1
|
Keen MM, Keith AD, Ortlund EA. Epitope mapping via in vitro deep mutational scanning methods and its applications. J Biol Chem 2025; 301:108072. [PMID: 39674321 DOI: 10.1016/j.jbc.2024.108072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/04/2024] [Accepted: 12/09/2024] [Indexed: 12/16/2024] Open
Abstract
Epitope mapping is a technique employed to define the region of an antigen that elicits an immune response, providing crucial insight into the structural architecture of the antigen as well as epitope-paratope interactions. With this breadth of knowledge, immunotherapies, diagnostics, and vaccines are being developed with a rational and data-supported design. Traditional epitope mapping methods are laborious, time-intensive, and often lack the ability to screen proteins in a high-throughput manner or provide high resolution. Deep mutational scanning (DMS), however, is revolutionizing the field as it can screen all possible single amino acid mutations and provide an efficient and high-throughput way to infer the structures of both linear and three-dimensional epitopes with high resolution. Currently, more than 50 publications take this approach to efficiently identify enhancing or escaping mutations, with many then employing this information to rapidly develop broadly neutralizing antibodies, T-cell immunotherapies, vaccine platforms, or diagnostics. We provide a comprehensive review of the approaches to accomplish epitope mapping while also providing a summation of the development of DMS technology and its impactful applications.
Collapse
Affiliation(s)
- Meredith M Keen
- Department of Biochemistry, Emory School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Alasdair D Keith
- Department of Biochemistry, Emory School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Eric A Ortlund
- Department of Biochemistry, Emory School of Medicine, Emory University, Atlanta, Georgia, USA.
| |
Collapse
|
2
|
Flynn JM, Joyce ME, Bolon DNA. Dominant negative mutations in yeast Hsp90 indicate triage decision mechanism targeting client proteins for degradation. Mol Biol Cell 2025; 36:ar5. [PMID: 39565679 PMCID: PMC11742116 DOI: 10.1091/mbc.e24-07-0309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 11/13/2024] [Accepted: 11/15/2024] [Indexed: 11/22/2024] Open
Abstract
Dominant negative (DN) mutations provide valuable tools for investigating protein mechanisms but can be difficult to isolate because of their toxic effects. We used a mutational scanning approach to identify DN mutations in yeast Hsp90. In a previous mutational scan of the ATPase domain of Hsp90, we noticed that many mutations were at very low frequency after outgrowth in cells coexpressing wildtype Hsp90. Most of these depleted variants were located at the hinge of a lid that closes over ATP. To quantify toxic effects in the hinge regions, we performed mutational scanning using an inducible promoter and identified 113 variants with strong toxic effects. We analyzed individual DN mutations in detail and found that addition of the E33A mutation that prevents ATP hydrolysis by Hsp90 abrogated the DN phenotype. FRET assays performed on individual DN mutants indicate the linkage between ATPase activity and formation of the closed structure is disrupted. DN Hsp90 decreased the expression level of two model Hsp90 clients, glucocorticoid receptor (GR) and v-src kinase. Using MG132, we found that GR was rapidly destabilized in a proteasome-dependent manner. Biochemical analyses indicate that ATP hydrolysis by Hsp90 from open conformations can lead to ubiquitin-dependent client degradation.
Collapse
Affiliation(s)
- Julia M. Flynn
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA 01605
| | - Margot E. Joyce
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA 01605
| | - Daniel N. A. Bolon
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA 01605
| |
Collapse
|
3
|
Usmanova DR, Plata G, Vitkup D. Functional Optimization in Distinct Tissues and Conditions Constrains the Rate of Protein Evolution. Mol Biol Evol 2024; 41:msae200. [PMID: 39431545 PMCID: PMC11523136 DOI: 10.1093/molbev/msae200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/29/2024] [Accepted: 08/05/2024] [Indexed: 10/22/2024] Open
Abstract
Understanding the main determinants of protein evolution is a fundamental challenge in biology. Despite many decades of active research, the molecular and cellular mechanisms underlying the substantial variability of evolutionary rates across cellular proteins are not currently well understood. It also remains unclear how protein molecular function is optimized in the context of multicellular species and why many proteins, such as enzymes, are only moderately efficient on average. Our analysis of genomics and functional datasets reveals in multiple organisms a strong inverse relationship between the optimality of protein molecular function and the rate of protein evolution. Furthermore, we find that highly expressed proteins tend to be substantially more functionally optimized. These results suggest that cellular expression costs lead to more pronounced functional optimization of abundant proteins and that the purifying selection to maintain high levels of functional optimality significantly slows protein evolution. We observe that in multicellular species both the rate of protein evolution and the degree of protein functional efficiency are primarily affected by expression in several distinct cell types and tissues, specifically, in developed neurons with upregulated synaptic processes in animals and in young and fast-growing tissues in plants. Overall, our analysis reveals how various constraints from the molecular, cellular, and species' levels of biological organization jointly affect the rate of protein evolution and the level of protein functional adaptation.
Collapse
Affiliation(s)
- Dinara R Usmanova
- Department of Systems Biology, Columbia University, New York, NY 10032, USA
| | - Germán Plata
- Department of Systems Biology, Columbia University, New York, NY 10032, USA
- BiomEdit, Fishers, IN 46037, USA
| | - Dennis Vitkup
- Department of Systems Biology, Columbia University, New York, NY 10032, USA
- Department of Biomedical Informatics, Columbia University, New York, NY 10032, USA
| |
Collapse
|
4
|
Flynn JM, Joyce ME, Bolon DNA. Dominant negative mutations in yeast Hsp90 reveal triage decision mechanism targeting client proteins for degradation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.02.573950. [PMID: 38260708 PMCID: PMC10802349 DOI: 10.1101/2024.01.02.573950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Most of the fundamental processes of cells are mediated by proteins. However, the biologically-relevant mechanism of most proteins are poorly understood. Dominant negative mutations have provided a valuable tool for investigating protein mechanisms but can be difficult to isolate because of their toxic effects. We used a mutational scanning approach to identify dominant negative mutations in yeast Hsp90. Hsp90 is a chaperone that forms dynamic complexes with many co-chaperones and client proteins. In vitro analyses have elucidated some key biochemical states and structures of Hsp90, co-chaperones, and clients; however, the biological mechanism of Hsp90 remains unclear. For example, high throughput studies have found that many E3 ubiquitin ligases bind to Hsp90, but it is unclear if these are primarily clients or acting to tag other clients for degradation. We introduced a library of all point mutations in the ATPase domain of Hsp90 into yeast and noticed that 176 were more than 10-fold depleted at the earliest point that we could analyze. There were two hot spot regions of the depleted mutations that were located at the hinges of a loop that closes over ATP. We quantified the dominant negative growth effects of mutations in the hinge regions using a library of mutations driven by an inducible promoter. We analyzed individual dominant negative mutations in detail and found that addition of the E33A mutation that prevents ATP hydrolysis by Hsp90 abrogated the dominant negative phenotype. Pull-down experiments did not reveal any stable binding partners, indicating that the dominant effects were mediated by dynamic complexes. DN Hsp90 decreased the expression level of two model Hsp90 clients, glucocorticoid receptor (GR) and v-src kinase. Using MG132, we found that GR was rapidly destabilized in a proteasome-dependent fashion. These findings provide evidence that the binding of E3 ligases to Hsp90 may serve a quality control function fundamental to eukaryotes.
Collapse
Affiliation(s)
- Julia M. Flynn
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA 01605 USA
| | - Margot E. Joyce
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA 01605 USA
| | - Daniel N. A. Bolon
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA 01605 USA
| |
Collapse
|
5
|
Flynn JM, Zvornicanin SN, Tsepal T, Shaqra AM, Kurt Yilmaz N, Jia W, Moquin S, Dovala D, Schiffer CA, Bolon DN. Contributions of Hyperactive Mutations in M pro from SARS-CoV-2 to Drug Resistance. ACS Infect Dis 2024; 10:1174-1184. [PMID: 38472113 PMCID: PMC11179160 DOI: 10.1021/acsinfecdis.3c00560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
The appearance and spread of mutations that cause drug resistance in rapidly evolving diseases, including infections by the SARS-CoV-2 virus, are major concerns for human health. Many drugs target enzymes, and resistance-conferring mutations impact inhibitor binding or enzyme activity. Nirmatrelvir, the most widely used inhibitor currently used to treat SARS-CoV-2 infections, targets the main protease (Mpro) preventing it from processing the viral polyprotein into active subunits. Our previous work systematically analyzed resistance mutations in Mpro that reduce binding to inhibitors; here, we investigate mutations that affect enzyme function. Hyperactive mutations that increase Mpro activity can contribute to drug resistance but have not been thoroughly studied. To explore how hyperactive mutations contribute to resistance, we comprehensively assessed how all possible individual mutations in Mpro affect enzyme function using a mutational scanning approach with a fluorescence resonance energy transfer (FRET)-based yeast readout. We identified hundreds of mutations that significantly increased the Mpro activity. Hyperactive mutations occurred both proximal and distal to the active site, consistent with protein stability and/or dynamics impacting activity. Hyperactive mutations were observed 3 times more than mutations which reduced apparent binding to nirmatrelvir in recent studies of laboratory-grown viruses selected for drug resistance. Hyperactive mutations were also about three times more prevalent than nirmatrelvir binding mutations in sequenced isolates from circulating SARS-CoV-2. Our findings indicate that hyperactive mutations are likely to contribute to the natural evolution of drug resistance in Mpro and provide a comprehensive list for future surveillance efforts.
Collapse
Affiliation(s)
- Julia M. Flynn
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA 01605 USA
| | - Sarah N. Zvornicanin
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA 01605 USA
| | - Tenzin Tsepal
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA 01605 USA
| | - Ala M. Shaqra
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA 01605 USA
| | - Nese Kurt Yilmaz
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA 01605 USA
| | - Weiping Jia
- Novartis Biomedical Research, Emeryville, CA 94608 USA
| | | | - Dustin Dovala
- Novartis Biomedical Research, Emeryville, CA 94608 USA
| | - Celia A. Schiffer
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA 01605 USA
| | - Daniel N.A. Bolon
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA 01605 USA
| |
Collapse
|
6
|
Rios EI, Hunsberger IL, Johnson JL. Insights into Hsp90 mechanism and in vivo functions learned from studies in the yeast, Saccharomyces cerevisiae. Front Mol Biosci 2024; 11:1325590. [PMID: 38389899 PMCID: PMC10881880 DOI: 10.3389/fmolb.2024.1325590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/22/2024] [Indexed: 02/24/2024] Open
Abstract
The molecular chaperone Hsp90 (Heat shock protein, 90 kDa) is an abundant and essential cytosolic protein required for the stability and/or folding of hundreds of client proteins. Hsp90, along with helper cochaperone proteins, assists client protein folding in an ATP-dependent pathway. The laboratory of Susan Lindquist, in collaboration with other researchers, was the first to establish the yeast Saccharomyces cerevisiae as a model organism to study the functional interaction between Hsp90 and clients. Important insights from studies in her lab were that Hsp90 is essential, and that Hsp90 functions and cochaperone interactions are highly conserved between yeast and mammalian cells. Here, we describe key mechanistic insights into the Hsp90 folding cycle that were obtained using the yeast system. We highlight the early contributions of the laboratory of Susan Lindquist and extend our analysis into the broader use of the yeast system to analyze the understanding of the conformational cycle of Hsp90 and the impact of altered Hsp90 function on the proteome.
Collapse
Affiliation(s)
| | | | - Jill L. Johnson
- Department of Biological Sciences and Center for Reproductive Biology, University of Idaho, Moscow, ID, United States
| |
Collapse
|
7
|
Padhy AA, Mavor D, Sahoo S, Bolon DNA, Mishra P. Systematic profiling of dominant ubiquitin variants reveals key functional nodes contributing to evolutionary selection. Cell Rep 2023; 42:113064. [PMID: 37656625 DOI: 10.1016/j.celrep.2023.113064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/30/2023] [Accepted: 08/21/2023] [Indexed: 09/03/2023] Open
Abstract
Dominant-negative mutations can help to investigate the biological mechanisms and to understand the selective pressures for multifunctional proteins. However, most studies have focused on recessive mutant effects that occur in the absence of a second functional gene copy, which overlooks the fact that most eukaryotic genomes contain more than one copy of many genes. We have identified dominant effects on yeast growth rate among all possible point mutations in ubiquitin expressed alongside a wild-type allele. Our results reveal more than 400 dominant-negative mutations, indicating that dominant-negative effects make a sizable contribution to selection acting on ubiquitin. Cellular and biochemical analyses of individual ubiquitin variants show that dominant-negative effects are explained by varied accumulation of polyubiquitinated cellular proteins and/or defects in conjugation of ubiquitin variants to ubiquitin ligases. Our approach to identify dominant-negative mutations is general and can be applied to other proteins of interest.
Collapse
Affiliation(s)
- Amrita Arpita Padhy
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Telangana 500046, India
| | - David Mavor
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Subhashree Sahoo
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Telangana 500046, India
| | - Daniel N A Bolon
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Medical School, Worcester, MA 01655, USA.
| | - Parul Mishra
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Telangana 500046, India.
| |
Collapse
|
8
|
Backe SJ, Mollapour M, Woodford MR. Saccharomyces cerevisiae as a tool for deciphering Hsp90 molecular chaperone function. Essays Biochem 2023; 67:781-795. [PMID: 36912239 PMCID: PMC10497724 DOI: 10.1042/ebc20220224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 03/14/2023]
Abstract
Yeast is a valuable model organism for their ease of genetic manipulation, rapid growth rate, and relative similarity to higher eukaryotes. Historically, Saccharomyces cerevisiae has played a major role in discovering the function of complex proteins and pathways that are important for human health and disease. Heat shock protein 90 (Hsp90) is a molecular chaperone responsible for the stabilization and activation of hundreds of integral members of the cellular signaling network. Much important structural and functional work, including many seminal discoveries in Hsp90 biology are the direct result of work carried out in S. cerevisiae. Here, we have provided a brief overview of the S. cerevisiae model system and described how this eukaryotic model organism has been successfully applied to the study of Hsp90 chaperone function.
Collapse
Affiliation(s)
- Sarah J. Backe
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, U.S.A
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, U.S.A
| | - Mehdi Mollapour
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, U.S.A
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, U.S.A
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, U.S.A
| | - Mark R. Woodford
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, U.S.A
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, U.S.A
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, U.S.A
| |
Collapse
|
9
|
Reidy M, Garzillo K, Masison DC. Nucleotide exchange is sufficient for Hsp90 functions in vivo. Nat Commun 2023; 14:2489. [PMID: 37120429 PMCID: PMC10148809 DOI: 10.1038/s41467-023-38230-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 04/20/2023] [Indexed: 05/01/2023] Open
Abstract
Hsp90 is an essential eukaryotic chaperone that regulates the activity of many client proteins. Current models of Hsp90 function, which include many conformational rearrangements, specify a requirement of ATP hydrolysis. Here we confirm earlier findings that the Hsp82-E33A mutant, which binds ATP but does not hydrolyze it, supports viability of S. cerevisiae, although it displays conditional phenotypes. We find binding of ATP to Hsp82-E33A induces the conformational dynamics needed for Hsp90 function. Hsp90 orthologs with the analogous EA mutation from several eukaryotic species, including humans and disease organisms, support viability of both S. cerevisiae and Sz. pombe. We identify second-site suppressors of EA that rescue its conditional defects and allow EA versions of all Hsp90 orthologs tested to support nearly normal growth of both organisms, without restoring ATP hydrolysis. Thus, the requirement of ATP for Hsp90 to maintain viability of evolutionarily distant eukaryotic organisms does not appear to depend on energy from ATP hydrolysis. Our findings support earlier suggestions that exchange of ATP for ADP is critical for Hsp90 function. ATP hydrolysis is not necessary for this exchange but provides an important control point in the cycle responsive to regulation by co-chaperones.
Collapse
Affiliation(s)
- Michael Reidy
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892-0830, USA.
| | - Kevin Garzillo
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892-0830, USA
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, 18015, USA
| | - Daniel C Masison
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892-0830, USA
| |
Collapse
|
10
|
Chandra S, Manjunath K, Asok A, Varadarajan R. Mutational scan inferred binding energetics and structure in intrinsically disordered protein CcdA. Protein Sci 2023; 32:e4580. [PMID: 36714997 PMCID: PMC9951195 DOI: 10.1002/pro.4580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 01/02/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023]
Abstract
Unlike globular proteins, mutational effects on the function of Intrinsically Disordered Proteins (IDPs) are not well-studied. Deep Mutational Scanning of a yeast surface displayed mutant library yields insights into sequence-function relationships in the CcdA IDP. The approach enables facile prediction of interface residues and local structural signatures of the bound conformation. In contrast to previous titration-based approaches which use a number of ligand concentrations, we show that use of a single rationally chosen ligand concentration can provide quantitative estimates of relative binding constants for large numbers of protein variants. This is because the extended interface of IDP ensures that energetic effects of point mutations are spread over a much smaller range than for globular proteins. Our data also provides insights into the much-debated role of helicity and disorder in partner binding of IDPs. Based on this exhaustive mutational sensitivity dataset, a rudimentary model was developed in an attempt to predict mutational effects on binding affinity of IDPs that form alpha-helical structures upon binding.
Collapse
Affiliation(s)
| | | | - Aparna Asok
- Molecular Biophysics Unit, Indian Institute of ScienceBangaloreIndia
| | | |
Collapse
|
11
|
Cisneros AF, Gagnon-Arsenault I, Dubé AK, Després PC, Kumar P, Lafontaine K, Pelletier JN, Landry CR. Epistasis between promoter activity and coding mutations shapes gene evolvability. SCIENCE ADVANCES 2023; 9:eadd9109. [PMID: 36735790 PMCID: PMC9897669 DOI: 10.1126/sciadv.add9109] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 12/22/2022] [Indexed: 06/01/2023]
Abstract
The evolution of protein-coding genes proceeds as mutations act on two main dimensions: regulation of transcription level and the coding sequence. The extent and impact of the connection between these two dimensions are largely unknown because they have generally been studied independently. By measuring the fitness effects of all possible mutations on a protein complex at various levels of promoter activity, we show that promoter activity at the optimal level for the wild-type protein masks the effects of both deleterious and beneficial coding mutations. Mutations that are deleterious at low activity but masked at optimal activity are slightly destabilizing for individual subunits and binding interfaces. Coding mutations that increase protein abundance are beneficial at low expression but could potentially incur a cost at high promoter activity. We thereby demonstrate that promoter activity in interaction with protein properties can dictate which coding mutations are beneficial, neutral, or deleterious.
Collapse
Affiliation(s)
- Angel F. Cisneros
- Département de biochimie, de microbiologie et de bio-informatique, Faculté des sciences et de génie, Université Laval, G1V 0A6, Québec, Canada
- Institut de biologie intégrative et des systèmes, Université Laval, G1V 0A6, Québec, Canada
- PROTEO, Le regroupement québécois de recherche sur la fonction, l’ingénierie et les applications des protéines, Université Laval, G1V 0A6, Québec, Canada
- Centre de recherche sur les données massives, Université Laval, G1V 0A6, Québec, Canada
| | - Isabelle Gagnon-Arsenault
- Département de biochimie, de microbiologie et de bio-informatique, Faculté des sciences et de génie, Université Laval, G1V 0A6, Québec, Canada
- Institut de biologie intégrative et des systèmes, Université Laval, G1V 0A6, Québec, Canada
- PROTEO, Le regroupement québécois de recherche sur la fonction, l’ingénierie et les applications des protéines, Université Laval, G1V 0A6, Québec, Canada
- Centre de recherche sur les données massives, Université Laval, G1V 0A6, Québec, Canada
- Département de biologie, Faculté des sciences et de génie, Université Laval, G1V 0A6, Québec, Canada
| | - Alexandre K. Dubé
- Département de biochimie, de microbiologie et de bio-informatique, Faculté des sciences et de génie, Université Laval, G1V 0A6, Québec, Canada
- Institut de biologie intégrative et des systèmes, Université Laval, G1V 0A6, Québec, Canada
- PROTEO, Le regroupement québécois de recherche sur la fonction, l’ingénierie et les applications des protéines, Université Laval, G1V 0A6, Québec, Canada
- Centre de recherche sur les données massives, Université Laval, G1V 0A6, Québec, Canada
- Département de biologie, Faculté des sciences et de génie, Université Laval, G1V 0A6, Québec, Canada
| | - Philippe C. Després
- Département de biochimie, de microbiologie et de bio-informatique, Faculté des sciences et de génie, Université Laval, G1V 0A6, Québec, Canada
- Institut de biologie intégrative et des systèmes, Université Laval, G1V 0A6, Québec, Canada
- PROTEO, Le regroupement québécois de recherche sur la fonction, l’ingénierie et les applications des protéines, Université Laval, G1V 0A6, Québec, Canada
- Centre de recherche sur les données massives, Université Laval, G1V 0A6, Québec, Canada
| | - Pradum Kumar
- Département de biochimie, de microbiologie et de bio-informatique, Faculté des sciences et de génie, Université Laval, G1V 0A6, Québec, Canada
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - Kiana Lafontaine
- PROTEO, Le regroupement québécois de recherche sur la fonction, l’ingénierie et les applications des protéines, Université Laval, G1V 0A6, Québec, Canada
- Département de biochimie et de médecine moléculaire, Faculté de médecine, Université de Montréal, H3C 3J7, Montréal, Canada
| | - Joelle N. Pelletier
- PROTEO, Le regroupement québécois de recherche sur la fonction, l’ingénierie et les applications des protéines, Université Laval, G1V 0A6, Québec, Canada
- Département de biochimie et de médecine moléculaire, Faculté de médecine, Université de Montréal, H3C 3J7, Montréal, Canada
- Département de chimie, Faculté des arts et des sciences, Université de Montréal, H3C 3J7, Montréal, Canada
| | - Christian R. Landry
- Département de biochimie, de microbiologie et de bio-informatique, Faculté des sciences et de génie, Université Laval, G1V 0A6, Québec, Canada
- Institut de biologie intégrative et des systèmes, Université Laval, G1V 0A6, Québec, Canada
- PROTEO, Le regroupement québécois de recherche sur la fonction, l’ingénierie et les applications des protéines, Université Laval, G1V 0A6, Québec, Canada
- Centre de recherche sur les données massives, Université Laval, G1V 0A6, Québec, Canada
- Département de biologie, Faculté des sciences et de génie, Université Laval, G1V 0A6, Québec, Canada
| |
Collapse
|
12
|
Flynn J, Samant N, Schneider-Nachum G, Tenzin T, Bolon DNA. Mutational fitness landscape and drug resistance. Curr Opin Struct Biol 2023; 78:102525. [PMID: 36621152 PMCID: PMC10243218 DOI: 10.1016/j.sbi.2022.102525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/29/2022] [Accepted: 12/06/2022] [Indexed: 01/08/2023]
Abstract
Robust technology has been developed to systematically quantify fitness landscapes that provide valuable opportunities to improve our understanding of drug resistance and define new avenues to develop drugs with reduced resistance susceptibility. We outline the critical importance of drug resistance studies and the potential for fitness landscape approaches to contribute to this effort. We describe the major technical advancements in mutational scanning, which is the primary approach used to quantify protein fitness landscapes. There are many complex steps to consider in planning and executing mutational scanning projects including developing a selection scheme, generating mutant libraries, tracking the frequency of variants using next-generation sequencing, and processing and interpreting the data. Key experimental parameters impacting each of these steps are discussed to aid in planning fitness landscape studies. There is a strong need for improved understanding of drug resistance, and fitness landscapes provide a promising new approach.
Collapse
Affiliation(s)
- Julia Flynn
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Neha Samant
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Gily Schneider-Nachum
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Tsepal Tenzin
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Daniel N A Bolon
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
13
|
Fu Y, Bedő J, Papenfuss AT, Rubin AF. Integrating deep mutational scanning and low-throughput mutagenesis data to predict the impact of amino acid variants. Gigascience 2022; 12:giad073. [PMID: 37721410 PMCID: PMC10506130 DOI: 10.1093/gigascience/giad073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 07/02/2023] [Accepted: 08/23/2023] [Indexed: 09/19/2023] Open
Abstract
BACKGROUND Evaluating the impact of amino acid variants has been a critical challenge for studying protein function and interpreting genomic data. High-throughput experimental methods like deep mutational scanning (DMS) can measure the effect of large numbers of variants in a target protein, but because DMS studies have not been performed on all proteins, researchers also model DMS data computationally to estimate variant impacts by predictors. RESULTS In this study, we extended a linear regression-based predictor to explore whether incorporating data from alanine scanning (AS), a widely used low-throughput mutagenesis method, would improve prediction results. To evaluate our model, we collected 146 AS datasets, mapping to 54 DMS datasets across 22 distinct proteins. CONCLUSIONS We show that improved model performance depends on the compatibility of the DMS and AS assays, and the scale of improvement is closely related to the correlation between DMS and AS results.
Collapse
Affiliation(s)
- Yunfan Fu
- The Walter and Eliza Hall Institute of Medical Research, Bioinformatics Division, 1G Royal Pde, Parkville, Victoria 3052, Australia
- The University of Melbourne, Department of Medical Biology, Parkville, Victoria 3010, Australia
| | - Justin Bedő
- The Walter and Eliza Hall Institute of Medical Research, Bioinformatics Division, 1G Royal Pde, Parkville, Victoria 3052, Australia
- The University of Melbourne, Department of Medical Biology, Parkville, Victoria 3010, Australia
| | - Anthony T Papenfuss
- The Walter and Eliza Hall Institute of Medical Research, Bioinformatics Division, 1G Royal Pde, Parkville, Victoria 3052, Australia
- The University of Melbourne, Department of Medical Biology, Parkville, Victoria 3010, Australia
- Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
| | - Alan F Rubin
- The Walter and Eliza Hall Institute of Medical Research, Bioinformatics Division, 1G Royal Pde, Parkville, Victoria 3052, Australia
- The University of Melbourne, Department of Medical Biology, Parkville, Victoria 3010, Australia
| |
Collapse
|
14
|
Bhattacharya K, Maiti S, Zahoran S, Weidenauer L, Hany D, Wider D, Bernasconi L, Quadroni M, Collart M, Picard D. Translational reprogramming in response to accumulating stressors ensures critical threshold levels of Hsp90 for mammalian life. Nat Commun 2022; 13:6271. [PMID: 36270993 PMCID: PMC9587034 DOI: 10.1038/s41467-022-33916-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 10/07/2022] [Indexed: 12/25/2022] Open
Abstract
The cytosolic molecular chaperone Hsp90 is essential for eukaryotic life. Although reduced Hsp90 levels correlate with aging, it was unknown whether eukaryotic cells and organisms can tune the basal Hsp90 levels to alleviate physiologically accumulated stress. We have investigated whether and how mice adapt to the deletion of three out of four alleles of the two genes encoding cytosolic Hsp90, with one Hsp90β allele being the only remaining one. While the vast majority of such mouse embryos die during gestation, survivors apparently manage to increase their Hsp90β protein to at least wild-type levels. Our studies reveal an internal ribosome entry site in the 5' untranslated region of the Hsp90β mRNA allowing translational reprogramming to compensate for the genetic loss of Hsp90 alleles and in response to stress. We find that the minimum amount of total Hsp90 required to support viability of mammalian cells and organisms is 50-70% of what is normally there. Those that fail to maintain a threshold level are subject to accelerated senescence, proteostatic collapse, and ultimately death. Therefore, considering that Hsp90 levels can be reduced ≥100-fold in the unicellular budding yeast, critical threshold levels of Hsp90 have markedly increased during eukaryotic evolution.
Collapse
Affiliation(s)
- Kaushik Bhattacharya
- Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland
| | - Samarpan Maiti
- Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland
| | - Szabolcs Zahoran
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Lorenz Weidenauer
- Protein Analysis Facility, Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Dina Hany
- Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland
| | - Diana Wider
- Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland
| | - Lilia Bernasconi
- Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland
| | - Manfredo Quadroni
- Protein Analysis Facility, Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Martine Collart
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Didier Picard
- Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
15
|
Chandra S, Gupta K, Khare S, Kohli P, Asok A, Mohan SV, Gowda H, Varadarajan R. The High Mutational Sensitivity of ccdA Antitoxin Is Linked to Codon Optimality. Mol Biol Evol 2022; 39:msac187. [PMID: 36069948 PMCID: PMC9555053 DOI: 10.1093/molbev/msac187] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Deep mutational scanning studies suggest that synonymous mutations are typically silent and that most exposed, nonactive-site residues are tolerant to mutations. Here, we show that the ccdA antitoxin component of the Escherichia coli ccdAB toxin-antitoxin system is unusually sensitive to mutations when studied in the operonic context. A large fraction (∼80%) of single-codon mutations, including many synonymous mutations in the ccdA gene shows inactive phenotype, but they retain native-like binding affinity towards cognate toxin, CcdB. Therefore, the observed phenotypic effects are largely not due to alterations in protein structure/stability, consistent with a large region of CcdA being intrinsically disordered. E. coli codon preference and strength of ribosome-binding associated with translation of downstream ccdB gene are found to be major contributors of the observed ccdA mutant phenotypes. In select cases, proteomics studies reveal altered ratios of CcdA:CcdB protein levels in vivo, suggesting that the ccdA mutations likely alter relative translation efficiencies of the two genes in the operon. We extend these results by studying single-site synonymous mutations that lead to loss of function phenotypes in the relBE operon upon introduction of rarer codons. Thus, in their operonic context, genes are likely to be more sensitive to both synonymous and nonsynonymous point mutations than inferred previously.
Collapse
Affiliation(s)
- Soumyanetra Chandra
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| | - Kritika Gupta
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| | - Shruti Khare
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| | - Pehu Kohli
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| | - Aparna Asok
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| | | | - Harsha Gowda
- Institute of Bioinformatics, Bangalore 560100, India
| | | |
Collapse
|
16
|
Samant N, Nachum G, Tsepal T, Bolon DNA. Sequence dependencies and biophysical features both govern cleavage of diverse cut-sites by HIV protease. Protein Sci 2022; 31:e4366. [PMID: 35762719 PMCID: PMC9207908 DOI: 10.1002/pro.4366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/18/2022] [Accepted: 05/27/2022] [Indexed: 11/12/2022]
Abstract
The infectivity of HIV-1 requires its protease (PR) cleave multiple cut-sites with low sequence similarity. The diversity of cleavage sites has made it challenging to investigate the underlying sequence properties that determine binding and turnover of substrates by PR. We engineered a mutational scanning approach utilizing yeast display, flow cytometry, and deep sequencing to systematically measure the impacts of all individual amino acid changes at 12 positions in three different cut-sites (MA/CA, NC/p1, and p1/p6). The resulting fitness landscapes revealed common physical features that underlie cutting of all three cut-sites at the amino acid positions closest to the scissile bond. In contrast, positions more than two amino acids away from the scissile bond exhibited a strong dependence on the sequence background of the rest of the cut-site. We observed multiple amino acid changes in cut-sites that led to faster cleavage rates, including a preference for negative charge five and six amino acids away from the scissile bond at locations where the surface of protease is positively charged. Analysis of individual cut sites using full-length matrix-capsid proteins indicate that long-distance sequence context can contribute to cutting efficiency such that analyses of peptides or shorter engineered constructs including those in this work should be considered carefully. This work provides a framework for understanding how diverse substrates interact with HIV-1 PR and can be extended to investigate other viral PRs with similar properties.
Collapse
Affiliation(s)
- Neha Samant
- Biochemistry and Molecular BiotechnologyUniversity of Massachusetts Chan Medical SchoolWorcesterMassachusettsUSA
| | - Gily Nachum
- Biochemistry and Molecular BiotechnologyUniversity of Massachusetts Chan Medical SchoolWorcesterMassachusettsUSA
| | - Tenzin Tsepal
- Biochemistry and Molecular BiotechnologyUniversity of Massachusetts Chan Medical SchoolWorcesterMassachusettsUSA
| | - Daniel N. A. Bolon
- Biochemistry and Molecular BiotechnologyUniversity of Massachusetts Chan Medical SchoolWorcesterMassachusettsUSA
| |
Collapse
|
17
|
Flynn JM, Samant N, Schneider-Nachum G, Barkan DT, Yilmaz NK, Schiffer CA, Moquin SA, Dovala D, Bolon DNA. Comprehensive fitness landscape of SARS-CoV-2 M pro reveals insights into viral resistance mechanisms. eLife 2022; 11:e77433. [PMID: 35723575 PMCID: PMC9323007 DOI: 10.7554/elife.77433] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 06/17/2022] [Indexed: 11/13/2022] Open
Abstract
With the continual evolution of new strains of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) that are more virulent, transmissible, and able to evade current vaccines, there is an urgent need for effective anti-viral drugs. The SARS-CoV-2 main protease (Mpro) is a leading target for drug design due to its conserved and indispensable role in the viral life cycle. Drugs targeting Mpro appear promising but will elicit selection pressure for resistance. To understand resistance potential in Mpro, we performed a comprehensive mutational scan of the protease that analyzed the function of all possible single amino acid changes. We developed three separate high throughput assays of Mpro function in yeast, based on either the ability of Mpro variants to cleave at a defined cut-site or on the toxicity of their expression to yeast. We used deep sequencing to quantify the functional effects of each variant in each screen. The protein fitness landscapes from all three screens were strongly correlated, indicating that they captured the biophysical properties critical to Mpro function. The fitness landscapes revealed a non-active site location on the surface that is extremely sensitive to mutation, making it a favorable location to target with inhibitors. In addition, we found a network of critical amino acids that physically bridge the two active sites of the Mpro dimer. The clinical variants of Mpro were predominantly functional in our screens, indicating that Mpro is under strong selection pressure in the human population. Our results provide predictions of mutations that will be readily accessible to Mpro evolution and that are likely to contribute to drug resistance. This complete mutational guide of Mpro can be used in the design of inhibitors with reduced potential of evolving viral resistance.
Collapse
Affiliation(s)
- Julia M Flynn
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical SchoolWorcesterUnited States
| | - Neha Samant
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical SchoolWorcesterUnited States
| | - Gily Schneider-Nachum
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical SchoolWorcesterUnited States
| | - David T Barkan
- Novartis Institutes for Biomedical ResearchEmeryvilleUnited States
| | - Nese Kurt Yilmaz
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical SchoolWorcesterUnited States
| | - Celia A Schiffer
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical SchoolWorcesterUnited States
| | | | - Dustin Dovala
- Novartis Institutes for Biomedical ResearchEmeryvilleUnited States
| | - Daniel NA Bolon
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical SchoolWorcesterUnited States
| |
Collapse
|
18
|
Cote-Hammarlof PA, Fragata I, Flynn J, Mavor D, Zeldovich KB, Bank C, Bolon DNA. The Adaptive Potential of the Middle Domain of Yeast Hsp90. Mol Biol Evol 2021; 38:368-379. [PMID: 32871012 PMCID: PMC7826181 DOI: 10.1093/molbev/msaa211] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The distribution of fitness effects (DFEs) of new mutations across different environments quantifies the potential for adaptation in a given environment and its cost in others. So far, results regarding the cost of adaptation across environments have been mixed, and most studies have sampled random mutations across different genes. Here, we quantify systematically how costs of adaptation vary along a large stretch of protein sequence by studying the distribution of fitness effects of the same ≈2,300 amino-acid changing mutations obtained from deep mutational scanning of 119 amino acids in the middle domain of the heat shock protein Hsp90 in five environments. This region is known to be important for client binding, stabilization of the Hsp90 dimer, stabilization of the N-terminal-Middle and Middle-C-terminal interdomains, and regulation of ATPase–chaperone activity. Interestingly, we find that fitness correlates well across diverse stressful environments, with the exception of one environment, diamide. Consistent with this result, we find little cost of adaptation; on average only one in seven beneficial mutations is deleterious in another environment. We identify a hotspot of beneficial mutations in a region of the protein that is located within an allosteric center. The identified protein regions that are enriched in beneficial, deleterious, and costly mutations coincide with residues that are involved in the stabilization of Hsp90 interdomains and stabilization of client-binding interfaces, or residues that are involved in ATPase–chaperone activity of Hsp90. Thus, our study yields information regarding the role and adaptive potential of a protein sequence that complements and extends known structural information.
Collapse
Affiliation(s)
| | - Inês Fragata
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Julia Flynn
- University of Massachusetts Medical School, Worcester, MA
| | - David Mavor
- University of Massachusetts Medical School, Worcester, MA
| | | | - Claudia Bank
- Instituto Gulbenkian de Ciência, Oeiras, Portugal.,Institute of Ecology and Evolution, University of Bern, Switzerland
| | | |
Collapse
|
19
|
McCormick JW, Russo MA, Thompson S, Blevins A, Reynolds KA. Structurally distributed surface sites tune allosteric regulation. eLife 2021; 10:68346. [PMID: 34132193 PMCID: PMC8324303 DOI: 10.7554/elife.68346] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 06/15/2021] [Indexed: 11/30/2022] Open
Abstract
Our ability to rationally optimize allosteric regulation is limited by incomplete knowledge of the mutations that tune allostery. Are these mutations few or abundant, structurally localized or distributed? To examine this, we conducted saturation mutagenesis of a synthetic allosteric switch in which Dihydrofolate reductase (DHFR) is regulated by a blue-light sensitive LOV2 domain. Using a high-throughput assay wherein DHFR catalytic activity is coupled to E. coli growth, we assessed the impact of 1548 viable DHFR single mutations on allostery. Despite most mutations being deleterious to activity, fewer than 5% of mutations had a statistically significant influence on allostery. Most allostery disrupting mutations were proximal to the LOV2 insertion site. In contrast, allostery enhancing mutations were structurally distributed and enriched on the protein surface. Combining several allostery enhancing mutations yielded near-additive improvements to dynamic range. Our results indicate a path toward optimizing allosteric function through variation at surface sites. Many proteins exhibit a property called ‘allostery’. In allostery, an input signal at a specific site of a protein – such as a molecule binding, or the protein absorbing a photon of light – leads to a change in output at another site far away. For example, the protein might catalyze a chemical reaction faster or bind to another molecule more tightly in the presence of the input signal. This protein ‘remote control’ allows cells to sense and respond to changes in their environment. An ability to rapidly engineer new allosteric mechanisms into proteins is much sought after because this would provide an approach for building biosensors and other useful tools. One common approach to engineering new allosteric regulation is to combine a ‘sensor’ or input region from one protein with an ‘output’ region or domain from another. When researchers engineer allostery using this approach of combining input and output domains from different proteins, the difference in the output when the input is ‘on’ versus ‘off’ is often small, a situation called ‘modest allostery’. McCormick et al. wanted to know how to optimize this domain combination approach to increase the difference in output between the ‘on’ and ‘off’ states. More specifically, McCormick et al. wanted to find out whether swapping out or mutating specific amino acids (each of the individual building blocks that make up a protein) enhances or disrupts allostery. They also wanted to know if there are many possible mutations that change the effectiveness of allostery, or if this property is controlled by just a few amino acids. Finally, McCormick et al. questioned where in a protein most of these allostery-tuning mutations were located. To answer these questions, McCormick et al. engineered a new allosteric protein by inserting a light-sensing domain (input) into a protein involved in metabolism (a metabolic enzyme that produces a biomolecule called a tetrahydrofolate) to yield a light-controlled enzyme. Next, they introduced mutations into both the ‘input’ and ‘output’ domains to see where they had a greater effect on allostery. After filtering out mutations that destroyed the function of the output domain, McCormick et al. found that only about 5% of mutations to the ‘output’ domain altered the allosteric response of their engineered enzyme. In fact, most mutations that disrupted allostery were found near the site where the ‘input’ domain was inserted, while mutations that enhanced allostery were sprinkled throughout the enzyme, often on its protein surface. This was surprising in light of the commonly-held assumption that mutations on protein surfaces have little impact on the activity of the ‘output’ domain. Overall, the effect of individual mutations on allostery was small, but McCormick et al. found that these mutations can sometimes be combined to yield larger effects. McCormick et al.’s results suggest a new approach for optimizing engineered allosteric proteins: by introducing mutations on the protein surface. It also opens up new questions: mechanically, how do surface sites affect allostery? In the future, it will be important to characterize how combinations of mutations can optimize allosteric regulation, and to determine what evolutionary trajectories to high performance allosteric ‘switches’ look like.
Collapse
Affiliation(s)
- James W McCormick
- The Green Center for Systems Biology, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States
| | - Marielle Ax Russo
- The Green Center for Systems Biology, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States
| | - Samuel Thompson
- Department of Bioengineering, Stanford University, Stanford, United States
| | - Aubrie Blevins
- The Green Center for Systems Biology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Kimberly A Reynolds
- The Green Center for Systems Biology, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States
| |
Collapse
|
20
|
Razban RM, Dasmeh P, Serohijos AWR, Shakhnovich EI. Avoidance of protein unfolding constrains protein stability in long-term evolution. Biophys J 2021; 120:2413-2424. [PMID: 33932438 PMCID: PMC8390877 DOI: 10.1016/j.bpj.2021.03.042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 02/24/2021] [Accepted: 03/17/2021] [Indexed: 11/28/2022] Open
Abstract
Every amino acid residue can influence a protein's overall stability, making stability highly susceptible to change throughout evolution. We consider the distribution of protein stabilities evolutionarily permittable under two previously reported protein fitness functions: flux dynamics and misfolding avoidance. We develop an evolutionary dynamics theory and find that it agrees better with an extensive protein stability data set for dihydrofolate reductase orthologs under the misfolding avoidance fitness function rather than the flux dynamics fitness function. Further investigation with ribonuclease H data demonstrates that not any misfolded state is avoided; rather, it is only the unfolded state. At the end, we discuss how our work pertains to the universal protein abundance-evolutionary rate correlation seen across organisms' proteomes. We derive a closed-form expression relating protein abundance to evolutionary rate that captures Escherichia coli, Saccharomyces cerevisiae, and Homo sapiens experimental trends without fitted parameters.
Collapse
Affiliation(s)
- Rostam M Razban
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts
| | - Pouria Dasmeh
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts; Departement de Biochimie, Université de Montréal, Montreal, Quebec, Canada
| | | | - Eugene I Shakhnovich
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts.
| |
Collapse
|
21
|
Cagiada M, Johansson KE, Valanciute A, Nielsen SV, Hartmann-Petersen R, Yang JJ, Fowler DM, Stein A, Lindorff-Larsen K. Understanding the Origins of Loss of Protein Function by Analyzing the Effects of Thousands of Variants on Activity and Abundance. Mol Biol Evol 2021; 38:3235-3246. [PMID: 33779753 PMCID: PMC8321532 DOI: 10.1093/molbev/msab095] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Understanding and predicting how amino acid substitutions affect proteins are keys to our basic understanding of protein function and evolution. Amino acid changes may affect protein function in a number of ways including direct perturbations of activity or indirect effects on protein folding and stability. We have analyzed 6,749 experimentally determined variant effects from multiplexed assays on abundance and activity in two proteins (NUDT15 and PTEN) to quantify these effects and find that a third of the variants cause loss of function, and about half of loss-of-function variants also have low cellular abundance. We analyze the structural and mechanistic origins of loss of function and use the experimental data to find residues important for enzymatic activity. We performed computational analyses of protein stability and evolutionary conservation and show how we may predict positions where variants cause loss of activity or abundance. In this way, our results link thermodynamic stability and evolutionary conservation to experimental studies of different properties of protein fitness landscapes.
Collapse
Affiliation(s)
- Matteo Cagiada
- Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Kristoffer E Johansson
- Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Audrone Valanciute
- Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Sofie V Nielsen
- Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Rasmus Hartmann-Petersen
- Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Jun J Yang
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA.,Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Douglas M Fowler
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.,Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Amelie Stein
- Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Kresten Lindorff-Larsen
- Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
22
|
Reidy M, Masison DC. Mutations in the Hsp90 N Domain Identify a Site that Controls Dimer Opening and Expand Human Hsp90α Function in Yeast. J Mol Biol 2020; 432:4673-4689. [PMID: 32565117 PMCID: PMC7437358 DOI: 10.1016/j.jmb.2020.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/27/2020] [Accepted: 06/13/2020] [Indexed: 11/21/2022]
Abstract
Hsp90 is a highly conserved molecular chaperone important for the activity of many client proteins. Hsp90 has an N-terminal ATPase domain (N), a middle domain (M) that interacts with clients and a C-terminal dimerization domain (C). "Closing" of dimers around clients is regulated by ATP binding, co-chaperones, and post-translational modifications. ATP hydrolysis coincides with release of mature client and resetting the reaction cycle. Humans have two Hsp90s: hHsp90α and hHsp90β. Although 85% identical, hHsp90β supports Hsp90 function in yeast much better than hHsp90α. Determining the basis of this difference would provide important insight into functional specificity of seemingly redundant Hsp90s, and the evolution of eukaryotic Hsp90 systems and clientele. Here, we found host co-chaperones Sba1, Cpr6 and Cpr7 inhibited hHsp90α function in yeast, and we identified mutations clustering in the N domain that considerably improved hHsp90α function in yeast. The strongest of these rescuer mutations accelerated nucleotide-dependent lid closing, N-M domain docking, and ATPase. It also disrupted binding to Sba1, which prolongs the closed state, and promoted N-M undocking and lid opening. Our data suggest the rescuer mutations improve function of hHsp90α in yeast by accelerating return to the open state. Our findings imply hHsp90α occupies the closed state too long to function effectively in yeast, and define an evolutionarily conserved region of the N domain involved in resetting the Hsp90 reaction cycle.
Collapse
Affiliation(s)
- Michael Reidy
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 8 Center Dr, Room 324, Bethesda, MD 20892, USA.
| | - Daniel C Masison
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 8 Center Dr, Room 324, Bethesda, MD 20892, USA.
| |
Collapse
|
23
|
Thompson S, Zhang Y, Ingle C, Reynolds KA, Kortemme T. Altered expression of a quality control protease in E. coli reshapes the in vivo mutational landscape of a model enzyme. eLife 2020; 9:53476. [PMID: 32701056 PMCID: PMC7377907 DOI: 10.7554/elife.53476] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 07/09/2020] [Indexed: 12/03/2022] Open
Abstract
Protein mutational landscapes are shaped by the cellular environment, but key factors and their quantitative effects are often unknown. Here we show that Lon, a quality control protease naturally absent in common E. coli expression strains, drastically reshapes the mutational landscape of the metabolic enzyme dihydrofolate reductase (DHFR). Selection under conditions that resolve highly active mutants reveals that 23.3% of all single point mutations in DHFR are advantageous in the absence of Lon, but advantageous mutations are largely suppressed when Lon is reintroduced. Protein stability measurements demonstrate extensive activity-stability tradeoffs for the advantageous mutants and provide a mechanistic explanation for Lon’s widespread impact. Our findings suggest possibilities for tuning mutational landscapes by modulating the cellular environment, with implications for protein design and combatting antibiotic resistance.
Collapse
Affiliation(s)
- Samuel Thompson
- Graduate Group in Biophysics, University of California San Francisco, San Francisco, United States
| | - Yang Zhang
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, United States
| | - Christine Ingle
- The Green Center for Systems Biology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Kimberly A Reynolds
- The Green Center for Systems Biology, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States
| | - Tanja Kortemme
- Graduate Group in Biophysics, University of California San Francisco, San Francisco, United States.,Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, United States.,Chan Zuckerberg Biohub, San Francisco, United States
| |
Collapse
|
24
|
Reeb J, Wirth T, Rost B. Variant effect predictions capture some aspects of deep mutational scanning experiments. BMC Bioinformatics 2020; 21:107. [PMID: 32183714 PMCID: PMC7077003 DOI: 10.1186/s12859-020-3439-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 03/03/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Deep mutational scanning (DMS) studies exploit the mutational landscape of sequence variation by systematically and comprehensively assaying the effect of single amino acid variants (SAVs; also referred to as missense mutations, or non-synonymous Single Nucleotide Variants - missense SNVs or nsSNVs) for particular proteins. We assembled SAV annotations from 22 different DMS experiments and normalized the effect scores to evaluate variant effect prediction methods. Three trained on traditional variant effect data (PolyPhen-2, SIFT, SNAP2), a regression method optimized on DMS data (Envision), and a naïve prediction using conservation information from homologs. RESULTS On a set of 32,981 SAVs, all methods captured some aspects of the experimental effect scores, albeit not the same. Traditional methods such as SNAP2 correlated slightly more with measurements and better classified binary states (effect or neutral). Envision appeared to better estimate the precise degree of effect. Most surprising was that the simple naïve conservation approach using PSI-BLAST in many cases outperformed other methods. All methods captured beneficial effects (gain-of-function) significantly worse than deleterious (loss-of-function). For the few proteins with multiple independent experimental measurements, experiments differed substantially, but agreed more with each other than with predictions. CONCLUSIONS DMS provides a new powerful experimental means of understanding the dynamics of the protein sequence space. As always, promising new beginnings have to overcome challenges. While our results demonstrated that DMS will be crucial to improve variant effect prediction methods, data diversity hindered simplification and generalization.
Collapse
Affiliation(s)
- Jonas Reeb
- Department of Informatics, Bioinformatics & Computational Biology - i12, TUM (Technical University of Munich), Boltzmannstr 3, 85748, Garching/Munich, Germany.
| | - Theresa Wirth
- Department of Informatics, Bioinformatics & Computational Biology - i12, TUM (Technical University of Munich), Boltzmannstr 3, 85748, Garching/Munich, Germany
| | - Burkhard Rost
- Department of Informatics, Bioinformatics & Computational Biology - i12, TUM (Technical University of Munich), Boltzmannstr 3, 85748, Garching/Munich, Germany
- Institute for Advanced Study (TUM-IAS), Lichtenbergstr 2a, 85748, Garching/Munich, Germany
- TUM School of Life Sciences Weihenstephan (WZW), Alte Akademie 8, Freising, Germany
- Department of Biochemistry and Molecular Biophysics, Columbia University, 701 West, 168th Street, New York, NY, 10032, USA
| |
Collapse
|
25
|
Flynn JM, Rossouw A, Cote-Hammarlof P, Fragata I, Mavor D, Hollins C, Bank C, Bolon DN. Comprehensive fitness maps of Hsp90 show widespread environmental dependence. eLife 2020; 9:53810. [PMID: 32129763 PMCID: PMC7069724 DOI: 10.7554/elife.53810] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 03/03/2020] [Indexed: 12/29/2022] Open
Abstract
Gene-environment interactions have long been theorized to influence molecular evolution. However, the environmental dependence of most mutations remains unknown. Using deep mutational scanning, we engineered yeast with all 44,604 single codon changes encoding 14,160 amino acid variants in Hsp90 and quantified growth effects under standard conditions and under five stress conditions. To our knowledge, these are the largest determined comprehensive fitness maps of point mutants. The growth of many variants differed between conditions, indicating that environment can have a large impact on Hsp90 evolution. Multiple variants provided growth advantages under individual conditions; however, these variants tended to exhibit growth defects in other environments. The diversity of Hsp90 sequences observed in extant eukaryotes preferentially contains variants that supported robust growth under all tested conditions. Rather than favoring substitutions in individual conditions, the long-term selective pressure on Hsp90 may have been that of fluctuating environments, leading to robustness under a variety of conditions.
Collapse
Affiliation(s)
- Julia M Flynn
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, United States
| | - Ammeret Rossouw
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, United States
| | - Pamela Cote-Hammarlof
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, United States
| | - Inês Fragata
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - David Mavor
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, United States
| | - Carl Hollins
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, United States
| | - Claudia Bank
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Daniel Na Bolon
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, United States
| |
Collapse
|
26
|
Esposito D, Weile J, Shendure J, Starita LM, Papenfuss AT, Roth FP, Fowler DM, Rubin AF. MaveDB: an open-source platform to distribute and interpret data from multiplexed assays of variant effect. Genome Biol 2019; 20:223. [PMID: 31679514 PMCID: PMC6827219 DOI: 10.1186/s13059-019-1845-6] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 10/01/2019] [Indexed: 11/10/2022] Open
Abstract
Multiplex assays of variant effect (MAVEs), such as deep mutational scans and massively parallel reporter assays, test thousands of sequence variants in a single experiment. Despite the importance of MAVE data for basic and clinical research, there is no standard resource for their discovery and distribution. Here, we present MaveDB ( https://www.mavedb.org ), a public repository for large-scale measurements of sequence variant impact, designed for interoperability with applications to interpret these datasets. We also describe the first such application, MaveVis, which retrieves, visualizes, and contextualizes variant effect maps. Together, the database and applications will empower the community to mine these powerful datasets.
Collapse
Affiliation(s)
- Daniel Esposito
- Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Jochen Weile
- The Donnelly Centre, University of Toronto, Toronto, ON, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Department of Computer Science, University of Toronto, Toronto, ON, Canada
| | - Jay Shendure
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| | - Lea M Starita
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
| | - Anthony T Papenfuss
- Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
- Bioinformatics and Cancer Genomics Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
- Department of Mathematics and Statistics, University of Melbourne, Melbourne, VIC, Australia
| | - Frederick P Roth
- The Donnelly Centre, University of Toronto, Toronto, ON, Canada.
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.
- Department of Computer Science, University of Toronto, Toronto, ON, Canada.
- Canadian Institute for Advanced Research, Toronto, ON, Canada.
| | - Douglas M Fowler
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.
- Canadian Institute for Advanced Research, Toronto, ON, Canada.
- Department of Bioengineering, University of Washington, Seattle, WA, USA.
| | - Alan F Rubin
- Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia.
- Bioinformatics and Cancer Genomics Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.
| |
Collapse
|
27
|
Kemble H, Nghe P, Tenaillon O. Recent insights into the genotype-phenotype relationship from massively parallel genetic assays. Evol Appl 2019; 12:1721-1742. [PMID: 31548853 PMCID: PMC6752143 DOI: 10.1111/eva.12846] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 06/21/2019] [Accepted: 07/02/2019] [Indexed: 12/20/2022] Open
Abstract
With the molecular revolution in Biology, a mechanistic understanding of the genotype-phenotype relationship became possible. Recently, advances in DNA synthesis and sequencing have enabled the development of deep mutational scanning assays, capable of scoring comprehensive libraries of genotypes for fitness and a variety of phenotypes in massively parallel fashion. The resulting empirical genotype-fitness maps pave the way to predictive models, potentially accelerating our ability to anticipate the behaviour of pathogen and cancerous cell populations from sequencing data. Besides from cellular fitness, phenotypes of direct application in industry (e.g. enzyme activity) and medicine (e.g. antibody binding) can be quantified and even selected directly by these assays. This review discusses the technological basis of and recent developments in massively parallel genetics, along with the trends it is uncovering in the genotype-phenotype relationship (distribution of mutation effects, epistasis), their possible mechanistic bases and future directions for advancing towards the goal of predictive genetics.
Collapse
Affiliation(s)
- Harry Kemble
- Infection, Antimicrobials, Modelling, Evolution, INSERM, Unité Mixte de Recherche 1137Université Paris Diderot, Université Paris NordParisFrance
- École Supérieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), UMR CNRS‐ESPCI CBI 8231PSL Research UniversityParis Cedex 05France
| | - Philippe Nghe
- École Supérieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), UMR CNRS‐ESPCI CBI 8231PSL Research UniversityParis Cedex 05France
| | - Olivier Tenaillon
- Infection, Antimicrobials, Modelling, Evolution, INSERM, Unité Mixte de Recherche 1137Université Paris Diderot, Université Paris NordParisFrance
| |
Collapse
|
28
|
Li X, Lalić J, Baeza-Centurion P, Dhar R, Lehner B. Changes in gene expression predictably shift and switch genetic interactions. Nat Commun 2019; 10:3886. [PMID: 31467279 PMCID: PMC6715729 DOI: 10.1038/s41467-019-11735-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 07/29/2019] [Indexed: 11/18/2022] Open
Abstract
Non-additive interactions between mutations occur extensively and also change across conditions, making genetic prediction a difficult challenge. To better understand the plasticity of genetic interactions (epistasis), we combine mutations in a single protein performing a single function (a transcriptional repressor inhibiting a target gene). Even in this minimal system, genetic interactions switch from positive (suppressive) to negative (enhancing) as the expression of the gene changes. These seemingly complicated changes can be predicted using a mathematical model that propagates the effects of mutations on protein folding to the cellular phenotype. More generally, changes in gene expression should be expected to alter the effects of mutations and how they interact whenever the relationship between expression and a phenotype is nonlinear, which is the case for most genes. These results have important implications for understanding genotype-phenotype maps and illustrate how changes in genetic interactions can often—but not always—be predicted by hierarchical mechanistic models. Non-additive genetic interactions are plastic and can complicate genetic prediction. Here, using deep mutagenesis of the lambda repressor, Li et al. reveal that changes in gene expression can alter the strength and direction of genetic interactions between mutations in many genes and develop mathematical models for predicting them.
Collapse
Affiliation(s)
- Xianghua Li
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, 08003, Spain
| | - Jasna Lalić
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, 08003, Spain
| | - Pablo Baeza-Centurion
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, 08003, Spain
| | - Riddhiman Dhar
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, 08003, Spain
| | - Ben Lehner
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, 08003, Spain. .,Universitat Pompeu Fabra (UPF), Barcelona, Spain. .,ICREA, Pg. Luis Companys 23, Barcelona, 08010, Spain.
| |
Collapse
|
29
|
Boucher JI, Whitfield TW, Dauphin A, Nachum G, Hollins C, Zeldovich KB, Swanstrom R, Schiffer CA, Luban J, Bolon DNA. Constrained Mutational Sampling of Amino Acids in HIV-1 Protease Evolution. Mol Biol Evol 2019; 36:798-810. [PMID: 30721995 DOI: 10.1093/molbev/msz022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The evolution of HIV-1 protein sequences should be governed by a combination of factors including nucleotide mutational probabilities, the genetic code, and fitness. The impact of these factors on protein sequence evolution is interdependent, making it challenging to infer the individual contribution of each factor from phylogenetic analyses alone. We investigated the protein sequence evolution of HIV-1 by determining an experimental fitness landscape of all individual amino acid changes in protease. We compared our experimental results to the frequency of protease variants in a publicly available data set of 32,163 sequenced isolates from drug-naïve individuals. The most common amino acids in sequenced isolates supported robust experimental fitness, indicating that the experimental fitness landscape captured key features of selection acting on protease during viral infections of hosts. Amino acid changes requiring multiple mutations from the likely ancestor were slightly less likely to support robust experimental fitness than single mutations, consistent with the genetic code favoring chemically conservative amino acid changes. Amino acids that were common in sequenced isolates were predominantly accessible by single mutations from the likely protease ancestor. Multiple mutations commonly observed in isolates were accessible by mutational walks with highly fit single mutation intermediates. Our results indicate that the prevalence of multiple-base mutations in HIV-1 protease is strongly influenced by mutational sampling.
Collapse
Affiliation(s)
- Jeffrey I Boucher
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA
| | - Troy W Whitfield
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA.,Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA
| | - Ann Dauphin
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA
| | - Gily Nachum
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA
| | - Carl Hollins
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA
| | - Konstantin B Zeldovich
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA
| | - Ronald Swanstrom
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC
| | - Celia A Schiffer
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA
| | - Jeremy Luban
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA.,Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA
| | - Daniel N A Bolon
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA
| |
Collapse
|
30
|
Passagem-Santos D, Zacarias S, Perfeito L. Power law fitness landscapes and their ability to predict fitness. Heredity (Edinb) 2018; 121:482-498. [PMID: 30190560 PMCID: PMC6180038 DOI: 10.1038/s41437-018-0143-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 08/15/2018] [Accepted: 08/16/2018] [Indexed: 12/19/2022] Open
Abstract
Whether or not evolution by natural selection is predictable depends on the existence of general patterns shaping the way mutations interact with the genetic background. This interaction, also known as epistasis, has been observed during adaptation (macroscopic epistasis) and in individual mutations (microscopic epistasis). Interestingly, a consistent negative correlation between the fitness effect of beneficial mutations and background fitness (known as diminishing returns epistasis) has been observed across different species and conditions. We tested whether the adaptation pattern of an additional species, Schizosaccharomyces pombe, followed the same trend. We used strains that differed by the presence of large karyotype differences and observed the same pattern of fitness convergence. Using these data along with published datasets, we measured the ability of different models to describe adaptation rates. We found that a phenotype-fitness landscape shaped like a power law is able to correctly predict adaptation dynamics in a variety of species and conditions. Furthermore we show that this model can provide a link between the observed macroscopic and microscopic epistasis. It may be very useful in the development of algorithms able to predict the adaptation of microorganisms from measures of the current phenotypes. Overall, our results suggest that even though adaptation quickly slows down, populations adapting to lab conditions may be quite far from a fitness peak.
Collapse
|
31
|
Multiplexed assays of variant effects contribute to a growing genotype-phenotype atlas. Hum Genet 2018; 137:665-678. [PMID: 30073413 PMCID: PMC6153521 DOI: 10.1007/s00439-018-1916-x] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 07/21/2018] [Indexed: 12/12/2022]
Abstract
Given the constantly improving cost and speed of genome sequencing, it is reasonable to expect that personal genomes will soon be known for many millions of humans. This stands in stark contrast with our limited ability to interpret the sequence variants which we find. Although it is, perhaps, easiest to interpret variants in coding regions, knowledge of functional impact is unknown for the vast majority of missense variants. While many computational approaches can predict the impact of coding variants, they are given a little weight in the current guidelines for interpreting clinical variants. Laboratory assays produce comparatively more trustworthy results, but until recently did not scale to the space of all possible mutations. The development of deep mutational scanning and other multiplexed assays of variant effect has now brought feasibility of this endeavour within view. Here, we review progress in this field over the last decade, break down the different approaches into their components, and compare methodological differences.
Collapse
|
32
|
Pervasive contingency and entrenchment in a billion years of Hsp90 evolution. Proc Natl Acad Sci U S A 2018; 115:4453-4458. [PMID: 29626131 DOI: 10.1073/pnas.1718133115] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Interactions among mutations within a protein have the potential to make molecular evolution contingent and irreversible, but the extent to which epistasis actually shaped historical evolutionary trajectories is unclear. To address this question, we experimentally measured how the fitness effects of historical sequence substitutions changed during the billion-year evolutionary history of the heat shock protein 90 (Hsp90) ATPase domain beginning from a deep eukaryotic ancestor to modern Saccharomyces cerevisiae We found a pervasive influence of epistasis. Of 98 derived amino acid states that evolved along this lineage, about half compromise fitness when introduced into the reconstructed ancestral Hsp90. And the vast majority of ancestral states reduce fitness when introduced into the extant S. cerevisiae Hsp90. Overall, more than 75% of historical substitutions were contingent on permissive substitutions that rendered the derived state nondeleterious, became entrenched by subsequent restrictive substitutions that made the ancestral state deleterious, or both. This epistasis was primarily caused by specific interactions among sites rather than a general effect on the protein's tolerance to mutation. Our results show that epistasis continually opened and closed windows of mutational opportunity over evolutionary timescales, producing histories and biological states that reflect the transient internal constraints imposed by the protein's fleeting sequence states.
Collapse
|
33
|
Lundin E, Tang PC, Guy L, Näsvall J, Andersson DI. Experimental Determination and Prediction of the Fitness Effects of Random Point Mutations in the Biosynthetic Enzyme HisA. Mol Biol Evol 2018; 35:704-718. [PMID: 29294020 PMCID: PMC5850734 DOI: 10.1093/molbev/msx325] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The distribution of fitness effects of mutations is a factor of fundamental importance in evolutionary biology. We determined the distribution of fitness effects of 510 mutants that each carried between 1 and 10 mutations (synonymous and nonsynonymous) in the hisA gene, encoding an essential enzyme in the l-histidine biosynthesis pathway of Salmonella enterica. For the full set of mutants, the distribution was bimodal with many apparently neutral mutations and many lethal mutations. For a subset of 81 single, nonsynonymous mutants most mutations appeared neutral at high expression levels, whereas at low expression levels only a few mutations were neutral. Furthermore, we examined how the magnitude of the observed fitness effects was correlated to several measures of biophysical properties and phylogenetic conservation.We conclude that for HisA: (i) The effect of mutations can be masked by high expression levels, such that mutations that are deleterious to the function of the protein can still be neutral with regard to organism fitness if the protein is expressed at a sufficiently high level; (ii) the shape of the fitness distribution is dependent on the extent to which the protein is rate-limiting for growth; (iii) negative epistatic interactions, on an average, amplified the combined effect of nonsynonymous mutations; and (iv) no single sequence-based predictor could confidently predict the fitness effects of mutations in HisA, but a combination of multiple predictors could predict the effect with a SD of 0.04 resulting in 80% of the mutations predicted within 12% of their observed selection coefficients.
Collapse
Affiliation(s)
- Erik Lundin
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Po-Cheng Tang
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Lionel Guy
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Joakim Näsvall
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Dan I Andersson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
34
|
Canale AS, Venev SV, Whitfield TW, Caffrey DR, Marasco WA, Schiffer CA, Kowalik TF, Jensen JD, Finberg RW, Zeldovich KB, Wang JP, Bolon DNA. Synonymous Mutations at the Beginning of the Influenza A Virus Hemagglutinin Gene Impact Experimental Fitness. J Mol Biol 2018; 430:1098-1115. [PMID: 29466705 DOI: 10.1016/j.jmb.2018.02.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 01/19/2018] [Accepted: 02/05/2018] [Indexed: 01/15/2023]
Abstract
The fitness effects of synonymous mutations can provide insights into biological and evolutionary mechanisms. We analyzed the experimental fitness effects of all single-nucleotide mutations, including synonymous substitutions, at the beginning of the influenza A virus hemagglutinin (HA) gene. Many synonymous substitutions were deleterious both in bulk competition and for individually isolated clones. Investigating protein and RNA levels of a subset of individually expressed HA variants revealed that multiple biochemical properties contribute to the observed experimental fitness effects. Our results indicate that a structural element in the HA segment viral RNA may influence fitness. Examination of naturally evolved sequences in human hosts indicates a preference for the unfolded state of this structural element compared to that found in swine hosts. Our overall results reveal that synonymous mutations may have greater fitness consequences than indicated by simple models of sequence conservation, and we discuss the implications of this finding for commonly used evolutionary tests and analyses.
Collapse
Affiliation(s)
- Aneth S Canale
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Sergey V Venev
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Troy W Whitfield
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA; Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Daniel R Caffrey
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Wayne A Marasco
- Department of Cancer Immunology & Virology, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Avenue, Boston, MA 02215, USA
| | - Celia A Schiffer
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Timothy F Kowalik
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Jeffrey D Jensen
- School of Life Sciences, Center for Evolution & Medicine, Arizona State University, Tempe, AZ. 85281, USA
| | - Robert W Finberg
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Konstantin B Zeldovich
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Jennifer P Wang
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01655, USA.
| | - Daniel N A Bolon
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01655, USA.
| |
Collapse
|
35
|
Evolutionary mechanisms studied through protein fitness landscapes. Curr Opin Struct Biol 2018; 48:141-148. [DOI: 10.1016/j.sbi.2018.01.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 12/26/2017] [Accepted: 01/01/2018] [Indexed: 12/15/2022]
|
36
|
Rubin AF, Gelman H, Lucas N, Bajjalieh SM, Papenfuss AT, Speed TP, Fowler DM. A statistical framework for analyzing deep mutational scanning data. Genome Biol 2017; 18:150. [PMID: 28784151 PMCID: PMC5547491 DOI: 10.1186/s13059-017-1272-5] [Citation(s) in RCA: 132] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 07/06/2017] [Indexed: 11/10/2022] Open
Abstract
Deep mutational scanning is a widely used method for multiplex measurement of functional consequences of protein variants. We developed a new deep mutational scanning statistical model that generates error estimates for each measurement, capturing both sampling error and consistency between replicates. We apply our model to one novel and five published datasets comprising 243,732 variants and demonstrate its superiority in removing noisy variants and conducting hypothesis testing. Simulations show our model applies to scans based on cell growth or binding and handles common experimental errors. We implemented our model in Enrich2, software that can empower researchers analyzing deep mutational scanning data.
Collapse
Affiliation(s)
- Alan F Rubin
- Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, 3010, Australia.,Bioinformatics and Cancer Genomics Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia.,Department of Genome Sciences, University of Washington, Seattle, WA, 98195, USA
| | - Hannah Gelman
- Department of Genome Sciences, University of Washington, Seattle, WA, 98195, USA.,Institute for Protein Design, University of Washington, Seattle, WA, 98195, USA
| | - Nathan Lucas
- Department of Pathology, University of Washington, Seattle, WA, 98195, USA
| | - Sandra M Bajjalieh
- Department of Pathology, University of Washington, Seattle, WA, 98195, USA
| | - Anthony T Papenfuss
- Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, 3010, Australia.,Bioinformatics and Cancer Genomics Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, 3010, Australia.,Department of Mathematics and Statistics, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Terence P Speed
- Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia.,Department of Mathematics and Statistics, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Douglas M Fowler
- Department of Genome Sciences, University of Washington, Seattle, WA, 98195, USA. .,Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
37
|
Boross G, Papp B. No Evidence That Protein Noise-Induced Epigenetic Epistasis Constrains Gene Expression Evolution. Mol Biol Evol 2017; 34:380-390. [PMID: 28025271 DOI: 10.1093/molbev/msw236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Changes in gene expression can affect phenotypes and therefore both its level and stochastic variability are frequently under selection. It has recently been proposed that epistatic interactions influence gene expression evolution: gene pairs where simultaneous knockout is more deleterious than expected should evolve reduced expression noise to avoid concurrent low expression of both proteins. In apparent support, yeast genes with many epistatic partners have low expression variation both among isogenic individuals and between species. However, the specific predictions and basic assumptions of this verbal model remain untested. Using bioinformatics analysis, we first demonstrate that the model's predictions are unsupported by available large-scale data. Based on quantitative biochemical modeling, we then show that epistasis between expression reductions (epigenetic epistasis) is not expected to aggravate the fitness cost of stochastic expression, which is in sharp contrast to the verbal argument. This nonintuitive result can be readily explained by the typical diminishing return of fitness on gene activity and by the fact that expression noise not only decreases but also increases the abundance of proteins. Overall, we conclude that stochastic variation in epistatic partners is unlikely to drive noise minimization or constrain gene expression divergence on a genomic scale.
Collapse
Affiliation(s)
- Gábor Boross
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
| | - Balázs Papp
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
| |
Collapse
|
38
|
Zuehlke AD, Reidy M, Lin C, LaPointe P, Alsomairy S, Lee DJ, Rivera-Marquez GM, Beebe K, Prince T, Lee S, Trepel JB, Xu W, Johnson J, Masison D, Neckers L. An Hsp90 co-chaperone protein in yeast is functionally replaced by site-specific posttranslational modification in humans. Nat Commun 2017; 8:15328. [PMID: 28537252 PMCID: PMC5458067 DOI: 10.1038/ncomms15328] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 03/21/2017] [Indexed: 01/03/2023] Open
Abstract
Heat shock protein 90 (Hsp90) is an essential eukaryotic molecular chaperone. To properly chaperone its clientele, Hsp90 proceeds through an ATP-dependent conformational cycle influenced by posttranslational modifications (PTMs) and assisted by a number of co-chaperone proteins. Although Hsp90 conformational changes in solution have been well-studied, regulation of these complex dynamics in cells remains unclear. Phosphorylation of human Hsp90α at the highly conserved tyrosine 627 has previously been reported to reduce client interaction and Aha1 binding. Here we report that these effects are due to a long-range conformational impact inhibiting Hsp90α N-domain dimerization and involving a region of the middle domain/carboxy-terminal domain interface previously suggested to be a substrate binding site. Although Y627 is not phosphorylated in yeast, we demonstrate that the non-conserved yeast co-chaperone, Hch1, similarly affects yeast Hsp90 (Hsp82) conformation and function, raising the possibility that appearance of this PTM in higher eukaryotes represents an evolutionary substitution for HCH1.
Collapse
Affiliation(s)
- Abbey D Zuehlke
- Urologic Oncologic Branch, Center for Cancer Research, National Cancer Institute, 9000 Rockville Pike, Bethesda, Maryland 20892, USA
| | - Michael Reidy
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Building 8, Room 225, 8 Center Drive, Bethesda, Maryland 20892, USA
| | - Coney Lin
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Building 8, Room 225, 8 Center Drive, Bethesda, Maryland 20892, USA
| | - Paul LaPointe
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | - Sarah Alsomairy
- Urologic Oncologic Branch, Center for Cancer Research, National Cancer Institute, 9000 Rockville Pike, Bethesda, Maryland 20892, USA
| | - D Joshua Lee
- Urologic Oncologic Branch, Center for Cancer Research, National Cancer Institute, 9000 Rockville Pike, Bethesda, Maryland 20892, USA
| | - Genesis M Rivera-Marquez
- Urologic Oncologic Branch, Center for Cancer Research, National Cancer Institute, 9000 Rockville Pike, Bethesda, Maryland 20892, USA
| | - Kristin Beebe
- Urologic Oncologic Branch, Center for Cancer Research, National Cancer Institute, 9000 Rockville Pike, Bethesda, Maryland 20892, USA
| | - Thomas Prince
- Urologic Oncologic Branch, Center for Cancer Research, National Cancer Institute, 9000 Rockville Pike, Bethesda, Maryland 20892, USA
| | - Sunmin Lee
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, 9000 Rockville Pike, Bethesda, Maryland 20892, USA
| | - Jane B Trepel
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, 9000 Rockville Pike, Bethesda, Maryland 20892, USA
| | - Wanping Xu
- Urologic Oncologic Branch, Center for Cancer Research, National Cancer Institute, 9000 Rockville Pike, Bethesda, Maryland 20892, USA
| | - Jill Johnson
- Department of Biological Sciences and the Center for Reproductive Biology, University of Idaho, Moscow, Idaho 83844, USA
| | - Daniel Masison
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Building 8, Room 225, 8 Center Drive, Bethesda, Maryland 20892, USA
| | - Len Neckers
- Urologic Oncologic Branch, Center for Cancer Research, National Cancer Institute, 9000 Rockville Pike, Bethesda, Maryland 20892, USA
| |
Collapse
|
39
|
Adkar BV, Manhart M, Bhattacharyya S, Tian J, Musharbash M, Shakhnovich EI. Optimization of lag phase shapes the evolution of a bacterial enzyme. Nat Ecol Evol 2017; 1:149. [PMID: 28812634 DOI: 10.1038/s41559-017-0149] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Accepted: 03/22/2017] [Indexed: 01/09/2023]
Abstract
Mutations provide the variation that drives evolution, yet their effects on fitness remain poorly understood. Here we explore how mutations in the essential enzyme adenylate kinase (Adk) of Escherichia coli affect multiple phases of population growth. We introduce a biophysical fitness landscape for these phases, showing how they depend on molecular and cellular properties of Adk. We find that Adk catalytic capacity in the cell (the product of activity and abundance) is the major determinant of mutational fitness effects. We show that bacterial lag times are at a well-defined optimum with respect to Adk's catalytic capacity, while exponential growth rates are only weakly affected by variation in Adk. Direct pairwise competitions between strains show how environmental conditions modulate the outcome of a competition where growth rates and lag times have a tradeoff, shedding light on the multidimensional nature of fitness and its importance in the evolutionary optimization of enzymes.
Collapse
Affiliation(s)
- Bharat V Adkar
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, USA
| | - Michael Manhart
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, USA
| | - Sanchari Bhattacharyya
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, USA
| | - Jian Tian
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, USA.,Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing, 100081, China
| | - Michael Musharbash
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, USA
| | - Eugene I Shakhnovich
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, USA
| |
Collapse
|
40
|
Savisaar R, Hurst LD. Estimating the prevalence of functional exonic splice regulatory information. Hum Genet 2017; 136:1059-1078. [PMID: 28405812 PMCID: PMC5602102 DOI: 10.1007/s00439-017-1798-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 04/04/2017] [Indexed: 12/14/2022]
Abstract
In addition to coding information, human exons contain sequences necessary for correct splicing. These elements are known to be under purifying selection and their disruption can cause disease. However, the density of functional exonic splicing information remains profoundly uncertain. Several groups have experimentally investigated how mutations at different exonic positions affect splicing. They have found splice information to be distributed widely in exons, with one estimate putting the proportion of splicing-relevant nucleotides at >90%. These results suggest that splicing could place a major pressure on exon evolution. However, analyses of sequence conservation have concluded that the need to preserve splice regulatory signals only slightly constrains exon evolution, with a resulting decrease in the average human rate of synonymous evolution of only 1–4%. Why do these two lines of research come to such different conclusions? Among other reasons, we suggest that the methods are measuring different things: one assays the density of sites that affect splicing, the other the density of sites whose effects on splicing are visible to selection. In addition, the experimental methods typically consider short exons, thereby enriching for nucleotides close to the splice junction, such sites being enriched for splice-control elements. By contrast, in part owing to correction for nucleotide composition biases and to the assumption that constraint only operates on exon ends, the conservation-based methods can be overly conservative.
Collapse
Affiliation(s)
- Rosina Savisaar
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, BA2 7AY, UK.
| | - Laurence D Hurst
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, BA2 7AY, UK
| |
Collapse
|
41
|
Chan YH, Venev SV, Zeldovich KB, Matthews CR. Correlation of fitness landscapes from three orthologous TIM barrels originates from sequence and structure constraints. Nat Commun 2017; 8:14614. [PMID: 28262665 PMCID: PMC5343507 DOI: 10.1038/ncomms14614] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 01/11/2017] [Indexed: 02/07/2023] Open
Abstract
Sequence divergence of orthologous proteins enables adaptation to environmental stresses and promotes evolution of novel functions. Limits on evolution imposed by constraints on sequence and structure were explored using a model TIM barrel protein, indole-3-glycerol phosphate synthase (IGPS). Fitness effects of point mutations in three phylogenetically divergent IGPS proteins during adaptation to temperature stress were probed by auxotrophic complementation of yeast with prokaryotic, thermophilic IGPS. Analysis of beneficial mutations pointed to an unexpected, long-range allosteric pathway towards the active site of the protein. Significant correlations between the fitness landscapes of distant orthologues implicate both sequence and structure as primary forces in defining the TIM barrel fitness landscape and suggest that fitness landscapes can be translocated in sequence space. Exploration of fitness landscapes in the context of a protein fold provides a strategy for elucidating the sequence-structure-fitness relationships in other common motifs. The TIM barrel fold is an evolutionarily conserved motif found in proteins with a variety of enzymatic functions. Here the authors explore the fitness landscape of the TIM barrel protein IGPS and uncover evolutionary constraints on both sequence and structure, accompanied by long range allosteric interactions.
Collapse
Affiliation(s)
- Yvonne H Chan
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, Massachusetts 01605, USA
| | - Sergey V Venev
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, 368 Plantation Street, Worcester, Massachusetts 01605, USA
| | - Konstantin B Zeldovich
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, 368 Plantation Street, Worcester, Massachusetts 01605, USA
| | - C Robert Matthews
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, Massachusetts 01605, USA
| |
Collapse
|
42
|
Duenas-Decamp M, Jiang L, Bolon D, Clapham PR. Saturation Mutagenesis of the HIV-1 Envelope CD4 Binding Loop Reveals Residues Controlling Distinct Trimer Conformations. PLoS Pathog 2016; 12:e1005988. [PMID: 27820858 PMCID: PMC5098743 DOI: 10.1371/journal.ppat.1005988] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 10/10/2016] [Indexed: 12/14/2022] Open
Abstract
The conformation of HIV-1 envelope (Env) glycoprotein trimers is key in ensuring protection against waves of neutralizing antibodies generated during infection, while maintaining sufficient exposure of the CD4 binding site (CD4bs) for viral entry. The CD4 binding loop on Env is an early contact site for CD4 while penetration of a proximal cavity by CD4 triggers Env conformational changes for entry. The role of residues in the CD4 binding loop in regulating the conformation of the trimer and trimer association domain (TAD) was investigated using a novel saturation mutagenesis approach. Single mutations identified, resulted in distinct trimer conformations affecting CD4bs exposure, the glycan shield and the TAD across diverse HIV-1 clades. Importantly, mutations that improve access to the CD4bs without exposing the immunodominant V3 loop were identified. The different trimer conformations identified will affect the specificity and breadth of nabs elicited in vivo and are important to consider in design of Env immunogens for vaccines. Spike proteins on the surface of HIV virus particles bind to CD4 receptors on the surface of immune cells and trigger infection. The immune system in an infected person attacks the virus spikes by producing antibodies that bind and neutralize them. To combat this immune attack, HIV continually alters the structure of the spike and thus escapes host antibodies. However, this process must still preserve sites on the spike that bind CD4 receptors for infection. Here, we investigated how the spike regulates its structure. We used a systematic approach to investigate every possible mutation covering a region of the spike critical for binding the CD4 receptor and controlling overall structure. We identified different sites and mechanisms that control the spike structure for diverse HIV-1 strains and impact the exposure of the binding site for CD4 along with targets for neutralizing antibodies. Our observations will help guide the design of spike structures for vaccines that induce neutralizing antibodies effective against different HIV-1 strains across the globe.
Collapse
Affiliation(s)
- Maria Duenas-Decamp
- Program in Molecular Medicine, Biotech 2, University of Massachusetts Medical School, Worcester, United States of America
| | - Li Jiang
- Biochemistry and Molecular Pharmacology, Lazare Research Building, University of Massachusetts Medical School, Worcester, United States of America
| | - Daniel Bolon
- Biochemistry and Molecular Pharmacology, Lazare Research Building, University of Massachusetts Medical School, Worcester, United States of America
- * E-mail: (PRC); (DB)
| | - Paul R. Clapham
- Program in Molecular Medicine, Biotech 2, University of Massachusetts Medical School, Worcester, United States of America
- * E-mail: (PRC); (DB)
| |
Collapse
|
43
|
Qin Z, Yan Q, Yang S, Jiang Z. Modulating the function of a β-1,3-glucanosyltransferase to that of an endo-β-1,3-glucanase by structure-based protein engineering. Appl Microbiol Biotechnol 2016; 100:1765-1776. [PMID: 26490553 DOI: 10.1007/s00253-015-7057-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Revised: 09/25/2015] [Accepted: 10/02/2015] [Indexed: 02/08/2023]
Abstract
A glycoside hydrolase (GH) family 17 β-1,3-glucanosyltransferase (RmBgt17A) from Rhizomucor miehei CAU432 (CGMCC No. 4967) shared very low sequence homology (∼20 % identity) with that of other β-1,3-glucanases,despite their similar structural folds. Structural comparison and sequence alignment between RmBgt17A and GH family 17 β-1,3-glucanases suggested important roles for three residues (Tyr102, Trp157, and Glu158) located in the substrate-binding cleft of RmBgt17A in transglycosylation activity. A series of site-directed mutagenesis studies indicated that a single Glu-to-Ala mutation (E158A) modulates the function of RmBgt17A to that of a β-1,3-glucanase. Mutant E158A exhibited high hydrolytic activity (39.95 U/mg) toward reduced laminarin, 348.5-fold higher than the wild type. Optimal pH and temperature of the purified RmBgt17A-E158A were 4.5 and 55 °C, respectively. TLC analysis suggested that RmBgt17A-E158A is an endo-β-1,3-glucanase. Our study provides novel insight into protein engineering of the substrate-binding cleft of glycoside hydrolases to modulate the function of transglycosylation and hydrolysis.
Collapse
Affiliation(s)
- Zhen Qin
- College of Food Science and Nutritional Engineering, Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, No.17 Qinghua Donglu, Haidian District, Post Box 294, Beijing, 100083, China
| | - Qiaojuan Yan
- Bioresource Utilization Laboratory, College of Engineering, China Agricultural University, No.17 Qinghua Donglu, Haidian District, Post Box 294, Beijing, 100083, China.
| | - Shaoqing Yang
- College of Food Science and Nutritional Engineering, Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, No.17 Qinghua Donglu, Haidian District, Post Box 294, Beijing, 100083, China
| | - Zhengqiang Jiang
- College of Food Science and Nutritional Engineering, Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, No.17 Qinghua Donglu, Haidian District, Post Box 294, Beijing, 100083, China.
| |
Collapse
|
44
|
Sun Z, Mehta SC, Adamski CJ, Gibbs RA, Palzkill T. Deep Sequencing of Random Mutant Libraries Reveals the Active Site of the Narrow Specificity CphA Metallo-β-Lactamase is Fragile to Mutations. Sci Rep 2016; 6:33195. [PMID: 27616327 PMCID: PMC5018959 DOI: 10.1038/srep33195] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 08/23/2016] [Indexed: 11/17/2022] Open
Abstract
CphA is a Zn2+-dependent metallo-β-lactamase that efficiently hydrolyzes only carbapenem antibiotics. To understand the sequence requirements for CphA function, single codon random mutant libraries were constructed for residues in and near the active site and mutants were selected for E. coli growth on increasing concentrations of imipenem, a carbapenem antibiotic. At high concentrations of imipenem that select for phenotypically wild-type mutants, the active-site residues exhibit stringent sequence requirements in that nearly all residues in positions that contact zinc, the substrate, or the catalytic water do not tolerate amino acid substitutions. In addition, at high imipenem concentrations a number of residues that do not directly contact zinc or substrate are also essential and do not tolerate substitutions. Biochemical analysis confirmed that amino acid substitutions at essential positions decreased the stability or catalytic activity of the CphA enzyme. Therefore, the CphA active - site is fragile to substitutions, suggesting active-site residues are optimized for imipenem hydrolysis. These results also suggest that resistance to inhibitors targeted to the CphA active site would be slow to develop because of the strong sequence constraints on function.
Collapse
Affiliation(s)
- Zhizeng Sun
- Department of Pharmacology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Shrenik C Mehta
- Department of Pharmacology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Carolyn J Adamski
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Richard A Gibbs
- Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Timothy Palzkill
- Department of Pharmacology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| |
Collapse
|
45
|
Tripathi A, Gupta K, Khare S, Jain PC, Patel S, Kumar P, Pulianmackal AJ, Aghera N, Varadarajan R. Molecular Determinants of Mutant Phenotypes, Inferred from Saturation Mutagenesis Data. Mol Biol Evol 2016; 33:2960-2975. [PMID: 27563054 PMCID: PMC5062330 DOI: 10.1093/molbev/msw182] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Understanding how mutations affect protein activity and organismal fitness is a major challenge. We used saturation mutagenesis combined with deep sequencing to determine mutational sensitivity scores for 1,664 single-site mutants of the 101 residue Escherichia coli cytotoxin, CcdB at seven different expression levels. Active-site residues could be distinguished from buried ones, based on their differential tolerance to aliphatic and charged amino acid substitutions. At nonactive-site positions, the average mutational tolerance correlated better with depth from the protein surface than with accessibility. Remarkably, similar results were observed for two other small proteins, PDZ domain (PSD95pdz3) and IgG-binding domain of protein G (GB1). Mutational sensitivity data obtained with CcdB were used to derive a procedure for predicting functional effects of mutations. Results compared favorably with those of two widely used computational predictors. In vitro characterization of 80 single, nonactive-site mutants of CcdB showed that activity in vivo correlates moderately with thermal stability and solubility. The inability to refold reversibly, as well as a decreased folding rate in vitro, is associated with decreased activity in vivo. Upon probing the effect of modulating expression of various proteases and chaperones on mutant phenotypes, most deleterious mutants showed an increased in vivo activity and solubility only upon over-expression of either Trigger factor or SecB ATP-independent chaperones. Collectively, these data suggest that folding kinetics rather than protein stability is the primary determinant of activity in vivo. This study enhances our understanding of how mutations affect phenotype, as well as the ability to predict fitness effects of point mutations.
Collapse
Affiliation(s)
- Arti Tripathi
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | - Kritika Gupta
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | - Shruti Khare
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | - Pankaj C Jain
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | - Siddharth Patel
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | - Prasanth Kumar
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | | | - Nilesh Aghera
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | - Raghavan Varadarajan
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India Jawaharlal Nehru Center for Advanced Scientific Research, Bangalore, India
| |
Collapse
|
46
|
A Statistical Guide to the Design of Deep Mutational Scanning Experiments. Genetics 2016; 204:77-87. [PMID: 27412710 DOI: 10.1534/genetics.116.190462] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 06/29/2016] [Indexed: 12/21/2022] Open
Abstract
The characterization of the distribution of mutational effects is a key goal in evolutionary biology. Recently developed deep-sequencing approaches allow for accurate and simultaneous estimation of the fitness effects of hundreds of engineered mutations by monitoring their relative abundance across time points in a single bulk competition. Naturally, the achievable resolution of the estimated fitness effects depends on the specific experimental setup, the organism and type of mutations studied, and the sequencing technology utilized, among other factors. By means of analytical approximations and simulations, we provide guidelines for optimizing time-sampled deep-sequencing bulk competition experiments, focusing on the number of mutants, the sequencing depth, and the number of sampled time points. Our analytical results show that sampling more time points together with extending the duration of the experiment improves the achievable precision disproportionately compared with increasing the sequencing depth or reducing the number of competing mutants. Even if the duration of the experiment is fixed, sampling more time points and clustering these at the beginning and the end of the experiment increase experimental power and allow for efficient and precise assessment of the entire range of selection coefficients. Finally, we provide a formula for calculating the 95%-confidence interval for the measurement error estimate, which we implement as an interactive web tool. This allows for quantification of the maximum expected a priori precision of the experimental setup, as well as for a statistical threshold for determining deviations from neutrality for specific selection coefficient estimates.
Collapse
|
47
|
Orlenko A, Teufel AI, Chi PB, Liberles DA. Selection on metabolic pathway function in the presence of mutation-selection-drift balance leads to rate-limiting steps that are not evolutionarily stable. Biol Direct 2016; 11:31. [PMID: 27393343 PMCID: PMC4938953 DOI: 10.1186/s13062-016-0133-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 07/02/2016] [Indexed: 11/15/2022] Open
Abstract
Background While commonly assumed in the biochemistry community that the control of metabolic pathways is thought to be critical to cellular function, it is unclear if metabolic pathways generally have evolutionarily stable rate limiting (flux controlling) steps. Results A set of evolutionary simulations using a kinetic model of a metabolic pathway was performed under different conditions to evaluate the evolutionary stability of rate limiting steps. Simulations used combinations of selection for steady state flux, selection against the cost of molecular biosynthesis, and selection against the accumulation of high concentrations of a deleterious intermediate. Two mutational regimes were used, one with mutations that on average were neutral to molecular phenotype and a second with a preponderance of activity-destroying mutations. The evolutionary stability of rate limiting steps was low in all simulations with non-neutral mutational processes. Clustering of parameter co-evolution showed divergent inter-molecular evolutionary patterns under different evolutionary regimes. Conclusions This study provides a null model for pathway evolution when compensatory processes dominate with potential applications to predicting pathway functional change. This result also suggests a possible mechanism in which studies in statistical genetics that aim to associate a genotype to a phenotype assuming independent action of variants may be mis-specified through a mis-characterization of the link between individual gene function and pathway function. A better understanding of the genotype-phenotype map has potential applications in differentiating between compensatory changes and directional selection on pathways as well as detecting SNPs and fixed differences that might have phenotypic effects. Reviewers This article was reviewed by Arne Elofsson, David Ardell, and Shamil Sunyaev. Electronic supplementary material The online version of this article (doi:10.1186/s13062-016-0133-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alena Orlenko
- Center for Computational Genetics and Genomics and Department of Biology, Temple University, Bio-Life Building, 1900 N. 12th Street, Philadelphia, PA, 19122-1801, USA.,Department of Molecular Biology, University of Wyoming, Laramie, WY, 82071, USA
| | - Ashley I Teufel
- Center for Computational Genetics and Genomics and Department of Biology, Temple University, Bio-Life Building, 1900 N. 12th Street, Philadelphia, PA, 19122-1801, USA.,Department of Molecular Biology, University of Wyoming, Laramie, WY, 82071, USA
| | - Peter B Chi
- Center for Computational Genetics and Genomics and Department of Biology, Temple University, Bio-Life Building, 1900 N. 12th Street, Philadelphia, PA, 19122-1801, USA.,Department of Mathematics and Computer Science, Ursinus College, Collegeville, PA, 19426, USA
| | - David A Liberles
- Center for Computational Genetics and Genomics and Department of Biology, Temple University, Bio-Life Building, 1900 N. 12th Street, Philadelphia, PA, 19122-1801, USA. .,Department of Molecular Biology, University of Wyoming, Laramie, WY, 82071, USA.
| |
Collapse
|
48
|
Mavor D, Barlow K, Thompson S, Barad BA, Bonny AR, Cario CL, Gaskins G, Liu Z, Deming L, Axen SD, Caceres E, Chen W, Cuesta A, Gate RE, Green EM, Hulce KR, Ji W, Kenner LR, Mensa B, Morinishi LS, Moss SM, Mravic M, Muir RK, Niekamp S, Nnadi CI, Palovcak E, Poss EM, Ross TD, Salcedo EC, See SK, Subramaniam M, Wong AW, Li J, Thorn KS, Conchúir SÓ, Roscoe BP, Chow ED, DeRisi JL, Kortemme T, Bolon DN, Fraser JS. Determination of ubiquitin fitness landscapes under different chemical stresses in a classroom setting. eLife 2016; 5. [PMID: 27111525 PMCID: PMC4862753 DOI: 10.7554/elife.15802] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 04/06/2016] [Indexed: 12/31/2022] Open
Abstract
Ubiquitin is essential for eukaryotic life and varies in only 3 amino acid positions between yeast and humans. However, recent deep sequencing studies indicate that ubiquitin is highly tolerant to single mutations. We hypothesized that this tolerance would be reduced by chemically induced physiologic perturbations. To test this hypothesis, a class of first year UCSF graduate students employed deep mutational scanning to determine the fitness landscape of all possible single residue mutations in the presence of five different small molecule perturbations. These perturbations uncover 'shared sensitized positions' localized to areas around the hydrophobic patch and the C-terminus. In addition, we identified perturbation specific effects such as a sensitization of His68 in HU and a tolerance to mutation at Lys63 in DTT. Our data show how chemical stresses can reduce buffering effects in the ubiquitin proteasome system. Finally, this study demonstrates the potential of lab-based interdisciplinary graduate curriculum. DOI:http://dx.doi.org/10.7554/eLife.15802.001 The ability of an organism to grow and reproduce, that is, it’s “fitness”, is determined by how its genes interact with the environment. Yeast is a model organism in which researchers can control the exact mutations present in the yeast’s genes (its genotype) and the conditions in which the yeast cells live (their environment). This allows researchers to measure how a yeast cell’s genotype and environment affect its fitness. Ubiquitin is a protein that many organisms depend on to manage cell stress by acting as a tag that targets other proteins for degradation. Essential proteins such as ubiquitin often remain unchanged by mutation over long periods of time. As a result, these proteins evolve very slowly. Like all proteins, ubiquitin is built from a chain of amino acid molecules linked together, and the ubiquitin proteins of yeast and humans are made of almost identical sequences of amino acids. Although ubiquitin has barely changed its sequence over evolution, previous studies have shown that – under normal growth conditions in the laboratory – most amino acids in ubiquitin can be mutated without any loss of cell fitness. This led Mavor et al. to hypothesize that treating the yeast cells with chemicals that cause cell stress might lead to amino acids in ubiquitin becoming more sensitive to mutation. To test this idea, a class of graduate students at the University of California, San Francisco grew yeast cells with different ubiquitin mutations together, and with different chemicals that induce cell stress, and measured their growth rates. Sequencing the ubiquitin gene in the thousands of tested yeast cells revealed that three of the chemicals cause a shared set of amino acids in ubiquitin to become more sensitive to mutation. This result suggests that these amino acids are important for the stress response, possibly by altering the ability of yeast cells to target certain proteins for degradation. Conversely, another chemical causes yeast to become more tolerant to changes in the ubiquitin sequence. The experiments also link changes in particular amino acids in ubiquitin to specific stress responses. Mavor et al. show that many of ubquitin’s amino acids are sensitive to mutation under different stress conditions, while others can be mutated to form different amino acids without effecting fitness. By testing the effects of other chemicals, future experiments could further characterize how the yeast’s genotype and environment interact. DOI:http://dx.doi.org/10.7554/eLife.15802.002
Collapse
Affiliation(s)
- David Mavor
- Biophysics Graduate Group, University of California, San Francisco, San Francisco, United States
| | - Kyle Barlow
- Bioinformatics Graduate Group, University of California, San Francisco, San Francisco, United States
| | - Samuel Thompson
- Biophysics Graduate Group, University of California, San Francisco, San Francisco, United States
| | - Benjamin A Barad
- Biophysics Graduate Group, University of California, San Francisco, San Francisco, United States
| | - Alain R Bonny
- Biophysics Graduate Group, University of California, San Francisco, San Francisco, United States
| | - Clinton L Cario
- Bioinformatics Graduate Group, University of California, San Francisco, San Francisco, United States
| | - Garrett Gaskins
- Bioinformatics Graduate Group, University of California, San Francisco, San Francisco, United States
| | - Zairan Liu
- Biophysics Graduate Group, University of California, San Francisco, San Francisco, United States
| | - Laura Deming
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, United States
| | - Seth D Axen
- Bioinformatics Graduate Group, University of California, San Francisco, San Francisco, United States
| | - Elena Caceres
- Bioinformatics Graduate Group, University of California, San Francisco, San Francisco, United States
| | - Weilin Chen
- Bioinformatics Graduate Group, University of California, San Francisco, San Francisco, United States
| | - Adolfo Cuesta
- Chemistry and Chemical Biology Graduate Program, University of California, San Francisco, San Francisco, United States
| | - Rachel E Gate
- Bioinformatics Graduate Group, University of California, San Francisco, San Francisco, United States
| | - Evan M Green
- Biophysics Graduate Group, University of California, San Francisco, San Francisco, United States
| | - Kaitlin R Hulce
- Chemistry and Chemical Biology Graduate Program, University of California, San Francisco, San Francisco, United States
| | - Weiyue Ji
- Biophysics Graduate Group, University of California, San Francisco, San Francisco, United States
| | - Lillian R Kenner
- Biophysics Graduate Group, University of California, San Francisco, San Francisco, United States
| | - Bruk Mensa
- Chemistry and Chemical Biology Graduate Program, University of California, San Francisco, San Francisco, United States
| | - Leanna S Morinishi
- Bioinformatics Graduate Group, University of California, San Francisco, San Francisco, United States
| | - Steven M Moss
- Chemistry and Chemical Biology Graduate Program, University of California, San Francisco, San Francisco, United States
| | - Marco Mravic
- Biophysics Graduate Group, University of California, San Francisco, San Francisco, United States
| | - Ryan K Muir
- Chemistry and Chemical Biology Graduate Program, University of California, San Francisco, San Francisco, United States
| | - Stefan Niekamp
- Biophysics Graduate Group, University of California, San Francisco, San Francisco, United States
| | - Chimno I Nnadi
- Chemistry and Chemical Biology Graduate Program, University of California, San Francisco, San Francisco, United States
| | - Eugene Palovcak
- Biophysics Graduate Group, University of California, San Francisco, San Francisco, United States
| | - Erin M Poss
- Chemistry and Chemical Biology Graduate Program, University of California, San Francisco, San Francisco, United States
| | - Tyler D Ross
- Biophysics Graduate Group, University of California, San Francisco, San Francisco, United States
| | - Eugenia C Salcedo
- Chemistry and Chemical Biology Graduate Program, University of California, San Francisco, San Francisco, United States
| | - Stephanie K See
- Chemistry and Chemical Biology Graduate Program, University of California, San Francisco, San Francisco, United States
| | - Meena Subramaniam
- Bioinformatics Graduate Group, University of California, San Francisco, San Francisco, United States
| | - Allison W Wong
- Chemistry and Chemical Biology Graduate Program, University of California, San Francisco, San Francisco, United States
| | - Jennifer Li
- UCSF Science and Health Education Partnership, University of California, San Francisco, San Francisco, United States
| | - Kurt S Thorn
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
| | - Shane Ó Conchúir
- Department of Bioengineering and Therapeutic Sciences, California Institute for Quantitative Biology, University of California, San Francisco, San Francisco, United States
| | - Benjamin P Roscoe
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, United States
| | - Eric D Chow
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States.,Center for Advanced Technology, University of California, San Francisco, San Francisco, United States
| | - Joseph L DeRisi
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, United States.,Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
| | - Tanja Kortemme
- Department of Bioengineering and Therapeutic Sciences, California Institute for Quantitative Biology, University of California, San Francisco, San Francisco, United States
| | - Daniel N Bolon
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, United States
| | - James S Fraser
- Department of Bioengineering and Therapeutic Sciences, California Institute for Quantitative Biology, University of California, San Francisco, San Francisco, United States
| |
Collapse
|
49
|
Mishra P, Flynn JM, Starr TN, Bolon DNA. Systematic Mutant Analyses Elucidate General and Client-Specific Aspects of Hsp90 Function. Cell Rep 2016; 15:588-598. [PMID: 27068472 DOI: 10.1016/j.celrep.2016.03.046] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 12/08/2015] [Accepted: 03/11/2016] [Indexed: 12/14/2022] Open
Abstract
To probe the mechanism of the Hsp90 chaperone that is required for the maturation of many signaling proteins in eukaryotes, we analyzed the effects of all individual amino acid changes in the ATPase domain on yeast growth rate. The sensitivity of a position to mutation was strongly influenced by proximity to the phosphates of ATP, indicating that ATPase-driven conformational changes impose stringent physical constraints on Hsp90. To investigate how these constraints may vary for different clients, we performed biochemical analyses on a panel of Hsp90 mutants spanning the full range of observed fitness effects. We observed distinct effects of nine Hsp90 mutations on activation of v-src and glucocorticoid receptor (GR), indicating that different chaperone mechanisms can be utilized for these clients. These results provide a detailed guide for understanding Hsp90 mechanism and highlight the potential for inhibitors of Hsp90 that target a subset of clients.
Collapse
Affiliation(s)
- Parul Mishra
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Julia M Flynn
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Tyler N Starr
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| | - Daniel N A Bolon
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
50
|
Boucher JI, Bolon DNA, Tawfik DS. Quantifying and understanding the fitness effects of protein mutations: Laboratory versus nature. Protein Sci 2016; 25:1219-26. [PMID: 27010590 DOI: 10.1002/pro.2928] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Revised: 03/21/2016] [Accepted: 03/21/2016] [Indexed: 11/11/2022]
Abstract
The last decade has seen a growing number of experiments aimed at systematically mapping the effects of mutations in different proteins, and of attempting to correlate their biophysical and biochemical effects with organismal fitness. While insightful, systematic laboratory measurements of fitness effects present challenges and difficulties. Here, we discuss the limitations associated with such measurements, and in particular the challenge of correlating the effects of mutations at the single protein level ("protein fitness") with their effects on organismal fitness. A variety of experimental setups are used, with some measuring the direct effects on protein function and others monitoring the growth rate of a model organism carrying the protein mutants. The manners by which fitness effects are calculated and presented also vary, and the conclusions, including the derived distributions of fitness effects of mutations, vary accordingly. The comparison of the effects of mutations in the laboratory to the natural protein diversity, namely to amino acid changes that have fixed in the course of millions of years of evolution, is also debatable. The results of laboratory experiments may, therefore, be less relevant to understanding long-term inter-species variations yet insightful with regard to short-term polymorphism, for example, in the study of the effects of human SNPs.
Collapse
Affiliation(s)
- Jeffrey I Boucher
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, 01605
| | - Daniel N A Bolon
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, 01605
| | - Dan S Tawfik
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, 76100, Israel
| |
Collapse
|