1
|
Catanzaro I, Gorbushina AA, Onofri S, Schumacher J. 1,8-Dihydroxynaphthalene (DHN) melanin provides unequal protection to black fungi Knufia petricola and Cryomyces antarcticus from UV-B radiation. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e70043. [PMID: 39548356 PMCID: PMC11567843 DOI: 10.1111/1758-2229.70043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 10/24/2024] [Indexed: 11/17/2024]
Abstract
Black fungi on rock surfaces endure a spectrum of abiotic stresses, including UV radiation. Their ability to tolerate extreme conditions is attributed to the convergent evolution of adaptive traits, primarily highly melanized cell walls. However, studies on fungal melanins have not provided univocal results on their photoprotective functions. Here, we investigated whether the black fungi Knufia petricola and Cryomyces antarcticus only use DHN melanin or may employ alternative mechanisms to counteract UV-induced damage. For this, melanized wild types and non-melanized Δpks1 mutants were exposed to different doses of UV-B (312 nm) followed by incubation in constant darkness or in light-dark cycles to allow light-dependent DNA repair by photolyases (photoreactivation). C. antarcticus could tolerate higher UV-B doses but was sensitive to white light, whereas K. petricola showed the opposite trend. DHN melanin provided UV-B protection in C. antarcticus, whereas the same pigment or even carotenoids proved ineffective in K. petricola. Both fungi demonstrated functional photoreactivation in agreement with the presence of photolyase-encoding genes. Our findings reveal that although the adaptive trait of DHN melanization commonly occurs across black fungi, it is not equally functional and that there are species-specific adaptations towards either UV-induced lesion avoidance or repair strategies.
Collapse
Affiliation(s)
- Ilaria Catanzaro
- Bundesanstalt für Materialforschung und ‐prüfung (BAM)BerlinGermany
- Università degli Studi della TusciaViterboItaly
| | - Anna A. Gorbushina
- Bundesanstalt für Materialforschung und ‐prüfung (BAM)BerlinGermany
- Freie Universität BerlinGermany
| | | | - Julia Schumacher
- Bundesanstalt für Materialforschung und ‐prüfung (BAM)BerlinGermany
- Freie Universität BerlinGermany
| |
Collapse
|
2
|
Dang TTV, Maufrais C, Colin J, Moyrand F, Mouyna I, Coppée JY, Onyishi CU, Lipecka J, Guerrera IC, May RC, Janbon G. Alternative TSS use is widespread in Cryptococcus fungi in response to environmental cues and regulated genome-wide by the transcription factor Tur1. PLoS Biol 2024; 22:e3002724. [PMID: 39052688 PMCID: PMC11302930 DOI: 10.1371/journal.pbio.3002724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/06/2024] [Accepted: 06/28/2024] [Indexed: 07/27/2024] Open
Abstract
Alternative transcription start site (TSS) usage regulation has been identified as a major means of gene expression regulation in metazoans. However, in fungi, its impact remains elusive as its study has thus far been restricted to model yeasts. Here, we first re-analyzed TSS-seq data to define genuine TSS clusters in 2 species of pathogenic Cryptococcus. We identified 2 types of TSS clusters associated with specific DNA sequence motifs. Our analysis also revealed that alternative TSS usage regulation in response to environmental cues is widespread in Cryptococcus, altering gene expression and protein targeting. Importantly, we performed a forward genetic screen to identify a unique transcription factor (TF) named Tur1, which regulates alternative TSS (altTSS) usage genome-wide when cells switch from exponential phase to stationary phase. ChiP-Seq and DamID-Seq analyses suggest that at some loci, the role of Tur1 might be direct. Tur1 has been previously shown to be essential for virulence in C. neoformans. We demonstrated here that a tur1Δ mutant strain is more sensitive to superoxide stress and phagocytosed more efficiently by macrophages than the wild-type (WT) strain.
Collapse
Affiliation(s)
- Thi Tuong Vi Dang
- Université Paris Cité, Institut Pasteur, Unité Biologie des ARN des Pathogènes Fongiques, Département de Mycologie, Paris, France
| | - Corinne Maufrais
- Université Paris Cité, Institut Pasteur, HUB Bioinformatique et Biostatistique, C3BI, USR 3756 IP CNRS, Paris, France
| | - Jessie Colin
- Université Paris Cité, Institut Pasteur, Unité Biologie des ARN des Pathogènes Fongiques, Département de Mycologie, Paris, France
- Ecole Pratique des Hautes Etudes, PSL Research University, Paris, France
| | - Frédérique Moyrand
- Université Paris Cité, Institut Pasteur, Unité Biologie des ARN des Pathogènes Fongiques, Département de Mycologie, Paris, France
| | - Isabelle Mouyna
- Université Paris Cité, Institut Pasteur, Unité Biologie des ARN des Pathogènes Fongiques, Département de Mycologie, Paris, France
| | - Jean-Yves Coppée
- Université Paris Cité, Institut Pasteur, Unité Biologie des ARN des Pathogènes Fongiques, Département de Mycologie, Paris, France
| | - Chinaemerem U. Onyishi
- Institute of Microbiology and Infection and School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Joanna Lipecka
- Université Paris Cité, SFR Necker INSERM US24/CNRS UAR3633, Proteomics Platform, Paris, France
| | - Ida Chiara Guerrera
- Université Paris Cité, SFR Necker INSERM US24/CNRS UAR3633, Proteomics Platform, Paris, France
| | - Robin C. May
- Institute of Microbiology and Infection and School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Guilhem Janbon
- Université Paris Cité, Institut Pasteur, Unité Biologie des ARN des Pathogènes Fongiques, Département de Mycologie, Paris, France
| |
Collapse
|
3
|
Milo S, Namawejje R, Krispin R, Covo S. Dynamic responses of Fusarium mangiferae to ultra-violet radiation. Fungal Biol 2024; 128:1714-1723. [PMID: 38575245 DOI: 10.1016/j.funbio.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/29/2024] [Accepted: 02/29/2024] [Indexed: 04/06/2024]
Abstract
The repair capacity of ultra-violet (UV) light DNA damage is important for adaptation of fungi to different ecological niches. We previously showed that in the soil-borne pathogen Fusarium oxysporum photo-reactivation dependent UV repair is induced at the germling stage and reduced at the filament stage. Here, we tested the developmental control of the transcription of photolyase, UV survival, UV repair capacity, and UV induced mutagenesis in the foliar pathogen Fusarium mangiferae. Unlike F. oxysporum, neither did we observe developmental control over photo-reactivation dependent repair nor the changes in gene expression of photolyase throughout the experiment. Similarly, photo-reactivation assisted reduction in UV induced mutagenesis was similar throughout the development of F. mangiferae but fluctuated during the development of F. oxysporum. To generate hypotheses regarding the recovery of F. mangiferae after UV exposure, an RNAseq analysis was performed after irradiation at different timepoints. The most striking effect of UV on F. mangiferae was developmental-dependent induction of translation related genes. We further report a complex response that changes during recovery time and involves translation, cell cycle and lipid biology related genes.
Collapse
Affiliation(s)
- Shira Milo
- Department of Plant Pathology and Microbiology, Robert H. Smith Faculty of Agriculture, Food and Environment. the Hebrew University of Jerusalem, Israel; Department of Natural and Life Sciences, The Open University of Israel, Israel
| | - Ritah Namawejje
- Department of Plant Pathology and Microbiology, Robert H. Smith Faculty of Agriculture, Food and Environment. the Hebrew University of Jerusalem, Israel
| | - Roi Krispin
- Department of Plant Pathology and Microbiology, Robert H. Smith Faculty of Agriculture, Food and Environment. the Hebrew University of Jerusalem, Israel
| | - Shay Covo
- Department of Plant Pathology and Microbiology, Robert H. Smith Faculty of Agriculture, Food and Environment. the Hebrew University of Jerusalem, Israel.
| |
Collapse
|
4
|
Kwon JY, Choi YH, Lee MW, Yu JH, Shin KS. The MYST Family Histone Acetyltransferase SasC Governs Diverse Biological Processes in Aspergillus fumigatus. Cells 2023; 12:2642. [PMID: 37998377 PMCID: PMC10670148 DOI: 10.3390/cells12222642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/09/2023] [Accepted: 11/14/2023] [Indexed: 11/25/2023] Open
Abstract
The conserved MYST proteins form the largest family of histone acetyltransferases (HATs) that acetylate lysines within the N-terminal tails of histone, enabling active gene transcription. Here, we have investigated the biological and regulatory functions of the MYST family HAT SasC in the opportunistic human pathogenic fungus Aspergillus fumigatus using a series of genetic, biochemical, pathogenic, and transcriptomic analyses. The deletion (Δ) of sasC results in a drastically reduced colony growth, asexual development, spore germination, response to stresses, and the fungal virulence. Genome-wide expression analyses have revealed that the ΔsasC mutant showed 2402 significant differentially expressed genes: 1147 upregulated and 1255 downregulated. The representative upregulated gene resulting from ΔsasC is hacA, predicted to encode a bZIP transcription factor, whereas the UV-endonuclease UVE-1 was significantly downregulated by ΔsasC. Furthermore, our Western blot analyses suggest that SasC likely catalyzes the acetylation of H3K9, K3K14, and H3K29 in A. fumigatus. In conclusion, SasC is associated with diverse biological processes and can be a potential target for controlling pathogenic fungi.
Collapse
Affiliation(s)
- Jae-Yoon Kwon
- Department of Microbiology, Graduate School, Daejeon University, Daejeon 34520, Republic of Korea; (J.-Y.K.); (Y.-H.C.)
| | - Young-Ho Choi
- Department of Microbiology, Graduate School, Daejeon University, Daejeon 34520, Republic of Korea; (J.-Y.K.); (Y.-H.C.)
| | - Min-Woo Lee
- Soonchunhyang Institute of Medi-Bio Science, Soonchunhyang University, Cheonan 31151, Republic of Korea;
| | - Jae-Hyuk Yu
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Kwang-Soo Shin
- Department of Microbiology, Graduate School, Daejeon University, Daejeon 34520, Republic of Korea; (J.-Y.K.); (Y.-H.C.)
| |
Collapse
|
5
|
Gryganskyi AP, Golan J, Muszewska A, Idnurm A, Dolatabadi S, Mondo SJ, Kutovenko VB, Kutovenko VO, Gajdeczka MT, Anishchenko IM, Pawlowska J, Tran NV, Ebersberger I, Voigt K, Wang Y, Chang Y, Pawlowska TE, Heitman J, Vilgalys R, Bonito G, Benny GL, Smith ME, Reynolds N, James TY, Grigoriev IV, Spatafora JW, Stajich JE. Sequencing the Genomes of the First Terrestrial Fungal Lineages: What Have We Learned? Microorganisms 2023; 11:1830. [PMID: 37513002 PMCID: PMC10386755 DOI: 10.3390/microorganisms11071830] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/13/2023] [Accepted: 07/16/2023] [Indexed: 07/30/2023] Open
Abstract
The first genome sequenced of a eukaryotic organism was for Saccharomyces cerevisiae, as reported in 1996, but it was more than 10 years before any of the zygomycete fungi, which are the early-diverging terrestrial fungi currently placed in the phyla Mucoromycota and Zoopagomycota, were sequenced. The genome for Rhizopus delemar was completed in 2008; currently, more than 1000 zygomycete genomes have been sequenced. Genomic data from these early-diverging terrestrial fungi revealed deep phylogenetic separation of the two major clades-primarily plant-associated saprotrophic and mycorrhizal Mucoromycota versus the primarily mycoparasitic or animal-associated parasites and commensals in the Zoopagomycota. Genomic studies provide many valuable insights into how these fungi evolved in response to the challenges of living on land, including adaptations to sensing light and gravity, development of hyphal growth, and co-existence with the first terrestrial plants. Genome sequence data have facilitated studies of genome architecture, including a history of genome duplications and horizontal gene transfer events, distribution and organization of mating type loci, rDNA genes and transposable elements, methylation processes, and genes useful for various industrial applications. Pathogenicity genes and specialized secondary metabolites have also been detected in soil saprobes and pathogenic fungi. Novel endosymbiotic bacteria and viruses have been discovered during several zygomycete genome projects. Overall, genomic information has helped to resolve a plethora of research questions, from the placement of zygomycetes on the evolutionary tree of life and in natural ecosystems, to the applied biotechnological and medical questions.
Collapse
Affiliation(s)
- Andrii P. Gryganskyi
- Division of Biological & Nanoscale Technologies, UES, Inc., Dayton, OH 45432, USA
| | - Jacob Golan
- Department of Botany, University of Wisconsin-Madison, Madison, WI 53706, USA;
| | - Anna Muszewska
- Institute of Biochemistry & Biophysics, Polish Academy of Sciences, 01-224 Warsaw, Poland;
| | - Alexander Idnurm
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia;
| | - Somayeh Dolatabadi
- Biology Department, Hakim Sabzevari University, Sabzevar 96179-76487, Iran;
| | - Stephen J. Mondo
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; (S.J.M.); (I.V.G.)
| | - Vira B. Kutovenko
- Department of Agrobiology, National University of Life & Environmental Sciences, 03041 Kyiv, Ukraine; (V.B.K.)
| | - Volodymyr O. Kutovenko
- Department of Agrobiology, National University of Life & Environmental Sciences, 03041 Kyiv, Ukraine; (V.B.K.)
| | | | - Iryna M. Anishchenko
- MG Kholodny Institute of Botany, National Academy of Sciences, 01030 Kyiv, Ukraine;
| | - Julia Pawlowska
- Institute of Evolutionary Biology, Faculty of Biology, Biological & Chemical Research Centre, University of Warsaw, 02-089 Warsaw, Poland;
| | - Ngoc Vinh Tran
- Plant Pathology Department, University of Florida, Gainesville, FL 32611, USA; (N.V.T.); (G.L.B.); (M.E.S.)
| | - Ingo Ebersberger
- Leibniz Institute for Natural Product Research & Infection Biology, 07745 Jena, Germany; (I.E.); (K.V.)
| | - Kerstin Voigt
- Leibniz Institute for Natural Product Research & Infection Biology, 07745 Jena, Germany; (I.E.); (K.V.)
| | - Yan Wang
- Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, ON M5S 1A1, Canada;
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON M1C 1A4, Canada
| | - Ying Chang
- Department of Biological Sciences, National University of Singapore, Singapore 119077, Singapore;
| | - Teresa E. Pawlowska
- School of Integrative Plant Science, Cornell University, Ithaca, NY 14850, USA; (T.E.P.); (N.R.)
| | - Joseph Heitman
- Department of Molecular Genetics & Microbiology, Duke University School of Medicine, Durham, NC 27710, USA;
| | - Rytas Vilgalys
- Biology Department, Duke University, Durham, NC 27708, USA;
| | - Gregory Bonito
- Department of Plant, Soil & Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA;
| | - Gerald L. Benny
- Plant Pathology Department, University of Florida, Gainesville, FL 32611, USA; (N.V.T.); (G.L.B.); (M.E.S.)
| | - Matthew E. Smith
- Plant Pathology Department, University of Florida, Gainesville, FL 32611, USA; (N.V.T.); (G.L.B.); (M.E.S.)
| | - Nicole Reynolds
- School of Integrative Plant Science, Cornell University, Ithaca, NY 14850, USA; (T.E.P.); (N.R.)
| | - Timothy Y. James
- Department of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Igor V. Grigoriev
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; (S.J.M.); (I.V.G.)
- Department of Plant & Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Joseph W. Spatafora
- Department of Botany & Plant Pathology, Oregon State University, Corvallis, OR 97331, USA;
| | - Jason E. Stajich
- Department of Microbiology & Plant Pathology, University of California, Riverside, CA 93106, USA;
| |
Collapse
|
6
|
Dang TTV, Colin J, Janbon G. Alternative Transcription Start Site Usage and Functional Implications in Pathogenic Fungi. J Fungi (Basel) 2022; 8:1044. [PMID: 36294609 PMCID: PMC9604717 DOI: 10.3390/jof8101044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 11/20/2022] Open
Abstract
Pathogenic fungi require delicate gene regulation mechanisms to adapt to diverse living environments and escape host immune systems. Recent advances in sequencing technology have exposed the complexity of the fungal genome, thus allowing the gradual disentanglement of multiple layers of gene expression control. Alternative transcription start site (aTSS) usage, previously reported to be prominent in mammals and to play important roles in physiopathology, is also present in fungi to fine-tune gene expression. Depending on the alteration in their sequences, RNA isoforms arising from aTSSs acquire different characteristics that significantly alter their stability and translational capacity as well as the properties and biologic functions of the resulting proteins. Disrupted control of aTSS usage has been reported to severely impair growth, virulence, and the infectious capacity of pathogenic fungi. Here, we discuss principle concepts, mechanisms, and the functional implication of aTSS usage in fungi.
Collapse
Affiliation(s)
- Thi Tuong Vi Dang
- Unité Biologie des ARN des Pathogènes Fongiques, Département de Mycologie, Institut Pasteur, Université de Paris Cité, F-75015 Paris, France
| | - Jessie Colin
- Unité Biologie des ARN des Pathogènes Fongiques, Département de Mycologie, Institut Pasteur, Université de Paris Cité, F-75015 Paris, France
- Ecole Pratique des Hautes Etudes, PSL Research University, F-75014 Paris, France
| | - Guilhem Janbon
- Unité Biologie des ARN des Pathogènes Fongiques, Département de Mycologie, Institut Pasteur, Université de Paris Cité, F-75015 Paris, France
| |
Collapse
|
7
|
Wong HJ, Mohamad-Fauzi N, Rizman-Idid M, Convey P, Smykla J, Alias SA. UV-B-induced DNA damage and repair pathways in polar Pseudogymnoascus sp. from the Arctic and Antarctic regions and their effects on growth, pigmentation, and coniodiogenesis. Environ Microbiol 2022; 24:3164-3180. [PMID: 35621047 DOI: 10.1111/1462-2920.16073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 05/13/2022] [Accepted: 05/13/2022] [Indexed: 11/30/2022]
Abstract
Solar radiation regulates most biological activities on Earth. Prolonged exposure to solar UV radiation can cause deleterious effects by inducing two major types of DNA damage, namely cyclobutane pyrimidine dimers (CPDs) and pyrimidine 6-4 pyrimidone photoproducts (6-4PPs). These lesions may be repaired by the photoreactivation (Phr) and nucleotide excision repair (NER) pathways; however, the principal UV-induced DNA repair pathway is not known in the fungal genus Pseudogymnoascus. In this study, we demonstrated that an unweighted UV-B dosage of 1.6 kJ m-2 d-1 significantly reduced fungal growth rates (by between 22 and 35%) and inhibited conidia production in a 10 d exposure. The comparison of two DNA repair conditions, light or dark, which respectively induced photoreactivation (Phr) and nucleotide excision repair (NER), showed that the UV-B induced CPDs were repaired significantly more rapidly in light than in dark conditions. The expression levels of two DNA repair genes, RAD2 and PHR1 (encoding a protein in NER and Phr, respectively) demonstrated that NER rather than Phr was primarily activated for repairing UV-B-induced DNA damage in these Pseudogymnoascus strains. In contrast, Phr was inhibited after exposure to UV-B radiation, suggesting that PHR1 may have other functional roles. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Hao Jie Wong
- Laboratory of Gene Regulation Research, Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara, Japan
| | - Nuradilla Mohamad-Fauzi
- Institute of Ocean and Earth Sciences, Institute for Advanced Studies, Universiti Malaya, 50603 Lembah Pantai, Kuala Lumpur, Malaysia.,Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603 Lembah Pantai, Kuala Lumpur, Malaysia.,National Antarctic Research Centre, Institute for Advanced Studies, Universiti Malaya, 50603 Lembah Pantai, Kuala Lumpur, Malaysia
| | - Mohammed Rizman-Idid
- Institute of Ocean and Earth Sciences, Institute for Advanced Studies, Universiti Malaya, 50603 Lembah Pantai, Kuala Lumpur, Malaysia.,National Antarctic Research Centre, Institute for Advanced Studies, Universiti Malaya, 50603 Lembah Pantai, Kuala Lumpur, Malaysia
| | - Peter Convey
- British Antarctic Survey, NERC, High Cross, Madingley Road, Cambridge, United Kingdom.,National Antarctic Research Centre, Institute for Advanced Studies, Universiti Malaya, 50603 Lembah Pantai, Kuala Lumpur, Malaysia.,Department of Zoology, University of Johannesburg, Auckland Park, South Africa
| | - Jerzy Smykla
- Institute of Nature Conservation, Polish Academy of Sciences, Mickiewicza 33, Kraków, Poland
| | - Siti Aisyah Alias
- Institute of Ocean and Earth Sciences, Institute for Advanced Studies, Universiti Malaya, 50603 Lembah Pantai, Kuala Lumpur, Malaysia.,National Antarctic Research Centre, Institute for Advanced Studies, Universiti Malaya, 50603 Lembah Pantai, Kuala Lumpur, Malaysia
| |
Collapse
|
8
|
Low- or high-white light irradiance induces similar conidial stress tolerance in Metarhizium robertsii. Arch Microbiol 2021; 204:83. [PMID: 34958400 DOI: 10.1007/s00203-021-02730-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 10/19/2022]
Abstract
White light during mycelial growth influences high conidial stress tolerance of the insect-pathogenic fungus Metarhizium robertsii, but little is known if low- or high-white light irradiances induce different stress tolerances. The fungus was grown either in the dark using two culture media: on minimal medium (Czapek medium without sucrose = MM) or on potato dextrose agar (PDA) or PDA medium under five different continuous white light irradiances. The stress tolerances of conidia produced on all treatments were evaluated by conidial germination on PDA supplemented with KCl for osmotic stress or on PDA supplemented with menadione for oxidative stress. Conidia produced on MM in the dark were more tolerant to osmotic and oxidative stress than conidia produced on PDA in the dark or under the light. For osmotic stress, growth under the lower to higher irradiances produced conidia with similar tolerances but more tolerant than conidia produced in the dark. For oxidative stress, conidia produced under the white light irradiances were generally more tolerant to menadione than conidia produced in the dark. Moreover, conidia produced in the dark germinated at the same speed when incubated in the dark or under lower irradiance treatment. However, at higher irradiance, conidial germination was delayed compared to germination in the dark, which germinated faster. Therefore, growth under light from low to high irradiances induces similar conidial higher stress tolerances; however, higher white light irradiances cause a delay in germination speed.
Collapse
|
9
|
A J Domain Protein Functions as a Histone Chaperone to Maintain Genome Integrity and the Response to DNA Damage in a Human Fungal Pathogen. mBio 2021; 12:e0327321. [PMID: 34933457 PMCID: PMC8689522 DOI: 10.1128/mbio.03273-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Histone chaperoning ensures genomic integrity during routine processes such as DNA replication and transcription as well as DNA repair upon damage. Here, we identify a nuclear J domain protein, Dnj4, in the fungal pathogen Cryptococcus neoformans and demonstrate that it interacts with histones 3 and 4, suggesting a role as a histone chaperone. In support of this idea, a dnj4Δ deletion mutant had elevated levels of DNA damage and was hypersensitive to DNA-damaging agents. The transcriptional response to DNA damage was also impaired in the dnj4Δ mutant. Genes related to DNA damage and iron homeostasis were upregulated in the wild-type strain in response to hydroxyurea treatment; however, their upregulation was either absent from or reduced in the dnj4Δ mutant. Accordingly, excess iron rescued the mutant’s growth in response to DNA-damaging agents. Iron homeostasis is crucial for virulence in C. neoformans; however, Dnj4 was found to be dispensable for disease in a mouse model of cryptococcosis. Finally, we confirmed a conserved role for Dnj4 as a histone chaperone by expressing it in Saccharomyces cerevisiae and showing that it disrupted endogenous histone chaperoning. Altogether, this study highlights the importance of a JDP cochaperone in maintaining genome integrity in C. neoformans.
Collapse
|
10
|
Idnurm A, Xu M. Identification of the ergC gene involved in polyene drug sensitivity in the Mucorales species Phycomyces blakesleeanus. Mol Biol Rep 2021; 49:981-987. [PMID: 34741705 DOI: 10.1007/s11033-021-06917-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 10/30/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND A strain of Phycomyces blakesleeanus (Mucorales, Mucoromycota) that was previously isolated after ultraviolet mutagenesis has altered responses to polyene antifungal drugs, sterol profiles, and phototropism of its sporangia. In this study, the genetic basis for these changes was sought. METHODS AND RESULTS Two base pair substitutions were identified in the mutant within a P. blakelesleeanus gene that is homologous to others characterized from fungi, such as the Saccharomyces cerevisiae ERG3 gene, encoding sterol Δ5,6-desaturase. The polyene resistance and growth reduction phenotypes co-segregated with mutations in the gene in genetic crosses. The P. blakelesleeanus wild type ergC gene complemented a S. cerevisiae deletion strain of ERG3. CONCLUSIONS This gene discovery may contribute towards better antifungal use in treating mucormycoses diseases caused by related species in the order Mucorales.
Collapse
Affiliation(s)
- Alexander Idnurm
- School of BioSciences, the University of Melbourne, Parkville, VIC, 3010, Australia.
| | - Melvin Xu
- School of BioSciences, the University of Melbourne, Parkville, VIC, 3010, Australia
| |
Collapse
|
11
|
Dias LP, Souza RKF, Pupin B, Rangel DEN. Conidiation under illumination enhances conidial tolerance of insect-pathogenic fungi to environmental stresses. Fungal Biol 2021; 125:891-904. [PMID: 34649676 DOI: 10.1016/j.funbio.2021.06.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 05/17/2021] [Accepted: 06/07/2021] [Indexed: 11/25/2022]
Abstract
Light is an important signal for fungi in the environment and induces many genes with roles in stress and virulence responses. Conidia of the entomopathogenic fungi Aschersonia aleyrodis, Beauveria bassiana, Cordyceps fumosorosea, Lecanicillium aphanocladii, Metarhizium anisopliae, Metarhizium brunneum, Metarhizium robertsii, Simplicillium lanosoniveum, Tolypocladium cylindrosporum, and Tolypocladium inflatum were produced on potato dextrose agar (PDA) medium under continuous white light, on PDA medium in the dark, or under nutritional stress (= Czapek medium without sucrose = MM) in the dark. The conidial tolerance of these species produced under these different conditions were evaluated in relation to heat stress, oxidative stress (menadione), osmotic stress (KCl), UV radiation, and genotoxic stress caused by 4-nitroquinoline 1-oxide (4-NQO). Several fungal species demonstrated greater stress tolerance when conidia were produced under white light than in the dark; for instance white light induced higher tolerance of A. aleyrodis to KCl and 4-NQO; B. bassiana to KCl and 4-NQO; C. fumosorosea to UV radiation; M. anisopliae to heat and menadione; M. brunneum to menadione, KCl, UV radiation, and 4-NQO; M. robertsii to heat, menadione, KCl, and UV radiation; and T. cylindrosporum to menadione and KCl. However, conidia of L. aphanocladii, S. lanosoniveum, and T. inflatum produced under white light exhibited similar tolerance as conidia produced in the dark. When conidia were produced on MM, a much stronger stress tolerance was found for B. bassiana to menadione, KCl, UV radiation, and 4-NQO; C. fumosorosea to KCl and 4-NQO; Metarhizium species to heat, menadione, KCl, and UV radiation; T. cylindrosporum to menadione and UV radiation; and T. inflatum to heat and UV radiation. Again, conidia of L. aphanocladii and S. lanosoniveum produced on MM had similar tolerance to conidia produced on PDA medium in the dark. Therefore, white light is an important factor that induces higher stress tolerance in some insect-pathogenic fungi, but growth in nutritional stress always provides in conidia with stronger stress tolerance than conidia produced under white light.
Collapse
Affiliation(s)
- Luciana P Dias
- Escola de Engenharia de Lorena da Universidade de São Paulo (EEL/USP), Lorena, SP, 12602-810, Brazil
| | | | - Breno Pupin
- Centro de Ciência do Sistema Terrestre, Instituto Nacional de Pesquisas Espaciais - INPE, São José dos Campos, SP, 12227-010, Brazil
| | | |
Collapse
|
12
|
Lueangjaroenkit P, Kunitake E, Sakka M, Kimura T, Teerapatsakul C, Sakka K, Chitradon L. Light Regulation of Two New Manganese Peroxidase-Encoding Genes in Trametes polyzona KU-RNW027. Microorganisms 2020; 8:microorganisms8060852. [PMID: 32517022 PMCID: PMC7355636 DOI: 10.3390/microorganisms8060852] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/26/2020] [Accepted: 05/27/2020] [Indexed: 12/02/2022] Open
Abstract
To better understand the light regulation of ligninolytic systems in Trametes polyzona KU-RNW027, ligninolytic enzymes-encoding genes were identified and analyzed to determine their transcriptional regulatory elements. Elements of light regulation were investigated in submerged culture. Three ligninolytic enzyme-encoding genes, mnp1, mnp2, and lac1, were found. Cloning of the genes encoding MnP1 and MnP2 revealed distinct deduced amino acid sequences with 90% and 86% similarity to MnPs in Lenzites gibbosa, respectively. These were classified as new members of short-type hybrid MnPs in subfamily A.2 class II fungal secretion heme peroxidase. A light responsive element (LRE), composed of a 5′-CCRCCC-3′ motif in both mnp promoters, is reported. Light enhanced MnP activity 1.5 times but not laccase activity. The mnp gene expressions under light condition increased 6.5- and 3.8-fold, respectively. Regulation of laccase gene expression by light was inconsistent with the absence of LREs in their promoter. Blue light did not affect gene expressions but impacted their stability. Reductions of MnP and laccase production under blue light were observed. The details of the molecular mechanisms underlying enzyme production in this white-rot fungus provide useful knowledge for wood degradation relative to illumination condition. These novel observations demonstrate the potential of enhancing ligninolytic enzyme production by this fungus for applications with an eco-friendly approach to bioremediation.
Collapse
Affiliation(s)
- Piyangkun Lueangjaroenkit
- Department of Microbiology, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; (P.L.); (C.T.)
| | - Emi Kunitake
- Laboratory of Applied Microbiology, Graduate School of Bioresources, Mie University, 1577 Kurimamachiya-cho, Tsu, Mie 514-8507, Japan; (E.K.); (M.S.); (T.K.); (K.S.)
| | - Makiko Sakka
- Laboratory of Applied Microbiology, Graduate School of Bioresources, Mie University, 1577 Kurimamachiya-cho, Tsu, Mie 514-8507, Japan; (E.K.); (M.S.); (T.K.); (K.S.)
| | - Tetsuya Kimura
- Laboratory of Applied Microbiology, Graduate School of Bioresources, Mie University, 1577 Kurimamachiya-cho, Tsu, Mie 514-8507, Japan; (E.K.); (M.S.); (T.K.); (K.S.)
| | - Churapa Teerapatsakul
- Department of Microbiology, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; (P.L.); (C.T.)
| | - Kazuo Sakka
- Laboratory of Applied Microbiology, Graduate School of Bioresources, Mie University, 1577 Kurimamachiya-cho, Tsu, Mie 514-8507, Japan; (E.K.); (M.S.); (T.K.); (K.S.)
| | - Lerluck Chitradon
- Department of Microbiology, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; (P.L.); (C.T.)
- Correspondence: ; Tel.: +66-(0)2-562-5555 (ext. 646624)
| |
Collapse
|
13
|
The Photoreceptor Components FaWC1 and FaWC2 of Fusarium asiaticum Cooperatively Regulate Light Responses but Play Independent Roles in Virulence Expression. Microorganisms 2020; 8:microorganisms8030365. [PMID: 32150839 PMCID: PMC7143034 DOI: 10.3390/microorganisms8030365] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/01/2020] [Accepted: 03/03/2020] [Indexed: 01/03/2023] Open
Abstract
Fusarium asiaticum belongs to one of the phylogenetical subgroups of the F. graminearum species complex and is epidemically predominant in the East Asia area. The life cycle of F. asiaticum is significantly regulated by light. In this study, the fungal blue light receptor white collar complex (WCC), including FaWC1 and FaWC2, were characterized in F. asiaticum. The knockout mutants ΔFawc1 and ΔFawc2 were generated by replacing the target genes via homologous recombination events. The two mutants showed similar defects in light-induced carotenoid biosynthesis, UV-C resistance, sexual fruiting body development, and the expression of the light-responsive marker genes, while in contrast, all these light responses were characteristics in wild-type (WT) and their complementation strains, indicating that FaWC1 and FaWC2 are involved in the light sensing of F. asiaticum. Unexpectedly, however, the functions of Fawc1 and Fawc2 diverged in regulating virulence, as the ΔFawc1 was avirulent to the tested host plant materials, but ΔFawc2 was equivalent to WT in virulence. Moreover, functional analysis of FaWC1 by partial disruption revealed that its light–oxygen–voltage (LOV) domain was required for light sensing but dispensable for virulence, and its Zinc-finger domain was required for virulence expression but not for light signal transduction. Collectively, these results suggest that the conserved fungal blue light receptor WCC not only endows F. asiaticum with light-sensing ability to achieve adaptation to environment, but it also regulates virulence expression by the individual component FaWC1 in a light-independent manner, and the latter function opens a way for investigating the pathogenicity mechanisms of this important crop disease agent.
Collapse
|
14
|
Developmentally Regulated Oscillations in the Expression of UV Repair Genes in a Soilborne Plant Pathogen Dictate UV Repair Efficiency and Survival. mBio 2019; 10:mBio.02623-19. [PMID: 31796540 PMCID: PMC6890992 DOI: 10.1128/mbio.02623-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Fusarium oxysporum infects plants through the roots and therefore is not exposed to the sun regularly. However, the ability to survive sun exposure expands the distribution of the population. UV from the sun is toxic and mutagenic, and to survive sun exposure, fungi encode several DNA repair mechanisms. We found that Fusarium oxysporum has a gene expression program that activates photolyase at the first hours of germination when the pathogen is not established in the plant tissue. Later on, the expression of photolyase decreases, and the expression of a light-independent UV repair mechanism increases. We suggest a novel point of view to a very fundamental question of how soilborne microorganisms defend themselves against sudden UV exposure. The ability to withstand UV damage shapes the ecology of microbes. While mechanisms of UV tolerance were extensively investigated in microorganisms regularly exposed to the sun, far less is known about UV repair of soilborne microorganisms. Fusarium oxysporum is a soilborne fungal plant pathogen that is resistant to UV light. We hypothesized that its UV repair capacity is induced to deal with irregular sun exposure. Unlike the SOS paradigm, our analysis revealed only sporadic increases and even decreases in UV repair gene expression following UVC irradiation or exposure to visible light. Strikingly, a major factor determining the expression of UV repair genes was the developmental status of the fungus. At the early stages of germination, the expression of photolyase increased while the expression of UV endonuclease decreased, and then the trend was reversed. These gene expression oscillations were dependent on cell cycle progression. Consequently, the contribution of photoreactivation to UV repair and survival was stronger at the beginning of germination than later when a filament was established. F. oxysporum germinates following cues from the host. Early on in germination, it is most vulnerable to UV; when the filament is established, the pathogen is protected from the sun because it is already within the host tissue.
Collapse
|
15
|
Boyce KJ, Cao C, Xue C, Idnurm A. A spontaneous mutation in DNA polymerase POL3 during in vitro passaging causes a hypermutator phenotype in Cryptococcus species. DNA Repair (Amst) 2019; 86:102751. [PMID: 31838381 DOI: 10.1016/j.dnarep.2019.102751] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 11/08/2019] [Accepted: 11/19/2019] [Indexed: 10/25/2022]
Abstract
Passaging of microbes in vitro can lead to the selection of microevolved derivatives with differing properties to their original parent strains. One well characterised instance is the phenotypic differences observed between the series of strains derived from the type strain of the human pathogenic fungus Cryptococcus neoformans. A second case was reported in the close relative Cryptococcus deneoformans, in which a well-studied isolate ATCC 24067 (52D) altered its phenotypic characteristics after in vitro passaging in different laboratories. One of these derivatives, ATCC 24067A, has decreased virulence and also exhibits a hypermutator phenotype, in which the mutation rate is increased compared to wild type. In this study, the molecular basis behind the changes in the lineage of ATCC 24067 was determined by next-generation sequencing of the parent and passaged strain genomes. This analysis resulted in the identification of a point mutation that causes a D270G amino acid substitution within the exonuclease proofreading domain of the DNA polymerase delta subunit encoded by POL3. Complementation with POL3 confirmed that this mutation is responsible for the hypermutator phenotype of this strain. Regeneration of the mutation in C. neoformans, to eliminate the additional mutations present in the ATCC 24067A genetic background, demonstrated that the hypermutator phenotype of the pol3D270G mutant causes rapid microevolution in vitro but does not result in decreased virulence. These findings indicate that mutator strains can emerge in these pathogenic fungi without conferring a fitness cost, but the subsequent rapid accumulation of mutations can be deleterious.
Collapse
Affiliation(s)
- Kylie J Boyce
- School of Science, Engineering and Health, RMIT University, Victoria, Australia.
| | - Chengjun Cao
- Public Health Research Institute, Rutgers University, Newark, New Jersey, USA
| | - Chaoyang Xue
- Public Health Research Institute, Rutgers University, Newark, New Jersey, USA
| | - Alexander Idnurm
- School of BioSciences, University of Melbourne, Victoria, Australia.
| |
Collapse
|
16
|
Sánchez-Arreguin JA, Cabrera-Ponce JL, León-Ramírez CG, Camargo-Escalante MO, Ruiz-Herrera J. Analysis of the photoreceptors involved in the light-depending basidiocarp formation in Ustilago maydis. Arch Microbiol 2019; 202:93-103. [DOI: 10.1007/s00203-019-01725-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 08/15/2019] [Accepted: 08/27/2019] [Indexed: 02/06/2023]
|
17
|
Verma S, Shakya VPS, Idnurm A. The dual function gene RAD23 contributes to Cryptococcus neoformans virulence independently of its role in nucleotide excision DNA repair. Gene 2019; 717:144043. [PMID: 31400407 DOI: 10.1016/j.gene.2019.144043] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 08/05/2019] [Accepted: 08/06/2019] [Indexed: 11/18/2022]
Abstract
Genes involved in the repair of DNA damage are emerging as playing important roles during the disease processes caused by pathogenic fungi. However, there are potentially hundreds of genes involved in DNA repair in a fungus and some of those genes can play additional roles within the cell. One such gene is RAD23, required for virulence of the human pathogenic fungus Cryptococcus neoformans, that encodes a protein involved in the nucleotide excision repair (NER) pathway. However, Rad23 is a dual function protein, with a role in either repair of damaged DNA or protein turn over by directing proteins to the proteasome. Here, these two functions of Rad23 were tested by the creation of a series of domain deletion alleles of RAD23 and the assessment of the strains for DNA repair, proteasome functions, and virulence properties. Deletion of the different domains was able to uncouple the two functions of Rad23, and the phenotypes of strains carrying such forms indicated that the role of RAD23 in virulence is due to its function in proteasomal-mediated protein degradation rather than NER.
Collapse
Affiliation(s)
- Surbhi Verma
- Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, MO, USA; Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Viplendra P S Shakya
- Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, MO, USA; Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Alexander Idnurm
- Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, MO, USA; School of BioSciences, University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
18
|
Studying fungal pathogens of humans and fungal infections: fungal diversity and diversity of approaches. Microbes Infect 2019; 21:237-245. [PMID: 31255676 DOI: 10.1016/j.micinf.2019.06.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 04/15/2019] [Indexed: 12/26/2022]
Abstract
Seminal work by Louis Pasteur revealed the contribution of fungi - yeasts and microsporidia to agroindustry and disease in animals, respectively. More than 150 years later, the impact of fungi on human health and beyond is an ever-increasing issue, although often underestimated. Recent studies estimate that fungal infections, especially those caused by Candida, Cryptococcus and Aspergillus species, kill more than one million people annually. Indeed, these neglected infections are in general very difficult to cure and the associated mortality remains very high even when antifungal treatments exist. The development of new antifungals and diagnostic tools that are both necessary to fight fungal diseases efficiently, requires greater insights in the biology of the fungal pathogens of humans in the context of the infection, on their epidemiology, and on their role in the human mycobiota. We also need a better understanding of the host immune responses to fungal pathogens as well as the genetic basis for the increased sensitivity of some individuals to fungal infections. Here, we highlight some recent progress made in these different areas of research, in particular based on work conducted in our own laboratories. These progresses should lay the ground for better management of fungal infections, as they provide opportunities for better diagnostic, vaccination, the development of classical antifungals but also strategies for targeting virulence factors or the host.
Collapse
|
19
|
Studying fungal pathogens of humans and fungal infections: fungal diversity and diversity of approaches. Genes Immun 2019; 20:403-414. [PMID: 31019254 DOI: 10.1038/s41435-019-0071-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 04/15/2019] [Indexed: 12/24/2022]
Abstract
Seminal work by Louis Pasteur revealed the contribution of fungi-yeasts and microsporidia to agroindustry and disease in animals, respectively. More than 150 years later, the impact of fungi on human health and beyond is an ever-increasing issue, although often underestimated. Recent studies estimate that fungal infections, especially those caused by Candida, Cryptococcus and Aspergillus species, kill more than one million people annually. Indeed, these neglected infections are in general very difficult to cure and the associated mortality remains very high even when antifungal treatments exist. The development of new antifungals and diagnostic tools that are both necessary to fight fungal diseases efficiently, requires greater insights in the biology of the fungal pathogens of humans in the context of the infection, on their epidemiology, and on their role in the human mycobiota. We also need a better understanding of the host immune responses to fungal pathogens as well as the genetic basis for the increased sensitivity of some individuals to fungal infections. Here, we highlight some recent progress made in these different areas of research, in particular based on work conducted in our own laboratories. These progress should lay the ground for better management of fungal infections, as they provide opportunities for better diagnostic, vaccination, the development of classical antifungals but also strategies for targeting virulence factors or the host.
Collapse
|
20
|
|
21
|
The contribution of the White Collar complex to Cryptococcus neoformans virulence is independent of its light-sensing capabilities. Fungal Genet Biol 2018; 121:56-64. [PMID: 30266690 DOI: 10.1016/j.fgb.2018.09.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 09/22/2018] [Accepted: 09/22/2018] [Indexed: 01/09/2023]
Abstract
The White Collar complex is responsible for sensing light and transmitting that signal in many fungal species. In Cryptococcus neoformans and C. deneoformans the complex is involved in protection against damage from ultraviolet (UV) light, repression of mating in response to light, and is also required for virulence. The mechanism by which the Bwc1 photoreceptor contributes to virulence is unknown. In this study, a bwc1 deletion mutant of C. neoformans was transformed with three versions of the BWC1 gene, the wild type, BWC1C605A or BWC1C605S, in which the latter two have the conserved cysteine residue replaced with either alanine or serine within the light-oxygen-voltage (LOV) domain that interacts with the flavin chromophore. The bwc1+ BWC1 strain complemented the UV sensitivity and the repression of mating in the light. The bwc1+ BWC1C605A and bwc1+ BWC1C605S strains were not fully complemented for either of the phenotypes, indicating that these BWC1 alleles impair the light responses for strains with them. Transcript analysis showed that neither of the mutated strains (bwc1+ BWC1C605A and bwc1+ BWC1C605S) showed the light-inducible expression pattern of the HEM15 and UVE1 genes as occurs in the wild type strain. These results indicate that the conserved flavin-binding site in the LOV domain of Bwc1 is required for sensing and responding to light in C. neoformans. In contrast to defects in light responses, the wild type, bwc1+ BWC1, bwc1+ BWC1C605A and bwc1+ BWC1C605S strains were equally virulent, whereas the bwc1 knock out mutant was less virulent. Furthermore, pre-exposure of the strains to light prior to inoculation had no influence on the outcome of infection. These findings define a division in function of the White Collar complex in fungi, in that in C. neoformans the role of Bwc1 in virulence is independent of light sensing.
Collapse
|
22
|
Zhu P, Li Q, Azad SM, Qi Y, Wang Y, Jiang Y, Xu L. Fungal Gene Mutation Analysis Elucidating Photoselective Enhancement of UV-C Disinfection Efficiency Toward Spoilage Agents on Fruit Surface. Front Microbiol 2018; 9:1141. [PMID: 29951038 PMCID: PMC6008522 DOI: 10.3389/fmicb.2018.01141] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 05/14/2018] [Indexed: 12/05/2022] Open
Abstract
Short-wave ultraviolet (UV-C) treatment represents a potent, clean and safe substitute to chemical sanitizers for fresh fruit preservation. However, the dosage requirement for microbial disinfection may have negative effects on fruit quality. In this study, UV-C was found to be more efficient in killing spores of Botrytis cinerea in dark and red light conditions when compared to white and blue light. Loss of the blue light receptor gene Bcwcl1, a homolog of wc-1 in Neurospora crassa, led to hypersensitivity to UV-C in all light conditions tested. The expression of Bcuve1 and Bcphr1, which encode UV-damage endonuclease and photolyase, respectively, were strongly induced by white and blue light in a Bcwcl1-dependent manner. Gene mutation analyses of Bcuve1 and Bcphr1 indicated that they synergistically contribute to survival after UV-C treatment. In vivo assays showed that UV-C (1.0 kJ/m2) abolished decay in drop-inoculated fruit only if the UV-C treatment was followed by a dark period or red light, while in contrast, typical decay appeared on UV-C irradiated fruits exposed to white or blue light. In summary, blue light enhances UV-C resistance in B. cinerea by inducing expression of the UV damage repair-related enzymes, while the efficiency of UV-C application for fruit surface disinfection can be enhanced in dark or red light conditions; these principles seem to be well conserved among postharvest fungal pathogens.
Collapse
Affiliation(s)
- Pinkuan Zhu
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Qianwen Li
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Sepideh M Azad
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Yu Qi
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Yiwen Wang
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Yina Jiang
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Ling Xu
- School of Life Sciences, East China Normal University, Shanghai, China
| |
Collapse
|
23
|
The Rab GTPase activating protein Gyp2 contributes to UV stress tolerance in Metarhizium acridum. World J Microbiol Biotechnol 2018; 34:78. [DOI: 10.1007/s11274-018-2457-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 05/19/2018] [Indexed: 01/26/2023]
|
24
|
Involvement of MaSom1, a downstream transcriptional factor of cAMP/PKA pathway, in conidial yield, stress tolerances, and virulence in Metarhizium acridum. Appl Microbiol Biotechnol 2018; 102:5611-5623. [PMID: 29713793 DOI: 10.1007/s00253-018-9020-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 04/09/2018] [Accepted: 04/12/2018] [Indexed: 01/29/2023]
Abstract
Flo8/Som1, which functions downstream from the cyclic AMP (cAMP)-dependent protein kinase A (PKA) pathway, plays important roles in hyphal development, spore formation, and virulence in yeast and several filamentous fungi. However, the functions of Som1 in entomopathogenic fungi are still a mystery. In this study, MaSom1, a Flo8/Som1 homolog, was identified and functionally characterized in a model entomopathogenic fungus Metarhizium acridum. Similar to Flo8/Som1 in other fungi, MaSom1 mainly localized to the nucleus in M. acridum. Disruption of MaSom1 reduced conidial yield, delayed conidial germination, and impaired the fungal tolerances to heat and UV-B. The expression levels of some genes involved in defenses of heat shock and UV-B radiation were significantly reduced in ΔMaSom1. MaSom1 is also important for cell wall integrity and conidial surface structures in M. acridum. Some genes related to fungal cell wall synthesis were downregulated in ΔMaSom1. Bioassays showed that ΔMaSom1 had a dramatically decreased virulence after both topical inoculation and intrahemocoel injection of the fungus in locusts. Moreover, inactivation of MaSom1 reduced appressorium formation, diminished fungal growth in locust hemolymph in vitro, and enhanced insect immune responses. Taken together, these results indicate that disruption of MaSom1 leads to a decline of fungal virulence because of impairments in conidial germination and appressorium formation, reduction of fungal growth in host hemolymph, and enhancement of insect immune responses owing to the changes in conidial surface structures.
Collapse
|
25
|
Nagy LG, Kovács GM, Krizsán K. Complex multicellularity in fungi: evolutionary convergence, single origin, or both? Biol Rev Camb Philos Soc 2018; 93:1778-1794. [DOI: 10.1111/brv.12418] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 03/23/2018] [Accepted: 03/28/2018] [Indexed: 12/22/2022]
Affiliation(s)
- László G. Nagy
- Synthetic and Systems Biology Unit; Institute of Biochemistry, BRC-HAS, 62 Temesvári krt; 6726 Szeged Hungary
| | - Gábor M. Kovács
- Department of Plant Anatomy; Institute of Biology, Eötvös Loránd University, Pázmány Péter sétány 1/C; H-1117 Budapest Hungary
- Plant Protection Institute, Centre for Agricultural Research; Hungarian Academy of Sciences (MTA-ATK); PO Box 102, H-1525 Budapest Hungary
| | - Krisztina Krizsán
- Synthetic and Systems Biology Unit; Institute of Biochemistry, BRC-HAS, 62 Temesvári krt; 6726 Szeged Hungary
| |
Collapse
|
26
|
Verma S, Shakya VPS, Idnurm A. Exploring and exploiting the connection between mitochondria and the virulence of human pathogenic fungi. Virulence 2018; 9:426-446. [PMID: 29261004 PMCID: PMC5955198 DOI: 10.1080/21505594.2017.1414133] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 12/04/2017] [Accepted: 12/04/2017] [Indexed: 12/17/2022] Open
Abstract
Mitochondria are best known for their role in the production of ATP; however, recent research implicates other mitochondrial functions in the virulence of human pathogenic fungi. Inhibitors of mitochondrial succinate dehydrogenase or the electron transport chain are successfully used to combat plant pathogenic fungi, but similar inhibition of mitochondrial functions has not been pursued for applications in medical mycology. Advances in understanding mitochondrial function relevant to human pathogenic fungi are in four major directions: 1) the role of mitochondrial morphology in virulence, 2) mitochondrial genetics, with a focus on mitochondrial DNA recombination and mitochondrial inheritance 3) the role of mitochondria in drug resistance, and 4) the interaction of mitochondria with other organelles. Collectively, despite the similarities in mitochondrial functions between fungi and animals, this organelle is currently an under-explored potential target to treat medical mycoses. Future research could define and then exploit those mitochondrial components best suited as drug targets.
Collapse
Affiliation(s)
- Surbhi Verma
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Viplendra P. S. Shakya
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Alexander Idnurm
- School of BioSciences, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
27
|
Idnurm A, Bailey AM, Cairns TC, Elliott CE, Foster GD, Ianiri G, Jeon J. A silver bullet in a golden age of functional genomics: the impact of Agrobacterium-mediated transformation of fungi. Fungal Biol Biotechnol 2017; 4:6. [PMID: 28955474 PMCID: PMC5615635 DOI: 10.1186/s40694-017-0035-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 09/18/2017] [Indexed: 11/10/2022] Open
Abstract
The implementation of Agrobacterium tumefaciens as a transformation tool revolutionized approaches to discover and understand gene functions in a large number of fungal species. A. tumefaciens mediated transformation (AtMT) is one of the most transformative technologies for research on fungi developed in the last 20 years, a development arguably only surpassed by the impact of genomics. AtMT has been widely applied in forward genetics, whereby generation of strain libraries using random T-DNA insertional mutagenesis, combined with phenotypic screening, has enabled the genetic basis of many processes to be elucidated. Alternatively, AtMT has been fundamental for reverse genetics, where mutant isolates are generated with targeted gene deletions or disruptions, enabling gene functional roles to be determined. When combined with concomitant advances in genomics, both forward and reverse approaches using AtMT have enabled complex fungal phenotypes to be dissected at the molecular and genetic level. Additionally, in several cases AtMT has paved the way for the development of new species to act as models for specific areas of fungal biology, particularly in plant pathogenic ascomycetes and in a number of basidiomycete species. Despite its impact, the implementation of AtMT has been uneven in the fungi. This review provides insight into the dynamics of expansion of new research tools into a large research community and across multiple organisms. As such, AtMT in the fungi, beyond the demonstrated and continuing power for gene discovery and as a facile transformation tool, provides a model to understand how other technologies that are just being pioneered, e.g. CRISPR/Cas, may play roles in fungi and other eukaryotic species.
Collapse
Affiliation(s)
- Alexander Idnurm
- School of BioSciences, University of Melbourne, Melbourne, VIC 3010 Australia
| | - Andy M. Bailey
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - Timothy C. Cairns
- Department of Applied and Molecular Microbiology, Technische Universität Berlin, Berlin, Germany
| | - Candace E. Elliott
- School of BioSciences, University of Melbourne, Melbourne, VIC 3010 Australia
| | - Gary D. Foster
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - Giuseppe Ianiri
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, USA
| | - Junhyun Jeon
- College of Life and Applied Sciences, Yeungnam University, Gyeongsan, South Korea
| |
Collapse
|
28
|
|
29
|
Cohrs KC, Schumacher J. The Two Cryptochrome/Photolyase Family Proteins Fulfill Distinct Roles in DNA Photorepair and Regulation of Conidiation in the Gray Mold Fungus Botrytis cinerea. Appl Environ Microbiol 2017; 83:e00812-17. [PMID: 28667107 PMCID: PMC5561282 DOI: 10.1128/aem.00812-17] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 06/24/2017] [Indexed: 12/13/2022] Open
Abstract
The plant-pathogenic leotiomycete Botrytis cinerea is known for the strict regulation of its asexual differentiation programs by environmental light conditions. Sclerotia are formed in constant darkness; black/near-UV (NUV) light induces conidiation; and blue light represses both differentiation programs. Sensing of black/NUV light is attributed to proteins of the cryptochrome/photolyase family (CPF). To elucidate the molecular basis of the photoinduction of conidiation, we functionally characterized the two CPF proteins encoded in the genome of B. cinerea as putative positive-acting components. B. cinerea CRY1 (BcCRY1), a cyclobutane pyrimidine dimer (CPD) photolyase, acts as the major enzyme of light-driven DNA repair (photoreactivation) and has no obvious role in signaling. In contrast, BcCRY2, belonging to the cry-DASH proteins, is dispensable for photorepair but performs regulatory functions by repressing conidiation in white and especially black/NUV light. The transcription of bccry1 and bccry2 is induced by light in a White Collar complex (WCC)-dependent manner, but neither light nor the WCC is essential for the repression of conidiation through BcCRY2 when bccry2 is constitutively expressed. Further, BcCRY2 affects the transcript levels of both WCC-induced and WCC-repressed genes, suggesting a signaling function downstream of the WCC. Since both CPF proteins are dispensable for photoinduction by black/NUV light, the origin of this effect remains elusive and may be connected to a yet unknown UV-light-responsive system.IMPORTANCEBotrytis cinerea is an economically important plant pathogen that causes gray mold diseases in a wide variety of plant species, including high-value crops and ornamental flowers. The spread of disease in the field relies on the formation of conidia, a process that is regulated by different light qualities. While this feature has been known for a long time, we are just starting to understand the underlying molecular mechanisms. Conidiation in B. cinerea is induced by black/near-UV light, whose sensing is attributed to the action of cryptochrome/photolyase family (CPF) proteins. Here we report on the distinct functions of two CPF proteins in the photoresponse of B. cinerea While BcCRY1 acts as the major photolyase in photoprotection, BcCRY2 acts as a cryptochrome with a signaling function in regulating photomorphogenesis (repression of conidiation).
Collapse
Affiliation(s)
- Kim C Cohrs
- Institut für Biologie und Biotechnologie der Pflanzen (IBBP), Westfälische Wilhelms-Universität (WWU), Münster, Germany
| | - Julia Schumacher
- Institut für Biologie und Biotechnologie der Pflanzen (IBBP), Westfälische Wilhelms-Universität (WWU), Münster, Germany
| |
Collapse
|
30
|
Brancini GTP, Rangel DEN, Braga GÚL. Exposure ofMetarhizium acridummycelium to light induces tolerance to UV-B radiation. FEMS Microbiol Lett 2016; 363:fnw036. [DOI: 10.1093/femsle/fnw036] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2016] [Indexed: 01/25/2023] Open
|
31
|
Fuller K, Dunlap J, Loros J. Fungal Light Sensing at the Bench and Beyond. ADVANCES IN GENETICS 2016; 96:1-51. [DOI: 10.1016/bs.adgen.2016.08.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
32
|
Brych A, Mascarenhas J, Jaeger E, Charkiewicz E, Pokorny R, Bölker M, Doehlemann G, Batschauer A. White collar 1-induced photolyase expression contributes to UV-tolerance of Ustilago maydis. Microbiologyopen 2015; 5:224-43. [PMID: 26687452 PMCID: PMC4831468 DOI: 10.1002/mbo3.322] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 10/29/2015] [Accepted: 11/04/2015] [Indexed: 12/18/2022] Open
Abstract
Ustilago maydis is a phytopathogenic fungus causing corn smut disease. It also is known for its extreme tolerance to UV‐ and ionizing radiation. It has not been elucidated whether light‐sensing proteins, and in particular photolyases play a role in its UV‐tolerance. Based on homology analysis, U. maydis has 10 genes encoding putative light‐responsive proteins. Four amongst these belong to the cryptochrome/photolyase family (CPF) and one represents a white collar 1 ortholog (wco1). Deletion mutants in the predicted cyclobutane pyrimidine dimer CPD‐ and (6–4)‐photolyase were impaired in photoreactivation. In line with this, in vitro studies with recombinant CPF proteins demonstrated binding of the catalytic FAD cofactor, its photoreduction to fully reduced FADH− and repair activity for cyclobutane pyrimidine dimers (CPDs) or (6–4)‐photoproducts, respectively. We also investigated the role of Wco1. Strikingly, transcriptional profiling showed 61 genes differentially expressed upon blue light exposure of wild‐type, but only eight genes in the Δwco1 mutant. These results demonstrate that Wco1 is a functional blue light photoreceptor in U. maydis regulating expression of several genes including both photolyases. Finally, we show that the Δwco1 mutant is less tolerant against UV‐B due to its incapability to induce photolyase expression.
Collapse
Affiliation(s)
- Annika Brych
- Faculty of Biology, Department of Plant Physiology and Photobiology, Philipps-University, Karl-von-Frisch-Str. 8, Marburg, 35032, Germany
| | - Judita Mascarenhas
- Faculty of Biology, Department of Plant Physiology and Photobiology, Philipps-University, Karl-von-Frisch-Str. 8, Marburg, 35032, Germany
| | - Elaine Jaeger
- Faculty of Biology, Department of Genetics, Philipps-University, Karl-von-Frisch-Str. 8, Marburg, 35032, Germany
| | - Elzbieta Charkiewicz
- Faculty of Biology, Department of Plant Physiology and Photobiology, Philipps-University, Karl-von-Frisch-Str. 8, Marburg, 35032, Germany
| | - Richard Pokorny
- Faculty of Biology, Department of Plant Physiology and Photobiology, Philipps-University, Karl-von-Frisch-Str. 8, Marburg, 35032, Germany
| | - Michael Bölker
- Faculty of Biology, Department of Genetics, Philipps-University, Karl-von-Frisch-Str. 8, Marburg, 35032, Germany
| | - Gunther Doehlemann
- Department of Organismic Interactions, Max-Planck-Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, Marburg, 35043, Germany
| | - Alfred Batschauer
- Faculty of Biology, Department of Plant Physiology and Photobiology, Philipps-University, Karl-von-Frisch-Str. 8, Marburg, 35032, Germany
| |
Collapse
|
33
|
Fungal cryptochrome with DNA repair activity reveals an early stage in cryptochrome evolution. Proc Natl Acad Sci U S A 2015; 112:15130-5. [PMID: 26578805 DOI: 10.1073/pnas.1514637112] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
DASH (Drosophila, Arabidopsis, Synechocystis, Human)-type cryptochromes (cry-DASH) belong to a family of flavoproteins acting as repair enzymes for UV-B-induced DNA lesions (photolyases) or as UV-A/blue light photoreceptors (cryptochromes). They are present in plants, bacteria, various vertebrates, and fungi and were originally considered as sensory photoreceptors because of their incapability to repair cyclobutane pyrimidine dimer (CPD) lesions in duplex DNA. However, cry-DASH can repair CPDs in single-stranded DNA, but their role in DNA repair in vivo remains to be clarified. The genome of the fungus Phycomyces blakesleeanus contains a single gene for a protein of the cryptochrome/photolyase family (CPF) encoding a cry-DASH, cryA, despite its ability to photoreactivate. Here, we show that cryA expression is induced by blue light in a Mad complex-dependent manner. Moreover, we demonstrate that CryA is capable of binding flavin (FAD) and methenyltetrahydrofolate (MTHF), fully complements the Escherichia coli photolyase mutant and repairs in vitro CPD lesions in single-stranded and double-stranded DNA with the same efficiency. These results support a role for Phycomyces cry-DASH as a photolyase and suggest a similar role for cry-DASH in mucoromycotina fungi.
Collapse
|
34
|
Transcriptional control of fungal cell cycle and cellular events by Fkh2, a forkhead transcription factor in an insect pathogen. Sci Rep 2015; 5:10108. [PMID: 25955538 PMCID: PMC4424799 DOI: 10.1038/srep10108] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 03/30/2015] [Indexed: 01/18/2023] Open
Abstract
Transcriptional control of the cell cycle by forkhead (Fkh) transcription factors is likely associated with fungal adaptation to host and environment. Here we show that Fkh2, an ortholog of yeast Fkh1/2, orchestrates cell cycle and many cellular events of Beauveria bassiana, a filamentous fungal insect pathogen. Deletion of Fkh2 in B. bassiana resulted in dramatic down-regulation of the cyclin-B gene cluster and hence altered cell cycle (longer G2/M and S, but shorter G0/G1, phases) in unicellular blastospores. Consequently, ΔFkh2 produced twice as many, but smaller, blastospores than wild-type under submerged conditions, and formed denser septa and shorter/broader cells in aberrantly branched hyphae. In these hyphae, clustered genes required for septation and conidiation were remarkedly up-regulated, followed by higher yield and slower germination of aerial conidia. Moreover, ΔFkh2 displayed attenuated virulence and decreased tolerance to chemical and environmental stresses, accompanied with altered transcripts and activities of phenotype-influencing proteins or enzymes. All the changes in ΔFkh2 were restored by Fkh2 complementation. All together, Fkh2-dependent transcriptional control is vital for the adaptation of B. bassiana to diverse habitats of host insects and hence contributes to its biological control potential against arthropod pests.
Collapse
|
35
|
Zhang N, Park YD, Williamson PR. New technology and resources for cryptococcal research. Fungal Genet Biol 2015; 78:99-107. [PMID: 25460849 PMCID: PMC4433448 DOI: 10.1016/j.fgb.2014.11.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 11/02/2014] [Accepted: 11/06/2014] [Indexed: 11/26/2022]
Abstract
Rapid advances in molecular biology and genome sequencing have enabled the generation of new technology and resources for cryptococcal research. RNAi-mediated specific gene knock down has become routine and more efficient by utilizing modified shRNA plasmids and convergent promoter RNAi constructs. This system was recently applied in a high-throughput screen to identify genes involved in host-pathogen interactions. Gene deletion efficiencies have also been improved by increasing rates of homologous recombination through a number of approaches, including a combination of double-joint PCR with split-marker transformation, the use of dominant selectable markers and the introduction of Cre-Loxp systems into Cryptococcus. Moreover, visualization of cryptococcal proteins has become more facile using fusions with codon-optimized fluorescent tags, such as green or red fluorescent proteins or, mCherry. Using recent genome-wide analytical tools, new transcriptional factors and regulatory proteins have been identified in novel virulence-related signaling pathways by employing microarray analysis, RNA-sequencing and proteomic analysis.
Collapse
Affiliation(s)
- Nannan Zhang
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institution of Health, Bethesda, MD, United States
| | - Yoon-Dong Park
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institution of Health, Bethesda, MD, United States
| | - Peter R Williamson
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institution of Health, Bethesda, MD, United States.
| |
Collapse
|
36
|
Braga GUL, Rangel DEN, Fernandes ÉKK, Flint SD, Roberts DW. Molecular and physiological effects of environmental UV radiation on fungal conidia. Curr Genet 2015; 61:405-25. [PMID: 25824285 DOI: 10.1007/s00294-015-0483-0] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 03/05/2015] [Accepted: 03/13/2015] [Indexed: 02/07/2023]
Abstract
Conidia are specialized structures produced at the end of the asexual life cycle of most filamentous fungi. They are responsible for fungal dispersal and environmental persistence. In pathogenic species, they are also involved in host recognition and infection. Conidial production, survival, dispersal, germination, pathogenicity and virulence can be strongly influenced by exposure to solar radiation, although its effects are diverse and often species dependent. UV radiation is the most harmful and mutagenic waveband of the solar spectrum. Direct exposure to solar radiation for a few hours can kill conidia of most fungal species. Conidia are killed both by solar UV-A and UV-B radiation. In addition to killing conidia, which limits the size of the fungal population and its dispersion, exposures to sublethal doses of UV radiation can reduce conidial germination speed and virulence. The focus of this review is to provide an overview of the effects of solar radiation on conidia and on the major systems involved in protection from and repair of damage induced by solar UV radiation. The efforts that have been made to obtain strains of fungi of interest such as entomopathogens more tolerant to solar radiation will also be reviewed.
Collapse
Affiliation(s)
- Gilberto U L Braga
- Departamento de Análises Clínicas, Toxicológicas E Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil,
| | | | | | | | | |
Collapse
|
37
|
Stress tolerance and virulence of insect-pathogenic fungi are determined by environmental conditions during conidial formation. Curr Genet 2015; 61:383-404. [PMID: 25791499 DOI: 10.1007/s00294-015-0477-y] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 01/29/2015] [Accepted: 01/30/2015] [Indexed: 01/07/2023]
Abstract
The virulence to insects and tolerance to heat and UV-B radiation of conidia of entomopathogenic fungi are greatly influenced by physical, chemical, and nutritional conditions during mycelial growth. This is evidenced, for example, by the stress phenotypes of Metarhizium robertsii produced on various substrates. Conidia from minimal medium (Czapek's medium without sucrose), complex medium, and insect (Lepidoptera and Coleoptera) cadavers had high, moderate, and poor tolerance to UV-B radiation, respectively. Furthermore, conidia from minimal medium germinated faster and had increased heat tolerance and were more virulent to insects than those from complex medium. Low water-activity or alkaline culture conditions also resulted in production of conidia with high tolerance to heat or UV-B radiation. Conidia produced on complex media exhibited lower stress tolerance, whereas those from complex media supplemented with NaCl or KCl (to reduce water activity) were more tolerant to heat and UV-B than those from the unmodified complex medium. Osmotic and nutritive stresses resulted in production of conidia with a robust stress phenotype, but also were associated with low conidial yield. Physical conditions such as growth under illumination, hypoxic conditions, and heat shock before conidial production also induced both higher UV-B and heat tolerance; but conidial production was not decreased. In conclusion, physical and chemical parameters, as well as nutrition source, can induce great variability in conidial tolerance to stress for entomopathogenic fungi. Implications are discussed in relation to the ecology of entomopathogenic fungi in the field, and to their use for biological control. This review will cover recent technologies on improving stress tolerance of entomopathogenic fungi for biological control of insects.
Collapse
|
38
|
Fuller KK, Loros JJ, Dunlap JC. Fungal photobiology: visible light as a signal for stress, space and time. Curr Genet 2014; 61:275-88. [PMID: 25323429 DOI: 10.1007/s00294-014-0451-0] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 08/25/2014] [Accepted: 08/29/2014] [Indexed: 12/25/2022]
Abstract
Visible light is an important source of energy and information for much of life on this planet. Though fungi are neither photosynthetic nor capable of observing adjacent objects, it is estimated that the majority of fungal species display some form of light response, ranging from developmental decision-making to metabolic reprogramming to pathogenesis. As such, advances in our understanding of fungal photobiology will likely reach the broad fields impacted by these organisms, including agriculture, industry and medicine. In this review, we will first describe the mechanisms by which fungi sense light and then discuss the selective advantages likely imparted by their ability to do so.
Collapse
Affiliation(s)
- Kevin K Fuller
- Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, NH, 03755, USA,
| | | | | |
Collapse
|
39
|
Abstract
The filamentous fungus Neurospora crassa responds to light in complex ways. To thoroughly study the transcriptional response of this organism to light, RNA-seq was used to analyze capped and polyadenylated mRNA prepared from mycelium grown for 24 hr in the dark and then exposed to light for 0 (control) 15, 60, 120, and 240 min. More than three-quarters of all defined protein coding genes (79%) were expressed in these cells. The increased sensitivity of RNA-seq compared with previous microarray studies revealed that the RNA levels for 31% of expressed genes were affected two-fold or more by exposure to light. Additionally, a large class of mRNAs, enriched for transcripts specifying products involved in rRNA metabolism, showed decreased expression in response to light, indicating a heretofore undocumented effect of light on this pathway. Based on measured changes in mRNA levels, light generally increases cellular metabolism and at the same time causes significant oxidative stress to the organism. To deal with this stress, protective photopigments are made, antioxidants are produced, and genes involved in ribosome biogenesis are transiently repressed.
Collapse
|