervous system, while neuroblastoma is an embryonal tumor of the sympathetic nervous system. Familial cases of both HSCR and neuroblastoma appear to be functionally linked to PHOX2B, which plays a key role in the development of neural crest derivatives. However, the association between common PHOX2B variants and disease risk is contested. Additionally, large-scale examination for pleiotropy or shared genetic susceptibility in sporadic HSCR and neuroblastoma cases lacks theoretical support. Here, we report the first examination of PHOX2B in 1470 HSCR and 469 neuroblastoma patients with matched healthy controls. The PHOX2B rs28647582 polymorphism was found to be associated with HSCR (P = 2.21E-03, OR = 1.26), and each subtype of the ailment (3.22E-03 ≤ P ≤ 0.43, 1.11 ≤ OR ≤ 2.32). The association between rs28647582 and NB risk was consistent with HSCR in a recessive model, though the P value was marginal (P = 0.06). These new genetic findings indicate the potential pleiotropic effects of PHOX2B in both HSCR and neuroblastoma, which could guide the development of therapeutic targets for the treatment of related neurodevelopmental disorders.
Collapse
Affiliation(s)
- Jinglu Zhao
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
- Equal contribution
| | - Yun Zhu
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
- Equal contribution
| | - Xiaoli Xie
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
- Equal contribution
| | - Yuxiao Yao
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Jiao Zhang
- Department of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Ruizhong Zhang
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Lihua Huang
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Jiwen Cheng
- Department of Pediatric Surgery, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi, China
| | - Huimin Xia
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Jing He
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Yan Zhang
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| |
Collapse
|
21
|
Goudarzi M, Berg K, Pieper LM, Schier AF. Individual long non-coding RNAs have no overt functions in zebrafish embryogenesis, viability and fertility. eLife 2019; 8:40815. [PMID: 30620332 PMCID: PMC6347452 DOI: 10.7554/elife.40815] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Accepted: 01/08/2019] [Indexed: 12/28/2022] Open
Abstract
Hundreds of long non-coding RNAs (lncRNAs) have been identified as potential regulators of gene expression, but their functions remain largely unknown. To study the role of lncRNAs during vertebrate development, we selected 25 zebrafish lncRNAs based on their conservation, expression profile or proximity to developmental regulators, and used CRISPR-Cas9 to generate 32 deletion alleles. We observed altered transcription of neighboring genes in some mutants, but none of the lncRNAs were required for embryogenesis, viability or fertility. Even RNAs with previously proposed non-coding functions (cyrano and squint) and other conserved lncRNAs (gas5 and lnc-setd1ba) were dispensable. In one case (lnc-phox2bb), absence of putative DNA regulatory-elements, but not of the lncRNA transcript itself, resulted in abnormal development. LncRNAs might have redundant, subtle, or context-dependent roles, but extrapolation from our results suggests that the majority of individual zebrafish lncRNAs have no overt roles in embryogenesis, viability and fertility.
Collapse
Affiliation(s)
- Mehdi Goudarzi
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States
| | - Kathryn Berg
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States
| | - Lindsey M Pieper
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States
| | - Alexander F Schier
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States.,Center for Brain Science, Harvard University, Cambridge, United States.,FAS Center for Systems Biology, Harvard University, Cambridge, United States.,Allen Discovery Center for Cell Lineage Tracing, University of Washington, Seattle, United States.,Biozentrum, University of Basel, Basel, Switzerland
| |
Collapse
|
22
|
Enhanced expression of MycN/CIP2A drives neural crest toward a neural stem cell-like fate: Implications for priming of neuroblastoma. Proc Natl Acad Sci U S A 2018; 115:E7351-E7360. [PMID: 30021854 DOI: 10.1073/pnas.1800039115] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Neuroblastoma is a neural crest-derived childhood tumor of the peripheral nervous system in which MycN amplification is a hallmark of poor prognosis. Here we show that MycN is expressed together with phosphorylation-stabilizing factor CIP2A in regions of the neural plate destined to form the CNS, but MycN is excluded from the neighboring neural crest stem cell domain. Interestingly, ectopic expression of MycN or CIP2A in the neural crest domain biases cells toward CNS-like neural stem cells that express Sox2. Consistent with this, some forms of neuroblastoma have been shown to share transcriptional resemblance with CNS neural stem cells. As high MycN/CIP2A levels correlate with poor prognosis, we posit that a MycN/CIP2A-mediated cell-fate bias may reflect a possible mechanism underlying early priming of some aggressive forms of neuroblastoma. In contrast to MycN, its paralogue cMyc is normally expressed in the neural crest stem cell domain and typically is associated with better overall survival in clinical neuroblastoma, perhaps reflecting a more "normal" neural crest-like state. These data suggest that priming for some forms of aggressive neuroblastoma may occur before neural crest emigration from the CNS and well before sympathoadrenal specification.
Collapse
|
23
|
Migration and diversification of the vagal neural crest. Dev Biol 2018; 444 Suppl 1:S98-S109. [PMID: 29981692 DOI: 10.1016/j.ydbio.2018.07.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 07/03/2018] [Accepted: 07/03/2018] [Indexed: 12/17/2022]
Abstract
Arising within the neural tube between the cranial and trunk regions of the body axis, the vagal neural crest shares interesting similarities in its migratory routes and derivatives with other neural crest populations. However, the vagal neural crest is also unique in its ability to contribute to diverse organs including the heart and enteric nervous system. This review highlights the migratory routes of the vagal neural crest and compares them across multiple vertebrates. We also summarize recent advances in understanding vagal neural crest ontogeny and discuss the contribution of this important neural crest population to the cardiovascular system and endoderm-derived organs, including the thymus, lungs and pancreas.
Collapse
|
24
|
Analysis of sporadic neuroblastic tumors reveals a novel PHOX2B mutation in neuroblastoma. GENE REPORTS 2018. [DOI: 10.1016/j.genrep.2018.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
25
|
Ritenour LE, Randall MP, Bosse KR, Diskin SJ. Genetic susceptibility to neuroblastoma: current knowledge and future directions. Cell Tissue Res 2018; 372:287-307. [PMID: 29589100 DOI: 10.1007/s00441-018-2820-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 02/27/2018] [Indexed: 12/16/2022]
Abstract
Neuroblastoma, a malignancy of the developing peripheral nervous system that affects infants and young children, is a complex genetic disease. Over the past two decades, significant progress has been made toward understanding the genetic determinants that predispose to this often lethal childhood cancer. Approximately 1-2% of neuroblastomas are inherited in an autosomal dominant fashion and a combination of co-morbidity and linkage studies has led to the identification of germline mutations in PHOX2B and ALK as the major genetic contributors to this familial neuroblastoma subset. The genetic basis of "sporadic" neuroblastoma is being studied through a large genome-wide association study (GWAS). These efforts have led to the discovery of many common susceptibility alleles, each with modest effect size, associated with the development and progression of sporadic neuroblastoma. More recently, next-generation sequencing efforts have expanded the list of potential neuroblastoma-predisposing mutations to include rare germline variants with a predicted larger effect size. The evolving characterization of neuroblastoma's genetic basis has led to a deeper understanding of the molecular events driving tumorigenesis, more precise risk stratification and prognostics and novel therapeutic strategies. This review details the contemporary understanding of neuroblastoma's genetic predisposition, including recent advances and discusses ongoing efforts to address gaps in our knowledge regarding this malignancy's complex genetic underpinnings.
Collapse
Affiliation(s)
- Laura E Ritenour
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Michael P Randall
- Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kristopher R Bosse
- Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sharon J Diskin
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
26
|
Zimmerman MW, Liu Y, He S, Durbin AD, Abraham BJ, Easton J, Shao Y, Xu B, Zhu S, Zhang X, Li Z, Weichert-Leahey N, Young RA, Zhang J, Look AT. MYC Drives a Subset of High-Risk Pediatric Neuroblastomas and Is Activated through Mechanisms Including Enhancer Hijacking and Focal Enhancer Amplification. Cancer Discov 2018; 8:320-335. [PMID: 29284669 PMCID: PMC5856009 DOI: 10.1158/2159-8290.cd-17-0993] [Citation(s) in RCA: 152] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 12/11/2017] [Accepted: 12/21/2017] [Indexed: 11/16/2022]
Abstract
The amplified MYCN gene serves as an oncogenic driver in approximately 20% of high-risk pediatric neuroblastomas. Here, we show that the family member MYC is a potent transforming gene in a separate subset of high-risk neuroblastoma cases (∼10%), based on (i) its upregulation by focal enhancer amplification or genomic rearrangements leading to enhancer hijacking, and (ii) its ability to transform neuroblastoma precursor cells in a transgenic animal model. The aberrant regulatory elements associated with oncogenic MYC activation include focally amplified distal enhancers and translocation of highly active enhancers from other genes to within topologically associating domains containing the MYC gene locus. The clinical outcome for patients with high levels of MYC expression is virtually identical to that of patients with amplification of the MYCN gene, a known high-risk feature of this disease. Together, these findings establish MYC as a bona fide oncogene in a clinically significant group of high-risk childhood neuroblastomas.Significance: Amplification of the MYCN oncogene is a recognized hallmark of high-risk pediatric neuroblastoma. Here, we demonstrate that MYC is also activated as a potent oncogene in a distinct subset of neuroblastoma cases through either focal amplification of distal enhancers or enhancer hijacking mediated by chromosomal translocation. Cancer Discov; 8(3); 320-35. ©2017 AACR.This article is highlighted in the In This Issue feature, p. 253.
Collapse
Affiliation(s)
- Mark W Zimmerman
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Yu Liu
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Shuning He
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Adam D Durbin
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Brian J Abraham
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts
| | - John Easton
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Ying Shao
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Beisi Xu
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Shizhen Zhu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota
| | - Xiaoling Zhang
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota
| | - Zhaodong Li
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Nina Weichert-Leahey
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Richard A Young
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts.
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Jinghui Zhang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee.
| | - A Thomas Look
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.
| |
Collapse
|
27
|
Tomolonis JA, Agarwal S, Shohet JM. Neuroblastoma pathogenesis: deregulation of embryonic neural crest development. Cell Tissue Res 2017; 372:245-262. [PMID: 29222693 DOI: 10.1007/s00441-017-2747-0] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 11/21/2017] [Indexed: 12/12/2022]
Abstract
Neuroblastoma (NB) is an aggressive pediatric cancer that originates from neural crest tissues of the sympathetic nervous system. NB is highly heterogeneous both from a clinical and a molecular perspective. Clinically, this cancer represents a wide range of phenotypes ranging from spontaneous regression of 4S disease to unremitting treatment-refractory progression and death of high-risk metastatic disease. At a cellular level, the heterogeneous behavior of NB likely arises from an arrest and deregulation of normal neural crest development. In the present review, we summarize our current knowledge of neural crest development as it relates to pathways promoting 'stemness' and how deregulation may contribute to the development of tumor-initiating CSCs. There is an emerging consensus that such tumor subpopulations contribute to the evolution of drug resistance, metastasis and relapse in other equally aggressive malignancies. As relapsed, refractory disease remains the primary cause of death for neuroblastoma, the identification and targeting of CSCs or other primary drivers of tumor progression remains a critical, clinically significant goal for neuroblastoma. We will critically review recent and past evidence in the literature supporting the concept of CSCs as drivers of neuroblastoma pathogenesis.
Collapse
Affiliation(s)
- Julie A Tomolonis
- Department of Pediatrics, Section of Hematology-Oncology, Texas Children's Cancer Center, Houston, TX, 77030, USA.,Medical Scientist Training Program (MSTP), Baylor College of Medicine, Houston, TX, 77030, USA.,Translational Biology & Molecular Medicine (TBMM) Graduate Program, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Saurabh Agarwal
- Department of Pediatrics, Section of Hematology-Oncology, Texas Children's Cancer Center, Houston, TX, 77030, USA.,Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Jason M Shohet
- Department of Pediatrics, Section of Hematology-Oncology, Texas Children's Cancer Center, Houston, TX, 77030, USA. .,Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, 77030, USA. .,Neuroblastoma Research Program, Texas Children's Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
28
|
Di Lascio S, Benfante R, Di Zanni E, Cardani S, Adamo A, Fornasari D, Ceccherini I, Bachetti T. Structural and functional differences in PHOX2B frameshift mutations underlie isolated or syndromic congenital central hypoventilation syndrome. Hum Mutat 2017; 39:219-236. [PMID: 29098737 PMCID: PMC5846889 DOI: 10.1002/humu.23365] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 10/24/2017] [Accepted: 10/29/2017] [Indexed: 12/13/2022]
Abstract
Heterozygous mutations in the PHOX2B gene are causative of congenital central hypoventilation syndrome (CCHS), a neurocristopathy characterized by defective autonomic control of breathing due to the impaired differentiation of neural crest cells. Among PHOX2B mutations, polyalanine (polyAla) expansions are almost exclusively associated with isolated CCHS, whereas frameshift variants, although less frequent, are often more severe than polyAla expansions and identified in syndromic CCHS. This article provides a complete review of all the frameshift mutations identified in cases of isolated and syndromic CCHS reported in the literature as well as those identified by us and not yet published. These were considered in terms of both their structure, whether the underlying indels induced frameshifts of either 1 or 2 steps ("frame 2" and "frame 3" mutations respectively), and clinical associations. Furthermore, we evaluated the structural and functional effects of one "frame 3" mutation identified in a patient with isolated CCHS, and one "frame 2" mutation identified in a patient with syndromic CCHS, also affected with Hirschsprung's disease and neuroblastoma. The data thus obtained confirm that the type of translational frame affects the severity of the transcriptional dysfunction and the predisposition to isolated or syndromic CCHS.
Collapse
Affiliation(s)
- Simona Di Lascio
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| | - Roberta Benfante
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy.,CNR- Neuroscience Institute, Milan, Italy
| | | | - Silvia Cardani
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| | - Annalisa Adamo
- UOC Genetica Medica, Istituto Giannina Gaslini, Genoa, Italy
| | - Diego Fornasari
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy.,CNR- Neuroscience Institute, Milan, Italy
| | | | | |
Collapse
|
29
|
Di Zanni E, Bianchi G, Ravazzolo R, Raffaghello L, Ceccherini I, Bachetti T. Targeting of PHOX2B expression allows the identification of drugs effective in counteracting neuroblastoma cell growth. Oncotarget 2017; 8:72133-72146. [PMID: 29069774 PMCID: PMC5641117 DOI: 10.18632/oncotarget.19922] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 07/18/2017] [Indexed: 11/25/2022] Open
Abstract
The pathogenic role of the PHOX2B gene in neuroblastoma is indicated by heterozygous mutations in neuroblastoma patients and by gene overexpression in both neuroblastoma cell lines and tumor samples. PHOX2B encodes a transcription factor which is crucial for the correct development and differentiation of sympathetic neurons. PHOX2B overexpression is considered a prognostic marker for neuroblastoma and it is also used by clinicians to monitor minimal residual disease. Furthermore, it has been observed that neuronal differentiation in neuroblastoma is dependent on down-regulation of PHOX2B expression, which confirms that PHOX2B expression may be considered a target in neuroblastoma. Here, PHOX2B promoter or 3′ untranslated region were used as molecular targets in an in vitro high-throughput approach that led to the identification of molecules able to decrease PHOX2B expression at transcriptional and likely even at post-transcriptional levels. Further functional investigations carried out on PHOX2B mRNA levels and biological consequences, such as neuroblastoma cell apoptosis and growth, showed that chloroquine and mycophenolate mofetil are most promising agents for neuroblastoma therapy based on down-regulation of PHOX2B expression. Finally, a strong correlation between the effect of drugs in terms of down-regulation of PHOX2B expression and of biological consequences in neuroblastoma cells confirms the role of PHOX2B as a potential molecular target in neuroblastoma.
Collapse
Affiliation(s)
- Eleonora Di Zanni
- U.O.C. Genetica Medica, Istituto Giannina Gaslini, Genova, Italy.,Present Address: Istituto di Biofisica, CNR, Genova, Italy
| | | | - Roberto Ravazzolo
- U.O.C. Genetica Medica, Istituto Giannina Gaslini, Genova, Italy.,Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health and CEBR, Università degli Studi di Genova, Genova, Italy
| | | | | | - Tiziana Bachetti
- U.O.C. Genetica Medica, Istituto Giannina Gaslini, Genova, Italy
| |
Collapse
|
30
|
Tao T, Sondalle SB, Shi H, Zhu S, Perez-Atayde AR, Peng J, Baserga SJ, Look AT. The pre-rRNA processing factor DEF is rate limiting for the pathogenesis of MYCN-driven neuroblastoma. Oncogene 2017; 36:3852-3867. [PMID: 28263972 PMCID: PMC5501763 DOI: 10.1038/onc.2016.527] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 12/08/2016] [Accepted: 12/22/2016] [Indexed: 02/07/2023]
Abstract
The nucleolar factor, digestive organ expansion factor (DEF), has a key role in ribosome biogenesis, functioning in pre-ribosomal RNA (pre-rRNA) processing as a component of the small ribosomal subunit (SSU) processome. Here we show that the peripheral sympathetic nervous system (PSNS) is very underdeveloped in def-deficient zebrafish, and that def haploinsufficiency significantly decreases disease penetrance and tumor growth rate in a MYCN-driven transgenic zebrafish model of neuroblastoma that arises in the PSNS. Consistent with these findings, DEF is highly expressed in human neuroblastoma, and its depletion in human neuroblastoma cell lines induces apoptosis. Interestingly, overexpression of MYCN in zebrafish and in human neuroblastoma cells results in the appearance of intermediate pre-rRNAs species that reflect the processing of pre-rRNAs through Pathway 2, a pathway that processes pre-rRNAs in a different temporal order than the more often used Pathway 1. Our results indicate that DEF and possibly other components of the SSU processome provide a novel site of vulnerability in neuroblastoma cells that could be exploited for targeted therapy.
Collapse
Affiliation(s)
- T Tao
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - S B Sondalle
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - H Shi
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.,College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - S Zhu
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Mayo Clinic Cancer Center and Mayo Clinic Center for Individualized Medicine, Rochester, MN, USA.,Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Mayo Clinic Cancer Center and Mayo Clinic Center for Individualized Medicine, Rochester, MN, USA
| | - A R Perez-Atayde
- Department of Pathology, Children's Hospital Boston, Harvard Medical School, Boston, MA, USA
| | - J Peng
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - S J Baserga
- Departments of Molecular Biophysics &Biochemistry, Genetics and Therapeutic Radiology, Yale University and Yale University School of Medicine, New Haven, CT, USA
| | - A T Look
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
31
|
Corallo D, Candiani S, Ori M, Aveic S, Tonini GP. The zebrafish as a model for studying neuroblastoma. Cancer Cell Int 2016; 16:82. [PMID: 27822138 PMCID: PMC5093987 DOI: 10.1186/s12935-016-0360-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 10/24/2016] [Indexed: 12/28/2022] Open
Abstract
Neuroblastoma is a tumor arising in the peripheral sympathetic nervous system and is the most common cancer in childhood. Since most of the cellular and molecular mechanisms underlying neuroblastoma onset and progression remain unknown, the generation of new in vivo models might be appropriate to better dissect the peripheral sympathetic nervous system development in both physiological and disease states. This review is focused on the use of zebrafish as a suitable and innovative model to study neuroblastoma development. Here, we briefly summarize the current knowledge about zebrafish peripheral sympathetic nervous system formation, focusing on key genes and cellular pathways that play a crucial role in the differentiation of sympathetic neurons during embryonic development. In addition, we include examples of how genetic changes known to be associated with aggressive neuroblastoma can mimic this malignancy in zebrafish. Thus, we note the value of the zebrafish model in the field of neuroblastoma research, showing how it can improve our current knowledge about genes and biological pathways that contribute to malignant transformation and progression during embryonic life.
Collapse
Affiliation(s)
- Diana Corallo
- Neuroblastoma Laboratory, Pediatric Research Institute, Città della Speranza, 35127 Padua, Italy
| | - Simona Candiani
- Department of Earth, Environmental and Life Sciences, (DISTAV), University of Genova, C.so Europa 26, 16132 Genoa, Italy
| | - Michela Ori
- Unit of Cell and Developmental Biology, Department of Biology, University of Pisa, S.S.12 Abetone e Brennero 4, 56127 Pisa, Italy
| | - Sanja Aveic
- Neuroblastoma Laboratory, Pediatric Research Institute, Città della Speranza, 35127 Padua, Italy
| | - Gian Paolo Tonini
- Neuroblastoma Laboratory, Pediatric Research Institute, Città della Speranza, 35127 Padua, Italy
| |
Collapse
|
32
|
Saiyed R, Rand CM, Carroll MS, Koliboski CM, Stewart TM, Brogadir CD, Kenny AS, Petersen EKE, Carley DW, Weese-Mayer DE. Congenital central hypoventilation syndrome (CCHS): Circadian temperature variation. Pediatr Pulmonol 2016; 51:300-7. [PMID: 26086998 DOI: 10.1002/ppul.23236] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 04/01/2015] [Indexed: 01/21/2023]
Abstract
BACKGROUND Congenital central hypoventilation syndrome (CCHS) is a rare neurocristopathy, which includes a control of breathing deficit and features of autonomic nervous system (ANS) dysregulation. In recognition of the fundamental role of the ANS in temperature regulation and rhythm and the lack of any prior characterization of circadian temperature rhythms in CCHS, we sought to explore peripheral and core temperatures and circadian patterning. We hypothesized that CCHS patients would exhibit lower peripheral skin temperatures (PST), variability, and circadian rhythmicity (vs. controls), as well as a disrupted relationship between core body temperature (CBT) and PST. METHODS PST was sampled every 3 min over four 24-hr periods in CCHS cases and similarly aged controls. CBT was sampled in a subset of these recordings. RESULTS PST was recorded from 25 CCHS cases (110,664 measures/230 days) and 39 controls (78,772 measures/164 days). Simultaneous CBT measurements were made from 23 CCHS patients. In CCHS, mean PST was lower overall (P = 0.03) and at night (P = 0.02), and PST variability (interquartile range) was higher at night (P = 0.05) (vs. controls). PST circadian rhythm remained intact but the phase relationship of PST to CBT rhythm was extremely variable in CCHS. CONCLUSIONS PST alterations in CCHS likely reflect altered autonomic control of peripheral vascular tone. These alterations represent a previously unreported manifestation of CCHS and may provide an opportunity for therapeutic intervention. The relationship between temperature dysregulation and CCHS may also offer insight into basic mechanisms underlying thermoregulation.
Collapse
Affiliation(s)
- Rehan Saiyed
- Center for Autonomic Medicine in Pediatrics (CAMP), Ann & Robert H. Lurie Children's Hospital of Chicago, Stanley Manne Children's Research Institute, Chicago, Illinois
| | - Casey M Rand
- Center for Autonomic Medicine in Pediatrics (CAMP), Ann & Robert H. Lurie Children's Hospital of Chicago, Stanley Manne Children's Research Institute, Chicago, Illinois
| | - Michael S Carroll
- Center for Autonomic Medicine in Pediatrics (CAMP), Ann & Robert H. Lurie Children's Hospital of Chicago, Stanley Manne Children's Research Institute, Chicago, Illinois.,Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Cynthia M Koliboski
- Center for Autonomic Medicine in Pediatrics (CAMP), Ann & Robert H. Lurie Children's Hospital of Chicago, Stanley Manne Children's Research Institute, Chicago, Illinois
| | - Tracey M Stewart
- Center for Autonomic Medicine in Pediatrics (CAMP), Ann & Robert H. Lurie Children's Hospital of Chicago, Stanley Manne Children's Research Institute, Chicago, Illinois
| | - Cindy D Brogadir
- Center for Autonomic Medicine in Pediatrics (CAMP), Ann & Robert H. Lurie Children's Hospital of Chicago, Stanley Manne Children's Research Institute, Chicago, Illinois
| | - Anna S Kenny
- Center for Autonomic Medicine in Pediatrics (CAMP), Ann & Robert H. Lurie Children's Hospital of Chicago, Stanley Manne Children's Research Institute, Chicago, Illinois
| | - Emily K E Petersen
- Cardiovascular Thoracic Surgery, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois
| | - David W Carley
- Center for Narcolepsy, Sleep and Health Research (CNSHR), University of Illinois at Chicago, Chicago, Illinois
| | - Debra E Weese-Mayer
- Center for Autonomic Medicine in Pediatrics (CAMP), Ann & Robert H. Lurie Children's Hospital of Chicago, Stanley Manne Children's Research Institute, Chicago, Illinois.,Northwestern University Feinberg School of Medicine, Chicago, Illinois
| |
Collapse
|
33
|
Morrison MA, Zimmerman MW, Look AT, Stewart RA. Studying the peripheral sympathetic nervous system and neuroblastoma in zebrafish. Methods Cell Biol 2016; 134:97-138. [PMID: 27312492 DOI: 10.1016/bs.mcb.2015.12.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The zebrafish serves as an excellent model to study vertebrate development and disease. Optically clear embryos, combined with tissue-specific fluorescent reporters, permit direct visualization and measurement of peripheral nervous system formation in real time. Additionally, the model is amenable to rapid cellular, molecular, and genetic approaches to determine how developmental mechanisms contribute to disease states, such as cancer. In this chapter, we describe the development of the peripheral sympathetic nervous system (PSNS) in general, and our current understanding of genetic pathways important in zebrafish PSNS development specifically. We also illustrate how zebrafish genetics is used to identify new mechanisms controlling PSNS development and methods for interrogating the potential role of PSNS developmental pathways in neuroblastoma pathogenesis in vivo using the zebrafish MYCN-driven neuroblastoma model.
Collapse
Affiliation(s)
- M A Morrison
- University of Utah, Salt Lake City, UT, United States
| | | | - A T Look
- Harvard Medical School, Boston, MA, United States
| | - R A Stewart
- University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
34
|
Di Lascio S, Saba E, Belperio D, Raimondi A, Lucchetti H, Fornasari D, Benfante R. PHOX2A and PHOX2B are differentially regulated during retinoic acid-driven differentiation of SK-N-BE(2)C neuroblastoma cell line. Exp Cell Res 2016; 342:62-71. [PMID: 26902400 PMCID: PMC4819706 DOI: 10.1016/j.yexcr.2016.02.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 02/16/2016] [Accepted: 02/18/2016] [Indexed: 12/15/2022]
Abstract
PHOX2B and its paralogue gene PHOX2A are two homeodomain proteins in the network regulating the development of autonomic ganglia that have been associated with the pathogenesis of neuroblastoma (NB), because of their over-expression in different NB cell lines and tumour samples. We used the SK-N-BE(2)C cell line to show that all-trans retinoic acid (ATRA), a drug that is widely used to inhibit growth and induce differentiation in NBs, regulates both PHOX2A and PHOX2B expression, albeit by means of different mechanisms: it up-regulates PHOX2A and down-regulates PHOX2B. Both mechanisms act at transcriptional level, but prolonged ATRA treatment selectively degrades the PHOX2A protein, whereas the corresponding mRNA remains up-regulated. Further, we show that PHOX2A is capable of modulating PHOX2B expression, but this mechanism is not involved in the PHOX2B down-regulation induced by retinoic acid. Our findings demonstrate that PHOX2A expression is finely controlled during retinoic acid differentiation and this, together with PHOX2B down-regulation, reinforces the idea that they may be useful biomarkers for NB staging, prognosis and treatment decision making.
Collapse
Affiliation(s)
- Simona Di Lascio
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), Università degli Studi di Milano, Milan, Italy
| | - Elena Saba
- CNR - Neuroscience Institute, Milan, Italy
| | - Debora Belperio
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), Università degli Studi di Milano, Milan, Italy
| | - Andrea Raimondi
- San Raffaele Scientific Institute, Imaging Research Centre, Milan, Italy
| | - Helen Lucchetti
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), Università degli Studi di Milano, Milan, Italy
| | - Diego Fornasari
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), Università degli Studi di Milano, Milan, Italy; CNR - Neuroscience Institute, Milan, Italy
| | - Roberta Benfante
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), Università degli Studi di Milano, Milan, Italy; CNR - Neuroscience Institute, Milan, Italy.
| |
Collapse
|
35
|
Middelbeek J, Visser D, Henneman L, Kamermans A, Kuipers AJ, Hoogerbrugge PM, Jalink K, van Leeuwen FN. TRPM7 maintains progenitor-like features of neuroblastoma cells: implications for metastasis formation. Oncotarget 2016; 6:8760-76. [PMID: 25797249 PMCID: PMC4496182 DOI: 10.18632/oncotarget.3315] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 02/08/2015] [Indexed: 12/18/2022] Open
Abstract
Neuroblastoma is an embryonal tumor derived from poorly differentiated neural crest cells. Current research is aimed at identifying the molecular mechanisms that maintain the progenitor state of neuroblastoma cells and to develop novel therapeutic strategies that induce neuroblastoma cell differentiation. Mechanisms controlling neural crest development are typically dysregulated during neuroblastoma progression, and provide an appealing starting point for drug target discovery. Transcriptional programs involved in neural crest development act as a context dependent gene regulatory network. In addition to BMP, Wnt and Notch signaling, activation of developmental gene expression programs depends on the physical characteristics of the tissue microenvironment. TRPM7, a mechanically regulated TRP channel with kinase activity, was previously found essential for embryogenesis and the maintenance of undifferentiated neural crest progenitors. Hence, we hypothesized that TRPM7 may preserve progenitor-like, metastatic features of neuroblastoma cells. Using multiple neuroblastoma cell models, we demonstrate that TRPM7 expression closely associates with the migratory and metastatic properties of neuroblastoma cells in vitro and in vivo. Moreover, microarray-based expression profiling on control and TRPM7 shRNA transduced neuroblastoma cells indicates that TRPM7 controls a developmental transcriptional program involving the transcription factor SNAI2. Overall, our data indicate that TRPM7 contributes to neuroblastoma progression by maintaining progenitor-like features.
Collapse
Affiliation(s)
- Jeroen Middelbeek
- Laboratory of Pediatric Oncology, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, The Netherlands
| | - Daan Visser
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Linda Henneman
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Alwin Kamermans
- Laboratory of Pediatric Oncology, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, The Netherlands
| | - Arthur J Kuipers
- Laboratory of Pediatric Oncology, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, The Netherlands
| | - Peter M Hoogerbrugge
- Laboratory of Pediatric Oncology, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, The Netherlands.,Princes Maxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Kees Jalink
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Frank N van Leeuwen
- Laboratory of Pediatric Oncology, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, The Netherlands
| |
Collapse
|
36
|
Zhang JT, Weng ZH, Tsang KS, Tsang LL, Chan HC, Jiang XH. MycN Is Critical for the Maintenance of Human Embryonic Stem Cell-Derived Neural Crest Stem Cells. PLoS One 2016; 11:e0148062. [PMID: 26815535 PMCID: PMC4729679 DOI: 10.1371/journal.pone.0148062] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 01/12/2016] [Indexed: 12/05/2022] Open
Abstract
The biologic studies of human neural crest stem cells (hNCSCs) are extremely challenging due to the limited source of hNCSCs as well as ethical and technical issues surrounding isolation of early human embryonic tissues. On the other hand, vast majority of studies on MycN have been conducted in human tumor cells, thus, the role of MycN in normal human neural crest development is completely unknown. In the present study, we determined the role of MycN in hNCSCs isolated from in vitro-differentiating human embryonic stem cells (hESCs). For the first time, we show that suppression of MycN in hNCSCs inhibits cell growth and cell cycle progression. Knockdown of MycN in hNCSCs increases the expression of Cdkn1a, Cdkn2a and Cdkn2b, which encodes the cyclin-dependent kinases p21CIP1, p16 INK4a and p15INK4b. In addition, MycN is involved in the regulation of human sympathetic neurogenesis, as knockdown of MycN enhances the expression of key transcription factors involved in sympathetic neuron differentiation, including Phox2a, Phox2b, Mash1, Hand2 and Gata3. We propose that unlimited source of hNCSCs provides an invaluable platform for the studies of human neural crest development and diseases.
Collapse
Affiliation(s)
- Jie Ting Zhang
- Key Laboratory for Regenerative Medicine, Ministry of Education, Epithelial Cell Biology Research Center, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Zhi Hui Weng
- Key Laboratory for Regenerative Medicine, Ministry of Education, Epithelial Cell Biology Research Center, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Kam Sze Tsang
- Department of Anatomical and Cellular Pathology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Lai Ling Tsang
- Key Laboratory for Regenerative Medicine, Ministry of Education, Epithelial Cell Biology Research Center, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Hsiao Chang Chan
- Key Laboratory for Regenerative Medicine, Ministry of Education, Epithelial Cell Biology Research Center, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, PR China
- The Chinese University of Hong Kong, Shenzhen Research Institute, Shenzhen, PR China
| | - Xiao Hua Jiang
- Key Laboratory for Regenerative Medicine, Ministry of Education, Epithelial Cell Biology Research Center, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, PR China
- The Chinese University of Hong Kong, Shenzhen Research Institute, Shenzhen, PR China
- * E-mail:
| |
Collapse
|
37
|
Zhu S, Thomas Look A. Neuroblastoma and Its Zebrafish Model. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 916:451-78. [PMID: 27165366 DOI: 10.1007/978-3-319-30654-4_20] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Neuroblastoma, an important developmental tumor arising in the peripheral sympathetic nervous system (PSNS), accounts for approximately 10 % of all cancer-related deaths in children. Recent genomic analyses have identified a spectrum of genetic alterations in this tumor. Amplification of the MYCN oncogene is found in 20 % of cases and is often accompanied by mutational activation of the ALK (anaplastic lymphoma kinase) gene, suggesting their cooperation in tumor initiation and spread. Understanding how complex genetic changes function together in oncogenesis has been a continuing and daunting task in cancer research. This challenge was addressed in neuroblastoma by generating a transgenic zebrafish model that overexpresses human MYCN and activated ALK in the PSNS, leading to tumors that closely resemble human neuroblastoma and new opportunities to probe the mechanisms that underlie the pathogenesis of this tumor. For example, coexpression of activated ALK with MYCN in this model triples the penetrance of neuroblastoma and markedly accelerates tumor onset, demonstrating the interaction of these modified genes in tumor development. Further, MYCN overexpression induces adrenal sympathetic neuroblast hyperplasia, blocks chromaffin cell differentiation, and ultimately triggers a developmentally-timed apoptotic response in the hyperplastic sympathoadrenal cells. In the context of MYCN overexpression, activated ALK provides prosurvival signals that block this apoptotic response, allowing continued expansion and oncogenic transformation of hyperplastic neuroblasts, thus promoting progression to neuroblastoma. This application of the zebrafish model illustrates its value in rational assessment of the multigenic changes that define neuroblastoma pathogenesis and points the way to future studies to identify novel targets for therapeutic intervention.
Collapse
Affiliation(s)
- Shizhen Zhu
- Department of Biochemistry and Molecular Biology, Cancer Center and Center for Individualized Medicine, Mayo Clinic, Rochester, MN, 55902, USA.
| | - A Thomas Look
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
38
|
Armstrong AE, Weese-Mayer DE, Mian A, Maris JM, Batra V, Gosiengfiao Y, Reichek J, Madonna MB, Bush JW, Shore RM, Walterhouse DO. Treatment of neuroblastoma in congenital central hypoventilation syndrome with a PHOX2B polyalanine repeat expansion mutation: New twist on a neurocristopathy syndrome. Pediatr Blood Cancer 2015; 62:2007-10. [PMID: 26011159 DOI: 10.1002/pbc.25572] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 03/31/2015] [Indexed: 11/08/2022]
Abstract
Neuroblastoma in patients with congenital central hypoventilation syndrome (CCHS) as part of a neurocristopathy syndrome is a rare finding and has only been associated with paired-like homeobox 2b (PHOX2B) non-polyalanine-repeat-expansion mutations. To the best of our knowledge, we report the first case of a child with CCHS and Hirschsprung disease who had a PHOX2B polyalanine-repeat-expansion mutation (PARM) (genotype 20/33) and developed high-risk neuroblastoma. We further describe his treatment including chemotherapy and therapeutic I(131) -metaiodobenzylguanidine. This case highlights the need to consider neuroblastoma in patients with CCHS and the longest PHOX2B PARMs and to individualize treatment based on co-morbidities.
Collapse
Affiliation(s)
- Amy E Armstrong
- Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois
| | - Debra E Weese-Mayer
- Ann & Robert H. Lurie Children's Hospital of Chicago, Center for Autonomic Medicine in Pediatrics (CAMP), Northwestern University of Feinberg School of Medicine and Stanley Manne Children's Research Institute, Chicago, Illinois
| | - Amir Mian
- Department of Pediatric Hematology-Oncology, College of Medicine, Arkansas Children's Hospital, University of Arkansas Medical Sciences, Little Rock, Arkansas
| | - John M Maris
- Division of Hematology, Oncology & Transplantation, Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine and Abramson Family Center Research Institute, Philadelphia, Pennsylvania
| | - Vandana Batra
- Division of Hematology, Oncology & Transplantation, Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine and Abramson Family Center Research Institute, Philadelphia, Pennsylvania
| | - Yasmin Gosiengfiao
- Division of Hematology, Oncology & Transplantation, Robert Lurie Comprehensive Cancer Center, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Jennifer Reichek
- Division of Hematology, Oncology & Transplantation, Robert Lurie Comprehensive Cancer Center, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Mary Beth Madonna
- Department of Pediatric Surgery, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Jonathan W Bush
- Department of Pathology, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Richard M Shore
- Department of Medical Imaging, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - David O Walterhouse
- Division of Hematology, Oncology & Transplantation, Robert Lurie Comprehensive Cancer Center, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| |
Collapse
|
39
|
Di Zanni E, Fornasari D, Ravazzolo R, Ceccherini I, Bachetti T. Identification of novel pathways and molecules able to down-regulate PHOX2B gene expression by in vitro drug screening approaches in neuroblastoma cells. Exp Cell Res 2015; 336:43-57. [PMID: 25882494 DOI: 10.1016/j.yexcr.2015.03.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2015] [Revised: 03/25/2015] [Accepted: 03/28/2015] [Indexed: 10/23/2022]
Abstract
PHOX2B is a transcription factor involved in the regulation of neurogenesis and in the correct differentiation of the autonomic nervous system. The pathogenetic role of PHOX2B in neuroblastoma (NB) is supported by mutations in familial, sporadic and syndromic cases of NB and overexpression of PHOX2B and its target ALK in tumor samples and NB cell lines. Starting from these observations, we have performed in vitro drug screening approaches targeting PHOX2B overexpression as a potential pharmacological means in NB. In particular, in order to identify molecules able to decrease PHOX2B expression, we have evaluated the effects of 70 compounds in IMR-32 cell line stably expressing the luciferase gene under the control of the PHOX2B promoter. Curcumin, SAHA and trichostatin A showed to down-regulate the PHOX2B promoter activity which resulted in a decrease of both protein and mRNA expressions. In addition, we have observed that curcumin acts by interfering with PBX-1/MEIS-1, NF-κB and AP-1 complexes, in this work demonstrated for the first time to regulate the transcription of the PHOX2B gene. Finally, combined drug treatments showed successful effects in down-regulating the expression of both PHOX2B and its target ALK genes, thus supporting the notion of the effectiveness of molecule combination in tumor therapy.
Collapse
Affiliation(s)
| | - Diego Fornasari
- Dipartimento di Farmacologia, Università degli Studi di Milano e CNR-Istituto di Neuroscienze, Italy
| | - Roberto Ravazzolo
- U.O.C. Genetica Medica, Istituto Giannina Gaslini, Italy; Università degli Studi di Genova, Italy
| | | | | |
Collapse
|
40
|
Bachetti T, Di Zanni E, Ravazzolo R, Ceccherini I. miR-204 mediates post-transcriptional down-regulation of PHOX2B gene expression in neuroblastoma cells. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1849:1057-65. [PMID: 26145533 DOI: 10.1016/j.bbagrm.2015.06.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 06/16/2015] [Accepted: 06/18/2015] [Indexed: 11/24/2022]
Abstract
Neuroblastoma (NB) is a rare childhood cancer of the peripheral sympathetic nervous system and accounts for approximately 10% of all pediatric tumors. Heterozygous PHOX2B mutations have been found in association with NB development in familial, sporadic and syndromic cases. In addition, the PHOX2B gene is widely over-expressed both in tumor samples and NB cell lines. Post-transcriptional gene regulation is known to be involved in mRNA stability and, in NB, microRNAs (miRNAs) seem to be responsible for altered expression of genes driving differentiation, apoptosis, and migration. To assess the possible impact of post-transcriptional regulation in NB cell lines, we have focused on the PHOX2B mRNA stability by both in silico analysis and functional studies on its 3'untranslated region (3'UTR). PHOX2B gene expression has resulted under post-transcriptional control, as suggested by: i) instability of PHOX2B mRNA, demonstrated by short mRNA half-life levels in both IMR32 and LAN-1 cell lines, ii) role of the PHOX2B-3'UTR, confirmed by the activity of proper reporter constructs, and iii) miRNA-204, shown to enhance the PHOX2B 3'UTR mediated down-regulation of the reporter construct activity. Finally, miRNA-204 has resulted to decrease the stability of the PHOX2B mRNA at different extents in the presence of different SNP rs1063611 alleles. Therefore, post-transcriptional down-regulation of the PHOX2B gene takes place in NB cell lines and miRNA-204 participates in such a 3'UTR mediated control.
Collapse
Affiliation(s)
- Tiziana Bachetti
- UOC Genetica Medica, Istituto Giannina Gaslini, 16147 Genova, Italy.
| | | | - Roberto Ravazzolo
- UOC Genetica Medica, Istituto Giannina Gaslini, 16147 Genova, Italy; Dipartimento Neuroscienze, Riabilitazione, Oftalmologia, Genetica e Scienze Materno-Infantili (DiNOGMI), Università degli Studi di Genova, 16147 Genova, Italy
| | | |
Collapse
|
41
|
Bishop B, Ho KK, Tyler K, Smith A, Bonilla S, Leung YF, Ogas J. The chromatin remodeler chd5 is necessary for proper head development during embryogenesis of Danio rerio. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1849:1040-50. [PMID: 26092436 DOI: 10.1016/j.bbagrm.2015.06.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 06/05/2015] [Accepted: 06/12/2015] [Indexed: 12/12/2022]
Abstract
The chromatin remodeler CHD5 plays a critical role in tumor suppression and neurogenesis in mammals. CHD5 contributes to gene expression during neurogenesis, but there is still much to learn regarding how this class of remodelers contributes to differentiation and development. CHD5 remodelers are vertebrate-specific, raising the prospect that CHD5 plays one or more conserved roles in this phylum. Expression of chd5 in adult fish closely mirrors expression of CHD5 in adult mammals. Knockdown of Chd5 during embryogenesis suggests new roles for CHD5 remodelers based on resulting defects in craniofacial development including reduced head and eye size as well as reduced cartilage formation in the head. In addition, knockdown of Chd5 results in altered expression of neural markers in the developing brain and eye as well as a profound defect in differentiation of dopaminergic amacrine cells. Recombinant zebrafish Chd5 protein exhibits nucleosome remodeling activity in vitro, suggesting that it is the loss of this activity that contributes to the observed phenotypes. Our studies indicate that zebrafish is an appropriate model for functional characterization of CHD5 remodelers in vertebrates and highlight the potential of this model for generating novel insights into the role of this vital class of remodelers.
Collapse
Affiliation(s)
- Brett Bishop
- Department of Biochemistry and Purdue Center for Cancer Research, Purdue University, West Lafayette, IN 47907, United States
| | - Kwok Ki Ho
- Department of Biochemistry and Purdue Center for Cancer Research, Purdue University, West Lafayette, IN 47907, United States
| | - Kim Tyler
- Department of Biochemistry and Purdue Center for Cancer Research, Purdue University, West Lafayette, IN 47907, United States
| | - Amanda Smith
- Department of Biochemistry and Purdue Center for Cancer Research, Purdue University, West Lafayette, IN 47907, United States
| | - Sylvia Bonilla
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, United States
| | - Yuk Fai Leung
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, United States
| | - Joe Ogas
- Department of Biochemistry and Purdue Center for Cancer Research, Purdue University, West Lafayette, IN 47907, United States.
| |
Collapse
|
42
|
Abstract
Recent genomic and biological studies of neuroblastoma have shed light on the dramatic heterogeneity in the clinical behaviour of this disease, which spans from spontaneous regression or differentiation in some patients, to relentless disease progression in others, despite intensive multimodality therapy. This evidence also suggests several possible mechanisms to explain the phenomena of spontaneous regression in neuroblastomas, including neurotrophin deprivation, humoral or cellular immunity, loss of telomerase activity and alterations in epigenetic regulation. A better understanding of the mechanisms of spontaneous regression might help to identify optimal therapeutic approaches for patients with these tumours. Currently, the most druggable mechanism is the delayed activation of developmentally programmed cell death regulated by the tropomyosin receptor kinase A pathway. Indeed, targeted therapy aimed at inhibiting neurotrophin receptors might be used in lieu of conventional chemotherapy or radiation in infants with biologically favourable tumours that require treatment. Alternative approaches consist of breaking immune tolerance to tumour antigens or activating neurotrophin receptor pathways to induce neuronal differentiation. These approaches are likely to be most effective against biologically favourable tumours, but they might also provide insights into treatment of biologically unfavourable tumours. We describe the different mechanisms of spontaneous neuroblastoma regression and the consequent therapeutic approaches.
Collapse
Affiliation(s)
- Garrett M Brodeur
- Division of Oncology, The Children's Hospital of Philadelphia, 3501 Civic Center Boulevard, Philadelphia, PA 19104-4302, USA
| | - Rochelle Bagatell
- Division of Oncology, The Children's Hospital of Philadelphia, 3501 Civic Center Boulevard, Philadelphia, PA 19104-4302, USA
| |
Collapse
|
43
|
Abstract
Neuroblastoma is a developmental tumor of young children arising from the embryonic sympathoadrenal lineage of the neural crest. Neuroblastoma is the primary cause of death from pediatric cancer for children between the ages of one and five years and accounts for ∼13% of all pediatric cancer mortality. Its clinical impact and unique biology have made this aggressive malignancy the focus of a large concerted translational research effort. New insights into tumor biology are driving the development of new classification schemas. Novel targeted therapeutic approaches include small-molecule inhibitors as well as epigenetic, noncoding-RNA, and cell-based immunologic therapies. In this review, recent insights regarding the pathogenesis and biology of neuroblastoma are placed in context with the current understanding of tumor biology and tumor/host interactions. Systematic classification of patients coupled with therapeutic advances point to a future of improved clinical outcomes for this biologically distinct and highly aggressive pediatric malignancy.
Collapse
Affiliation(s)
- Chrystal U Louis
- Texas Children's Cancer Center, Baylor College of Medicine, Houston, Texas 77030; ,
| | | |
Collapse
|
44
|
Capasso M, Diskin S, Cimmino F, Acierno G, Totaro F, Petrosino G, Pezone L, Diamond M, McDaniel L, Hakonarson H, Iolascon A, Devoto M, Maris JM. Common genetic variants in NEFL influence gene expression and neuroblastoma risk. Cancer Res 2014; 74:6913-24. [PMID: 25312269 DOI: 10.1158/0008-5472.can-14-0431] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The genetic etiology of sporadic neuroblastoma is still largely obscure. In a genome-wide association study, we identified single-nucleotide polymorphisms (SNP) associated with neuroblastoma at the CASC15, BARD1, LMO1, DUSP12, HSD17B12, HACE1, and LIN28B gene loci, but these explain only a small fraction of neuroblastoma heritability. Other neuroblastoma susceptibility genes are likely hidden among signals discarded by the multiple testing corrections. In this study, we evaluated eight additional genes selected as candidates for further study based on proven involvement in neuroblastoma differentiation. SNPs at these candidate genes were tested for association with disease susceptibility in 2,101 cases and 4,202 controls, with the associations found replicated in an independent cohort of 459 cases and 809 controls. Replicated associations were further studied for cis-effect using gene expression, transient overexpression, silencing, and cellular differentiation assays. The neurofilament gene NEFL harbored three SNPs associated with neuroblastoma (rs11994014: Pcombined = 0.0050; OR, 0.88; rs2979704: Pcombined = 0.0072; OR, 0.87; rs1059111: Pcombined = 0.0049; OR, 0.86). The protective allele of rs1059111 correlated with increased NEFL expression. Biologic investigations showed that ectopic overexpression of NEFL inhibited cell growth specifically in neuroblastoma cells carrying the protective allele. NEFL overexpression also enhanced differentiation and impaired the proliferation and anchorage-independent growth of cells with protective allele and basal NEFL expression, while impairing invasiveness and proliferation of cells homozygous for the risk genotype. Clinically, high levels of NEFL expression in primary neuroblastoma specimens were associated with better overall survival (P = 0.03; HR, 0.68). Our results show that common variants of NEFL influence neuroblastoma susceptibility and they establish that NEFL expression influences disease initiation and progression.
Collapse
Affiliation(s)
- Mario Capasso
- Università degli Studi di Napoli Federico II, Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Naples, Italy. CEINGE Biotecnolgie Avanzate, Naples, Italy.
| | - Sharon Diskin
- Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania. Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania. Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania. Genomics and Computational Biology, Biomedical Graduate Studies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Flora Cimmino
- Università degli Studi di Napoli Federico II, Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Naples, Italy. CEINGE Biotecnolgie Avanzate, Naples, Italy
| | - Giovanni Acierno
- Università degli Studi di Napoli Federico II, Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Naples, Italy. CEINGE Biotecnolgie Avanzate, Naples, Italy
| | - Francesca Totaro
- Università degli Studi di Napoli Federico II, Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Naples, Italy
| | - Giuseppe Petrosino
- Università degli Studi di Napoli Federico II, Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Naples, Italy
| | | | - Maura Diamond
- Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania. Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Lee McDaniel
- Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania. Genomics and Computational Biology, Biomedical Graduate Studies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Hakon Hakonarson
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania. The Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania. Division of Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Achille Iolascon
- Università degli Studi di Napoli Federico II, Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Naples, Italy. CEINGE Biotecnolgie Avanzate, Naples, Italy
| | - Marcella Devoto
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania. Division of Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania. Department of Molecular Medicine, University of Rome "La Sapienza," Rome, Italy. Department of Biostatistics and Epidemiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - John M Maris
- Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania. Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania. Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania. Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania. Genomics and Computational Biology, Biomedical Graduate Studies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
45
|
Schleiermacher G, Janoueix-Lerosey I, Delattre O. Recent insights into the biology of neuroblastoma. Int J Cancer 2014; 135:2249-61. [PMID: 25124476 DOI: 10.1002/ijc.29077] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 05/08/2014] [Indexed: 01/24/2023]
Abstract
Neuroblastoma (NB) is an embryonal tumor of the sympathetic nervous system which accounts for 8-10% of pediatric cancers. It is characterized by a broad spectrum of clinical behaviors from spontaneous regression to fatal outcome despite aggressive therapies. Considerable progress has been made recently in the germline and somatic genetic characterization of patients and tumors. Indeed, predisposition genes that account for a significant proportion of familial and syndromic cases have been identified and genome-wide association studies have retrieved a number of susceptibility loci. In addition, genome-wide sequencing, copy-number and expression studies have been conducted on tumors and have detected important gene modifications, profiles and signatures that have strong implications for the therapeutic stratification of patients. The identification of major players in NB oncogenesis, including MYCN, ALK, PHOX2B and LIN28B, has enabled the development of new animal models. Our review focuses on these recent advances, on the insights they provide on the mechanisms involved in NB development and their applications for the clinical management of patients.
Collapse
Affiliation(s)
- Gudrun Schleiermacher
- Equipe SIRIC Recherche Translationnelle en Oncologie Pédiatrique, Département de Recherche Translationnelle et Inserm U830, Centre de Recherche, Paris Cedex, 05, France; Département de pédiatrie, Institut Curie, Paris Cedex, 05, France; Unité Génétique et Biologie des Cancers, Inserm U830, Centre de Recherche, Institut Curie, Paris Cedex, 05, France
| | | | | |
Collapse
|
46
|
Dai YJ, Jia YF, Chen N, Bian WP, Li QK, Ma YB, Chen YL, Pei DS. Zebrafish as a model system to study toxicology. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2014; 33:11-7. [PMID: 24307630 DOI: 10.1002/etc.2406] [Citation(s) in RCA: 361] [Impact Index Per Article: 36.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 07/08/2013] [Accepted: 09/03/2013] [Indexed: 05/22/2023]
Abstract
Monitoring and assessing the effects of contaminants in the aquatic eco-environment is critical in protecting human health and the environment. The zebrafish has been widely used as a prominent model organism in different fields because of its small size, low cost, diverse adaptability, short breeding cycle, high fecundity, and transparent embryos. Recent studies have demonstrated that zebrafish sensitivity can aid in monitoring environmental contaminants, especially with the application of transgenic technology in this area. The present review provides a brief overview of recent studies on wild-type and transgenic zebrafish as a model system to monitor toxic heavy metals, endocrine disruptors, and organic pollutants for toxicology. The authors address the new direction of developing high-throughput detection of genetically modified transparent zebrafish to open a new window for monitoring environmental pollutants.
Collapse
Affiliation(s)
- Yu-Jie Dai
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Wang W, Zhong Q, Teng L, Bhatnagar N, Sharma B, Zhang X, Luther W, Haynes LP, Burgoyne RD, Vidal M, Volchenboum S, Hill DE, George RE. Mutations that disrupt PHOXB interaction with the neuronal calcium sensor HPCAL1 impede cellular differentiation in neuroblastoma. Oncogene 2013; 33:3316-24. [PMID: 23873030 DOI: 10.1038/onc.2013.290] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 04/17/2013] [Accepted: 05/26/2013] [Indexed: 12/14/2022]
Abstract
Heterozygous germline mutations in PHOX2B, a transcriptional regulator of sympathetic neuronal differentiation, predispose to diseases of the sympathetic nervous system, including neuroblastoma and congenital central hypoventilation syndrome (CCHS). Although the PHOX2B variants in CCHS largely involve expansions of the second polyalanine repeat within the C-terminus of the protein, those associated with neuroblastic tumors are nearly always frameshift and truncation mutations. To test the hypothesis that the neuroblastoma-associated variants exert their effects through loss or gain of protein-protein interactions, we performed a large-scale yeast two-hybrid screen using both wild-type (WT) and six different mutant PHOX2B proteins against over 10 000 human genes. The neuronal calcium sensor protein HPCAL1 (VILIP-3) exhibited strong binding to WT PHOX2B and a CCHS-associated polyalanine expansion mutant but only weakly or not at all to neuroblastoma-associated frameshift and truncation variants. We demonstrate that both WT PHOX2B and the neuroblastoma-associated R100L missense and the CCHS-associated alanine expansion variants induce nuclear translocation of HPCAL1 in a Ca(2+)-independent manner, while the neuroblastoma-associated 676delG frameshift and K155X truncation mutants impair subcellular localization of HPCAL1, causing it to remain in the cytoplasm. HPCAL1 did not appreciably influence the ability of WT PHOX2B to transactivate the DBH promoter, nor did it alter the decreased transactivation potential of PHOX2B variants in 293T cells. Abrogation of the PHOX2B-HPCAL1 interaction by shRNA knockdown of HPCAL1 in neuroblastoma cells expressing PHOX2B led to impaired neurite outgrowth with transcriptional profiles indicative of inhibited sympathetic neuronal differentiation. Our results suggest that certain PHOX2B variants associated with neuroblastoma pathogenesis, because of their inability to bind to key interacting proteins such as HPCAL1, may predispose to this malignancy by impeding the differentiation of immature sympathetic neurons.
Collapse
Affiliation(s)
- W Wang
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Q Zhong
- Center for Cancer Systems Biology (CCSB) and Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - L Teng
- Chicago Center for Childhood Cancer and Blood Diseases, the University of Chicago, Chicago, IL, USA
| | - N Bhatnagar
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - B Sharma
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - X Zhang
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, People's Republic of China
| | - W Luther
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - L P Haynes
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - R D Burgoyne
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - M Vidal
- Center for Cancer Systems Biology (CCSB) and Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - S Volchenboum
- Chicago Center for Childhood Cancer and Blood Diseases, the University of Chicago, Chicago, IL, USA
| | - D E Hill
- Center for Cancer Systems Biology (CCSB) and Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - R E George
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| |
Collapse
|