1
|
Lee HJ, Fenollar-Ferrer C, Isgrig K, Wang YX, Valente K, Eide J, Honda K, Chien WW, Petralia RS, Dong L, Friedman TB, Bonifacino JS, Griffith AJ, Roux I. SLC26A4-AP-2 mu2 interaction regulates SLC26A4 plasma membrane abundance in the endolymphatic sac. SCIENCE ADVANCES 2024; 10:eadm8663. [PMID: 39383236 DOI: 10.1126/sciadv.adm8663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 09/06/2024] [Indexed: 10/11/2024]
Abstract
Decreased presence or activity of human SLC26A4 at the plasma membrane is a common cause of hearing loss. SLC26A4 (Pendrin) is necessary for normal reabsorption of endolymph, the fluid bathing the inner ear. We identified the μ2 subunit of adaptor protein 2 (AP-2) complex required for clathrin-mediated endocytosis as a protein-partner of SLC26A4 involved in regulating its plasma membrane abundance. We showed that, in the endolymphatic sac, where fluid reabsorption occurs, SLC26A4 is localized along the apical microvilli of mitochondria-rich cells, in contact with the endolymph, and associated with clathrin-coated pits where μ2 and AP-2 are present. Based on SLC26A4 structure, the elements involved in SLC26A4-μ2 interaction were identified and validated experimentally, allowing modeling of this interaction at the atomic level. Pharmacological inhibition of clathrin-mediated endocytosis led to an increased plasma membrane abundance of hemagglutinin-tagged SLC26A4 virally or endogenously expressed in mitochondria-rich cells. These results indicate that the SLC26A4-μ2 interaction regulates SLC26A4 abundance at the apical surface of mitochondria-rich cells.
Collapse
Affiliation(s)
- Hyun Jae Lee
- Otolaryngology Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Cristina Fenollar-Ferrer
- Otolaryngology Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Kevin Isgrig
- Inner Ear Gene Therapy Program, Neurotology Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Ya-Xian Wang
- Advanced Imaging Core, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Kerstin Valente
- Otolaryngology Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Juleh Eide
- Otolaryngology Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Keiji Honda
- Department of Otorhinolaryngology, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Wade W Chien
- Inner Ear Gene Therapy Program, Neurotology Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Ronald S Petralia
- Advanced Imaging Core, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Lijin Dong
- Genetic Engineering Core, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Thomas B Friedman
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Juan S Bonifacino
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Andrew J Griffith
- Otolaryngology Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
- Department of Otolaryngology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Isabelle Roux
- Otolaryngology Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
2
|
Kong C, Yin G, Wang X, Sun Y. In Utero Gene Therapy and its Application in Genetic Hearing Loss. Adv Biol (Weinh) 2024; 8:e2400193. [PMID: 39007241 DOI: 10.1002/adbi.202400193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/03/2024] [Indexed: 07/16/2024]
Abstract
For monogenic genetic diseases, in utero gene therapy (IUGT) shows the potential for early prevention against irreversible and lethal pathological changes. Moreover, animal models have also demonstrated the effectiveness of IUGT in the treatment of coagulation disorders, hemoglobinopathies, neurogenetic disorders, and metabolic and pulmonary diseases. For major alpha thalassemia and severe osteogenesis imperfecta, in utero stem cell transplantation has entered the phase I clinical trial stage. Within the realm of the inner ear, genetic hearing loss significantly hampers speech, cognitive, and intellectual development in children. Nowadays, gene therapies offer substantial promise for deafness, with the success of clinical trials in autosomal recessive deafness 9 using AAV-OTOF gene therapy. However, the majority of genetic mutations that cause deafness affect the development of cochlear structures before the birth of fetuses. Thus, gene therapy before alterations in cochlear structure leading to hearing loss has promising applications. In this review, addressing advances in various fields of IUGT, the progress, and application of IUGT in the treatment of genetic hearing loss are focused, in particular its implementation methods and unique advantages.
Collapse
Affiliation(s)
- Chenyang Kong
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ge Yin
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiaohui Wang
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yu Sun
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Otorhinolaryngology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| |
Collapse
|
3
|
Huang CY, Tsai YH, Cheng YF, Wu PY, Chuang YC, Huang PY, Liu JS, Wu CC, Cheng YF. CRISPR/Cas9-mediated exon skipping to restore premature translation termination in a DFNB4 mouse model. Gene Ther 2024:10.1038/s41434-024-00483-9. [PMID: 39232211 DOI: 10.1038/s41434-024-00483-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 08/08/2024] [Accepted: 08/15/2024] [Indexed: 09/06/2024]
Abstract
SLC26A4 encodes pendrin, a crucial anion exchanger essential for maintaining hearing function. Mutations in SLC26A4, including the prevalent c.919-2 A > G splice-site mutation among East Asian individuals, can disrupt inner ear electrolyte balance, leading to syndromic and non-syndromic hearing loss, such as Pendred syndrome and DFNB4. To explore potential therapeutic strategies, we utilized CRISPR/Cas9-mediated exon skipping to create a Slc26a4∆E8+E9/∆E8+E9 mouse model. We assessed pendrin expression in the inner ear and evaluated vestibular and auditory functions. The Slc26a4∆E8+E9/∆E8+E9 mice demonstrated reframed pendrin in the inner ear and normal vestibular functions, contrasting with severely abnormal vestibular functions observed in the Slc26a4 c.919-2 A > G splicing mutation mouse model. However, despite these molecular achievements, hearing function did not show the expected improvement, consistent with observed pathology, including cochlear hair cell loss and elevated hearing thresholds. Consequently, our findings highlight the necessity for alternative genetic editing strategies to address hearing loss caused by the SLC26A4 c.919-2 A > G mutation.
Collapse
Affiliation(s)
- Chun-Ying Huang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yi-Hsiu Tsai
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yi-Fen Cheng
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Peng-Yu Wu
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yu-Chi Chuang
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Po-Yuan Huang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Jai-Shin Liu
- Department of Biotechnology and Pharmaceutical Technology, Yuanpei University of Medical Technology, Hsinchu, Taiwan
| | - Chen-Chi Wu
- Department of Otolaryngology, National Taiwan University Hospital, Taipei, Taiwan.
- Department of Medical Research, National Taiwan University Hospital Hsin-Chu Branch, Hsin-Chu City, Taiwan.
| | - Yen-Fu Cheng
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan.
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan.
- Department of Otolaryngology-Head and Neck Surgery, Taipei Veterans General Hospital, Taipei, Taiwan.
| |
Collapse
|
4
|
Takahashi S, Homma K. The molecular principles underlying diverse functions of the SLC26 family of proteins. J Biol Chem 2024; 300:107261. [PMID: 38582450 PMCID: PMC11078650 DOI: 10.1016/j.jbc.2024.107261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/07/2024] [Accepted: 03/30/2024] [Indexed: 04/08/2024] Open
Abstract
Mammalian SLC26 proteins are membrane-based anion transporters that belong to the large SLC26/SulP family, and many of their variants are associated with hereditary diseases. Recent structural studies revealed a strikingly similar homodimeric molecular architecture for several SLC26 members, implying a shared molecular principle. Now a new question emerges as to how these structurally similar proteins execute diverse physiological functions. In this study, we sought to identify the common versus distinct molecular mechanism among the SLC26 proteins using both naturally occurring and artificial missense changes introduced to SLC26A4, SLC26A5, and SLC26A9. We found: (i) the basic residue at the anion binding site is essential for both anion antiport of SLC26A4 and motor functions of SLC26A5, and its conversion to a nonpolar residue is crucial but not sufficient for the fast uncoupled anion transport in SLC26A9; (ii) the conserved polar residues in the N- and C-terminal cytosolic domains are likely involved in dynamic hydrogen-bonding networks and are essential for anion antiport of SLC26A4 but not for motor (SLC26A5) and uncoupled anion transport (SLC26A9) functions; (iii) the hydrophobic interaction between each protomer's last transmembrane helices, TM14, is not of functional significance in SLC26A9 but crucial for the functions of SLC26A4 and SLC26A5, likely contributing to optimally orient the axis of the relative movements of the core domain with respect to the gate domains within the cell membrane. These findings advance our understanding of the molecular mechanisms underlying the diverse physiological roles of the SLC26 family of proteins.
Collapse
Affiliation(s)
- Satoe Takahashi
- Department of Otolaryngology - Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA; Center for Mechanical Excitability, The University of Chicago, Chicago, Illinois, USA
| | - Kazuaki Homma
- Department of Otolaryngology - Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA; Center for Mechanical Excitability, The University of Chicago, Chicago, Illinois, USA; The Hugh Knowles Center for Clinical and Basic Science in Hearing and Its Disorders, Northwestern University, Evanston, Illinois, USA.
| |
Collapse
|
5
|
Ito T, Watanabe H, Honda K, Fujikawa T, Kitamura K, Tsutsumi T. The role of SLC26A4 in bony labyrinth development and otoconial mineralization in mouse models. Front Mol Neurosci 2024; 17:1384764. [PMID: 38742227 PMCID: PMC11089141 DOI: 10.3389/fnmol.2024.1384764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 04/15/2024] [Indexed: 05/16/2024] Open
Abstract
Inner ear malformations are predominantly attributed to developmental arrest during the embryonic stage of membranous labyrinth development. Due to the inherent difficulty in clinically assessing the status of the membranous labyrinth, these malformations are diagnosed with radiographic imaging, based on the morphological characteristics of the bony labyrinth. While extensive research has elucidated the intricacies of membranous labyrinth development in mouse models, comprehensive investigations into the developmental trajectory of the bony labyrinth, especially about its calcification process, have been notably lacking. One of the most prominent types of inner ear malformations is known as incomplete partition (IP), characterized by nearly normal external cochlear appearance but pronounced irregularities in the morphology of the modiolus and inter-scalar septa. IP type II (IP-II), also known as Mondini dysplasia, is generally accompanied by an enlargement of the vestibular aqueduct and is primarily attributed to mutations in the SLC26A4 gene. In the case of IP-II, the modiolus and inter-scalar septa of the cochlear apex are underdeveloped or missing, resulting in the manifestation of a cystic structure on radiographic imaging. In this overview, we not only explore the normal development of the bony labyrinth in mice but also present our observations on otolith mineralization. Furthermore, we investigated the specifics of bony labyrinth and otolith mineralization in Slc26a4-deficient mice, which served as an animal model for IP-II. We ensured that these findings promise to provide valuable insights for the establishment of therapeutic interventions, optimal timing, targeted sites, and preventive measures when considering the management of this condition.
Collapse
Affiliation(s)
- Taku Ito
- Department of Otorhinolaryngology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hiroki Watanabe
- Department of Otorhinolaryngology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Keiji Honda
- Department of Otorhinolaryngology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Taro Fujikawa
- Department of Otorhinolaryngology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Ken Kitamura
- Department of Otorhinolaryngology, Chigasaki Chuo Hospital, Kanagawa, Japan
| | - Takeshi Tsutsumi
- Department of Otorhinolaryngology, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
6
|
Andrini O, Eladari D, Picard N. ClC-K Kidney Chloride Channels: From Structure to Pathology. Handb Exp Pharmacol 2024; 283:35-58. [PMID: 36811727 DOI: 10.1007/164_2023_635] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
The molecular basis of chloride transport varies all along the nephron depending on the tubular segments especially in the apical entry of the cell. The major chloride exit pathway during reabsorption is provided by two kidney-specific ClC chloride channels ClC-Ka and ClC-Kb (encoded by CLCNKA and CLCNKB gene, respectively) corresponding to rodent ClC-K1 and ClC-K2 (encoded by Clcnk1 and Clcnk2). These channels function as dimers and their trafficking to the plasma membrane requires the ancillary protein Barttin (encoded by BSND gene). Genetic inactivating variants of the aforementioned genes lead to renal salt-losing nephropathies with or without deafness highlighting the crucial role of ClC-Ka, ClC-Kb, and Barttin in the renal and inner ear chloride handling. The purpose of this chapter is to summarize the latest knowledge on renal chloride structure peculiarity and to provide some insight on the functional expression on the segments of the nephrons and on the related pathological effects.
Collapse
Affiliation(s)
- Olga Andrini
- Univ Lyon, University Claude Bernard Lyon 1, CNRS UMR 5284, INSERM U 1314, Melis, Lyon, France.
| | - Dominique Eladari
- CHU Amiens Picardie, Service de Médecine de Précision des maladies Métaboliques et Rénales, Université de Picardie Jules Verne, Amiens, France
| | - Nicolas Picard
- CNRS, LBTI UMR5305, Université Claude Bernard Lyon 1, Lyon, France
| |
Collapse
|
7
|
Takahashi S, Homma K. The molecular principles underlying diverse functions of the SLC26 family of proteins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.10.570988. [PMID: 38106153 PMCID: PMC10723444 DOI: 10.1101/2023.12.10.570988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Mammalian SLC26 proteins are membrane-based anion transporters that belong to the large SLC26/SulP family, and many of their variants are associated with hereditary diseases. Recent structural studies revealed a strikingly similar homodimeric molecular architecture for several SLC26 members, implying a shared molecular principle. Now a new question emerges as to how these structurally similar proteins execute diverse physiological functions. In this study we sought to identify the common vs. distinct molecular mechanism among the SLC26 proteins using both naturally occurring and artificial missense changes introduced to SLC26A4, SLC26A5, and SLC26A9. We found: (i) the basic residue at the anion binding site is essential for both anion antiport of SLC26A4 and motor functions of SLC26A5, and its conversion to a nonpolar residue is crucial but not sufficient for the fast uncoupled anion transport in SLC26A9; (ii) the conserved polar residues in the N- and C-terminal cytosolic domains are likely involved in dynamic hydrogen-bonding networks and are essential for anion antiport of SLC26A4 but not for motor (SLC26A5) and uncoupled anion transport (SLC26A9) functions; (iii) the hydrophobic interaction between each protomer's last transmembrane helices, TM14, is not of functional significance in SLC26A9 but crucial for the functions of SLC26A4 and SLC26A5, likely contributing to optimally orient the axis of the relative movements of the core domain with respect to the gate domains within the cell membrane. These findings advance our understanding of the molecular mechanisms underlying the diverse physiological roles of the SLC26 family of proteins.
Collapse
|
8
|
Danilchenko VY, Zytsar MV, Maslova EA, Posukh OL. Selection of Diagnostically Significant Regions of the SLC26A4 Gene Involved in Hearing Loss. Int J Mol Sci 2022; 23:ijms232113453. [PMID: 36362242 PMCID: PMC9655724 DOI: 10.3390/ijms232113453] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/23/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
Abstract
Screening pathogenic variants in the SLC26A4 gene is an important part of molecular genetic testing for hearing loss (HL) since they are one of the common causes of hereditary HL in many populations. However, a large size of the SLC26A4 gene (20 coding exons) predetermines the difficulties of its complete mutational analysis, especially in large samples of patients. In addition, the regional or ethno-specific prevalence of SLC26A4 pathogenic variants has not yet been fully elucidated, except variants c.919-2A>G and c.2168A>G (p.His723Arg), which have been proven to be most common in Asian populations. We explored the distribution of currently known pathogenic and likely pathogenic (PLP) variants across the SLC26A4 gene sequence presented in the Deafness Variation Database for the selection of potential diagnostically important parts of this gene. As a result of this bioinformatic analysis, we found that molecular testing ten SLC26A4 exons (4, 6, 10, 11, 13−17 and 19) with flanking intronic regions can provide a diagnostic rate of 61.9% for all PLP variants in the SLC26A4 gene. The primary sequencing of these SLC26A4 regions may be applied as an initial effective diagnostic testing in samples of patients of unknown ethnicity or as a subsequent step after the targeted testing of already-known ethno- or region-specific pathogenic SLC26A4 variants.
Collapse
Affiliation(s)
- Valeriia Yu. Danilchenko
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
- Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Marina V. Zytsar
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Ekaterina A. Maslova
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
- Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Olga L. Posukh
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
- Novosibirsk State University, 630090 Novosibirsk, Russia
- Correspondence:
| |
Collapse
|
9
|
Volumetry improves the assessment of the vestibular aqueduct size in inner ear malformation. Eur Arch Otorhinolaryngol 2022; 280:2155-2163. [PMID: 36216913 PMCID: PMC10066110 DOI: 10.1007/s00405-022-07681-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 09/28/2022] [Indexed: 11/03/2022]
Abstract
OBJECTIVES Enlarged vestibular aqueduct (EVA) is a common finding associated with inner ear malformations (IEM). However, uniform radiologic definitions for EVA are missing and various 2D-measurement methods to define EVA have been reported. This study evaluates VA volume in different types of IEM and compares 3D-reconstructed VA volume to 2D-measurements. METHODS A total of 98 high-resolution CT (HRCT) data sets from temporal bones were analyzed (56 with IEM; [cochlear hypoplasia (CH; n = 18), incomplete partition type I (IPI; n = 12) and type II (IPII; n = 11) and EVA (n = 15)]; 42 controls). VA diameter was measured in axial images. VA volume was analyzed by software-based, semi-automatic segmentation and 3D-reconstruction. Differences in VA volume between the groups and associations between VA volume and VA diameter were assessed. Inter-rater-reliability (IRR) was assessed using the intra-class-correlation-coefficient (ICC). RESULTS Larger VA volumes were found in IEM compared to controls. Significant differences in VA volume between patients with EVA and controls (p < 0.001) as well as between IPII and controls (p < 0.001) were found. VA diameter at the midpoint (VA midpoint) and at the operculum (VA operculum) correlated to VA volume in IPI (VA midpoint: r = 0.78, VA operculum: r = 0.91), in CH (VA midpoint: r = 0.59, VA operculum: r = 0.61), in EVA (VA midpoint: r = 0.55, VA operculum: r = 0.66) and in controls (VA midpoint: r = 0.36, VA operculum: r = 0.42). The highest IRR was found for VA volume (ICC = 0.90). CONCLUSIONS The VA diameter may be an insufficient estimate of VA volume, since (1) measurement of VA diameter does not reliably correlate with VA volume and (2) VA diameter shows a lower IRR than VA volume. 3D-reconstruction and VA volumetry may add information in diagnosing EVA in cases with or without additional IEM.
Collapse
|
10
|
Feng P, Xu Z, Chen J, Liu M, Zhao Y, Wang D, Han L, Wang L, Wan B, Xu X, Li D, Shu Y, Hua Y. Rescue of mis-splicing of a common SLC26A4 mutant associated with sensorineural hearing loss by antisense oligonucleotides. MOLECULAR THERAPY - NUCLEIC ACIDS 2022; 28:280-292. [PMID: 35433113 PMCID: PMC8987850 DOI: 10.1016/j.omtn.2022.03.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 03/18/2022] [Indexed: 11/11/2022]
Abstract
A wide spectrum of SLC26A4 mutations causes Pendred syndrome and enlarged vestibular aqueduct, both associated with sensorineural hearing loss (SNHL). A splice-site mutation, c.919-2A>G (A-2G), which is common in Asian populations, impairs the 3′ splice site of intron 7, resulting in exon 8 skipping during pre-mRNA splicing and a subsequent frameshift that creates a premature termination codon in the following exon. Currently, there is no effective drug treatment for SHNL. For A-2G-triggered SNHL, molecules that correct mis-splicing of the mutant hold promise to treat the disease. Antisense oligonucleotides (ASOs) can promote exon inclusion when targeting specific splicing silencers. Here, we systematically screened a large number of ASOs in a minigene system and identified a few that markedly repressed exon 8 skipping. A lead ASO, which targets a heterogeneous nuclear ribonucleoprotein (hnRNP) A1/A2 intronic splicing silencer (ISS) in intron 8, promoted efficient exon 8 inclusion in cultured peripheral blood mononuclear cells derived from two homozygous patients. In a partially humanized Slc26a4 A-2G mouse model, two subcutaneous injections of the ASO at 160 mg/kg significantly rescued exon 8 splicing in the liver. Our results demonstrate that the ISS-targeting ASO has therapeutic potential to treat genetic hearing loss caused by the A-2G mutation in SLC26A4.
Collapse
|
11
|
Zhu K, Jin Y. Case report: A case of SLC26A4 mutations causing pendred syndrome and non-cystic fibrosis bronchiectasis. Front Pediatr 2022; 10:1077878. [PMID: 36699303 PMCID: PMC9869259 DOI: 10.3389/fped.2022.1077878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 12/06/2022] [Indexed: 01/12/2023] Open
Abstract
The SLC26A4 gene encodes the transmembrane protein pendrin, which is involved in the ion transport of chloride (Cl-), iodide (I-) or bicarbonate (HCO3-). Mutations in the SLC26A4 gene alter the structure and (or) function of pendrin, which are closely related to Pendred syndrome. What's more, researchers have demonstrated in vitro that mutations of SLC26A4 cause acidification of airway surface fluid (ASL), reduce airway defense, and increase the thickness of ASL. In the context of infection, it may lead to chronic inflammation, destruction of airway wall architecture and bronchiectasis. However, there is no case report of bronchiectasis caused by SLC26A4 gene mutations. Here, we describe the first case of Pendred syndrome and non-cystic fibrosis bronchiectasis in a child possibly caused by SLC26A4 mutations. We remind clinicians to pay attention to the possibility of bronchiectasis in patients with SLC26A4 gene mutations.
Collapse
Affiliation(s)
- Kang Zhu
- Department of Respiratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Yingkang Jin
- Department of Respiratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
12
|
Honda K, Griffith AJ. Genetic architecture and phenotypic landscape of SLC26A4-related hearing loss. Hum Genet 2021; 141:455-464. [PMID: 34345941 DOI: 10.1007/s00439-021-02311-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 06/29/2021] [Indexed: 12/15/2022]
Abstract
Mutations of coding regions and splice sites of SLC26A4 cause Pendred syndrome and nonsyndromic recessive hearing loss DFNB4. SLC26A4 encodes pendrin, a transmembrane exchanger of anions and bases. The mutant SLC26A4 phenotype is characterized by inner ear malformations, including an enlarged vestibular aqueduct (EVA), incomplete cochlear partition type II and modiolar hypoplasia, progressive and fluctuating hearing loss, and vestibular dysfunction. A thyroid iodine organification defect can lead to multinodular goiter and distinguishes Pendred syndrome from DFNB4. Pendred syndrome and DFNB4 are each inherited as an autosomal recessive trait caused by biallelic mutations of SLC26A4 (M2). However, there are some EVA patients with only one detectable mutant allele (M1) of SLC26A4. In most European-Caucasian M1 patients, there is a haplotype that consists of 12 variants upstream of SLC26A4, called CEVA (Caucasian EVA), which acts as a pathogenic recessive allele in trans to mutations affecting the coding regions or splice sites of SLC26A4. This combination of an M1 genotype with the CEVA haplotype is associated with a less severe phenotype than the M2 genotype. The phenotype in EVA patients with no mutant alleles of SLC26A4 (M0) has a very low recurrence probability and is likely to be caused by other factors.
Collapse
Affiliation(s)
- Keiji Honda
- Department of Otorhinolaryngology, Tokyo Medical and Dental University (TMDU), Bunkyo-ku, Tokyo, Japan
| | - Andrew J Griffith
- Department of Otolaryngology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA.
| |
Collapse
|
13
|
Li H, Rajan GP, Shaw J, Rohani SA, Ladak HM, Agrawal S, Rask-Andersen H. A Synchrotron and Micro-CT Study of the Human Endolymphatic Duct System: Is Meniere's Disease Caused by an Acute Endolymph Backflow? Front Surg 2021; 8:662530. [PMID: 34136526 PMCID: PMC8200827 DOI: 10.3389/fsurg.2021.662530] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/19/2021] [Indexed: 11/13/2022] Open
Abstract
Background: The etiology of Meniere's disease (MD) and endolymphatic hydrops believed to underlie its symptoms remain unknown. One reason may be the exceptional complexity of the human inner ear, its vulnerability, and surrounding hard bone. The vestibular organ contains an endolymphatic duct system (EDS) bridging the different fluid reservoirs. It may be essential for monitoring hydraulic equilibrium, and a dysregulation may result in distension of the fluid spaces or endolymphatic hydrops. Material and Methods: We studied the EDS using high-resolution synchrotron phase contrast non-invasive imaging (SR-PCI), and micro-computed tomography (micro-CT). Ten fresh human temporal bones underwent SR-PCI. One bone underwent micro-CT after fixation and staining with Lugol's iodine solution (I2KI) to increase tissue resolution. Data were processed using volume-rendering software to create 3D reconstructions allowing orthogonal sectioning, cropping, and tissue segmentation. Results: Combined imaging techniques with segmentation and tissue modeling demonstrated the 3D anatomy of the human saccule, utricle, endolymphatic duct, and sac together with connecting pathways. The utricular duct (UD) and utriculo-endolymphatic valve (UEV or Bast's valve) were demonstrated three-dimensionally for the first time. The reunion duct was displayed with micro-CT. It may serve as a safety valve to maintain cochlear endolymph homeostasis under certain conditions. Discussion: The thin reunion duct seems to play a minor role in the exchange of endolymph between the cochlea and vestibule under normal conditions. The saccule wall appears highly flexible, which may explain occult hydrops occasionally preceding symptoms in MD on magnetic resonance imaging (MRI). The design of the UEV and connecting ducts suggests that there is a reciprocal exchange of fluid among the utricle, semicircular canals, and the EDS. Based on the anatomic framework and previous experimental data, we speculate that precipitous vestibular symptoms in MD arise from a sudden increase in endolymph pressure caused by an uncontrolled endolymphatic sac secretion. A rapid rise in UD pressure, mediated along the fairly wide UEV, may underlie the acute vertigo attack, refuting the rupture/K+-intoxication theory.
Collapse
Affiliation(s)
- Hao Li
- Department of Surgical Sciences, Section of Otolaryngology and Head and Neck Surgery, Uppsala University Hospital, Uppsala, Sweden
| | - Gunesh P. Rajan
- Department of Otolaryngology, Head and Neck Surgery, Luzerner Kantonsspital, Lucerne, Switzerland
- Department of Otolaryngology, Head and Neck Surgery Division of Surgery, Medical School, University of Western Australia, Perth, WA, Australia
| | - Jeremy Shaw
- Centre for Microscopy, Characterisation and Analysis, Perth, WA, Australia
| | - Seyed Alireza Rohani
- Department of Otolaryngology-Head and Neck Surgery, Western University, London, ON, Canada
| | - Hanif M. Ladak
- Department of Medical Biophysics and Department of Electrical and Computer Engineering, Western University, London, ON, Canada
| | - Sumit Agrawal
- Department of Otolaryngology-Head and Neck Surgery, Western University, London, ON, Canada
| | - Helge Rask-Andersen
- Department of Surgical Sciences, Section of Otolaryngology and Head and Neck Surgery, Uppsala University Hospital, Uppsala, Sweden
| |
Collapse
|
14
|
Absence of Endolymphatic Sac Ion Transport Proteins in Large Vestibular Aqueduct Syndrome-A Human Temporal Bone Study. Otol Neurotol 2021; 41:e1256-e1263. [PMID: 32890293 DOI: 10.1097/mao.0000000000002832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
HYPOTHESIS Epithelial ion transport pathologies of the endolymphatic sac (ES) are associated with large vestibular aqueduct syndrome (LVAS). BACKGROUND LVAS is defined by the pathognomonic features of a widened bony vestibular aqueduct (VA) and an enlarged ES. The underlying cause of its associated cochleovestibular symptoms remains elusive. Disturbances in epithelial ion transport in the enlarged ES, affecting inner ear fluid regulation, were proposed as a possible pathophysiology. However, although respective epithelial ion transport pathologies have been demonstrated in the enlarged ES from transgenic LVAS mouse models, these pathologies have not been investigated in human LVAS cases. METHODS Histological and immunohistochemical analysis of the enlarged ES epithelium in postmortem temporal bones from two individuals with a clinical diagnosis of LVAS. RESULTS The enlarged ES epithelium demonstrated an overall atypical epithelial differentiation and a lack of the immunolocalization of signature ion transport proteins. Notably, in both cases, a rudimentary branch of the ES with a typically differentiated ES epithelium was present. CONCLUSIONS The described cellular and molecular pathologies of the enlarged ES in humans provide evidence of epithelial transport pathology as one potential cause of cochleovestibular symptoms in LVAS. The present findings also emphasize the clinical relevance of already established LVAS mouse models.
Collapse
|
15
|
Hu CJ, Lu YC, Yang TH, Chan YH, Tsai CY, Yu IS, Lin SW, Liu TC, Cheng YF, Wu CC, Hsu CJ. Toward the Pathogenicity of the SLC26A4 p.C565Y Variant Using a Genetically Driven Mouse Model. Int J Mol Sci 2021; 22:2789. [PMID: 33801843 PMCID: PMC8001573 DOI: 10.3390/ijms22062789] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/05/2021] [Accepted: 03/05/2021] [Indexed: 11/19/2022] Open
Abstract
Recessive variants of the SLC26A4 gene are globally a common cause of hearing impairment. In the past, cell lines and transgenic mice were widely used to investigate the pathogenicity associated with SLC26A4 variants. However, discrepancies in pathogenicity between humans and cell lines or transgenic mice were documented for some SLC26A4 variants. For instance, the p.C565Y variant, which was reported to be pathogenic in humans, did not exhibit functional pathogenic consequences in cell lines. To address the pathogenicity of p.C565Y, we used a genotype-based approach in which we generated knock-in mice that were heterozygous (Slc26a4+/C565Y), homozygous (Slc26a4C565Y/C565Y), and compound heterozygous (Slc26a4919-2A>G/C565Y) for this variant. Subsequent phenotypic characterization revealed that mice with these genotypes demonstrated normal auditory and vestibular functions, and normal inner-ear morphology and pendrin expression. These findings indicate that the p.C565Y variant is nonpathogenic for mice, and that a single p.C565Y allele is sufficient to maintain normal inner-ear physiology in mice. Our results highlight the differences in pathogenicity associated with certain SLC26A4 variants between transgenic mice and humans, which should be considered when interpreting the results of animal studies for SLC26A4-related deafness.
Collapse
Affiliation(s)
- Chin-Ju Hu
- Department of Otolaryngology, National Taiwan University Hospital, Taipei 100, Taiwan; (C.-J.H.); (Y.-C.L.); (T.-H.Y.); (Y.-H.C.); (C.-Y.T.); (T.-C.L.); (C.-J.H.)
- Program in Speech and Hearing Bioscience and Technology, Harvard Medical School, Boston, MA 02115, USA
| | - Ying-Chang Lu
- Department of Otolaryngology, National Taiwan University Hospital, Taipei 100, Taiwan; (C.-J.H.); (Y.-C.L.); (T.-H.Y.); (Y.-H.C.); (C.-Y.T.); (T.-C.L.); (C.-J.H.)
- Department of Medical Research, Taipei Veteran General Hospital, Taipei 112, Taiwan
| | - Ting-Hua Yang
- Department of Otolaryngology, National Taiwan University Hospital, Taipei 100, Taiwan; (C.-J.H.); (Y.-C.L.); (T.-H.Y.); (Y.-H.C.); (C.-Y.T.); (T.-C.L.); (C.-J.H.)
| | - Yen-Hui Chan
- Department of Otolaryngology, National Taiwan University Hospital, Taipei 100, Taiwan; (C.-J.H.); (Y.-C.L.); (T.-H.Y.); (Y.-H.C.); (C.-Y.T.); (T.-C.L.); (C.-J.H.)
- Department of Otolaryngology, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung 427, Taiwan
| | - Cheng-Yu Tsai
- Department of Otolaryngology, National Taiwan University Hospital, Taipei 100, Taiwan; (C.-J.H.); (Y.-C.L.); (T.-H.Y.); (Y.-H.C.); (C.-Y.T.); (T.-C.L.); (C.-J.H.)
| | - I-Shing Yu
- Transgenic Mouse Models Core (TMMC), Division of Genomic Medicine, Research Center for Medical Excellence, National Taiwan University, Taipei 100, Taiwan; (I-S.Y.); (S.-W.L.)
| | - Shu-Wha Lin
- Transgenic Mouse Models Core (TMMC), Division of Genomic Medicine, Research Center for Medical Excellence, National Taiwan University, Taipei 100, Taiwan; (I-S.Y.); (S.-W.L.)
| | - Tien-Chen Liu
- Department of Otolaryngology, National Taiwan University Hospital, Taipei 100, Taiwan; (C.-J.H.); (Y.-C.L.); (T.-H.Y.); (Y.-H.C.); (C.-Y.T.); (T.-C.L.); (C.-J.H.)
| | - Yen-Fu Cheng
- Department of Medical Research, Taipei Veteran General Hospital, Taipei 112, Taiwan
- Department of Otolaryngology-Head and Neck Surgery, Taipei Veteran General Hospital, Taipei 112, Taiwan
- Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Chen-Chi Wu
- Department of Otolaryngology, National Taiwan University Hospital, Taipei 100, Taiwan; (C.-J.H.); (Y.-C.L.); (T.-H.Y.); (Y.-H.C.); (C.-Y.T.); (T.-C.L.); (C.-J.H.)
- Department of Medical Genetics, National Taiwan University Hospital, Taipei 100, Taiwan
- Department of Otolaryngology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Chuan-Jen Hsu
- Department of Otolaryngology, National Taiwan University Hospital, Taipei 100, Taiwan; (C.-J.H.); (Y.-C.L.); (T.-H.Y.); (Y.-H.C.); (C.-Y.T.); (T.-C.L.); (C.-J.H.)
- Department of Otolaryngology, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung 427, Taiwan
| |
Collapse
|
16
|
Simon F, Denoyelle F, Beraneck M. Interpreting pendred syndrome as a foetal hydrops: Clinical and animal model evidence. J Vestib Res 2021; 31:315-321. [PMID: 33579884 DOI: 10.3233/ves-200789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Menière disease (MD) and SLC26A4 related deafness (Pendred syndrome (PS) or DFNB4) are two different inner ear disorders which present with fluctuating and progressive hearing loss, which could be a direct consequence of endolymphatic hydrops. OBJECTIVE To present similarities between both pathologies and explore how the concept of hydrops may be applied to PS/DFNB4. METHODS Review of the literature on MD, PS/DFNB4 and mouse model of PS/DFNB4. RESULTS MD and PS/DFNB4 share a number of similarities such as fluctuating and progressive hearing loss, acute episodes with vertigo and tinnitus, MRI and histological evidence of endolymphatic hydrops (although with different underlying mechanisms). MD is usually diagnosed during the fourth decade of life whereas PS/DFNB4 is congenital. The PS/DFNB4 mouse models have shown that biallelic slc26a4 mutations lead to Na+ and water retention in the endolymph during the perinatal period, which in turn induces degeneration of the stria vascularis and hearing loss. Crossing clinical/imagery characteristics and animal models, evidence seems to support the hypothesis of PS being a foetal hydrops. CONCLUSIONS When understanding PS/DFNB4 as a developmental hydrops, treatments used in MD could be repositioned to PS.
Collapse
Affiliation(s)
- François Simon
- Université de Paris, INCC UMR 8002, CNRS, F-75006 Paris, France.,Université de Paris, Faculté de Médecine, F-75006 Paris, France.,Department of Paediatric Otolaryngology, AP-HP, Hôpital Necker-Enfants Malades, F-75015 Paris, France
| | - Françoise Denoyelle
- Université de Paris, Faculté de Médecine, F-75006 Paris, France.,Department of Paediatric Otolaryngology, AP-HP, Hôpital Necker-Enfants Malades, F-75015 Paris, France
| | | |
Collapse
|
17
|
Gu X, Jiang Q, Sun W, Guo W, Yang S. Anatomical analysis of vestibular aqueducts in humans and miniature pigs. Anat Rec (Hoboken) 2021. [DOI: 10.1002/ar.24577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xiang Gu
- College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital Beijing China
- Department of Otolayngology, Head & Neck Surgery, The Tianjin Children's Hospital Tianjin P.R. China
- State Key Lab of Hearing Science Ministry of Education Beijing China
- Department of Otolaryngeal‐Head Neck Surgery, Chinese PLA General Hospital Beijing P.R. China
- Chinese PLA Medical School Beijing China
| | - Qing‐qing Jiang
- College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital Beijing China
- Department of Otolayngology, Head & Neck Surgery, The Tianjin Children's Hospital Tianjin P.R. China
- State Key Lab of Hearing Science Ministry of Education Beijing China
- Department of Otolaryngeal‐Head Neck Surgery, Chinese PLA General Hospital Beijing P.R. China
- Chinese PLA Medical School Beijing China
| | - Wei Sun
- Department of Communicative Disorders & Sciences, Center for Hearing and Deafness State University of New York at Buffalo New York USA
| | - Weiwei Guo
- College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital Beijing China
- Department of Otolayngology, Head & Neck Surgery, The Tianjin Children's Hospital Tianjin P.R. China
- State Key Lab of Hearing Science Ministry of Education Beijing China
- Department of Otolaryngeal‐Head Neck Surgery, Chinese PLA General Hospital Beijing P.R. China
- Chinese PLA Medical School Beijing China
| | - Shi‐Ming Yang
- College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital Beijing China
- Department of Otolayngology, Head & Neck Surgery, The Tianjin Children's Hospital Tianjin P.R. China
- State Key Lab of Hearing Science Ministry of Education Beijing China
- Department of Otolaryngeal‐Head Neck Surgery, Chinese PLA General Hospital Beijing P.R. China
- Chinese PLA Medical School Beijing China
| |
Collapse
|
18
|
Tsukada K, Usami SI. Detailed MR imaging assessment of endolymphatic hydrops in patients with SLC26A4 mutations. Auris Nasus Larynx 2020; 47:958-964. [PMID: 32536503 DOI: 10.1016/j.anl.2020.05.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 05/02/2020] [Accepted: 05/27/2020] [Indexed: 10/24/2022]
Abstract
OBJECTIVE Mutations in SLC26A4 represent the second most common mutations in deafness patients. The majority of patients with SLC26A4 mutations have a large vestibular aqueduct (LVA). Recently, some reports showed the presence of endolymphatic hydrops (ELH) in patients with LVA on the basis of high-resolution enhanced 3T-MRI. However, detailed evaluation has not been performed. We provide the first report on ELH in LVA patients with biallelic SLC26A4 mutations. In this study, we focused on 1) the findings of ELH in LVA patients with biallelic SLC26A4 mutations, and 2) the findings of the endolymphatic duct (ED) and endolymphatic sac (ES) by using two different gadodimide (Gd) enhancement methods. SUBJECTS AND METHODS Five patients with SLC26A4 mutations underwent enhanced 3T-MRI using the intratympanic (IT) or intravenous (IV) injection of Gd for the diagnosis ELH. RESULTS All of the patients had ELH in at least one ear. ELH was identified in the vestibule (8/10 ears) as well as in the cochlea (7/10 ears). With regard to the ED and ES, all ears for which MRI was performed with an IT injection of Gd had black areas in the ES or VA or both; however, all of the ears receiving an IV injection had no black areas and were well enhanced. CONCLUSIONS A majority of the patients had severe ELH in the cochleo-vestibular endolymph, with two different patterns observed in the MRI findings of the ED and ES.
Collapse
Affiliation(s)
- Keita Tsukada
- Department of Otolaryngology, Shinshu University School of Medicine, 3-1-1, Asahi, Matsumoto City, 390-8621, Japan
| | - Shin-Ichi Usami
- Department of Otolaryngology, Shinshu University School of Medicine, 3-1-1, Asahi, Matsumoto City, 390-8621, Japan.
| |
Collapse
|
19
|
Wasano K, Takahashi S, Rosenberg SK, Kojima T, Mutai H, Matsunaga T, Ogawa K, Homma K. Systematic quantification of the anion transport function of pendrin (SLC26A4) and its disease-associated variants. Hum Mutat 2020; 41:316-331. [PMID: 31599023 PMCID: PMC6930342 DOI: 10.1002/humu.23930] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 10/01/2019] [Accepted: 10/03/2019] [Indexed: 01/14/2023]
Abstract
Thanks to the advent of rapid DNA sequencing technology and its prevalence, many disease-associated genetic variants are rapidly identified in many genes from patient samples. However, the subsequent effort to experimentally validate and define their pathological roles is extremely slow. Consequently, the pathogenicity of most disease-associated genetic variants is solely speculated in silico, which is no longer deemed compelling. We developed an experimental approach to efficiently quantify the pathogenic effects of disease-associated genetic variants with a focus on SLC26A4, which is essential for normal inner ear function. Alterations of this gene are associated with both syndromic and nonsyndromic hereditary hearing loss with various degrees of severity. We established HEK293T-based stable cell lines that express pendrin missense variants in a doxycycline-dependent manner, and systematically determined their anion transport activities with high accuracy in a 96-well plate format using a high throughput plate reader. Our doxycycline dosage-dependent transport assay objectively distinguishes missense variants that indeed impair the function of pendrin from those that do not (functional variants). We also found that some of these putative missense variants disrupt normal messenger RNA splicing. Our comprehensive experimental approach helps determine the pathogenicity of each pendrin variant, which should guide future efforts to benefit patients.
Collapse
Affiliation(s)
- Koichiro Wasano
- Department of Otolaryngology – Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Laboratory of Auditory Disorders, Division of Hearing and Balance Research, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, 2-5-1 Higashigaoka, Meguro, Tokyo 152-8902, Japan
| | - Satoe Takahashi
- Department of Otolaryngology – Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Samuel K. Rosenberg
- Department of Otolaryngology – Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Takashi Kojima
- Department of Otolaryngology – Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Hideki Mutai
- Laboratory of Auditory Disorders, Division of Hearing and Balance Research, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, 2-5-1 Higashigaoka, Meguro, Tokyo 152-8902, Japan
| | - Tatsuo Matsunaga
- Laboratory of Auditory Disorders, Division of Hearing and Balance Research, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, 2-5-1 Higashigaoka, Meguro, Tokyo 152-8902, Japan
| | - Kaoru Ogawa
- Department of Otolaryngology, Head and Neck Surgery, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Kazuaki Homma
- Department of Otolaryngology – Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- The Hugh Knowles Center for Clinical and Basic Science in Hearing and Its Disorders, Northwestern University, Evanston, IL 60608, USA
| |
Collapse
|
20
|
Prenatal electroporation-mediated gene transfer restores Slc26a4 knock-out mouse hearing and vestibular function. Sci Rep 2019; 9:17979. [PMID: 31784581 PMCID: PMC6884448 DOI: 10.1038/s41598-019-54262-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 11/08/2019] [Indexed: 12/13/2022] Open
Abstract
The otocyst, an anlage of the inner ear, presents an attractive target to study treatment strategies for genetic hearing loss and inner ear development. We have previously reported that electroporation-mediated transuterine gene transfer of Connexin30, utilizing a monophasic pulse into Connexin30−/− mouse otocysts at embryonic day 11.5, is able to prevent putative hearing deterioration. However, it is not clear whether supplementary gene transfer can rescue significant morphological changes, caused by genetic deficits. In addition, with the transuterine gene transfer technique utilized in our previous report, the survival rate of embryos and their mothers after treatment was low, which became a serious obstacle for effective in vivo experiments. Here, we set out to elucidate the feasibility of supplementation therapy in Slc26a4 deficient mice, utilizing biphasic pulses, optimized by modifying pulse conditions. Modification of the biphasic pulse conditions during electroporation increased the survival rate. In addition, supplementation of the target gene cDNA into the otocysts of homozygous Slc24a4 knockout mice significantly prevented enlargement of the endolymphatic space in the inner ear areas; moreover, it rescued hearing and vestibular function of mice in vivo.
Collapse
|
21
|
Mey K, Muhamad AA, Tranebjaerg L, Rendtorff ND, Rasmussen SH, Bille M, Cayé-Thomasen P. Association of SLC26A4 mutations, morphology, and hearing in pendred syndrome and NSEVA. Laryngoscope 2019; 129:2574-2579. [PMID: 31633822 DOI: 10.1002/lary.27319] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 04/07/2018] [Accepted: 05/03/2018] [Indexed: 12/19/2022]
Abstract
OBJECTIVE To investigate the relations of monoallelic (M1), biallelic (M2), or the absence of mutations (M0) in SLC26A4 to inner ear morphology and hearing levels in individuals with Pendred syndrome (PS) or nonsyndromic enlarged vestibular aqueduct (NSEVA) associated with hearing loss. METHODS In a cohort of 139 PS/NSEVA individuals, 115 persons from 95 unrelated families had full genetic sequencing of SLC26A4, and 113 had retrievable images for re-assessment of inner ear morphology. The association between the number of mutant alleles in SLC26A4, inner ear morphology (including endolymphatic sac size and protein content on magnetic resonance imaging), and hearing level (pure tone average) was explored. RESULTS Biallelic SLC26A4 mutations (M2) occurred in three-quarters of the cohort and was invariably associated with poor hearing; in 87%, it was associated with incomplete partition type II of the cochlea as well as enlarged endolymphatic sac and vestibular aqueduct. M1 or M0 individuals exhibited a greater variability in inner ear morphology. Endolymphatic sac size and presence of "high-protein" sac contents were significantly higher in M2 individuals compared to M1 and M0 individuals. CONCLUSION The number of SLC26A4 mutations is associated with severity and variability of inner ear morphology and hearing level in individuals with PS or NSEVA. M2 individuals have poorer hearing and present largely incomplete partition type II of the cochleas with enlarged endolymphatic sacs, whereas individuals with M1 and no detectable SLC26A4 mutations have less severe hearing loss and more diverse inner ear morphology. LEVEL OF EVIDENCE 4. Laryngoscope, 129:2574-2579, 2019.
Collapse
Affiliation(s)
- Kristianna Mey
- Department of Otorhinolaryngology, Head and Neck Surgery and Audiology Rigshospitalet/Gentofte, Hellerup
| | | | - Lisbeth Tranebjaerg
- the Department of Clinical Genetics, Rigshospitalet/The Kennedy Center.,the Institute of Clinical Medicine
| | - Nanna D Rendtorff
- the Department of Clinical Genetics, Rigshospitalet/The Kennedy Center
| | | | - Michael Bille
- Department of Otorhinolaryngology, Head and Neck Surgery and Audiology Rigshospitalet/Gentofte, Hellerup
| | - Per Cayé-Thomasen
- Department of Otorhinolaryngology, Head and Neck Surgery and Audiology Rigshospitalet/Gentofte, Hellerup.,Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
22
|
Kim MA, Kim SH, Ryu N, Ma JH, Kim YR, Jung J, Hsu CJ, Choi JY, Lee KY, Wangemann P, Bok J, Kim UK. Gene therapy for hereditary hearing loss by SLC26A4 mutations in mice reveals distinct functional roles of pendrin in normal hearing. Theranostics 2019; 9:7184-7199. [PMID: 31695761 PMCID: PMC6831294 DOI: 10.7150/thno.38032] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 08/06/2019] [Indexed: 12/13/2022] Open
Abstract
Rationale: Mutations of SLC26A4 that abrogate pendrin, expressed in endolymphatic sac, cochlea and vestibule, are known to cause autosomal recessive sensorineural hearing loss with enlargement of the membranous labyrinth. This is the first study to demonstrate the feasibility of gene therapy for pendrin-related hearing loss. Methods: We used a recombinant viral vector to transfect Slc26a4 cDNA into embryonic day 12.5 otocysts of pendrin-deficient knock-out (Slc26a4∆/∆ ) and pendrin-deficient knock-in (Slc26a4tm1Dontuh/tm1Dontuh ) mice. Results: Local gene-delivery resulted in spatially and temporally limited pendrin expression, prevented enlargement, failed to restore vestibular function, but succeeded in the restoration of hearing. Restored hearing phenotypes included normal hearing as well as sudden, fluctuating, and progressive hearing loss. Conclusion: Our study illustrates the feasibility of gene therapy for pendrin-related hearing loss, suggests differences in the requirement of pendrin between the cochlea and the vestibular labyrinth, and documents that insufficient pendrin expression during late embryonal and early postnatal development of the inner ear can cause sudden, fluctuating and progressive hearing loss without obligatory enlargement of the membranous labyrinth.
Collapse
Affiliation(s)
- Min-A Kim
- Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Sung Huhn Kim
- Department of Otorhinolaryngology, Head and Neck Surgery, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Nari Ryu
- Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Ji-Hyun Ma
- Department of Anatomy, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Ye-Ri Kim
- Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jinsei Jung
- Department of Otorhinolaryngology, Head and Neck Surgery, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Chuan-Jen Hsu
- Department of Otolaryngology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Jae Young Choi
- Department of Otorhinolaryngology, Head and Neck Surgery, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Kyu-Yup Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Philine Wangemann
- Department of Anatomy and Physiology, Kansas State University, Manhattan, United States of America
| | - Jinwoong Bok
- Department of Otorhinolaryngology, Head and Neck Surgery, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- Department of Anatomy, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- BK21PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Un-Kyung Kim
- Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
23
|
Wen Z, Zhu H, Li Z, Zhang S, Zhang A, Zhang T, Fu X, Sun D, Zhang J, Gao J. A knock-in mouse model of Pendred syndrome with Slc26a4 L236P mutation. Biochem Biophys Res Commun 2019; 515:359-365. [PMID: 31155292 DOI: 10.1016/j.bbrc.2019.05.157] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 05/25/2019] [Indexed: 11/25/2022]
Abstract
SLC26A4 gene mutations lead to Pendred syndrome and non-syndromic hearing loss (DFNB4). The mouse model is well used to study the pathology of Pendred syndrome, however, mice with different Slc26a4 mutations exhibit different phenotypes, and these mice have severe deafness and inner ear malformations that are not imitated less severely Human phenotype. In this study, we generated a knock-in mouse model of Pendred syndrome with Slc26a4 L236P mutation to mimic the most common mutation found in human. Some L236P mice were observed to have significant vestibular dysfunction including torticollis and circling, the giant otoconia and destruction of the otoconial membrane was observed in L236P mice. Unlike other profoundly deafness in Slc26a4 mouse model, L236P mice present mild to profound hearing loss, consistent with the hearing threshold, inner ear hair cells also lost from slight to significant. Together, these data demonstrate that the L236P mouse phenotype is more similar to the human phenotype and should be used as a tool for further research into the human Pendred syndrome.
Collapse
Affiliation(s)
- Zongzhuang Wen
- Institute of Developmental Biology, School of Life Science, Shandong University, Jinan, Shandong, China
| | - Haixia Zhu
- State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, China
| | - Zhenzu Li
- Department of Bioengineering, Shandong Polytechnic, Jinan, Shandong, China
| | - Sen Zhang
- Institute of Developmental Biology, School of Life Science, Shandong University, Jinan, Shandong, China
| | - Aizhen Zhang
- Institute of Developmental Biology, School of Life Science, Shandong University, Jinan, Shandong, China
| | - Tingting Zhang
- Institute of Developmental Biology, School of Life Science, Shandong University, Jinan, Shandong, China
| | - Xiaolong Fu
- Institute of Developmental Biology, School of Life Science, Shandong University, Jinan, Shandong, China
| | - Daqing Sun
- Department of Paediatric Surgery, Tianjin Medical University General Hospital, Tianjin, China.
| | - Jian Zhang
- Institute of Developmental Biology, School of Life Science, Shandong University, Jinan, Shandong, China.
| | - Jiangang Gao
- Institute of Developmental Biology, School of Life Science, Shandong University, Jinan, Shandong, China.
| |
Collapse
|
24
|
Deng Y, Sang S, Wen J, Liu Y, Ling J, Chen H, Cai X, Mei L, Chen X, Li M, Li W, Li T, He C, Feng Y. Reproductive guidance through prenatal diagnosis and genetic counseling for recessive hereditary hearing loss in high-risk families. Int J Pediatr Otorhinolaryngol 2018; 115:114-119. [PMID: 30368370 DOI: 10.1016/j.ijporl.2018.08.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 08/21/2018] [Accepted: 08/21/2018] [Indexed: 10/28/2022]
Abstract
OBJECTIVE To evaluate the accuracy and validity of our protocol for prenatal diagnosis and genetic counseling in high-risk families at a clinic. METHODS Fifteen unrelated families with recessive nonsyndromic hearing loss (NSHL) in their family history and a positive attitude towards prenatal diagnosis were recruited in the present study. According to genetic information for each family, Sanger sequencing, fluorescence polymerase chain reaction (PCR)-based congenital deafness gene detection kit and multiple PCR-based target gene capture and high-throughput sequencing were used. Genetic counseling was offered to all participating families by genetic counselors and otologists. Prenatal diagnosis was provided to families with detected pathogenic mutations and who were expected to participate in subsequent prenatal diagnosis. RESULTS In this study, confirmed pathogenic mutations were detected in eight families, who were defined as high-risk families. These families all participated in prenatal diagnosis with positive attitudes. One novel variant (c.1687dupA) in the SLC264 gene was detected in a family. Through genetic counseling, the recurrence probability of NSHL in fetuses was 25% in six families, 0% in one family, and 50% in one family. The results of fetal DNA detection showed that one fetal variant was wild type, three were heterozygous mutations in SLC26A4, and one was a compound heterozygous mutation in SLC26A4. Two variants were heterozygous mutations in GJB2, and one was a homozygous mutation in GJB2. According to the test results for fetal DNA, prenatal diagnosis found that six fetuses had normal hearing, whereas two fetuses suffered from NSHL. After birth, six infants predicted to have normal hearing passed a newborn hearing screening test and two infants predicted to have NSHL were diagnosed with NSHL and received cochlear implants. CONCLUSION Our protocol for prenatal diagnosis and genetic counseling provides detailed information that can assist couples in high-risk families in preparing for infant arrival and future family planning. For the affected neonates, prenatal diagnosis and genetic counseling achieve an "early screening, early diagnosis, early intervention" strategy.
Collapse
Affiliation(s)
- Yuyuan Deng
- Department of Otolaryngology, Xiangya Hospital, Central South University, Center for Medical Genetics, Central South University, Key Laboratory of Otolaryngology Major Disease Research of Hunan Province, Xiangya Hospital, Central South University, China.
| | - Shushan Sang
- Department of Otolaryngology, Xiangya Hospital, Central South University, Center for Medical Genetics, Central South University, Key Laboratory of Otolaryngology Major Disease Research of Hunan Province, Xiangya Hospital, Central South University, China.
| | - Jie Wen
- Department of Otolaryngology, Xiangya Hospital, Central South University, China.
| | - Yalan Liu
- Department of Otolaryngology, Xiangya Hospital, Central South University, Key Laboratory of Otolaryngology Major Disease Research of Hunan Province, Xiangya Hospital, Central South University, China.
| | - Jie Ling
- Institute of Precision Medicine, Xiangya Hospital, Central South University, China.
| | - Hongsheng Chen
- Department of Otolaryngology, Xiangya Hospital, Central South University, Key Laboratory of Otolaryngology Major Disease Research of Hunan Province, Xiangya Hospital, Central South University, China.
| | - Xinzhang Cai
- Department of Otolaryngology, Xiangya Hospital, Central South University, China.
| | - Lingyun Mei
- Department of Otolaryngology, Xiangya Hospital, Central South University, Key Laboratory of Otolaryngology Major Disease Research of Hunan Province, Xiangya Hospital, Central South University, China.
| | - Xiaoya Chen
- Department of Otolaryngology, Xiangya Hospital, Central South University, Center for Medical Genetics, Central South University, Key Laboratory of Otolaryngology Major Disease Research of Hunan Province, Xiangya Hospital, Central South University, China.
| | - Meng Li
- Center for Medical Genetics, Central South University, China.
| | - Wu Li
- Center for Medical Genetics, Central South University, China.
| | - Taoxi Li
- Center for Medical Genetics, Central South University, China.
| | - Chufeng He
- Department of Otolaryngology, Xiangya Hospital, Central South University, China.
| | - Yong Feng
- Department of Otolaryngology, Xiangya Hospital, Central South University, Center for Medical Genetics, Central South University, Key Laboratory of Otolaryngology Major Disease Research of Hunan Province, Xiangya Hospital, Central South University, China.
| |
Collapse
|
25
|
Zhang W, Kim SM, Wang W, Cai C, Feng Y, Kong W, Lin X. Cochlear Gene Therapy for Sensorineural Hearing Loss: Current Status and Major Remaining Hurdles for Translational Success. Front Mol Neurosci 2018; 11:221. [PMID: 29997477 PMCID: PMC6028713 DOI: 10.3389/fnmol.2018.00221] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 06/06/2018] [Indexed: 12/19/2022] Open
Abstract
Sensorineural hearing loss (SNHL) affects millions of people. Genetic mutations play a large and direct role in both congenital and late-onset cases of SNHL (e.g., age-dependent hearing loss, ADHL). Although hearing aids can help moderate to severe hearing loss the only effective treatment for deaf patients is the cochlear implant (CI). Gene- and cell-based therapies potentially may preserve or restore hearing with more natural sound perception, since their theoretical frequency resolution power is much higher than that of cochlear implants. These biologically-based interventions also carry the potential to re-establish hearing without the need for implanting any prosthetic device; the convenience and lower financial burden afforded by such biologically-based interventions could potentially benefit far more SNHL patients. Recently major progress has been achieved in preclinical studies of cochlear gene therapy. This review critically evaluates recent advances in the preclinical trials of gene therapies for SNHL and the major remaining challenges for the development and eventual clinical translation of this novel therapy. The cochlea bears many similarities to the eye for translational studies of gene therapies. Experience gained in ocular gene therapy trials, many of which have advanced to clinical phase III, may provide valuable guidance in improving the chance of success for cochlear gene therapy in human trials. A discussion on potential implications of translational knowledge gleaned from large numbers of advanced clinical trials of ocular gene therapy is therefore included.
Collapse
Affiliation(s)
- Wenjuan Zhang
- Department of Otolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sun Myoung Kim
- Department of Otolaryngology, Emory University School of Medicine, Atlanta, GA, United States
| | - Wenwen Wang
- Department of Otolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | - Yong Feng
- Xiangya School of Medicine, Changsha, China
| | - Weijia Kong
- Department of Otolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xi Lin
- Department of Otolaryngology, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
26
|
Trepiccione F, Soukaseum C, Baudrie V, Kumai Y, Teulon J, Villoutreix B, Cornière N, Wangemann P, Griffith AJ, Byung Choi Y, Hadchouel J, Chambrey R, Eladari D. Acute genetic ablation of pendrin lowers blood pressure in mice. Nephrol Dial Transplant 2018; 32:1137-1145. [PMID: 28064162 DOI: 10.1093/ndt/gfw393] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 10/02/2016] [Indexed: 11/14/2022] Open
Abstract
Background Pendrin, the chloride/bicarbonate exchanger of β-intercalated cells of the renal connecting tubule and the collecting duct, plays a key role in NaCl reabsorption by the distal nephron. Therefore, pendrin may be important for the control of extracellular fluid volume and blood pressure. Methods Here, we have used a genetic mouse model in which the expression of pendrin can be switched-on in vivo by the administration of doxycycline. Pendrin can also be rapidly removed when doxycycline administration is discontinued. Therefore, our genetic strategy allows us to test selectively the acute effects of loss of pendrin function. Results We show that acute loss of pendrin leads to a significant decrease of blood pressure. In addition, acute ablation of pendrin did not alter significantly the acid-base status or blood K + concentration. Conclusion By using a transgenic mouse model, avoiding off-target effects related to pharmacological compounds, this study suggests that pendrin could be a novel target to treat hypertension.
Collapse
Affiliation(s)
- Francesco Trepiccione
- INSERM U970, Paris Cardiovascular Research Center, Université Paris-Descartes, Paris, France
| | - Christelle Soukaseum
- INSERM U970, Paris Cardiovascular Research Center, Université Paris-Descartes, Paris, France
| | - Veronique Baudrie
- INSERM U970, Paris Cardiovascular Research Center, Université Paris-Descartes, Paris, France.,Hôpital Européen Georges Pompidou, Département de Physiologie, Assistance Publique-Hopitaux de Paris, Paris, France
| | - Yusuke Kumai
- INSERM U970, Paris Cardiovascular Research Center, Université Paris-Descartes, Paris, France
| | - Jacques Teulon
- CNRS ERL 8228, INSERM UMRS 1138, Université Pierre et Marie Curie, Centre de Recherche des Cordeliers, Paris, France
| | - Bruno Villoutreix
- INSERM U973, MTi-Bioinformatics; University Paris Diderot, Paris, France
| | - Nicolas Cornière
- Service d'Explorations Fonctionnelles Rénales, Hôpital Felix Guyon, CHU de la Réunion, St Denis, Ile de la Réunion, France
| | - Philine Wangemann
- Anatomy and Physiology Department, Kansas State University, Manhattan, KS, USA
| | - Andrew J Griffith
- Otolaryngology Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Yoon Byung Choi
- Otolaryngology Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Juliette Hadchouel
- INSERM U970, Paris Cardiovascular Research Center, Université Paris-Descartes, Paris, France
| | - Regine Chambrey
- INSERM U970, Paris Cardiovascular Research Center, Université Paris-Descartes, Paris, France.,Centre National de la Recherche Scientifique, Paris, France
| | - Dominique Eladari
- Service d'Explorations Fonctionnelles Rénales, Hôpital Felix Guyon, CHU de la Réunion, St Denis, Ile de la Réunion, France
| |
Collapse
|
27
|
Kudo T, Wangemann P, Marcus DC. Claudin expression during early postnatal development of the murine cochlea. BMC PHYSIOLOGY 2018; 18:1. [PMID: 29368643 PMCID: PMC5784685 DOI: 10.1186/s12899-018-0035-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 01/15/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND Claudins are major components of tight junctions, which form the paracellular barrier between the cochlear luminal and abluminal fluid compartments that supports the large transepithelial voltage difference and the large concentration differences of K+, Na+ and Ca2+ needed for normal cochlear function. Claudins are a family of more than 20 subtypes, but our knowledge about expression and localization of each subtype in the cochlea is limited. RESULTS We examined by quantitative RT-PCR the expression of the mRNA of 24 claudin isoforms in mouse cochlea during postnatal development and localized the expression in separated fractions of the cochlea. Transcripts of 21 claudin isoforms were detected at all ages, while 3 isoforms (Cldn-16, - 17 and - 18) were not detected. Claudins that increased expression during development include Cldn-9, - 13, - 14, - 15, and -19v2, while Cldn-6 decreased. Those that do not change expression level during postnatal development include Cldn-1, - 2, - 3, - 4, - 5, - 7, - 8, -10v1, -10v2, - 11, - 12, -19v1, - 20, - 22, and - 23. Our investigation revealed unique localization of some claudins. In particular, Cldn-13 expression rapidly increases during early development and is mainly expressed in bone but only minimally in the lateral wall (including stria vascularis) and in the medial region (including the organ of Corti). No statistically significant changes in expression of Cldn-11, - 13, or - 14 were found in the cochlea of Slc26a4 -/- mice compared to Slc26a4 +/- mice. CONCLUSIONS We demonstrated developmental patterns of claudin isoform transcript expression in the murine cochlea. Most of the claudins were associated with stria vascularis and organ of Corti, tissue fractions rich in tight junctions. However, this study suggests a novel function of Cldn-13 in the cochlea, which may be linked to cochlear bone marrow maturation.
Collapse
Affiliation(s)
- Takayuki Kudo
- Anatomy and Physiology Department, Kansas State University, 228 Coles Hall, Manhattan, KS, 66506, USA
| | - Philine Wangemann
- Anatomy and Physiology Department, Kansas State University, 228 Coles Hall, Manhattan, KS, 66506, USA
| | - Daniel C Marcus
- Anatomy and Physiology Department, Kansas State University, 228 Coles Hall, Manhattan, KS, 66506, USA.
| |
Collapse
|
28
|
Tian C, Gagnon LH, Longo-Guess C, Korstanje R, Sheehan SM, Ohlemiller KK, Schrader AD, Lett JM, Johnson KR. Hearing loss without overt metabolic acidosis in ATP6V1B1 deficient MRL mice, a new genetic model for non-syndromic deafness with enlarged vestibular aqueducts. Hum Mol Genet 2018; 26:3722-3735. [PMID: 28934385 DOI: 10.1093/hmg/ddx257] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 06/30/2017] [Indexed: 12/17/2022] Open
Abstract
Mutations of the human ATP6V1B1 gene cause distal renal tubular acidosis (dRTA; OMIM #267300) often associated with sensorineural hearing impairment; however, mice with a knockout mutation of Atp6v1b1 were reported to exhibit a compensated acidosis and normal hearing. We discovered a new spontaneous mutation (vortex, symbol vtx) of Atp6v1b1 in an MRL/MpJ (MRL) colony of mice. In contrast to the reported phenotype of the knockout mouse, which was developed on a primarily C57BL/6 (B6) strain background, MRL-Atp6v1b1vtx/vtx mutant mice exhibit profound hearing impairment, which is associated with enlarged endolymphatic compartments of the inner ear. Mutant mice have alkaline urine but do not exhibit overt metabolic acidosis, a renal phenotype similar to that of the Atpbv1b1 knockout mouse. The abnormal inner ear phenotype of MRL- Atp6v1b1vtx/vtx mice was lost when the mutation was transferred onto the C57BL/6J (B6) background, indicating the influence of strain-specific genetic modifiers. To genetically map modifier loci in Atp6v1b1vtx/vtx mice, we analysed ABR thresholds of progeny from a backcross segregating MRL and B6 alleles. We found statistically significant linkage with a locus on Chr 13 that accounts for about 20% of the hearing threshold variation in the backcross mice. The important effect that genetic background has on the inner ear phenotype of Atp6v1b1 mutant mice provides insight into the hearing loss variability associated with dRTA caused by ATP6V1B1 mutations. Because MRL-Atp6v1b1vxt/vtx mice do not recapitulate the metabolic acidosis of dRTA patients, they provide a new genetic model for nonsyndromic deafness with enlarged vestibular aqueduct (EVA; OMIM #600791).
Collapse
Affiliation(s)
- Cong Tian
- The Jackson Laboratory, Bar Harbor, ME 04609, USA.,Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME 04469, USA
| | | | | | | | | | - Kevin K Ohlemiller
- Department of Otolaryngology, Central Institute for the Deaf, Fay and Carl Simons Center for Hearing and Deafness, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Angela D Schrader
- Department of Otolaryngology, Central Institute for the Deaf, Fay and Carl Simons Center for Hearing and Deafness, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Jaclynn M Lett
- Department of Otolaryngology, Central Institute for the Deaf, Fay and Carl Simons Center for Hearing and Deafness, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | | |
Collapse
|
29
|
Honda K, Kim SH, Kelly MC, Burns JC, Constance L, Li X, Zhou F, Hoa M, Kelley MW, Wangemann P, Morell RJ, Griffith AJ. Molecular architecture underlying fluid absorption by the developing inner ear. eLife 2017; 6. [PMID: 28994389 PMCID: PMC5634787 DOI: 10.7554/elife.26851] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 09/10/2017] [Indexed: 12/26/2022] Open
Abstract
Mutations of SLC26A4 are a common cause of hearing loss associated with enlargement of the endolymphatic sac (EES). Slc26a4 expression in the developing mouse endolymphatic sac is required for acquisition of normal inner ear structure and function. Here, we show that the mouse endolymphatic sac absorbs fluid in an SLC26A4-dependent fashion. Fluid absorption was sensitive to ouabain and gadolinium but insensitive to benzamil, bafilomycin and S3226. Single-cell RNA-seq analysis of pre- and postnatal endolymphatic sacs demonstrates two types of differentiated cells. Early ribosome-rich cells (RRCs) have a transcriptomic signature suggesting expression and secretion of extracellular proteins, while mature RRCs express genes implicated in innate immunity. The transcriptomic signature of mitochondria-rich cells (MRCs) indicates that they mediate vectorial ion transport. We propose a molecular mechanism for resorption of NaCl by MRCs during development, and conclude that disruption of this mechanism is the root cause of hearing loss associated with EES.
Collapse
Affiliation(s)
- Keiji Honda
- Molecular Biology and Genetics Section, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, United States
| | - Sung Huhn Kim
- Anatomy and Physiology Department, Kansas State University, Manhattan, United States
| | - Michael C Kelly
- Developmental Neuroscience Section, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, United States
| | - Joseph C Burns
- Developmental Neuroscience Section, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, United States
| | - Laura Constance
- Anatomy and Physiology Department, Kansas State University, Manhattan, United States
| | - Xiangming Li
- Anatomy and Physiology Department, Kansas State University, Manhattan, United States
| | - Fei Zhou
- Anatomy and Physiology Department, Kansas State University, Manhattan, United States
| | - Michael Hoa
- Auditory Development and Restoration Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, United States
| | - Matthew W Kelley
- Developmental Neuroscience Section, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, United States
| | - Philine Wangemann
- Anatomy and Physiology Department, Kansas State University, Manhattan, United States
| | - Robert J Morell
- Genomics and Computational Biology Core, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, United States
| | - Andrew J Griffith
- Molecular Biology and Genetics Section, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, United States
| |
Collapse
|
30
|
Chattaraj P, Munjal T, Honda K, Rendtorff ND, Ratay JS, Muskett JA, Risso DS, Roux I, Gertz EM, Schäffer AA, Friedman TB, Morell RJ, Tranebjærg L, Griffith AJ. A common SLC26A4-linked haplotype underlying non-syndromic hearing loss with enlargement of the vestibular aqueduct. J Med Genet 2017; 54:665-673. [PMID: 28780564 PMCID: PMC5880640 DOI: 10.1136/jmedgenet-2017-104721] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 05/23/2017] [Accepted: 05/29/2017] [Indexed: 12/26/2022]
Abstract
BACKGROUND Enlargement of the vestibular aqueduct (EVA) is the most common radiological abnormality in children with sensorineural hearing loss. Mutations in coding regions and splice sites of the SLC26A4 gene are often detected in Caucasians with EVA. Approximately one-fourth of patients with EVA have two mutant alleles (M2), one-fourth have one mutant allele (M1) and one-half have no mutant alleles (M0). The M2 genotype is correlated with a more severe phenotype. METHODS We performed genotype-haplotype analysis and massively parallel sequencing of the SLC26A4 region in patients with M1 EVA and their families. RESULTS We identified a shared novel haplotype, termed CEVA (Caucasian EVA), composed of 12 uncommon variants upstream of SLC26A4. The presence of the CEVA haplotype on seven of ten 'mutation-negative' chromosomes in a National Institutes of Health M1 EVA discovery cohort and six of six mutation-negative chromosomes in a Danish M1 EVA replication cohort is higher than the observed prevalence of 28 of 1006 Caucasian control chromosomes (p<0.0001 for each EVA cohort). The corresponding heterozygous carrier rate is 28/503 (5.6%). The prevalence of CEVA (11 of 126) is also increased among M0 EVA chromosomes (p=0.0042). CONCLUSIONS The CEVA haplotype causally contributes to most cases of Caucasian M1 EVA and, possibly, some cases of M0 EVA. The CEVA haplotype of SLC26A4 defines the most common allele associated with hereditary hearing loss in Caucasians. The diagnostic yield and prognostic utility of sequence analysis of SLC26A4 exons and splice sites will be markedly increased by addition of testing for the CEVA haplotype.
Collapse
Affiliation(s)
- Parna Chattaraj
- Otolaryngology Branch, National Institute on Deafness and Other Communication Disorders (NIDCD), Bethesda, Maryland, USA
| | - Tina Munjal
- Otolaryngology Branch, National Institute on Deafness and Other Communication Disorders (NIDCD), Bethesda, Maryland, USA
| | - Keiji Honda
- Otolaryngology Branch, National Institute on Deafness and Other Communication Disorders (NIDCD), Bethesda, Maryland, USA
| | - Nanna D Rendtorff
- Institute of Clinical Medicine, University of Copenhagen, The Panum Institute, Copenhagen, Denmark
- Department of Otorhinolaryngology, Head & Neck Surgery and Audiology, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Genetics, Rigshospitalet/The Kennedy Center, Glostrup, Denmark
| | - Jessica S Ratay
- Otolaryngology Branch, National Institute on Deafness and Other Communication Disorders (NIDCD), Bethesda, Maryland, USA
| | - Julie A Muskett
- Otolaryngology Branch, National Institute on Deafness and Other Communication Disorders (NIDCD), Bethesda, Maryland, USA
| | - Davide S Risso
- Laboratory of Communication Disorders, NIDCD, Bethesda, Maryland, USA
| | - Isabelle Roux
- Otolaryngology Branch, National Institute on Deafness and Other Communication Disorders (NIDCD), Bethesda, Maryland, USA
| | - E Michael Gertz
- Computational Biology Branch, National Center for Biotechnology Information, Bethesda, Maryland, USA
| | - Alejandro A Schäffer
- Computational Biology Branch, National Center for Biotechnology Information, Bethesda, Maryland, USA
| | | | - Robert J Morell
- Genomics and Computational Biology Core, NIDCD, Bethesda, Maryland, USA
| | - Lisbeth Tranebjærg
- Institute of Clinical Medicine, University of Copenhagen, The Panum Institute, Copenhagen, Denmark
- Department of Otorhinolaryngology, Head & Neck Surgery and Audiology, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Genetics, Rigshospitalet/The Kennedy Center, Glostrup, Denmark
| | - Andrew J Griffith
- Otolaryngology Branch, National Institute on Deafness and Other Communication Disorders (NIDCD), Bethesda, Maryland, USA
| |
Collapse
|
31
|
Rehman AU, Friedman TB, Griffith AJ. Unresolved questions regarding human hereditary deafness. Oral Dis 2017; 23:551-558. [PMID: 27259978 PMCID: PMC5136515 DOI: 10.1111/odi.12516] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 05/27/2016] [Accepted: 05/30/2016] [Indexed: 01/18/2023]
Abstract
Human hearing loss is a common neurosensory disorder about which many basic research and clinically relevant questions are unresolved. This review on hereditary deafness focuses on three examples considered at first glance to be uncomplicated, however, upon inspection, are enigmatic and ripe for future research efforts. The three examples of clinical and genetic complexities are drawn from studies of (i) Pendred syndrome/DFNB4 (PDS, OMIM 274600), (ii) Perrault syndrome (deafness and infertility) due to mutations of CLPP (PRTLS3, OMIM 614129), and (iii) the unexplained extensive clinical variability associated with TBC1D24 mutations. At present, it is unknown how different mutations of TBC1D24 cause non-syndromic deafness (DFNB86, OMIM 614617), epilepsy (OMIM 605021), epilepsy with deafness, or DOORS syndrome (OMIM 220500) that is characterized by deafness, onychodystrophy (alteration of toenail or fingernail morphology), osteodystrophy (defective development of bone), mental retardation, and seizures. A comprehensive understanding of the multifaceted roles of each gene associated with human deafness is expected to provide future opportunities for restoration as well as preservation of normal hearing.
Collapse
Affiliation(s)
- A U Rehman
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - T B Friedman
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - A J Griffith
- Otolaryngology Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
32
|
Slc26a4 expression prevents fluctuation of hearing in a mouse model of large vestibular aqueduct syndrome. Neuroscience 2016; 329:74-82. [PMID: 27155149 DOI: 10.1016/j.neuroscience.2016.04.042] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 04/25/2016] [Accepted: 04/27/2016] [Indexed: 12/13/2022]
Abstract
SLC26A4 mutations cause fluctuating and progressive hearing loss associated with enlargement of the vestibular aqueduct (EVA). SLC26A4 encodes a transmembrane anion exchanger called pendrin expressed in nonsensory epithelial cells of the lateral wall of cochlea, vestibular organs and endolymphatic sac. We previously described a transgenic mouse model of EVA with doxycycline (dox)-inducible expression of Slc26a4 in which administration of dox from conception to embryonic day 17.5 (DE17.5) resulted in hearing fluctuation between 1 and 3months of age. In the present study, we hypothesized that Slc26a4 is required to stabilize hearing in DE17.5 ears between 1 and 3months of age. We tested our hypothesis by evaluating the effect of postnatal re-induction of Slc26a4 expression on hearing. Readministration of dox to DE17.5 mice at postnatal day 6 (P6), but not at 1month of age, resulted in reduced click-evoked auditory brainstem response (ABR) thresholds, less fluctuation of hearing and a higher surface density of pendrin expression in spindle-shaped cells of the stria vascularis. Pendrin expression in spindle-shaped cells was inversely correlated with ABR thresholds. These findings suggest that stabilization of hearing by readministration of dox at P6 is mediated by pendrin expression in spindle-shaped cells. We conclude that early re-induction of Slc26a4 expression can prevent fluctuation of hearing in our Slc26a4-insufficient mouse model. Restoration of SLC26A4 expression and function could reduce or prevent fluctuation of hearing in EVA patients.
Collapse
|
33
|
Genetics of vestibular disorders: pathophysiological insights. J Neurol 2016; 263 Suppl 1:S45-53. [PMID: 27083884 PMCID: PMC4833787 DOI: 10.1007/s00415-015-7988-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 11/01/2015] [Accepted: 11/29/2015] [Indexed: 01/09/2023]
Abstract
The two most common vestibular disorders are motion sickness and vestibular migraine, affecting 30 and 1–2 % of the population respectively. Both are related to migraine and show a familial trend. Bilateral vestibular hypofunction is a rare condition, and some of patients also present cerebellar ataxia and neuropathy. We present recent advances in the genetics of vestibular disorders with familial aggregation. The clinical heterogeneity observed in different relatives of the same families suggests a variable penetrance and the interaction of several genes in each family. Some Mendelian sensorineural hearing loss also exhibits vestibular dysfunction, including DFNA9, DFNA11, DFNA15 and DFNA28. However, the most relevant finding during the past years is the familial clustering observed in Meniere’s disease. By using whole exome sequencing and combining bioinformatics tools, novel variants in DTNA and FAM136A genes have been identified in familial Meniere’s disease, and this genomic strategy will facilitate the discovery of the genetic basis of familial vestibular disorders.
Collapse
|
34
|
de Moraes VCS, Bernardinelli E, Zocal N, Fernandez JA, Nofziger C, Castilho AM, Sartorato EL, Paulmichl M, Dossena S. Reduction of Cellular Expression Levels Is a Common Feature of Functionally Affected Pendrin (SLC26A4) Protein Variants. Mol Med 2016; 22:41-53. [PMID: 26752218 DOI: 10.2119/molmed.2015.00226] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 01/04/2016] [Indexed: 11/06/2022] Open
Abstract
Sequence alterations in the pendrin gene (SLC26A4) leading to functionally affected protein variants are frequently involved in the pathogenesis of syndromic and nonsyndromic deafness. Considering the high number of SLC26A4 sequence alterations reported to date, discriminating between functionally affected and unaffected pendrin protein variants is essential in contributing to determine the genetic cause of deafness in a given patient. In addition, identifying molecular features common to the functionally affected protein variants can be extremely useful to design future molecule-directed therapeutic approaches. Here we show the functional and molecular characterization of six previously uncharacterized pendrin protein variants found in a cohort of 58 Brazilian deaf patients. Two variants (p.T193I and p.L445W) were undetectable in the plasma membrane, completely retained in the endoplasmic reticulum and showed no transport function; four (p.P142L, p.G149R, p.C282Y and p.Q413R) showed reduced function and significant, although heterogeneous, expression levels in the plasma membrane. Importantly, total expression levels of all of the functionally affected protein variants were significantly reduced with respect to the wild-type and a fully functional variant (p.R776C), regardless of their subcellular localization. Interestingly, reduction of expression may also reduce the transport activity of variants with an intrinsic gain of function (p.Q413R). As reduction of overall cellular abundance was identified as a common molecular feature of pendrin variants with affected function, the identification of strategies to prevent reduction in expression levels may represent a crucial step of potential future therapeutic interventions aimed at restoring the transport activity of dysfunctional pendrin variants.
Collapse
Affiliation(s)
- Vanessa C S de Moraes
- Center of Molecular Biology and Genetic Engineering (CBMEG), Molecular Biology Laboratory, State University of Campinas, UNICAMP, Campinas/São Paulo, Brazil
| | - Emanuele Bernardinelli
- Institute of Pharmacology and Toxicology, Paracelsus Medical University, Salzburg, Austria
| | - Nathalia Zocal
- Center of Molecular Biology and Genetic Engineering (CBMEG), Molecular Biology Laboratory, State University of Campinas, UNICAMP, Campinas/São Paulo, Brazil
| | - Jhonathan A Fernandez
- Center of Molecular Biology and Genetic Engineering (CBMEG), Molecular Biology Laboratory, State University of Campinas, UNICAMP, Campinas/São Paulo, Brazil
| | - Charity Nofziger
- Institute of Pharmacology and Toxicology, Paracelsus Medical University, Salzburg, Austria
| | - Arthur M Castilho
- Otology, Audiology and Implantable Ear Prostheses, State University of Campinas, UNICAMP, Campinas/São Paulo, Brazil
| | - Edi L Sartorato
- Center of Molecular Biology and Genetic Engineering (CBMEG), Molecular Biology Laboratory, State University of Campinas, UNICAMP, Campinas/São Paulo, Brazil
| | - Markus Paulmichl
- Institute of Pharmacology and Toxicology, Paracelsus Medical University, Salzburg, Austria
| | - Silvia Dossena
- Institute of Pharmacology and Toxicology, Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
35
|
Ito T, Nishio A, Wangemann P, Griffith AJ. Progressive irreversible hearing loss is caused by stria vascularis degeneration in an Slc26a4-insufficient mouse model of large vestibular aqueduct syndrome. Neuroscience 2015; 310:188-97. [PMID: 26363152 DOI: 10.1016/j.neuroscience.2015.09.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 09/02/2015] [Accepted: 09/03/2015] [Indexed: 12/13/2022]
Abstract
Hearing loss of patients with enlargement of the vestibular aqueduct (EVA) can fluctuate or progress, with overall downward progression. The most common detectable cause of EVA is mutations of SLC26A4. We previously described a transgenic Slc26a4-insufficient mouse model of EVA in which Slc26a4 expression is controlled by doxycycline administration. Mice that received doxycycline from conception until embryonic day 17.5 (DE17.5; doxycycline discontinued at embryonic day 17.5) had fluctuating hearing loss between 1 and 6 months of age with an overall downward progression after 6 months of age. In this study, we characterized the cochlear functional and structural changes underlying irreversible hearing loss in DE17.5 mice at 12 months of age. The endocochlear potential was decreased and inversely correlated with auditory brainstem response thresholds. The stria vascularis was thickened and edematous in ears with less severe hearing loss, and thinned and atrophic in ears with more severe hearing loss. There were pathologic changes in marginal cell morphology and gene expression that were not observed at 3 months. We conclude that strial dysfunction and degeneration are the primary causes of irreversible progressive hearing loss in our Slc26a4-insufficient mouse model of EVA. This model of primary strial atrophy may be used to explore the mechanisms of progressive hearing loss due to strial dysfunction.
Collapse
Affiliation(s)
- T Ito
- Otolaryngology Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| | - A Nishio
- Otolaryngology Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| | - P Wangemann
- Anatomy and Physiology Department, Kansas State University, Manhattan, KS 66506, USA
| | - A J Griffith
- Otolaryngology Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
36
|
Whitfield TT. Development of the inner ear. Curr Opin Genet Dev 2015; 32:112-8. [DOI: 10.1016/j.gde.2015.02.006] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 02/11/2015] [Accepted: 02/13/2015] [Indexed: 02/04/2023]
|
37
|
Potential treatments for genetic hearing loss in humans: current conundrums. Gene Ther 2015; 22:603-9. [PMID: 25781649 DOI: 10.1038/gt.2015.27] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 01/24/2015] [Accepted: 02/12/2015] [Indexed: 12/18/2022]
Abstract
Genetic defects are a major cause of hearing loss in newborns. Consequently, hearing loss has a profound negative impact on human daily living. Numerous causative genes for genetic hearing loss have been identified. However, presently, there are no truly curative treatments for this condition. There have been several recent reports on successful treatments in mice using embryonic gene therapy, neonatal gene therapy and neonatal antisense oligonucleotide therapy. Herein, we describe state-of-the-art research on genetic hearing loss treatment through gene therapy and discuss the obstacles to overcome in curative treatments of genetic hearing loss in humans.
Collapse
|
38
|
Rossier BC, Baker ME, Studer RA. Epithelial sodium transport and its control by aldosterone: the story of our internal environment revisited. Physiol Rev 2015; 95:297-340. [PMID: 25540145 DOI: 10.1152/physrev.00011.2014] [Citation(s) in RCA: 155] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Transcription and translation require a high concentration of potassium across the entire tree of life. The conservation of a high intracellular potassium was an absolute requirement for the evolution of life on Earth. This was achieved by the interplay of P- and V-ATPases that can set up electrochemical gradients across the cell membrane, an energetically costly process requiring the synthesis of ATP by F-ATPases. In animals, the control of an extracellular compartment was achieved by the emergence of multicellular organisms able to produce tight epithelial barriers creating a stable extracellular milieu. Finally, the adaptation to a terrestrian environment was achieved by the evolution of distinct regulatory pathways allowing salt and water conservation. In this review we emphasize the critical and dual role of Na(+)-K(+)-ATPase in the control of the ionic composition of the extracellular fluid and the renin-angiotensin-aldosterone system (RAAS) in salt and water conservation in vertebrates. The action of aldosterone on transepithelial sodium transport by activation of the epithelial sodium channel (ENaC) at the apical membrane and that of Na(+)-K(+)-ATPase at the basolateral membrane may have evolved in lungfish before the emergence of tetrapods. Finally, we discuss the implication of RAAS in the origin of the present pandemia of hypertension and its associated cardiovascular diseases.
Collapse
Affiliation(s)
- Bernard C Rossier
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland; Division of Nephrology-Hypertension, University of California San Diego, La Jolla, California; and Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, United Kingdom
| | - Michael E Baker
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland; Division of Nephrology-Hypertension, University of California San Diego, La Jolla, California; and Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, United Kingdom
| | - Romain A Studer
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland; Division of Nephrology-Hypertension, University of California San Diego, La Jolla, California; and Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, United Kingdom
| |
Collapse
|
39
|
Vijayakumar S, Lever TE, Pierce J, Zhao X, Bergstrom D, Lundberg YW, Jones TA, Jones SM. Vestibular dysfunction, altered macular structure and trait localization in A/J inbred mice. Mamm Genome 2015; 26:154-72. [PMID: 25645995 DOI: 10.1007/s00335-015-9556-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 01/13/2015] [Indexed: 11/30/2022]
Abstract
A/J mice develop progressive hearing loss that begins before 1 month of age and is attributed to cochlear hair cell degeneration. Screening tests indicated that this strain also develops early onset vestibular dysfunction and has otoconial deficits. The purpose of this study was to characterize the vestibular dysfunction and macular structural pathology over the lifespan of A/J mice. Vestibular function was measured using linear vestibular evoked potentials (VsEPs). Macular structural pathology was evaluated using light microscopy, scanning electron microscopy, transmission electron microscopy, confocal microscopy and Western blotting. Individually, vestibular functional deficits in mice ranged from mild to profound. On average, A/J mice had significantly reduced vestibular sensitivity (elevated VsEP response thresholds and smaller amplitudes), whereas VsEP onset latency was prolonged compared to age-matched controls (C57BL/6). A limited age-related vestibular functional loss was also present. Structural analysis identified marked age-independent otoconial abnormalities in concert with some stereociliary bundle defects. Macular epithelia were incompletely covered by otoconial membranes with significantly reduced opacity and often contained abnormally large or giant otoconia as well as normal-appearing otoconia. Elevated expression of key otoconins (i.e., otoconin 90, otolin and keratin sulfate proteoglycan) ruled out the possibility of reduced levels contributing to otoconial dysgenesis. The phenotype of A/J was partially replicated in a consomic mouse strain (C57BL/6J-Chr 17(A/J)/NaJ), thus indicating that Chr 17(A/J) contained a trait locus for a new gene variant responsible to some extent for the A/J vestibular phenotype. Quantitative trait locus analysis identified additional epistatic influences associated with chromosomes 1, 4, 9 and X. Results indicate that the A/J phenotype represents a complex trait, and the A/J mouse strain presents a new model for the study of mechanisms underlying otoconial formation and maintenance.
Collapse
Affiliation(s)
- Sarath Vijayakumar
- Department of Special Education and Communication Disorders, University of Nebraska-Lincoln, 301 Barkley Memorial Center, Lincoln, NE, 68583, USA
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Yamazaki H, Naito Y, Moroto S, Tamaya R, Yamazaki T, Fujiwara K, Ito J. SLC26A4 p.Thr410Met homozygous mutation in a patient with a cystic cochlea and an enlarged vestibular aqueduct showing characteristic features of incomplete partition type I and II. Int J Pediatr Otorhinolaryngol 2014; 78:2322-6. [PMID: 25468468 DOI: 10.1016/j.ijporl.2014.10.038] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 10/21/2014] [Accepted: 10/29/2014] [Indexed: 11/16/2022]
Abstract
Mutations of SLC26A4 are associated with incomplete partition type II (IP-II) and isolated enlargement of the vestibular aqueduct (EVA). We experienced a congenitally deaf 6-year-old boy with a rare p.Thr410Met homozygous mutation in SLC26A4 who underwent bilateral cochlear implantation. He had bilateral inner ear malformation, in which the dilated vestibule and EVA were identical to those in IP-II, but the cochlea lacking a bony modiolus resembled that in incomplete partition type I. These results suggest that homozygous mutations in SLC26A4 are always associated with EVA, while the severity of cochlear malformation may vary depending on the type of SLC26A4 mutation.
Collapse
Affiliation(s)
- Hiroshi Yamazaki
- Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| | - Yasushi Naito
- Department of Otolaryngology, Kobe City Medical Center General Hospital, Kobe, Japan
| | - Saburo Moroto
- Department of Otolaryngology, Kobe City Medical Center General Hospital, Kobe, Japan
| | - Rinko Tamaya
- Department of Otolaryngology, Kobe City Medical Center General Hospital, Kobe, Japan
| | - Tomoko Yamazaki
- Department of Otolaryngology, Kobe City Medical Center General Hospital, Kobe, Japan
| | - Keizo Fujiwara
- Department of Otolaryngology, Kobe City Medical Center General Hospital, Kobe, Japan
| | - Juichi Ito
- Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
41
|
Alka K, Casey JR. Bicarbonate transport in health and disease. IUBMB Life 2014; 66:596-615. [PMID: 25270914 DOI: 10.1002/iub.1315] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 09/10/2014] [Indexed: 12/28/2022]
Abstract
Bicarbonate (HCO3(-)) has a central place in human physiology as the waste product of mitochondrial energy production and for its role in pH buffering throughout the body. Because bicarbonate is impermeable to membranes, bicarbonate transport proteins are necessary to enable control of bicarbonate levels across membranes. In humans, 14 bicarbonate transport proteins, members of the SLC4 and SLC26 families, function by differing transport mechanisms. In addition, some anion channels and ZIP metal transporters contribute to bicarbonate movement across membranes. Defective bicarbonate transport leads to diseases, including systemic acidosis, brain dysfunction, kidney stones, and hypertension. Altered expression levels of bicarbonate transporters in patients with breast, colon, and lung cancer suggest an important role of these transporters in cancer.
Collapse
Affiliation(s)
- Kumari Alka
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | | |
Collapse
|
42
|
Mukherjea D, Ghosh S, Bhatta P, Sheth S, Tupal S, Borse V, Brozoski T, Sheehan KE, Rybak LP, Ramkumar V. Early investigational drugs for hearing loss. Expert Opin Investig Drugs 2014; 24:201-17. [PMID: 25243609 DOI: 10.1517/13543784.2015.960076] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Sensorineural hearing loss (HL) is becoming a global phenomenon at an alarming rate. Nearly 600 million people have been estimated to have significant HL in at least one ear. There are several different causes of sensorineural HL included in this review of new investigational drugs for HL. They are noise-induced, drug-induced, sudden sensorineural HL, presbycusis and HL due to cytomegalovirus infections. AREAS COVERED This review presents trends in research for new investigational drugs encompassing a variety of causes of HL. The studies presented here are the latest developments either in the research laboratories or in preclinical, Phase 0, Phase I or Phase II clinical trials for drugs targeting HL. EXPERT OPINION While it is important that prophylactic measures are developed, it is extremely crucial that rescue strategies for unexpected or unavoidable cochlear insult be established. To achieve this goal for the development of drugs for HL, innovative strategies and extensive testing are required for progress from the bench to bedside. However, although a great deal of research needs to be done to achieve the ultimate goal of protecting the ear against acquired sensorineural HL, we are likely to see exciting breakthroughs in the near future.
Collapse
Affiliation(s)
- Debashree Mukherjea
- Southern Illinois University School of Medicine, Department of Surgery , P.O. Box 19629, Springfield, IL 62794-9629 , USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
PURPOSE OF REVIEW Recent advances in next generation sequencing techniques (NGS) are increasing the number of novel genes associated with cerebellar and vestibular disorders. We have summarized clinical and molecular genetics findings in neuro-otolology during the last 2 years. RECENT FINDINGS Whole-exome and targeted sequencing have defined the genetic basis of dizziness including new genes causing ataxia: GBA2, TGM6, ANO10 and SYT14. Novel mutations in KCNA1 and CACNA1A genes are associated with episodic ataxia type 1 and type 2, respectively. Moreover, new variants in genes such as COCH, MYO7A and POU4F3 are associated with nonsyndromic deafness and vestibular dysfunction. Several susceptibility loci have been linked to familial vestibular migraine, suggesting genetic heterogeneity, but no specific gene has been identified. Finally, loci for complex and heterogeneous diseases such as bilateral vestibular hypofunction or familial Ménière disease have not been identified yet, despite their strong familial aggregation. SUMMARY Cerebellar and vestibular disorders leading to dizziness or episodic vertigo may show overlapping clinical features. A deep phenotyping including a complete familial history is a key step in performing a reliable molecular genetic diagnosis using NGS. Personalized molecular medicine will be essential to understand disease mechanisms as well as to improve their diagnosis and treatment.
Collapse
|
44
|
Kim KX, Sanneman JD, Kim HM, Harbidge DG, Xu J, Soleimani M, Wangemann P, Marcus DC. Slc26a7 chloride channel activity and localization in mouse Reissner's membrane epithelium. PLoS One 2014; 9:e97191. [PMID: 24810589 PMCID: PMC4014619 DOI: 10.1371/journal.pone.0097191] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 04/16/2014] [Indexed: 11/19/2022] Open
Abstract
Several members of the SLC26 gene family have highly-restricted expression patterns in the auditory and vestibular periphery and mutations in mice of at least two of these (SLC26A4 and SLC26A5) lead to deficits in hearing and/or balance. A previous report pointed to SLC26A7 as a candidate gene important for cochlear function. In the present study, inner ears were assayed by immunostaining for Slc26a7 in neonatal and adult mice. Slc26a7 was detected in the basolateral membrane of Reissner’s membrane epithelial cells but not neighboring cells, with an onset of expression at P5; gene knockout resulted in the absence of protein expression in Reissner’s membrane. Whole-cell patch clamp recordings revealed anion currents and conductances that were elevated for NO3− over Cl− and inhibited by I− and NPPB. Elevated NO3− currents were absent in Slc26a7 knockout mice. There were, however, no major changes to hearing (auditory brainstem response) of knockout mice during early adult life under constitutive and noise exposure conditions. The lack of Slc26a7 protein expression found in the wild-type vestibular labyrinth was consistent with the observation of normal balance. We conclude that SLC26A7 participates in Cl− transport in Reissner’s membrane epithelial cells, but that either other anion pathways, such as ClC-2, possibly substitute satisfactorily under the conditions tested or that Cl− conductance in these cells is not critical to cochlear function. The involvement of SLC26A7 in cellular pH regulation in other epithelial cells leaves open the possibility that SLC26A7 is needed in Reissner’s membrane cells during local perturbations of pH.
Collapse
Affiliation(s)
- Kyunghee X. Kim
- Anatomy & Physiology Department, Cellular Biophysics Laboratory, Kansas State University, Manhattan, Kansas, United States of America
| | - Joel D. Sanneman
- Anatomy & Physiology Department, Cell Physiology Laboratory, Kansas State University, Manhattan, Kansas, United States of America
| | - Hyoung-Mi Kim
- Anatomy & Physiology Department, Cell Physiology Laboratory, Kansas State University, Manhattan, Kansas, United States of America
| | - Donald G. Harbidge
- Anatomy & Physiology Department, Cellular Biophysics Laboratory, Kansas State University, Manhattan, Kansas, United States of America
| | - Jie Xu
- Department of Medicine and Center on Genetics of Transport, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Manoocher Soleimani
- Department of Medicine and Center on Genetics of Transport, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Philine Wangemann
- Anatomy & Physiology Department, Cell Physiology Laboratory, Kansas State University, Manhattan, Kansas, United States of America
| | - Daniel C. Marcus
- Anatomy & Physiology Department, Cellular Biophysics Laboratory, Kansas State University, Manhattan, Kansas, United States of America
- * E-mail:
| |
Collapse
|
45
|
Raft S, Andrade LR, Shao D, Akiyama H, Henkemeyer M, Wu DK. Ephrin-B2 governs morphogenesis of endolymphatic sac and duct epithelia in the mouse inner ear. Dev Biol 2014; 390:51-67. [PMID: 24583262 DOI: 10.1016/j.ydbio.2014.02.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 02/19/2014] [Indexed: 02/03/2023]
Abstract
Control over ionic composition and volume of the inner ear luminal fluid endolymph is essential for normal hearing and balance. Mice deficient in either the EphB2 receptor tyrosine kinase or the cognate transmembrane ligand ephrin-B2 (Efnb2) exhibit background strain-specific vestibular-behavioral dysfunction and signs of abnormal endolymph homeostasis. Using various loss-of-function mouse models, we found that Efnb2 is required for growth and morphogenesis of the embryonic endolymphatic epithelium, a precursor of the endolymphatic sac (ES) and duct (ED), which mediate endolymph homeostasis. Conditional inactivation of Efnb2 in early-stage embryonic ear tissues disrupted cell proliferation, cell survival, and epithelial folding at the origin of the endolymphatic epithelium. This correlated with apparent absence of an ED, mis-localization of ES ion transport cells relative to inner ear sensory organs, dysplasia of the endolymph fluid space, and abnormally formed otoconia (extracellular calcite-protein composites) at later stages of embryonic development. A comparison of Efnb2 and Notch signaling-deficient mutant phenotypes indicated that these two signaling systems have distinct and non-overlapping roles in ES/ED development. Homozygous deletion of the Efnb2 C-terminus caused abnormalities similar to those found in the conditional Efnb2 null homozygote. Analyses of fetal Efnb2 C-terminus deletion heterozygotes found mis-localized ES ion transport cells only in the genetic background exhibiting vestibular dysfunction. We propose that developmental dysplasias described here are a gene dose-sensitive cause of the vestibular dysfunction observed in EphB-Efnb2 signaling-deficient mice.
Collapse
Affiliation(s)
- Steven Raft
- Section on Sensory Cell Regeneration and Development, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Leonardo R Andrade
- Laboratory of Biomineralization, Institute of Biomedical Sciences, CCS, Universidade Federal do Rio de Janeiro, RJ 21941-902, Brazil
| | - Dongmei Shao
- Department of Otolaryngology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Haruhiko Akiyama
- Department of Orthopedics, Gifu University, Gifu City 501-1194, Japan
| | - Mark Henkemeyer
- Department of Developmental Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Doris K Wu
- Section on Sensory Cell Regeneration and Development, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
46
|
Wangemann P. Mouse models for pendrin-associated loss of cochlear and vestibular function. Cell Physiol Biochem 2013; 32:157-65. [PMID: 24429822 PMCID: PMC4415819 DOI: 10.1159/000356635] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/13/2013] [Indexed: 01/17/2023] Open
Abstract
The human gene SLC26A4 and the mouse ortholog Slc26a4 code for the protein pendrin, which is an anion exchanger expressed in apical membranes of selected epithelia. In the inner ear, pendrin is expressed in the cochlea, the vestibular labyrinth and the endolymphatic sac. Loss-of-function and hypo-functional mutations cause an enlargement of the vestibular aqueduct (EVA) and sensorineural hearing loss. The relatively high prevalence of SLC26A4 mutations provides a strong imperative to develop rational interventions that delay, ameliorate or prevent pendrin-associated loss of cochlear and vestibular function. This review summarizes recent studies in mouse models that have been developed to delineate the role of pendrin in the physiology of hearing and balance and that have brought forward the concept that a temporally and spatially limited therapy may be sufficient to secure a life-time of normal hearing in children bearing mutations of SLC26A4.
Collapse
Affiliation(s)
- Philine Wangemann
- Anatomy & Physiology Department, Kansas State University, Manhattan, Kansas, USA
| |
Collapse
|