1
|
Rai MN, Lan Q, Parsania C, Rai R, Shirgaonkar N, Chen R, Shen L, Tan K, Wong KH. Temporal transcriptional response of Candida glabrata during macrophage infection reveals a multifaceted transcriptional regulator CgXbp1 important for macrophage response and fluconazole resistance. eLife 2024; 13:e73832. [PMID: 39356739 PMCID: PMC11554308 DOI: 10.7554/elife.73832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/01/2024] [Indexed: 10/04/2024] Open
Abstract
Candida glabrata can thrive inside macrophages and tolerate high levels of azole antifungals. These innate abilities render infections by this human pathogen a clinical challenge. How C. glabrata reacts inside macrophages and what is the molecular basis of its drug tolerance are not well understood. Here, we mapped genome-wide RNA polymerase II (RNAPII) occupancy in C. glabrata to delineate its transcriptional responses during macrophage infection in high temporal resolution. RNAPII profiles revealed dynamic C. glabrata responses to macrophages with genes of specialized pathways activated chronologically at different times of infection. We identified an uncharacterized transcription factor (CgXbp1) important for the chronological macrophage response, survival in macrophages, and virulence. Genome-wide mapping of CgXbp1 direct targets further revealed its multi-faceted functions, regulating not only virulence-related genes but also genes associated with drug resistance. Finally, we showed that CgXbp1 indeed also affects fluconazole resistance. Overall, this work presents a powerful approach for examining host-pathogen interaction and uncovers a novel transcription factor important for C. glabrata's survival in macrophages and drug tolerance.
Collapse
Affiliation(s)
| | - Qing Lan
- Faculty of Health Sciences, University of MacauTaipaChina
| | | | - Rikky Rai
- Faculty of Health Sciences, University of MacauTaipaChina
| | | | - Ruiwen Chen
- Faculty of Health Sciences, University of MacauTaipaChina
| | - Li Shen
- Faculty of Health Sciences, University of MacauTaipaChina
- Gene Expression, Genomics and Bioinformatics Core, Faculty of Health Sciences, University of MacauTaipaChina
| | - Kaeling Tan
- Faculty of Health Sciences, University of MacauTaipaChina
- Gene Expression, Genomics and Bioinformatics Core, Faculty of Health Sciences, University of MacauTaipaChina
| | - Koon Ho Wong
- Faculty of Health Sciences, University of MacauTaipaChina
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau,Avenida da UniversidadeTaipaChina
- MoE Frontiers Science Center for Precision Oncology, University of MacauTaipaChina
| |
Collapse
|
2
|
Zuo F, Wu Y, Sun Y, Xie C, Tang Y. Mechanism of enhanced salt tolerance in Saccharomyces cerevisiae by CRZ1 overexpression. Sci Rep 2024; 14:22875. [PMID: 39358483 PMCID: PMC11447063 DOI: 10.1038/s41598-024-74174-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 09/24/2024] [Indexed: 10/04/2024] Open
Abstract
Achieving high-gravity fermentation in the industrial production of fuel ethanol, and enhancing the fermentation efficiency of high-salt raw materials, such as waste molasses, can significantly reduce wastewater output and process costs. Therefore, the development of hyperosmotic-tolerant industrial Saccharomyces cerevisiae strains, capable of resisting high-salt stress, offers both environmental and economic benefits. Our previous study highlighted the potential of CRZ1 overexpression as a strategy to improve the yeast strain's resistance to high-salt stress, however, the underlying molecular mechanisms remain unexplored. The fermentation capabilities of the CRZ1-overexpressing strain, KCR3, and its parental strain, KF7, were evaluated under condition of 1.25 M NaCl at 35 °C. Compared to KF7, KCR3 showed an 81% increase in glucose consumption (129.25 ± 0.83 g/L) and a 105% increase in ethanol production (47.59 ± 0.93 g/L), with a yield of 0.37 g/g. Comparative transcriptomic analysis showed that under high-salt stress, KCR3 exhibited significantly upregulated expression of genes associated with ion transport, stress response, gluconeogenesis, and the utilization of alternative carbon sources, while genes related to glycolysis and the biosynthesis of ribosomes, amino acids, and fatty acids were notably downregulated compared to KF7. Crz1 likely expands its influence by regulating the expression of numerous transcription factors, thereby impacting genes involved in multiple aspects of cellular function. The study revealed the regulatory mechanism of Crz1 under high-salt stress, thereby providing guidance for the construction of salt-tolerant strains.
Collapse
Affiliation(s)
- Furong Zuo
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, Sichuan, China
- Sichuan Environmental Protection Key Laboratory of Organic Wastes Valorization, Chengdu, 610065, Sichuan, China
| | - Yajing Wu
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, Sichuan, China
- Sichuan Environmental Protection Key Laboratory of Organic Wastes Valorization, Chengdu, 610065, Sichuan, China
| | - Yanqiu Sun
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, Sichuan, China
- Sichuan Environmental Protection Key Laboratory of Organic Wastes Valorization, Chengdu, 610065, Sichuan, China
| | - Caiyun Xie
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, Sichuan, China.
- Sichuan Environmental Protection Key Laboratory of Organic Wastes Valorization, Chengdu, 610065, Sichuan, China.
- Engineering Research Center of Alternative Energy Materials and Devices, Ministry of Education, Chengdu, 610065, Sichuan, China.
| | - Yueqin Tang
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, Sichuan, China
- Sichuan Environmental Protection Key Laboratory of Organic Wastes Valorization, Chengdu, 610065, Sichuan, China
- Engineering Research Center of Alternative Energy Materials and Devices, Ministry of Education, Chengdu, 610065, Sichuan, China
| |
Collapse
|
3
|
Escalante LE, Hose J, Howe H, Paulsen N, Place M, Gasch AP. Premature aging in aneuploid yeast is caused in part by aneuploidy-induced defects in Ribosome Quality Control. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.22.600216. [PMID: 38948718 PMCID: PMC11213126 DOI: 10.1101/2024.06.22.600216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Premature aging is a hallmark of Down syndrome, caused by trisomy of human chromosome 21, but the reason is unclear and difficult to study in humans. We used an aneuploid model in wild yeast to show that chromosome amplification disrupts nutrient-induced cell-cycle arrest, quiescence entry, and healthy aging, across genetic backgrounds and amplified chromosomes. We discovered that these defects are due in part to aneuploidy-induced dysfunction in Ribosome Quality Control (RQC). Compared to euploids, aneuploids entering quiescence display aberrant ribosome profiles, accumulate RQC intermediates, and harbor an increased load of protein aggregates. Although they have normal proteasome capacity, aneuploids show signs of ubiquitin dysregulation, which impacts cyclin abundance to disrupt arrest. Remarkably, inducing ribosome stalling in euploids produces similar aberrations, while up-regulating limiting RQC subunits or proteins in ubiquitin metabolism alleviates many of the aneuploid defects. Our results provide implications for other aneuploidy disorders including Down syndrome.
Collapse
Affiliation(s)
- Leah E. Escalante
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI, 53706
| | - James Hose
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI, 53706
| | - Hollis Howe
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI, 53706
| | - Norah Paulsen
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI, 53706
| | - Michael Place
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI, 53706
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, 53706
| | - Audrey P. Gasch
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI, 53706
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, 53706
- Department of Medical Genetics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53706
| |
Collapse
|
4
|
Milo S, Namawejje R, Krispin R, Covo S. Dynamic responses of Fusarium mangiferae to ultra-violet radiation. Fungal Biol 2024; 128:1714-1723. [PMID: 38575245 DOI: 10.1016/j.funbio.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/29/2024] [Accepted: 02/29/2024] [Indexed: 04/06/2024]
Abstract
The repair capacity of ultra-violet (UV) light DNA damage is important for adaptation of fungi to different ecological niches. We previously showed that in the soil-borne pathogen Fusarium oxysporum photo-reactivation dependent UV repair is induced at the germling stage and reduced at the filament stage. Here, we tested the developmental control of the transcription of photolyase, UV survival, UV repair capacity, and UV induced mutagenesis in the foliar pathogen Fusarium mangiferae. Unlike F. oxysporum, neither did we observe developmental control over photo-reactivation dependent repair nor the changes in gene expression of photolyase throughout the experiment. Similarly, photo-reactivation assisted reduction in UV induced mutagenesis was similar throughout the development of F. mangiferae but fluctuated during the development of F. oxysporum. To generate hypotheses regarding the recovery of F. mangiferae after UV exposure, an RNAseq analysis was performed after irradiation at different timepoints. The most striking effect of UV on F. mangiferae was developmental-dependent induction of translation related genes. We further report a complex response that changes during recovery time and involves translation, cell cycle and lipid biology related genes.
Collapse
Affiliation(s)
- Shira Milo
- Department of Plant Pathology and Microbiology, Robert H. Smith Faculty of Agriculture, Food and Environment. the Hebrew University of Jerusalem, Israel; Department of Natural and Life Sciences, The Open University of Israel, Israel
| | - Ritah Namawejje
- Department of Plant Pathology and Microbiology, Robert H. Smith Faculty of Agriculture, Food and Environment. the Hebrew University of Jerusalem, Israel
| | - Roi Krispin
- Department of Plant Pathology and Microbiology, Robert H. Smith Faculty of Agriculture, Food and Environment. the Hebrew University of Jerusalem, Israel
| | - Shay Covo
- Department of Plant Pathology and Microbiology, Robert H. Smith Faculty of Agriculture, Food and Environment. the Hebrew University of Jerusalem, Israel.
| |
Collapse
|
5
|
Greenlaw AC, Alavattam KG, Tsukiyama T. Post-transcriptional regulation shapes the transcriptome of quiescent budding yeast. Nucleic Acids Res 2024; 52:1043-1063. [PMID: 38048329 PMCID: PMC10853787 DOI: 10.1093/nar/gkad1147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/07/2023] [Accepted: 11/14/2023] [Indexed: 12/06/2023] Open
Abstract
To facilitate long-term survival, cells must exit the cell cycle and enter quiescence, a reversible non-replicative state. Budding yeast cells reprogram their gene expression during quiescence entry to silence transcription, but how the nascent transcriptome changes in quiescence is unknown. By investigating the nascent transcriptome, we identified over a thousand noncoding RNAs in quiescent and G1 yeast cells, and found noncoding transcription represented a larger portion of the quiescent transcriptome than in G1. Additionally, both mRNA and ncRNA are subject to increased post-transcriptional regulation in quiescence compared to G1. We found that, in quiescence, the nuclear exosome-NNS pathway suppresses over one thousand mRNAs, in addition to canonical noncoding RNAs. RNA sequencing through quiescent entry revealed two distinct time points at which the nuclear exosome controls the abundance of mRNAs involved in protein production, cellular organization, and metabolism, thereby facilitating efficient quiescence entry. Our work identified a previously unknown key biological role for the nuclear exosome-NNS pathway in mRNA regulation and uncovered a novel layer of gene-expression control in quiescence.
Collapse
Affiliation(s)
- Alison C Greenlaw
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Molecular and Cellular Biology Program, Fred Hutchinson Cancer Center and University of Washington, Seattle, WA 98195, USA
| | - Kris G Alavattam
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Toshio Tsukiyama
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| |
Collapse
|
6
|
Small EM, Osley MA. A screen for histone mutations that affect quiescence in S. cerevisiae. FEBS J 2023; 290:3539-3562. [PMID: 36871139 DOI: 10.1111/febs.16759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 12/15/2022] [Accepted: 02/20/2023] [Indexed: 03/06/2023]
Abstract
Quiescence or G0 is a reversible state in which cells cease division but retain the ability to resume proliferation. Quiescence occurs in all organisms and is essential for stem cell maintenance and tissue renewal. It is also related to chronological lifespan (CLS)-the survival of postmitotic quiescent cells (Q cells) over time-and thus contributes to longevity. Important questions remain regarding the mechanisms that control entry into quiescence, maintenance of quiescence and re-entry of Q cells into the cell cycle. S. cerevisiae has emerged as an excellent organism in which to address these questions because of the ease in which Q cells can be isolated. Following entry into G0, yeast cells remain viable for an extended period and can re-enter the cell cycle when exposed to growth-promoting signals. Histone acetylation is lost during the formation of Q cells and chromatin becomes highly condensed. This unique chromatin landscape regulates quiescence-specific transcriptional repression and has been linked to the formation and maintenance of Q cells. To ask whether other chromatin features regulate quiescence, we conducted two comprehensive screens of histone H3 and H4 mutants and identified mutants that show either altered quiescence entry or CLS. Examination of several quiescence entry mutants found that none of the mutants retain histone acetylation in Q cells but show differences in chromatin condensation. A comparison of H3 and H4 mutants with altered CLS to those with altered quiescence entry found that chromatin plays both overlapping and independent roles in the continuum of the quiescence program.
Collapse
Affiliation(s)
- Eric M Small
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Mary Ann Osley
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| |
Collapse
|
7
|
Opalek M, Tutaj H, Pirog A, Smug BJ, Rutkowska J, Wloch-Salamon D. A Systematic Review on Quiescent State Research Approaches in S. cerevisiae. Cells 2023; 12:1608. [PMID: 37371078 DOI: 10.3390/cells12121608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/02/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Quiescence, the temporary and reversible arrest of cell growth, is a fundamental biological process. However, the lack of standardization in terms of reporting the experimental details of quiescent cells and populations can cause confusion and hinder knowledge transfer. We employ the systematic review methodology to comprehensively analyze the diversity of approaches used to study the quiescent state, focusing on all published research addressing the budding yeast Saccharomyces cerevisiae. We group research articles into those that consider all cells comprising the stationary-phase (SP) population as quiescent and those that recognize heterogeneity within the SP by distinguishing phenotypically distinct subpopulations. Furthermore, we investigate the chronological age of the quiescent populations under study and the methods used to induce the quiescent state, such as gradual starvation or abrupt environmental change. We also assess whether the strains used in research are prototrophic or auxotrophic. By combining the above features, we identify 48 possible experimental setups that can be used to study quiescence, which can be misleading when drawing general conclusions. We therefore summarize our review by proposing guidelines and recommendations pertaining to the information included in research articles. We believe that more rigorous reporting on the features of quiescent populations will facilitate knowledge transfer within and between disciplines, thereby stimulating valuable scientific discussion.
Collapse
Affiliation(s)
- Monika Opalek
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, 30-387 Krakow, Poland
| | - Hanna Tutaj
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, 30-387 Krakow, Poland
| | - Adrian Pirog
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, 30-387 Krakow, Poland
| | - Bogna J Smug
- Malopolska Centre of Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
| | - Joanna Rutkowska
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, 30-387 Krakow, Poland
| | - Dominika Wloch-Salamon
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, 30-387 Krakow, Poland
| |
Collapse
|
8
|
Terhorst A, Sandikci A, Whittaker CA, Szórádi T, Holt LJ, Neurohr GE, Amon A. The environmental stress response regulates ribosome content in cell cycle-arrested S. cerevisiae. Front Cell Dev Biol 2023; 11:1118766. [PMID: 37123399 PMCID: PMC10130656 DOI: 10.3389/fcell.2023.1118766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 03/21/2023] [Indexed: 05/02/2023] Open
Abstract
Prolonged cell cycle arrests occur naturally in differentiated cells and in response to various stresses such as nutrient deprivation or treatment with chemotherapeutic agents. Whether and how cells survive prolonged cell cycle arrests is not clear. Here, we used S. cerevisiae to compare physiological cell cycle arrests and genetically induced arrests in G1-, meta- and anaphase. Prolonged cell cycle arrest led to growth attenuation in all studied conditions, coincided with activation of the Environmental Stress Response (ESR) and with a reduced ribosome content as determined by whole ribosome purification and TMT mass spectrometry. Suppression of the ESR through hyperactivation of the Ras/PKA pathway reduced cell viability during prolonged arrests, demonstrating a cytoprotective role of the ESR. Attenuation of cell growth and activation of stress induced signaling pathways also occur in arrested human cell lines, raising the possibility that the response to prolonged cell cycle arrest is conserved.
Collapse
Affiliation(s)
- Allegra Terhorst
- David H. Koch Institute for Integrative Cancer Research, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Arzu Sandikci
- David H. Koch Institute for Integrative Cancer Research, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Charles A. Whittaker
- David H. Koch Institute for Integrative Cancer Research, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Tamás Szórádi
- Institute for Systems Genetics, New York University Langone Health, New York City, NY, United States
| | - Liam J. Holt
- Institute for Systems Genetics, New York University Langone Health, New York City, NY, United States
| | - Gabriel E. Neurohr
- David H. Koch Institute for Integrative Cancer Research, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, United States
- Institute of Biochemistry, ETH Zurich, Zurich, Switzerland
| | - Angelika Amon
- David H. Koch Institute for Integrative Cancer Research, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, United States
| |
Collapse
|
9
|
Dereeper A, Allouch N, Guerlais V, Garnier M, Ma L, De Jonckheere JF, Joseph SJ, Ali IKM, Talarmin A, Marcelino I. Naegleria genus pangenome reveals new structural and functional insights into the versatility of these free-living amoebae. Front Microbiol 2023; 13:1056418. [PMID: 36817109 PMCID: PMC9928731 DOI: 10.3389/fmicb.2022.1056418] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 12/21/2022] [Indexed: 02/04/2023] Open
Abstract
Introduction Free-living amoebae of the Naegleria genus belong to the major protist clade Heterolobosea and are ubiquitously distributed in soil and freshwater habitats. Of the 47 Naegleria species described, N. fowleri is the only one being pathogenic to humans, causing a rare but fulminant primary amoebic meningoencephalitis. Some Naegleria genome sequences are publicly available, but the genetic basis for Naegleria diversity and ability to thrive in diverse environments (including human brain) remains unclear. Methods Herein, we constructed a high-quality Naegleria genus pangenome to obtain a comprehensive catalog of genes encoded by these amoebae. For this, we first sequenced, assembled, and annotated six new Naegleria genomes. Results and Discussion Genome architecture analyses revealed that Naegleria may use genome plasticity features such as ploidy/aneuploidy to modulate their behavior in different environments. When comparing 14 near-to-complete genome sequences, our results estimated the theoretical Naegleria pangenome as a closed genome, with 13,943 genes, including 3,563 core and 10,380 accessory genes. The functional annotations revealed that a large fraction of Naegleria genes show significant sequence similarity with those already described in other kingdoms, namely Animalia and Plantae. Comparative analyses highlighted a remarkable genomic heterogeneity, even for closely related strains and demonstrate that Naegleria harbors extensive genome variability, reflected in different metabolic repertoires. If Naegleria core genome was enriched in conserved genes essential for metabolic, regulatory and survival processes, the accessory genome revealed the presence of genes involved in stress response, macromolecule modifications, cell signaling and immune response. Commonly reported N. fowleri virulence-associated genes were present in both core and accessory genomes, suggesting that N. fowleri's ability to infect human brain could be related to its unique species-specific genes (mostly of unknown function) and/or to differential gene expression. The construction of Naegleria first pangenome allowed us to move away from a single reference genome (that does not necessarily represent each species as a whole) and to identify essential and dispensable genes in Naegleria evolution, diversity and biology, paving the way for further genomic and post-genomic studies.
Collapse
Affiliation(s)
- Alexis Dereeper
- Institut Pasteur de la Guadeloupe, Unité TReD-Path, Les Abymes, Guadeloupe, France
| | - Nina Allouch
- Institut Pasteur de la Guadeloupe, Unité TReD-Path, Les Abymes, Guadeloupe, France
| | - Vincent Guerlais
- Institut Pasteur de la Guadeloupe, Unité TReD-Path, Les Abymes, Guadeloupe, France
| | - Maëlle Garnier
- Institut Pasteur de la Guadeloupe, Unité TReD-Path, Les Abymes, Guadeloupe, France
| | - Laurence Ma
- Institut Pasteur de Paris, Biomics, Paris, France
| | | | - Sandeep J. Joseph
- Centers for Disease Control and Prevention (CDC), Atlanta, GA, United States
| | - Ibne Karim M. Ali
- Centers for Disease Control and Prevention (CDC), Atlanta, GA, United States
| | - Antoine Talarmin
- Institut Pasteur de la Guadeloupe, Unité TReD-Path, Les Abymes, Guadeloupe, France
| | - Isabel Marcelino
- Institut Pasteur de la Guadeloupe, Unité TReD-Path, Les Abymes, Guadeloupe, France,*Correspondence: Isabel Marcelino,
| |
Collapse
|
10
|
Irvali D, Schlottmann FP, Muralidhara P, Nadelson I, Kleemann K, Wood NE, Doncic A, Ewald JC. When yeast cells change their mind: cell cycle "Start" is reversible under starvation. EMBO J 2023; 42:e110321. [PMID: 36420556 PMCID: PMC9841329 DOI: 10.15252/embj.2021110321] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 11/03/2022] [Accepted: 11/10/2022] [Indexed: 11/25/2022] Open
Abstract
Eukaryotic cells decide in late G1 phase of the cell cycle whether to commit to another round of division. This point of cell cycle commitment is termed "Restriction Point" in mammals and "Start" in the budding yeast Saccharomyces cerevisiae. At Start, yeast cells integrate multiple signals such as pheromones and nutrients, and will not pass Start if nutrients are lacking. However, how cells respond to nutrient depletion after the Start decision remains poorly understood. Here, we analyze how post-Start cells respond to nutrient depletion, by monitoring Whi5, the cell cycle inhibitor whose export from the nucleus determines Start. Surprisingly, we find that cells that have passed Start can re-import Whi5 into the nucleus. In these cells, the positive feedback loop activating G1/S transcription is interrupted, and the Whi5 repressor re-binds DNA. Cells which re-import Whi5 become again sensitive to mating pheromone, like pre-Start cells, and CDK activation can occur a second time upon replenishment of nutrients. These results demonstrate that upon starvation, the commitment decision at Start can be reversed. We therefore propose that cell cycle commitment in yeast is a multi-step process, similar to what has been suggested for mammalian cells.
Collapse
Affiliation(s)
- Deniz Irvali
- Interfaculty Institute of Cell Biology, University of Tuebingen, Tuebingen, Germany
| | - Fabian P Schlottmann
- Interfaculty Institute of Cell Biology, University of Tuebingen, Tuebingen, Germany
| | | | - Iliya Nadelson
- Interfaculty Institute of Cell Biology, University of Tuebingen, Tuebingen, Germany
| | - Katja Kleemann
- Interfaculty Institute of Cell Biology, University of Tuebingen, Tuebingen, Germany
| | - N Ezgi Wood
- The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Andreas Doncic
- The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jennifer C Ewald
- Interfaculty Institute of Cell Biology, University of Tuebingen, Tuebingen, Germany
| |
Collapse
|
11
|
Abstract
Most cells live in environments that are permissive for proliferation only a small fraction of the time. Entering quiescence enables cells to survive long periods of nondivision and reenter the cell cycle when signaled to do so. Here, we describe what is known about the molecular basis for quiescence in Saccharomyces cerevisiae, with emphasis on the progress made in the last decade. Quiescence is triggered by depletion of an essential nutrient. It begins well before nutrient exhaustion, and there is extensive crosstalk between signaling pathways to ensure that all proliferation-specific activities are stopped when any one essential nutrient is limiting. Every aspect of gene expression is modified to redirect and conserve resources. Chromatin structure and composition change on a global scale, from histone modifications to three-dimensional chromatin structure. Thousands of proteins and RNAs aggregate, forming unique structures with unique fates, and the cytoplasm transitions to a glass-like state.
Collapse
Affiliation(s)
- Linda L Breeden
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA; ,
| | - Toshio Tsukiyama
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA; ,
| |
Collapse
|
12
|
Bari KA, Berg MD, Genereaux J, Brandl CJ, Lajoie P. Tra1 controls the transcriptional landscape of the aging cell. G3 (BETHESDA, MD.) 2022; 13:6782959. [PMID: 36315064 PMCID: PMC9836359 DOI: 10.1093/g3journal/jkac287] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 10/25/2022] [Indexed: 11/07/2022]
Abstract
Gene expression undergoes considerable changes during the aging process. The mechanisms regulating the transcriptional response to cellular aging remain poorly understood. Here, we employ the budding yeast Saccharomyces cerevisiae to better understand how organisms adapt their transcriptome to promote longevity. Chronological lifespan assays in yeast measure the survival of nondividing cells at stationary phase over time, providing insights into the aging process of postmitotic cells. Tra1 is an essential component of both the yeast Spt-Ada-Gcn5 acetyltransferase/Spt-Ada-Gcn5 acetyltransferase-like and nucleosome acetyltransferase of H4 complexes, where it recruits these complexes to acetylate histones at targeted promoters. Importantly, Tra1 regulates the transcriptional response to multiple stresses. To evaluate the role of Tra1 in chronological aging, we took advantage of a previously characterized mutant allele that carries mutations in the TRA1 PI3K domain (tra1Q3). We found that loss of functions associated with tra1Q3 sensitizes cells to growth media acidification and shortens lifespan. Transcriptional profiling reveals that genes differentially regulated by Tra1 during the aging process are enriched for components of the response to stress. Notably, expression of catalases (CTA1, CTT1) involved in hydrogen peroxide detoxification decreases in chronologically aged tra1Q3 cells. Consequently, they display increased sensitivity to oxidative stress. tra1Q3 cells are unable to grow on glycerol indicating a defect in mitochondria function. Aged tra1Q3 cells also display reduced expression of peroxisomal genes, exhibit decreased numbers of peroxisomes, and cannot grow on media containing oleate. Thus, Tra1 emerges as an important regulator of longevity in yeast via multiple mechanisms.
Collapse
Affiliation(s)
- Khaleda Afrin Bari
- Department of Anatomy and Cell Biology, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Matthew D Berg
- Present address for Matthew D Berg: Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Julie Genereaux
- Department of Anatomy and Cell Biology, The University of Western Ontario, London, ON N6A 5C1, Canada,Department of Biochemistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Christopher J Brandl
- Department of Biochemistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Patrick Lajoie
- Corresponding author: Department of Anatomy and Cell Biology, The University of Western Ontario, London, ON N6A 5C1, Canada.
| |
Collapse
|
13
|
Leonov A, Feldman R, Piano A, Arlia-Ciommo A, Junio JAB, Orfanos E, Tafakori T, Lutchman V, Mohammad K, Elsaser S, Orfali S, Rajen H, Titorenko VI. Diverse geroprotectors differently affect a mechanism linking cellular aging to cellular quiescence in budding yeast. Oncotarget 2022; 13:918-943. [PMID: 35937500 PMCID: PMC9348708 DOI: 10.18632/oncotarget.28256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/01/2022] [Indexed: 11/25/2022] Open
Affiliation(s)
- Anna Leonov
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Rachel Feldman
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Amanda Piano
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | | | | | - Emmanuel Orfanos
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Tala Tafakori
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Vicky Lutchman
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Karamat Mohammad
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Sarah Elsaser
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Sandra Orfali
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Harshvardhan Rajen
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | | |
Collapse
|
14
|
Argüello-Miranda O, Marchand AJ, Kennedy T, Russo MAX, Noh J. Cell cycle-independent integration of stress signals by Xbp1 promotes Non-G1/G0 quiescence entry. J Cell Biol 2022; 221:212720. [PMID: 34694336 PMCID: PMC8548912 DOI: 10.1083/jcb.202103171] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 08/27/2021] [Accepted: 10/05/2021] [Indexed: 12/15/2022] Open
Abstract
Cellular quiescence is a nonproliferative state required for cell survival under stress and during development. In most quiescent cells, proliferation is stopped in a reversible state of low Cdk1 kinase activity; in many organisms, however, quiescent states with high-Cdk1 activity can also be established through still uncharacterized stress or developmental mechanisms. Here, we used a microfluidics approach coupled to phenotypic classification by machine learning to identify stress pathways associated with starvation-triggered high-Cdk1 quiescent states in Saccharomyces cerevisiae. We found that low- and high-Cdk1 quiescent states shared a core of stress-associated processes, such as autophagy, protein aggregation, and mitochondrial up-regulation, but differed in the nuclear accumulation of the stress transcription factors Xbp1, Gln3, and Sfp1. The decision between low- or high-Cdk1 quiescence was controlled by cell cycle-independent accumulation of Xbp1, which acted as a time-delayed integrator of the duration of stress stimuli. Our results show how cell cycle-independent stress-activated factors promote cellular quiescence outside G1/G0.
Collapse
Affiliation(s)
- Orlando Argüello-Miranda
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX.,Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX
| | - Ashley J Marchand
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Taylor Kennedy
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX.,School of Natural Sciences and Mathematics, University of Texas at Dallas, Richardson, TX
| | - Marielle A X Russo
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Jungsik Noh
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX
| |
Collapse
|
15
|
Caloric restriction causes a distinct reorganization of the lipidome in quiescent and non-quiescent cells of budding yeast. Oncotarget 2021; 12:2351-2374. [PMID: 34853658 PMCID: PMC8629408 DOI: 10.18632/oncotarget.28133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 11/10/2021] [Indexed: 11/25/2022] Open
Abstract
After budding yeast cells cultured in a nutrient-rich liquid medium with 0.2% glucose (under caloric restriction conditions) or 2% glucose (under non-caloric restriction conditions), ferment glucose to ethanol and then consume ethanol, they enter the stationary phase. The process of their chronological aging begins. At that point, the yeast culture starts to accumulate quiescent and non-quiescent cells. Here, we purified the high- and low-density populations of quiescent and non-quiescent cells from the yeast cultures limited in calorie supply or not. We then employed mass spectrometry-based quantitative lipidomics to assess the aging-associated changes in high- and low-density cells’ lipidomes. We found that caloric restriction, a geroprotective dietary intervention, alters the concentrations of many lipid classes through most of the chronological lifespan of the high- and low-density populations of quiescent and non-quiescent cells. Specifically, caloric restriction decreased triacylglycerol, increased free fatty acid, elevated phospholipid and amplified cardiolipin concentrations. Based on these findings, we propose a hypothetical model for a caloric restriction-dependent reorganization of lipid metabolism in budding yeast’s quiescent and non-quiescent cells. We also discovered that caloric restriction creates lipidomic patterns of these cells that differ from those established by two other robust geroprotectors, namely the tor1Δ mutation and lithocholic acid.
Collapse
|
16
|
Jacquel B, Aspert T, Laporte D, Sagot I, Charvin G. Monitoring single-cell dynamics of entry into quiescence during an unperturbed life cycle. eLife 2021; 10:73186. [PMID: 34723791 PMCID: PMC8594939 DOI: 10.7554/elife.73186] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/15/2021] [Indexed: 12/14/2022] Open
Abstract
The life cycle of microorganisms is associated with dynamic metabolic transitions and complex cellular responses. In yeast, how metabolic signals control the progressive choreography of structural reorganizations observed in quiescent cells during a natural life cycle remains unclear. We have developed an integrated microfluidic device to address this question, enabling continuous single-cell tracking in a batch culture experiencing unperturbed nutrient exhaustion to unravel the coordination between metabolic and structural transitions within cells. Our technique reveals an abrupt fate divergence in the population, whereby a fraction of cells is unable to transition to respiratory metabolism and undergoes a reversible entry into a quiescence-like state leading to premature cell death. Further observations reveal that nonmonotonous internal pH fluctuations in respiration-competent cells orchestrate the successive waves of protein superassemblies formation that accompany the entry into a bona fide quiescent state. This ultimately leads to an abrupt cytosolic glass transition that occurs stochastically long after proliferation cessation. This new experimental framework provides a unique way to track single-cell fate dynamics over a long timescale in a population of cells that continuously modify their ecological niche.
Collapse
Affiliation(s)
- Basile Jacquel
- Department of Developmental Biology and Stem Cells, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Théo Aspert
- Department of Developmental Biology and Stem Cells, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Damien Laporte
- Institut de Biochimie et Génétique Cellulaires, UMR 5095 CNRS - Université de Bordeaux, Bordeaux, France, Bordeaux, France
| | - Isabelle Sagot
- Institut de Biochimie et Génétique Cellulaires, UMR 5095 CNRS - Université de Bordeaux, Bordeaux, France, Bordeaux, France
| | - Gilles Charvin
- Department of Developmental Biology and Stem Cells, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, Illkirch, France.,Université de Strasbourg, Illkirch, France
| |
Collapse
|
17
|
Zhang S, Zhu P, Cao B, Ma S, Li R, Wang X, Zhao A. An APSES Transcription Factor Xbp1 Is Required for Sclerotial Development, Appressoria Formation, and Pathogenicity in Ciboria shiraiana. Front Microbiol 2021; 12:739686. [PMID: 34646256 PMCID: PMC8503677 DOI: 10.3389/fmicb.2021.739686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 08/26/2021] [Indexed: 11/26/2022] Open
Abstract
Sclerotinia diseases are important plant fungal diseases that, causes huge economic worldwide losses every year. Ciboria shiraiana is the main pathogen that results in mulberry sclerotia diseases. Sclerotia and appressoria play important roles in long-term pathogen survival and in host infection during life and disease cycles. However, the molecular mechanisms of sclerotial development and appressoria formation in C. shiraiana have not been well studied. Here, an Asm1p, Phd1p, Sok2p, Efg1p and StuAp (APSES)-type transcription factor in C. shiraiana, CsXbp1, involved in sclerotial development and appressoria formation was functionally characterized. Bioinformatics analyses showed that CsXbp1 contained an APSES-type DNA binding domain. The expression levels of CsXbp1 were higher in sclerotia and during later stages of infection. Compared with wild-type strains, hyphal growth was slower, the number and weight of sclerotia were reduced significantly, and appressoria formation was obviously delayed in CsXbp1 RNA interference (RNAi) strains. Moreover, the CsXbp1 RNAi strains showed weakened pathogenicity owing to compound appressoria defects. Tobacco rattle virus-mediated host-induced gene silencing enabled Nicotiana benthamiana to increase its resistance to C. shiraiana by reducing the CsXbp1 transcripts level. Thus, CsXbp1 plays vital roles in sclerotial formation, appressoria formation, and pathogenicity in C. shiraiana. This study provides new insights into the infection mechanisms of C. shiraiana and plant resistance breeding.
Collapse
Affiliation(s)
- Shuai Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Panpan Zhu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China.,Key Laboratory of Biorheological Science and Technology, Ministry of Education, Chongqing University, Chongqing, China
| | - Boning Cao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China.,College of Life Sciences, Xinyang Normal University, Xinyang, China
| | - Shuyu Ma
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Ruolan Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Xie Wang
- Institute of Agricultural Resources and Environment, Sichuan Academy of Agricultural Sciences, Sichuan, China
| | - Aichun Zhao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| |
Collapse
|
18
|
Takagi H. Molecular mechanisms and highly functional development for stress tolerance of the yeast Saccharomyces cerevisiae. Biosci Biotechnol Biochem 2021; 85:1017-1037. [PMID: 33836532 DOI: 10.1093/bbb/zbab022] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 01/25/2021] [Indexed: 12/25/2022]
Abstract
In response to environmental stress, microorganisms adapt to drastic changes while exerting cellular functions by controlling gene expression, metabolic pathways, enzyme activities, and protein-protein interactions. Microbial cells that undergo a fermentation process are subjected to stresses, such as high temperature, freezing, drying, changes in pH and osmotic pressure, and organic solvents. Combinations of these stresses that continue over long terms often inhibit cells' growth and lead to their death, markedly limiting the useful functions of microorganisms (eg their fermentation ability). Thus, high stress tolerance of cells is required to improve productivity and add value to fermented/brewed foods and biofuels. This review focuses on stress tolerance mechanisms, including l-proline/l-arginine metabolism, ubiquitin system, and transcription factors, and the functional development of the yeast Saccharomyces cerevisiae, which has been used not only in basic science as a model of higher eukaryotes but also in fermentation processes for making alcoholic beverages, food products, and bioethanol.
Collapse
Affiliation(s)
- Hiroshi Takagi
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, Japan
| |
Collapse
|
19
|
Hepowit NL, Macedo JKA, Young LEA, Liu K, Sun RC, MacGurn JA, Dickson RC. Enhancing lifespan of budding yeast by pharmacological lowering of amino acid pools. Aging (Albany NY) 2021; 13:7846-7871. [PMID: 33744865 PMCID: PMC8034917 DOI: 10.18632/aging.202849] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 01/21/2021] [Indexed: 04/20/2023]
Abstract
The increasing prevalence of age-related diseases and resulting healthcare insecurity and emotional burden require novel treatment approaches. Several promising strategies seek to limit nutrients and promote healthy aging. Unfortunately, the human desire to consume food means this strategy is not practical for most people but pharmacological approaches might be a viable alternative. We previously showed that myriocin, which impairs sphingolipid synthesis, increases lifespan in Saccharomyces cerevisiae by modulating signaling pathways including the target of rapamycin complex 1 (TORC1). Since TORC1 senses cellular amino acids, we analyzed amino acid pools and identified 17 that are lowered by myriocin treatment. Studying the methionine transporter, Mup1, we found that newly synthesized Mup1 traffics to the plasma membrane and is stable for several hours but is inactive in drug-treated cells. Activity can be restored by adding phytosphingosine to culture medium thereby bypassing drug inhibition, thus confirming a sphingolipid requirement for Mup1 activity. Importantly, genetic analysis of myriocin-induced longevity revealed a requirement for the Gtr1/2 (mammalian Rags) and Vps34-Pib2 amino acid sensing pathways upstream of TORC1, consistent with a mechanism of action involving decreased amino acid availability. These studies demonstrate the feasibility of pharmacologically inducing a state resembling amino acid restriction to promote healthy aging.
Collapse
Affiliation(s)
- Nathaniel L. Hepowit
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37240, USA
| | - Jessica K. A. Macedo
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536, USA
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
| | - Lyndsay E. A. Young
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536, USA
| | - Ke Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Sichuan University, Chengdu 610000, Sichuan, P. R. China
| | - Ramon C. Sun
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
- Department of Neuroscience, University of Kentucky, Lexington, KY 40536, USA
| | - Jason A. MacGurn
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37240, USA
| | - Robert C. Dickson
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
20
|
Lee PH, Osley M. Chromatin structure restricts origin utilization when quiescent cells re-enter the cell cycle. Nucleic Acids Res 2021; 49:864-878. [PMID: 33367871 PMCID: PMC7826286 DOI: 10.1093/nar/gkaa1148] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 11/04/2020] [Accepted: 12/21/2020] [Indexed: 12/12/2022] Open
Abstract
Quiescent cells reside in G0 phase, which is characterized by the absence of cell growth and proliferation. These cells remain viable and re-enter the cell cycle when prompted by appropriate signals. Using a budding yeast model of cellular quiescence, we investigated the program that initiated DNA replication when these G0 cells resumed growth. Quiescent cells contained very low levels of replication initiation factors, and their entry into S phase was delayed until these factors were re-synthesized. A longer S phase in these cells correlated with the activation of fewer origins of replication compared to G1 cells. The chromatin structure around inactive origins in G0 cells showed increased H3 occupancy and decreased nucleosome positioning compared to the same origins in G1 cells, inhibiting the origin binding of the Mcm4 subunit of the MCM licensing factor. Thus, quiescent yeast cells are under-licensed during their re-entry into S phase.
Collapse
Affiliation(s)
- Po-Hsuen Lee
- Department of Molecular Genetics and Microbiology University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Mary Ann Osley
- Department of Molecular Genetics and Microbiology University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| |
Collapse
|
21
|
Sun S, Gresham D. Cellular quiescence in budding yeast. Yeast 2021; 38:12-29. [PMID: 33350503 DOI: 10.1002/yea.3545] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 12/20/2022] Open
Abstract
Cellular quiescence, the temporary and reversible exit from proliferative growth, is the predominant state of all cells. However, our understanding of the biological processes and molecular mechanisms that underlie cell quiescence remains incomplete. As with the mitotic cell cycle, budding and fission yeast are preeminent model systems for studying cellular quiescence owing to their rich experimental toolboxes and the evolutionary conservation across eukaryotes of pathways and processes that control quiescence. Here, we review current knowledge of cell quiescence in budding yeast and how it pertains to cellular quiescence in other organisms, including multicellular animals. Quiescence entails large-scale remodeling of virtually every cellular process, organelle, gene expression, and metabolic state that is executed dynamically as cells undergo the initiation, maintenance, and exit from quiescence. We review these major transitions, our current understanding of their molecular bases, and highlight unresolved questions. We summarize the primary methods employed for quiescence studies in yeast and discuss their relative merits. Understanding cell quiescence has important consequences for human disease as quiescent single-celled microbes are notoriously difficult to kill and quiescent human cells play important roles in diseases such as cancer. We argue that research on cellular quiescence will be accelerated through the adoption of common criteria, and methods, for defining cell quiescence. An integrated approach to studying cell quiescence, and a focus on the behavior of individual cells, will yield new insights into the pathways and processes that underlie cell quiescence leading to a more complete understanding of the life cycle of cells. TAKE AWAY: Quiescent cells are viable cells that have reversibly exited the cell cycle Quiescence is induced in response to a variety of nutrient starvation signals Quiescence is executed dynamically through three phases: initiation, maintenance, and exit Quiescence entails large-scale remodeling of gene expression, organelles, and metabolism Single-cell approaches are required to address heterogeneity among quiescent cells.
Collapse
Affiliation(s)
- Siyu Sun
- Center for Genomics and Systems Biology, New York University, New York, New York, 10003, USA.,Department of Biology, New York University, New York, New York, 10003, USA
| | - David Gresham
- Center for Genomics and Systems Biology, New York University, New York, New York, 10003, USA.,Department of Biology, New York University, New York, New York, 10003, USA
| |
Collapse
|
22
|
Miles S, Bradley GT, Breeden LL. The budding yeast transition to quiescence. Yeast 2021; 38:30-38. [PMID: 33350501 DOI: 10.1002/yea.3546] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 12/18/2020] [Indexed: 11/06/2022] Open
Abstract
A subset of Saccharomyces cerevisiae cells in a stationary phase culture achieve a unique quiescent state characterized by increased cell density, stress tolerance, and longevity. Trehalose accumulation is necessary but not sufficient for conferring this state, and it is not recapitulated by abrupt starvation. The fraction of cells that achieve this state varies widely in haploids and diploids and can approach 100%, indicating that both mother and daughter cells can enter quiescence. The transition begins when about half the glucose has been taken up from the medium. The high affinity glucose transporters are turned on, glycogen storage begins, the Rim15 kinase enters the nucleus and the accumulation of cells in G1 is initiated. After the diauxic shift (DS), when glucose is exhausted from the medium, growth promoting genes are repressed by the recruitment of the histone deacetylase Rpd3 by quiescence-specific repressors. The final division that takes place post-DS is highly asymmetrical and G1 arrest is complete after 48 h. The timing of these events can vary considerably, but they are tightly correlated with total biomass of the culture, suggesting that the transition to quiescence is tightly linked to changes in external glucose levels. After 7 days in culture, there are massive morphological changes at the protein and organelle level. There are global changes in histone modification. An extensive array of condensin-dependent, long-range chromatin interactions lead to genome-wide chromatin compaction that is conserved in yeast and human cells. These interactions are required for the global transcriptional repression that occurs in quiescent yeast.
Collapse
Affiliation(s)
- Shawna Miles
- Fred Hutchinson Cancer Research Center, Basic Science Division, Seattle, Washington, USA
| | | | - Linda L Breeden
- Fred Hutchinson Cancer Research Center, Basic Science Division, Seattle, Washington, USA
| |
Collapse
|
23
|
The Putative APSES Transcription Factor RgdA Governs Growth, Development, Toxigenesis, and Virulence in Aspergillus fumigatus. mSphere 2020; 5:5/6/e00998-20. [PMID: 33177217 PMCID: PMC7657592 DOI: 10.1128/msphere.00998-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Immunocompromised patients are susceptible to infections with the opportunistic human-pathogenic fungus Aspergillus fumigatus. This fungus causes systemic infections such as invasive aspergillosis (IA), which is one of the most life-threatening fungal diseases. To control this serious disease, it is critical to identify new antifungal drug targets. In fungi, the transcriptional regulatory proteins of the APSES family play crucial roles in controlling various biological processes, including mating, asexual sporulation and dimorphic growth, and virulence traits. This study found that a putative APSES transcription factor, RgdA, regulates normal growth, asexual development, conidium germination, spore wall architecture and hydrophobicity, toxin production, and virulence in A. fumigatus. Better understanding the molecular mechanisms of RgdA in human-pathogenic fungi may reveal a novel antifungal target for future drug development. The APSES transcription factor (TF) in Aspergillus species is known to govern diverse cellular processes, including growth, development, and secondary metabolism. Here, we investigated functions of the rgdA gene (Afu3g13920) encoding a putative APSES TF in the opportunistic human-pathogenic fungus Aspergillus fumigatus. The rgdA deletion resulted in significantly decreased hyphal growth and asexual sporulation. Consistently, transcript levels of the key asexual developmental regulators abaA, brlA, and wetA were decreased in the ΔrgdA mutant compared to those in the wild type (WT). Moreover, ΔrgdA resulted in reduced spore germination rates and elevated transcript levels of genes associated with conidium dormancy. The conidial cell wall hydrophobicity and architecture were changed, and levels of the RodA protein were decreased in the ΔrgdA mutant. Comparative transcriptomic analyses revealed that the ΔrgdA mutant showed higher mRNA levels of gliotoxin (GT)-biosynthetic genes and GT production. While the ΔrgdA mutant exhibited elevated production of GT, ΔrgdA strains showed reduced virulence in the mouse model. In addition, mRNA levels of genes associated with the cyclic AMP (cAMP)-protein kinase A (PKA) signaling pathway and the SakA mitogen-activated protein (MAP) kinase pathway were increased in the ΔrgdA mutant. In summary, RgdA plays multiple roles in governing growth, development, GT production, and virulence which may involve attenuation of PKA and SakA signaling. IMPORTANCE Immunocompromised patients are susceptible to infections with the opportunistic human-pathogenic fungus Aspergillus fumigatus. This fungus causes systemic infections such as invasive aspergillosis (IA), which is one of the most life-threatening fungal diseases. To control this serious disease, it is critical to identify new antifungal drug targets. In fungi, the transcriptional regulatory proteins of the APSES family play crucial roles in controlling various biological processes, including mating, asexual sporulation and dimorphic growth, and virulence traits. This study found that a putative APSES transcription factor, RgdA, regulates normal growth, asexual development, conidium germination, spore wall architecture and hydrophobicity, toxin production, and virulence in A. fumigatus. Better understanding the molecular mechanisms of RgdA in human-pathogenic fungi may reveal a novel antifungal target for future drug development.
Collapse
|
24
|
Sauty SM, Shaban K, Yankulov K. Gene repression in S. cerevisiae-looking beyond Sir-dependent gene silencing. Curr Genet 2020; 67:3-17. [PMID: 33037902 DOI: 10.1007/s00294-020-01114-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/08/2020] [Accepted: 09/24/2020] [Indexed: 01/09/2023]
Abstract
Gene silencing by the SIR (Silent Information Region) family of proteins in S. cerevisiae has been extensively studied and has served as a founding paradigm for our general understanding of gene repression and its links to histone deacetylation and chromatin structure. In recent years, our understanding of other mechanisms of gene repression in S.cerevisiae was significantly advanced. In this review, we focus on such Sir-independent mechanisms of gene repression executed by various Histone Deacetylases (HDACs) and Histone Methyl Transferases (HMTs). We focus on the genes regulated by these enzymes and their known mechanisms of action. We describe the cooperation and redundancy between HDACs and HMTs, and their involvement in gene repression by non-coding RNAs or by their non-histone substrates. We also propose models of epigenetic transmission of the chromatin structures produced by these enzymes and discuss these in the context of gene repression phenomena in other organisms. These include the recycling of the epigenetic marks imposed by HMTs or the recycling of the complexes harboring HDACs.
Collapse
Affiliation(s)
- Safia Mahabub Sauty
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Canada
| | - Kholoud Shaban
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Canada
| | - Krassimir Yankulov
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Canada.
| |
Collapse
|
25
|
Mohammad K, Baratang Junio JA, Tafakori T, Orfanos E, Titorenko VI. Mechanisms that Link Chronological Aging to Cellular Quiescence in Budding Yeast. Int J Mol Sci 2020; 21:ijms21134717. [PMID: 32630624 PMCID: PMC7369985 DOI: 10.3390/ijms21134717] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 06/27/2020] [Accepted: 06/30/2020] [Indexed: 12/28/2022] Open
Abstract
After Saccharomyces cerevisiae cells cultured in a medium with glucose consume glucose, the sub-populations of quiescent and non-quiescent cells develop in the budding yeast culture. An age-related chronology of quiescent and non-quiescent yeast cells within this culture is discussed here. We also describe various hallmarks of quiescent and non-quiescent yeast cells. A complex aging-associated program underlies cellular quiescence in budding yeast. This quiescence program includes a cascade of consecutive cellular events orchestrated by an intricate signaling network. We examine here how caloric restriction, a low-calorie diet that extends lifespan and healthspan in yeast and other eukaryotes, influences the cellular quiescence program in S. cerevisiae. One of the main objectives of this review is to stimulate an exploration of the mechanisms that link cellular quiescence to chronological aging of budding yeast. Yeast chronological aging is defined by the length of time during which a yeast cell remains viable after its growth and division are arrested, and it becomes quiescent. We propose a hypothesis on how caloric restriction can slow chronological aging of S. cerevisiae by altering the chronology and properties of quiescent cells. Our hypothesis posits that caloric restriction delays yeast chronological aging by targeting four different processes within quiescent cells.
Collapse
|
26
|
Mat Nanyan NSB, Takagi H. Proline Homeostasis in Saccharomyces cerevisiae: How Does the Stress-Responsive Transcription Factor Msn2 Play a Role? Front Genet 2020; 11:438. [PMID: 32411186 PMCID: PMC7198862 DOI: 10.3389/fgene.2020.00438] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 04/09/2020] [Indexed: 12/12/2022] Open
Abstract
Overexpression of MSN2, which is the transcription factor gene in response to stress, is well-known to increase the tolerance of the yeast Saccharomyces cerevisiae cells to a wide variety of environmental stresses. Recent studies have found that the Msn2 is a feasible potential mediator of proline homeostasis in yeast. This result is based on the finding that overexpression of the MSN2 gene exacerbates the cytotoxicity of yeast to various amino acid analogs whose uptake is increased by the active amino acid permeases localized on the plasma membrane as a result of a dysfunctional deubiquitination process. Increased understanding of the cellular responses induced by the Msn2-mediated proline incorporation will provide better comprehension of how cells respond to and counteract to different kinds of stimuli and will also contribute to the breeding of industrial yeast strains with increased productivity.
Collapse
Affiliation(s)
| | - Hiroshi Takagi
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
| |
Collapse
|
27
|
Takeuchi T, Sears BB, Lindeboom C, Lin YT, Fekaris N, Zienkiewicz K, Zienkiewicz A, Poliner E, Benning C. Chlamydomonas CHT7 Is Required for an Effective Quiescent State by Regulating Nutrient-Responsive Cell Cycle Gene Expression. THE PLANT CELL 2020; 32:1240-1269. [PMID: 32001503 PMCID: PMC7145468 DOI: 10.1105/tpc.19.00628] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 01/07/2020] [Accepted: 01/27/2020] [Indexed: 06/10/2023]
Abstract
COMPROMISED HYDROLYSIS OF TRIACYLGLYCEROLS7 (CHT7) in Chlamydomonas (Chlamydomonas reinhardtii) was previously shown to affect the transcription of a subset of genes during nitrogen (N)-replete growth and following N refeeding. Here, we show that an extensive derepression of genes involved in DNA metabolism and cell cycle-related processes, as well as downregulation of genes encoding oxidoreductases and nutrient transporters, occurs in the cht7 mutant during N deprivation. Cellular mutant phenotypes are consistent with the observed transcriptome misregulation, as cht7 cells fail to properly arrest growth, nuclear replication, and cell division following N deprivation. Reduction in cht7 colony formation following N refeeding is explained by its compromised viability during N deprivation and by the occurrence of abortive divisions during N refeeding. Surprisingly, the largely unstructured C-terminal half of CHT7 with predicted protein binding domains, but not the canonical CXC DNA binding domain, is essential for the ability of CHT7 to form stable complexes and reverse the cellular phenotypes and transcription levels in the cht7 mutant. Hence, although lacking the presumed DNA binding domain, CHT7 modulates the expression of cell cycle genes in response to N availability, which is essential for establishing an effective quiescent state and the coordinated resumption of growth following N refeeding.
Collapse
Affiliation(s)
- Tomomi Takeuchi
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824
| | - Barbara B Sears
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824
| | - Chase Lindeboom
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824
| | - Yang-Tsung Lin
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824
| | - Nicholas Fekaris
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824
| | - Krzysztof Zienkiewicz
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824
- Centre of Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland
| | - Agnieszka Zienkiewicz
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824
- Centre of Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan 48824
| | - Eric Poliner
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824
| | - Christoph Benning
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan 48824
| |
Collapse
|
28
|
Poramba-Liyanage DW, Korthout T, Cucinotta CE, van Kruijsbergen I, van Welsem T, El Atmioui D, Ovaa H, Tsukiyama T, van Leeuwen F. Inhibition of transcription leads to rewiring of locus-specific chromatin proteomes. Genome Res 2020; 30:635-646. [PMID: 32188699 PMCID: PMC7197482 DOI: 10.1101/gr.256255.119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 03/11/2020] [Indexed: 12/13/2022]
Abstract
Transcription of a chromatin template involves the concerted interaction of many different proteins and protein complexes. Analyses of specific factors showed that these interactions change during stress and upon developmental switches. However, how the binding of multiple factors at any given locus is coordinated has been technically challenging to investigate. Here we used Epi-Decoder in yeast to systematically decode, at one transcribed locus, the chromatin binding changes of hundreds of proteins in parallel upon perturbation of transcription. By taking advantage of improved Epi-Decoder libraries, we observed broad rewiring of local chromatin proteomes following chemical inhibition of RNA polymerase. Rapid reduction of RNA polymerase II binding was accompanied by reduced binding of many other core transcription proteins and gain of chromatin remodelers. In quiescent cells, where strong transcriptional repression is induced by physiological signals, eviction of the core transcriptional machinery was accompanied by the appearance of quiescent cell–specific repressors and rewiring of the interactions of protein-folding factors and metabolic enzymes. These results show that Epi-Decoder provides a powerful strategy for capturing the temporal binding dynamics of multiple chromatin proteins under varying conditions and cell states. The systematic and comprehensive delineation of dynamic local chromatin proteomes will greatly aid in uncovering protein–protein relationships and protein functions at the chromatin template.
Collapse
Affiliation(s)
| | - Tessy Korthout
- Division of Gene Regulation, Netherlands Cancer Institute, 1066CX Amsterdam, The Netherlands
| | - Christine E Cucinotta
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Ila van Kruijsbergen
- Division of Gene Regulation, Netherlands Cancer Institute, 1066CX Amsterdam, The Netherlands
| | - Tibor van Welsem
- Division of Gene Regulation, Netherlands Cancer Institute, 1066CX Amsterdam, The Netherlands
| | - Dris El Atmioui
- Leiden Institute for Chemical Immunology, Leiden University Medical Center, 2333ZC Leiden, The Netherlands.,Oncode Institute, Amsterdam University Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Huib Ovaa
- Leiden Institute for Chemical Immunology, Leiden University Medical Center, 2333ZC Leiden, The Netherlands.,Oncode Institute, Amsterdam University Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Toshio Tsukiyama
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Fred van Leeuwen
- Division of Gene Regulation, Netherlands Cancer Institute, 1066CX Amsterdam, The Netherlands.,Department of Medical Biology, Amsterdam University Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
29
|
Steidle EA, Morrissette VA, Fujimaki K, Chong L, Resnick AC, Capaldi AP, Rolfes RJ. The InsP 7 phosphatase Siw14 regulates inositol pyrophosphate levels to control localization of the general stress response transcription factor Msn2. J Biol Chem 2019; 295:2043-2056. [PMID: 31848224 DOI: 10.1074/jbc.ra119.012148] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Indexed: 12/28/2022] Open
Abstract
The environmental stress response (ESR) is critical for cell survival. Yeast cells unable to synthesize inositol pyrophosphates (PP-InsPs) are unable to induce the ESR. We recently discovered a diphosphoinositol pentakisphosphate (PP-InsP5) phosphatase in Saccharomyces cerevisiae encoded by SIW14 Yeast strains deleted for SIW14 have increased levels of PP-InsPs. We hypothesized that strains with high inositol pyrophosphate levels will have an increased stress response. We examined the response of the siw14Δ mutant to heat shock, nutrient limitation, osmotic stress, and oxidative treatment using cell growth assays and found increased resistance to each. Transcriptional responses to oxidative and osmotic stresses were assessed using microarray and reverse transcriptase quantitative PCR. The ESR was partially induced in the siw14Δ mutant strain, consistent with the increased stress resistance, and the mutant strain further induced the ESR in response to oxidative and osmotic stresses. The levels of PP-InsPs increased in WT cells under oxidative stress but not under hyperosmotic stress, and they were high and unchanging in the mutant. Phosphatase activity of Siw14 was inhibited by oxidation that was reversible. To determine how altered PP-InsP levels affect the ESR, we performed epistasis experiments with mutations in rpd3 and msn2/4 combined with siw14Δ. We show that mutations in msn2Δ and msn4Δ, but not rpd3, are epistatic to siw14Δ by assessing growth under oxidative stress conditions and expression of CTT1 Msn2-GFP nuclear localization was increased in the siw14Δ. These data support a model in which the modulation of PP-InsPs influence the ESR through general stress response transcription factors Msn2/4.
Collapse
Affiliation(s)
| | | | - Kotaro Fujimaki
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona 85721
| | - Lucy Chong
- Division of Neurosurgery, Colket Translational Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104
| | - Adam C Resnick
- Division of Neurosurgery, Colket Translational Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104
| | - Andrew P Capaldi
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona 85721
| | - Ronda J Rolfes
- Department of Biology, Georgetown University, Washington, D. C. 20057.
| |
Collapse
|
30
|
Medina EM, Walsh E, Buchler NE. Evolutionary innovation, fungal cell biology, and the lateral gene transfer of a viral KilA-N domain. Curr Opin Genet Dev 2019; 58-59:103-110. [PMID: 31600629 DOI: 10.1016/j.gde.2019.08.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/27/2019] [Accepted: 08/31/2019] [Indexed: 10/25/2022]
Abstract
Fungi are found in diverse ecological niches as primary decomposers, mutualists, or parasites of plants and animals. Although animals and fungi share a common ancestor, fungi dramatically diversified their life cycle, cell biology, and metabolism as they evolved and colonized new niches. This review focuses on a family of fungal transcription factors (Swi4/Mbp1, APSES, Xbp1, Bqt4) derived from the lateral gene transfer of a KilA-N domain commonly found in prokaryotic and eukaryotic DNA viruses. These virus-derived fungal regulators play central roles in cell cycle, morphogenesis, sexual differentiation, and quiescence. We consider the possible origins of KilA-N and how this viral DNA binding domain came to be intimately associated with fungal processes.
Collapse
Affiliation(s)
- Edgar M Medina
- University Program in Genetics and Genomics, Duke University, Durham, NC 27710, USA
| | - Evan Walsh
- Bioinformatics Program, North Carolina State University, Raleigh, NC 27607, USA
| | - Nicolas E Buchler
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC 27606, USA.
| |
Collapse
|
31
|
Barbosa AD, Lim K, Mari M, Edgar JR, Gal L, Sterk P, Jenkins BJ, Koulman A, Savage DB, Schuldiner M, Reggiori F, Wigge PA, Siniossoglou S. Compartmentalized Synthesis of Triacylglycerol at the Inner Nuclear Membrane Regulates Nuclear Organization. Dev Cell 2019; 50:755-766.e6. [PMID: 31422915 PMCID: PMC6859503 DOI: 10.1016/j.devcel.2019.07.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 04/22/2019] [Accepted: 07/03/2019] [Indexed: 01/08/2023]
Abstract
Cells dynamically adjust organelle organization in response to growth and environmental cues. This requires regulation of synthesis of phospholipids, the building blocks of organelle membranes, or remodeling of their fatty-acyl (FA) composition. FAs are also the main components of triacyglycerols (TGs), which enable energy storage in lipid droplets. How cells coordinate FA metabolism with organelle biogenesis during cell growth remains unclear. Here, we show that Lro1, an acyltransferase that generates TGs from phospholipid-derived FAs in yeast, relocates from the endoplasmic reticulum to a subdomain of the inner nuclear membrane. Lro1 nuclear targeting is regulated by cell cycle and nutrient starvation signals and is inhibited when the nucleus expands. Lro1 is active at this nuclear subdomain, and its compartmentalization is critical for nuclear integrity. These data suggest that Lro1 nuclear targeting provides a site of TG synthesis, which is coupled with nuclear membrane remodeling.
Collapse
Affiliation(s)
- Antonio D Barbosa
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, UK
| | - Koini Lim
- Metabolic Research Laboratories, Wellcome Trust-Medical Research, Council Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Muriel Mari
- Department of Cell Biology, University of Groningen, University Medical Center Groningen, 9713AV Groningen, Netherlands
| | - James R Edgar
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, UK
| | - Lihi Gal
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Peter Sterk
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, UK
| | - Benjamin J Jenkins
- NIHR BRC Core Metabolomics and Lipidomics Laboratory and University of Cambridge Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, Cambridge CB2 0QQ, UK
| | - Albert Koulman
- NIHR BRC Core Metabolomics and Lipidomics Laboratory and University of Cambridge Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, Cambridge CB2 0QQ, UK
| | - David B Savage
- Metabolic Research Laboratories, Wellcome Trust-Medical Research, Council Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Maya Schuldiner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Fulvio Reggiori
- Department of Cell Biology, University of Groningen, University Medical Center Groningen, 9713AV Groningen, Netherlands
| | - Philip A Wigge
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, UK
| | - Symeon Siniossoglou
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, UK.
| |
Collapse
|
32
|
Gulli J, Cook E, Kroll E, Rosebrock A, Caudy A, Rosenzweig F. Diverse conditions support near-zero growth in yeast: Implications for the study of cell lifespan. MICROBIAL CELL 2019; 6:397-413. [PMID: 31528631 PMCID: PMC6717879 DOI: 10.15698/mic2019.09.690] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Baker's yeast has a finite lifespan and ages in two ways: a mother cell can only divide so many times (its replicative lifespan), and a non-dividing cell can only live so long (its chronological lifespan). Wild and laboratory yeast strains exhibit natural variation for each type of lifespan, and the genetic basis for this variation has been generalized to other eukaryotes, including metazoans. To date, yeast chronological lifespan has chiefly been studied in relation to the rate and mode of functional decline among non-dividing cells in nutrient-depleted batch culture. However, this culture method does not accurately capture two major classes of long-lived metazoan cells: cells that are terminally differentiated and metabolically active for periods that approximate animal lifespan (e.g. cardiac myocytes), and cells that are pluripotent and metabolically quiescent (e.g. stem cells). Here, we consider alternative ways of cultivating Saccharomyces cerevisiae so that these different metabolic states can be explored in non-dividing cells: (i) yeast cultured as giant colonies on semi-solid agar, (ii) yeast cultured in retentostats and provided sufficient nutrients to meet minimal energy requirements, and (iii) yeast encapsulated in a semisolid matrix and fed ad libitum in bioreactors. We review the physiology of yeast cultured under each of these conditions, and explore their potential to provide unique insights into determinants of chronological lifespan in the cells of higher eukaryotes.
Collapse
Affiliation(s)
- Jordan Gulli
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332
| | - Emily Cook
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332
| | - Eugene Kroll
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332
| | - Adam Rosebrock
- Donnelly Centre for Cellular and Biological Research and Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.,Present address: Stony Brook School of Medicine, Stony Brook University, Stony Brook, NY 11794
| | - Amy Caudy
- Donnelly Centre for Cellular and Biological Research and Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Frank Rosenzweig
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332
| |
Collapse
|
33
|
Milo-Cochavi S, Pareek M, Delulio G, Almog Y, Anand G, Ma LJ, Covo S. The response to the DNA damaging agent methyl methanesulfonate in a fungal plant pathogen. Fungal Biol 2019; 123:408-422. [PMID: 31053330 DOI: 10.1016/j.funbio.2019.03.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 02/27/2019] [Accepted: 03/05/2019] [Indexed: 12/31/2022]
Abstract
DNA damage can cause mutations that in fungal plant pathogens lead to hypervirulence and resistance to pesticides. Almost nothing is known about the response of these fungi to DNA damage. We performed transcriptomic and phosphoproteomic analyses of Fusarium oxysporum exposed to methyl methanesulfonate (MMS). At the RNA level we observe massive induction of DNA repair pathways including the global genome nucleotide excision. Cul3, Cul4, several Ubiquitin-like ligases and components of the proteasome are significantly induced. In agreement, we observed drug synergism between a proteasome inhibitor and MMS. While our data suggest that Yap1 and Xbp1 networks are similarly activated in response to damage in yeast and F. oxysporum we were able to observe modules that were MMS-responsive in F. oxysporum and not in yeast. These include transcription/splicing modules that are upregulated and respiration that is down-regulated. In agreement, MMS treated cells are much more sensitive to a respiration inhibitor. At the phosphoproteomic level, Adenylate cyclase, which generates cAMP, is phosphorylated in response to MMS and forms a network of phosphorylated proteins that include cell cycle regulators and several MAPKs. Our analysis provides a starting point in understanding how genomic changes in response to DNA damage occur in Fusarium species.
Collapse
Affiliation(s)
- Shira Milo-Cochavi
- Department of Plant Pathology and Microbiology, Hebrew University, Rehovot, 7610001, Israel
| | - Manish Pareek
- Department of Plant Pathology and Microbiology, Hebrew University, Rehovot, 7610001, Israel
| | - Gregory Delulio
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA 01003, USA
| | - Yael Almog
- Department of Plant Pathology and Microbiology, Hebrew University, Rehovot, 7610001, Israel
| | - Gautam Anand
- Department of Plant Pathology and Microbiology, Hebrew University, Rehovot, 7610001, Israel
| | - Li-Jun Ma
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA 01003, USA
| | - Shay Covo
- Department of Plant Pathology and Microbiology, Hebrew University, Rehovot, 7610001, Israel.
| |
Collapse
|
34
|
Çakır T, Kökrek E, Avşar G, Abdik E, Pir P. Next-Generation Genome-Scale Models Incorporating Multilevel 'Omics Data: From Yeast to Human. Methods Mol Biol 2019; 2049:347-363. [PMID: 31602621 DOI: 10.1007/978-1-4939-9736-7_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Genome-scale modelling in eukaryotes has been pioneered by the yeast Saccharomyces cerevisiae. Early metabolic networks have been reconstructed based on genome sequence and information accumulated in the literature on biochemical reactions. Protein-protein interaction networks have been constructed based on experimental observations such as yeast-2-hybrid method. Gene regulatory networks were based on a variety of data types, including information on TF-promoter binding and gene coexpression. The aforementioned networks have been improved gradually, and methods for their integration were developed. Incorporation of omics data including genomics, metabolomics, transcriptomics, fluxome, and phosphoproteome led to next-generation genome-scale models. The methods tested on yeast have later been implemented in human, further, cellular components found to be important in yeast physiology under (ab)normal conditions, and (dis)regulation mechanisms in yeast shed light to the healthy and disease states in human. This chapter provides a historical perspective on next-generation genome-scale models incorporating multilevel 'omics data, from yeast to human.
Collapse
Affiliation(s)
- Tunahan Çakır
- Computational Systems Biology Group, Department of Bioengineering, Gebze Technical University, Kocaeli, Turkey
| | - Emel Kökrek
- Computational Systems Biology Group, Department of Bioengineering, Gebze Technical University, Kocaeli, Turkey
| | - Gülben Avşar
- Computational Systems Biology Group, Department of Bioengineering, Gebze Technical University, Kocaeli, Turkey
| | - Ecehan Abdik
- Computational Systems Biology Group, Department of Bioengineering, Gebze Technical University, Kocaeli, Turkey
| | - Pınar Pir
- Computational Systems Biology Group, Department of Bioengineering, Gebze Technical University, Kocaeli, Turkey.
| |
Collapse
|
35
|
Yeast at the Forefront of Research on Ageing and Age-Related Diseases. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2019; 58:217-242. [PMID: 30911895 DOI: 10.1007/978-3-030-13035-0_9] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Ageing is a complex and multifactorial process driven by genetic, environmental and stochastic factors that lead to the progressive decline of biological systems. Mechanisms of ageing have been extensively investigated in various model organisms and systems generating fundamental advances. Notably, studies on yeast ageing models have made numerous and relevant contributions to the progress in the field. Different longevity factors and pathways identified in yeast have then been shown to regulate molecular ageing in invertebrate and mammalian models. Currently the best candidates for anti-ageing drugs such as spermidine and resveratrol or anti-ageing interventions such as caloric restriction were first identified and explored in yeast. Yeasts have also been instrumental as models to study the cellular and molecular effects of proteins associated with age-related diseases such as Parkinson's, Huntington's or Alzheimer's diseases. In this chapter, a review of the advances on ageing and age-related diseases research in yeast models will be made. Particular focus will be placed on key longevity factors, ageing hallmarks and interventions that slow ageing, both yeast-specific and those that seem to be conserved in multicellular organisms. Their impact on the pathogenesis of age-related diseases will be also discussed.
Collapse
|
36
|
Takeuchi T, Benning C. Nitrogen-dependent coordination of cell cycle, quiescence and TAG accumulation in Chlamydomonas. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:292. [PMID: 31890020 PMCID: PMC6927116 DOI: 10.1186/s13068-019-1635-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 12/12/2019] [Indexed: 05/07/2023]
Abstract
Microalgae hold great promises as sustainable cellular factories for the production of alternative fuels, feeds, and biopharmaceuticals for human health. While the biorefinery approach for fuels along with the coproduction of high-value compounds with industrial, therapeutic, or nutraceutical applications have the potential to make algal biofuels more economically viable, a number of challenges continue to hamper algal production systems at all levels. One such hurdle includes the metabolic trade-off often observed between the increased yields of desired products, such as triacylglycerols (TAG), and the growth of an organism. Initial genetic engineering strategies to improve lipid productivity in microalgae, which focused on overproducing the enzymes involved in fatty acid and TAG biosynthesis or inactivating competing carbon (C) metabolism, have seen some successes albeit at the cost of often greatly reduced biomass. Emergent approaches that aim at modifying the dynamics of entire metabolic pathways by engineering of pertinent transcription factors or signaling networks appear to have successfully achieved a balance between growth and neutral lipid accumulation. However, the biological knowledge of key signaling networks and molecular components linking these two processes is still incomplete in photosynthetic eukaryotes, making it difficult to optimize metabolic engineering strategies for microalgae. Here, we focus on nitrogen (N) starvation of the model green microalga, Chlamydomonas reinhardtii, to present the current understanding of the nutrient-dependent switch between proliferation and quiescence, and the drastic reprogramming of metabolism that results in the storage of C compounds following N starvation. We discuss the potential components mediating the transcriptional repression of cell cycle genes and the establishment of quiescence in Chlamydomonas, and highlight the importance of signaling pathways such as those governed by the target of rapamycin (TOR) and sucrose nonfermenting-related (SnRK) kinases in the coordination of metabolic status with cellular growth. A better understanding of how the cell division cycle is regulated in response to nutrient scarcity and of the signaling pathways linking cellular growth to energy and lipid homeostasis, is essential to improve the prospects of biofuels and biomass production in microalgae.
Collapse
Affiliation(s)
- Tomomi Takeuchi
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824 USA
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, MI 48824 USA
| | - Christoph Benning
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824 USA
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, MI 48824 USA
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824 USA
| |
Collapse
|
37
|
Pfanzagl V, Görner W, Radolf M, Parich A, Schuhmacher R, Strauss J, Reiter W, Schüller C. A constitutive active allele of the transcription factor Msn2 mimicking low PKA activity dictates metabolic remodeling in yeast. Mol Biol Cell 2018; 29:2848-2862. [PMID: 30256697 PMCID: PMC6249869 DOI: 10.1091/mbc.e18-06-0389] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
In yeast, protein kinase A (PKA) adjusts transcriptional profiles, metabolic rates, and cell growth in accord with carbon source availability. PKA affects gene expression mostly via the transcription factors Msn2 and Msn4, two key regulators of the environmental stress response. Here we analyze the role of the PKA-Msn2 signaling module using an Msn2 allele that harbors serine-to-alanine substitutions at six functionally important PKA motifs (Msn2A6) . Expression of Msn2A6 mimics low PKA activity, entails a transcription profile similar to that of respiring cells, and prevents formation of colonies on glucose-containing medium. Furthermore, Msn2A6 leads to high oxygen consumption and hence high respiratory activity. Substantially increased intracellular concentrations of several carbon metabolites, such as trehalose, point to a metabolic adjustment similar to diauxic shift. This partial metabolic switch is the likely cause for the slow-growth phenotype in the presence of glucose. Consistently, Msn2A6 expression does not interfere with growth on ethanol and tolerated is to a limited degree in deletion mutant strains with a gene expression signature corresponding to nonfermentative growth. We propose that the lethality observed in mutants with hampered PKA activity resides in metabolic reprogramming that is initiated by Msn2 hyperactivity.
Collapse
Affiliation(s)
- Vera Pfanzagl
- Department of Chemistry, University of Natural Resources and Life Sciences, Vienna (BOKU), 1190 Vienna, Austria
| | - Wolfram Görner
- Department for Biochemistry, Max. F. Perutz Laboratories, University of Vienna, 1030 Vienna, Austria
| | - Martin Radolf
- Management Scientific Service/EHS, Research Institute of Molecular Pathology (IMP), 1030 Vienna, Austria
| | - Alexandra Parich
- Department of Agrobiotechnology (IFA-Tulln), Center for Analytical Chemistry, University of Natural Resources and Life Sciences, 3430 Tulln, Austria
| | - Rainer Schuhmacher
- Department of Agrobiotechnology (IFA-Tulln), Center for Analytical Chemistry, University of Natural Resources and Life Sciences, 3430 Tulln, Austria
| | - Joseph Strauss
- Department of Chemistry, University of Natural Resources and Life Sciences, Vienna (BOKU), 1190 Vienna, Austria
| | - Wolfgang Reiter
- Department for Biochemistry, Max. F. Perutz Laboratories, University of Vienna, 1030 Vienna, Austria
| | - Christoph Schüller
- Department of Applied Genetics and Cell Biology (DAGZ), University of Natural Resources and Life Sciences, 3430 Tulln, Austria
| |
Collapse
|
38
|
Martins TS, Costa V, Pereira C. Signaling pathways governing iron homeostasis in budding yeast. Mol Microbiol 2018; 109:422-432. [DOI: 10.1111/mmi.14009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Telma S. Martins
- I3S-Instituto de Investigação e Inovação em Saúde; Universidade do Porto; Porto Portugal
- IBMC-Instituto de Biologia Molecular e Celular; Universidade do Porto; Porto Portugal
| | - Vítor Costa
- I3S-Instituto de Investigação e Inovação em Saúde; Universidade do Porto; Porto Portugal
- IBMC-Instituto de Biologia Molecular e Celular; Universidade do Porto; Porto Portugal
- Departamento de Biologia Molecular; Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto; Porto Portugal
| | - Clara Pereira
- I3S-Instituto de Investigação e Inovação em Saúde; Universidade do Porto; Porto Portugal
- IBMC-Instituto de Biologia Molecular e Celular; Universidade do Porto; Porto Portugal
- Departamento de Biologia Molecular; Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto; Porto Portugal
| |
Collapse
|
39
|
Abstract
Saccharomyces cerevisiae enter quiescence during extended growth in culture (greater than 7 days). Here, we describe a method to separate quiescent from non-quiescent cells by density gradient. We also describe approaches for DAPI staining the chromatin of quiescent cells, measuring quiescent cell viability, and extracting RNA from quiescent cells for use in genomics experiments.
Collapse
|
40
|
Laporte D, Jimenez L, Gouleme L, Sagot I. Yeast quiescence exit swiftness is influenced by cell volume and chronological age. MICROBIAL CELL (GRAZ, AUSTRIA) 2017; 5:104-111. [PMID: 29417058 PMCID: PMC5798409 DOI: 10.15698/mic2018.02.615] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 11/29/2017] [Indexed: 01/12/2023]
Abstract
Quiescence exit swiftness is crucial not only for micro-organisms in competition for an environmental niche, such as yeast, but also for the maintenance of tissue homeostasis in multicellular species. Here we explore the effect of replicative and chronological age on Saccharomyces cerevisiae quiescence exit efficiency. Our study reveals that this step strongly relies on the cell volume in quiescence but is not influenced by cell replicative age, at least for cells that have undergone less than 10 divisions. Furthermore, we establish that chronological age strongly impinges on cell's capacities to exit quiescence. This effect is not related to cell volume or due to cell's inability to metabolize external glucose but rather seems to depend on intracellular trehalose concentration. Overall, our data illustrate that the quiescent state is a continuum evolving with time, early and deep quiescence being distinguishable by the cell's proficiency to re-enter the proliferation cycle.
Collapse
Affiliation(s)
- Damien Laporte
- CNRS, Université de Bordeaux - Institut de Biochimie et Génétique Cellulaires, UMR5095 - 33077 Bordeaux cedex, France
| | - Laure Jimenez
- CNRS, Université de Bordeaux - Institut de Biochimie et Génétique Cellulaires, UMR5095 - 33077 Bordeaux cedex, France
| | - Laëtitia Gouleme
- CNRS, Université de Bordeaux - Institut de Biochimie et Génétique Cellulaires, UMR5095 - 33077 Bordeaux cedex, France
| | - Isabelle Sagot
- CNRS, Université de Bordeaux - Institut de Biochimie et Génétique Cellulaires, UMR5095 - 33077 Bordeaux cedex, France
| |
Collapse
|
41
|
Yao G, Zhang F, Nie X, Wang X, Yuan J, Zhuang Z, Wang S. Essential APSES Transcription Factors for Mycotoxin Synthesis, Fungal Development, and Pathogenicity in Aspergillus flavus. Front Microbiol 2017; 8:2277. [PMID: 29209291 PMCID: PMC5702001 DOI: 10.3389/fmicb.2017.02277] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 11/06/2017] [Indexed: 02/04/2023] Open
Abstract
Aflatoxins are a potent carcinogenic mycotoxin and has become a research model of fungal secondary metabolism (SM). Via systematically investigating the APSES transcription factors (TFs), two APSES proteins were identified: AfRafA and AfStuA. These play central roles in the synthesis of mycotoxins including aflatoxin and cyclopiazonic acid, and fungal development and are consequently central to the pathogenicity of the aflatoxigenic A. flavus. Loss of AfRafA not only dramatically suppressed aflatoxin cluster expression, subsequently reducing toxin synthesis both in vitro and in vivo, but also impaired conidia and sclerotia development. More importantly, aflatoxin biosynthesis as well as conidia and sclerotia development were fully blocked in ΔAfStuA. In addition, our results supported that AfStuA regulated the aflatoxin synthesis in an AflR-dependent manner. Intriguingly, it was revealed that AfRafA and AfStuA exert an antagonistic role in the regulation of biosynthesis of cyclopiazonic acid. In summary, two global transcriptional regulators for fungal development, mycotoxin production, and seed pathogenicity of the A. flavus system have been established. The two novel regulators of mycotoxins are promising targets for future plant breeding and for the development of fungicides.
Collapse
Affiliation(s)
- Guangshan Yao
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Feng Zhang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xinyi Nie
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiuna Wang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jun Yuan
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhenhong Zhuang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shihua Wang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
42
|
Leonov A, Feldman R, Piano A, Arlia-Ciommo A, Lutchman V, Ahmadi M, Elsaser S, Fakim H, Heshmati-Moghaddam M, Hussain A, Orfali S, Rajen H, Roofigari-Esfahani N, Rosanelli L, Titorenko VI. Caloric restriction extends yeast chronological lifespan via a mechanism linking cellular aging to cell cycle regulation, maintenance of a quiescent state, entry into a non-quiescent state and survival in the non-quiescent state. Oncotarget 2017; 8:69328-69350. [PMID: 29050207 PMCID: PMC5642482 DOI: 10.18632/oncotarget.20614] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 08/14/2017] [Indexed: 12/22/2022] Open
Abstract
A yeast culture grown in a nutrient-rich medium initially containing 2% glucose is not limited in calorie supply. When yeast cells cultured in this medium consume glucose, they undergo cell cycle arrest at a checkpoint in late G1 and differentiate into quiescent and non-quiescent cell populations. Studies of such differentiation have provided insights into mechanisms of yeast chronological aging under conditions of excessive calorie intake. Caloric restriction is an aging-delaying dietary intervention. Here, we assessed how caloric restriction influences the differentiation of chronologically aging yeast cultures into quiescent and non-quiescent cells, and how it affects their properties. We found that caloric restriction extends yeast chronological lifespan via a mechanism linking cellular aging to cell cycle regulation, maintenance of quiescence, entry into a non-quiescent state and survival in this state. Our findings suggest that caloric restriction delays yeast chronological aging by causing specific changes in the following: 1) a checkpoint in G1 for cell cycle arrest and entry into a quiescent state; 2) a growth phase in which high-density quiescent cells are committed to become low-density quiescent cells; 3) the differentiation of low-density quiescent cells into low-density non-quiescent cells; and 4) the conversion of high-density quiescent cells into high-density non-quiescent cells.
Collapse
Affiliation(s)
- Anna Leonov
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | - Rachel Feldman
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | - Amanda Piano
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | | | - Vicky Lutchman
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | - Masoumeh Ahmadi
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | - Sarah Elsaser
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | - Hana Fakim
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | | | - Asimah Hussain
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | - Sandra Orfali
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | | | | | - Leana Rosanelli
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | | |
Collapse
|
43
|
Gu ZC, Wu E, Sailer C, Jando J, Styles E, Eisenkolb I, Kuschel M, Bitschar K, Wang X, Huang L, Vissa A, Yip CM, Yedidi RS, Friesen H, Enenkel C. Ubiquitin orchestrates proteasome dynamics between proliferation and quiescence in yeast. Mol Biol Cell 2017; 28:2479-2491. [PMID: 28768827 PMCID: PMC5597321 DOI: 10.1091/mbc.e17-03-0162] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 06/16/2017] [Accepted: 07/24/2017] [Indexed: 12/14/2022] Open
Abstract
Proteasomes are key protease complexes responsible for protein degradation, and their localization changes with the growth conditions. This work in yeast shows that proteasomes exit the nucleus with the transition from proliferation to quiescence. Ubiquitin is a key player in proteasome dynamics and cytoplasmic proteasome granule formation. Proteasomes are essential for protein degradation in proliferating cells. Little is known about proteasome functions in quiescent cells. In nondividing yeast, a eukaryotic model of quiescence, proteasomes are depleted from the nucleus and accumulate in motile cytosolic granules termed proteasome storage granules (PSGs). PSGs enhance resistance to genotoxic stress and confer fitness during aging. Upon exit from quiescence PSGs dissolve, and proteasomes are rapidly delivered into the nucleus. To identify key players in PSG organization, we performed high-throughput imaging of green fluorescent protein (GFP)-labeled proteasomes in the yeast null-mutant collection. Mutants with reduced levels of ubiquitin are impaired in PSG formation. Colocalization studies of PSGs with proteins of the yeast GFP collection, mass spectrometry, and direct stochastic optical reconstitution microscopy of cross-linked PSGs revealed that PSGs are densely packed with proteasomes and contain ubiquitin but no polyubiquitin chains. Our results provide insight into proteasome dynamics between proliferating and quiescent yeast in response to cellular requirements for ubiquitin-dependent degradation.
Collapse
Affiliation(s)
- Zhu Chao Gu
- Department of Biochemistry, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Edwin Wu
- Department of Biochemistry, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Carolin Sailer
- Department of Biochemistry, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Julia Jando
- Department of Biochemistry, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Erin Styles
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Ina Eisenkolb
- Department of Biochemistry, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Maike Kuschel
- Department of Biochemistry, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Katharina Bitschar
- Department of Biochemistry, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Xiaorong Wang
- Department of Physics and Biophysics, University of California, Irvine, Irvine, CA 92697
| | - Lan Huang
- Department of Physics and Biophysics, University of California, Irvine, Irvine, CA 92697
| | - Adriano Vissa
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Christopher M Yip
- Department of Biochemistry, University of Toronto, Toronto, ON M5G 1M1, Canada.,Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Ravikiran S Yedidi
- Department of Biochemistry, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Helena Friesen
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Cordula Enenkel
- Department of Biochemistry, University of Toronto, Toronto, ON M5G 1M1, Canada
| |
Collapse
|
44
|
Young CP, Hillyer C, Hokamp K, Fitzpatrick DJ, Konstantinov NK, Welty JS, Ness SA, Werner-Washburne M, Fleming AB, Osley MA. Distinct histone methylation and transcription profiles are established during the development of cellular quiescence in yeast. BMC Genomics 2017; 18:107. [PMID: 28122508 PMCID: PMC5267397 DOI: 10.1186/s12864-017-3509-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Accepted: 01/18/2017] [Indexed: 12/19/2022] Open
Abstract
Background Quiescent cells have a low level of gene activity compared to growing cells. Using a yeast model for cellular quiescence, we defined the genome-wide profiles of three species of histone methylation associated with active transcription between growing and quiescent cells, and correlated these profiles with the presence of RNA polymerase II and transcripts. Results Quiescent cells retained histone methylations normally associated with transcriptionally active chromatin and had many transcripts in common with growing cells. Quiescent cells also contained significant levels of RNA polymerase II, but only low levels of the canonical initiating and elongating forms of the polymerase. The RNA polymerase II associated with genes in quiescent cells displayed a distinct occupancy profile compared to its pattern of occupancy across genes in actively growing cells. Although transcription is generally repressed in quiescent cells, analysis of individual genes identified a period of active transcription during the development of quiescence. Conclusions The data suggest that the transcript profile and histone methylation marks in quiescent cells were established both in growing cells and during the development of quiescence and then retained in these cells. Together, this might ensure that quiescent cells can rapidly adapt to a changing environment to resume growth. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3509-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Conor P Young
- Department of Microbiology, Moyne Institute of Preventive Medicine, School of Genetics and Microbiology, University of Dublin, Trinity College Dublin, Dublin, Ireland
| | - Cory Hillyer
- Department of Microbiology and Molecular Genetics, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Karsten Hokamp
- Smurfit Institute of Genetics, School of Genetics and Microbiology, University of Dublin, Trinity College Dublin, Dublin, Ireland
| | - Darren J Fitzpatrick
- Smurfit Institute of Genetics, School of Genetics and Microbiology, University of Dublin, Trinity College Dublin, Dublin, Ireland
| | | | | | - Scott A Ness
- Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | | | - Alastair B Fleming
- Department of Microbiology, Moyne Institute of Preventive Medicine, School of Genetics and Microbiology, University of Dublin, Trinity College Dublin, Dublin, Ireland.
| | - Mary Ann Osley
- Department of Microbiology and Molecular Genetics, University of New Mexico School of Medicine, Albuquerque, NM, USA.
| |
Collapse
|
45
|
Bowman GD, McKnight JN. Sequence-specific targeting of chromatin remodelers organizes precisely positioned nucleosomes throughout the genome. Bioessays 2016; 39:1-8. [PMID: 27862071 DOI: 10.1002/bies.201600183] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Eukaryotic genomes are functionally organized into chromatin, a compact packaging of nucleoproteins with the basic repeating unit known as the nucleosome. A major focus for the chromatin field has been understanding what rules govern nucleosome positioning throughout the genome, and here we review recent findings using a novel, sequence-targeted remodeling enzyme. Nucleosomes are often packed into evenly spaced arrays that are reproducibly positioned, but how such organization is established and maintained through dramatic events such as DNA replication is poorly understood. We hypothesize that a major fraction of positioned nucleosomes arises from sequence-specific targeting of chromatin remodelers to generate "founding" nucleosomes, providing reproducible, predictable, and condition-specific nucleation sites against which neighboring nucleosomes are packed into evenly spaced arrays.
Collapse
Affiliation(s)
- Gregory D Bowman
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD, USA
| | | |
Collapse
|
46
|
Exploring the power of yeast to model aging and age-related neurodegenerative disorders. Biogerontology 2016; 18:3-34. [PMID: 27804052 DOI: 10.1007/s10522-016-9666-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 10/24/2016] [Indexed: 12/12/2022]
Abstract
Aging is a multifactorial process determined by molecular, cellular and systemic factors and it is well established that advancing age is a leading risk factor for several neurodegenerative diseases. In fact, the close association of aging and neurodegenerative disorders has placed aging as the greatest social and economic challenge of the 21st century, and age-related diseases have also become a key priority for countries worldwide. The growing need to better understand both aging and neurodegenerative processes has led to the development of simple eukaryotic models amenable for mechanistic studies. Saccharomyces cerevisiae has proven to be an unprecedented experimental model to study the fundamental aspects of aging and to decipher the intricacies of neurodegenerative disorders greatly because the molecular mechanisms underlying these processes are evolutionarily conserved from yeast to human. Moreover, yeast offers several methodological advantages allowing a rapid and relatively easy way of establishing gene-protein-function associations. Here we review different aging theories, common cellular pathways driving aging and neurodegenerative diseases and discuss the major contributions of yeast to the state-of-art knowledge in both research fields.
Collapse
|
47
|
Miles S, Breeden L. A common strategy for initiating the transition from proliferation to quiescence. Curr Genet 2016; 63:179-186. [PMID: 27544284 DOI: 10.1007/s00294-016-0640-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 08/04/2016] [Accepted: 08/06/2016] [Indexed: 10/21/2022]
Abstract
Development, tissue renewal and long term survival of multi-cellular organisms is dependent upon the persistence of stem cells that are quiescent, but retain the capacity to re-enter the cell cycle to self-renew, or to produce progeny that can differentiate and re-populate the tissue. Deregulated release of these cells from the quiescent state, or preventing them from entering quiescence, results in uncontrolled proliferation and cancer. Conversely, loss of quiescent cells, or their failure to re-enter cell division, disrupts organ development and prevents tissue regeneration and repair. Understanding the quiescent state and how cells control the transitions in and out of this state is of fundamental importance. Investigations into the mechanics of G1 arrest during the transition to quiescence continue to identify striking parallels between the strategies used by yeast and mammals to regulate this transition. When cells commit to a stable but reversible arrest, the G1/S genes responsible for promoting S phase must be inhibited. This process, from yeast to humans, involves the formation of quiescence-specific complexes on their promoters. In higher cells, these so-called DREAM complexes of E2F4/DP/RBL/MuvB recruit the highly conserved histone deacetylase HDAC1, which leads to local histone deacetylation and repression of S phase-promoting transcripts. Quiescent yeast cells also show pervasive histone deacetylation by the HDAC1 counterpart Rpd3. In addition, these cells contain quiescence-specific regulators of G1/S genes: Msa1 and Msa2, which can be considered components of the yeast equivalent of the DREAM complex. Despite a lack of physical similarities, the goals and the strategies used to achieve a reversible transition to quiescence are highly conserved. This motivates a detailed study of this process in the simple model organism: budding yeast.
Collapse
Affiliation(s)
- Shawna Miles
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA, 98109, USA
| | - Linda Breeden
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA, 98109, USA.
| |
Collapse
|
48
|
Honigberg SM. Similar environments but diverse fates: Responses of budding yeast to nutrient deprivation. MICROBIAL CELL 2016; 3:302-328. [PMID: 27917388 PMCID: PMC5134742 DOI: 10.15698/mic2016.08.516] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Diploid budding yeast (Saccharomyces cerevisiae) can adopt one
of several alternative differentiation fates in response to nutrient limitation,
and each of these fates provides distinct biological functions. When different
strain backgrounds are taken into account, these various fates occur in response
to similar environmental cues, are regulated by the same signal transduction
pathways, and share many of the same master regulators. I propose that the
relationships between fate choice, environmental cues and signaling pathways are
not Boolean, but involve graded levels of signals, pathway activation and
master-regulator activity. In the absence of large differences between
environmental cues, small differences in the concentration of cues may be
reinforced by cell-to-cell signals. These signals are particularly essential for
fate determination within communities, such as colonies and biofilms, where fate
choice varies dramatically from one region of the community to another. The lack
of Boolean relationships between cues, signaling pathways, master regulators and
cell fates may allow yeast communities to respond appropriately to the wide
range of environments they encounter in nature.
Collapse
Affiliation(s)
- Saul M Honigberg
- Division of Cell Biology and Biophysics, University of Missouri-Kansas City, 5007 Rockhill Rd, Kansas City MO 64110, USA
| |
Collapse
|
49
|
Miles S, Croxford MW, Abeysinghe AP, Breeden LL. Msa1 and Msa2 Modulate G1-Specific Transcription to Promote G1 Arrest and the Transition to Quiescence in Budding Yeast. PLoS Genet 2016; 12:e1006088. [PMID: 27272642 PMCID: PMC4894574 DOI: 10.1371/journal.pgen.1006088] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 05/09/2016] [Indexed: 12/23/2022] Open
Abstract
Yeast that naturally exhaust their glucose source can enter a quiescent state that is characterized by reduced cell size, and high cell density, stress tolerance and longevity. The transition to quiescence involves highly asymmetric cell divisions, dramatic reprogramming of transcription and global changes in chromatin structure and chromosome topology. Cells enter quiescence from G1 and we find that there is a positive correlation between the length of G1 and the yield of quiescent cells. The Swi4 and Swi6 transcription factors, which form the SBF transcription complex and promote the G1 to S transition in cycling cells, are also critical for the transition to quiescence. Swi6 forms a second complex with Mbp1 (MBF), which is not required for quiescence. These are the functional analogues of the E2F complexes of higher eukaryotes. Loss of the RB analogue, Whi5, and the related protein Srl3/Whi7, delays G1 arrest, but it also delays recovery from quiescence. Two MBF- and SBF-Associated proteins have been identified that have little effect on SBF or MBF activity in cycling cells. We show that these two related proteins, Msa1 and Msa2, are specifically required for the transition to quiescence. Like the E2F complexes that are quiescence-specific, Msa1 and Msa2 are required to repress the transcription of many SBF target genes, including SWI4, the CLN2 cyclin and histones, specifically after glucose is exhausted from the media. They also activate transcription of many MBF target genes. msa1msa2 cells fail to G1 arrest and rapidly lose viability upon glucose exhaustion. msa1msa2 mutants that survive this transition are very large, but they attain the same thermo-tolerance and longevity of wild type quiescent cells. This indicates that Msa1 and Msa2 are required for successful transition to quiescence, but not for the maintenance of that state. In spite of the many differences between yeast and humans, the basic strategies that regulate the cell division cycle are fundamentally conserved. In this study, we extend these parallels to include a common strategy by which cells transition from proliferation to quiescence. The decision to divide is made in the G1 phase of the cell cycle. During G1, the genes that drive DNA replication are repressed by the E2F/RB complex. When a signal to divide is received, RB is removed and the complex is activated. When cells commit to a long term, but reversible G1 arrest, or quiescence, they express a novel E2F/RB-like complex, which promotes and maintains a stable repressive state. Yeast cells contain a functional analog of E2F/RB, called SBF/Whi5, which is activated by a similar mechanism in proliferating yeast cells. In this study, we identify two novel components of the SBF/Whi5 complex whose activity is specific to the transition to quiescence. These factors, Msa1 and Msa2, repress SBF targets and are required for the long term, but reversible G1 arrest that is critical for achieving a quiescent state.
Collapse
Affiliation(s)
- Shawna Miles
- Basic Science Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Matthew W Croxford
- Basic Science Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Amali P Abeysinghe
- Basic Science Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Linda L Breeden
- Basic Science Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| |
Collapse
|
50
|
Dhawan J, Laxman S. Decoding the stem cell quiescence cycle--lessons from yeast for regenerative biology. J Cell Sci 2015; 128:4467-74. [PMID: 26672015 PMCID: PMC5695657 DOI: 10.1242/jcs.177758] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
In the past decade, major advances have occurred in the understanding of mammalian stem cell biology, but roadblocks (including gaps in our fundamental understanding) remain in translating this knowledge to regenerative medicine. Interestingly, a close analysis of the Saccharomyces cerevisiae literature leads to an appreciation of how much yeast biology has contributed to the conceptual framework underpinning our understanding of stem cell behavior, to the point where such insights have been internalized into the realm of the known. This Opinion article focuses on one such example, the quiescent adult mammalian stem cell, and examines concepts underlying our understanding of quiescence that can be attributed to studies in yeast. We discuss the metabolic, signaling and gene regulatory events that control entry and exit into quiescence in yeast. These processes and events retain remarkable conservation and conceptual parallels in mammalian systems, and collectively suggest a regulated program beyond the cessation of cell division. We argue that studies in yeast will continue to not only reveal fundamental concepts in quiescence, but also leaven progress in regenerative medicine.
Collapse
Affiliation(s)
- Jyotsna Dhawan
- Institute for Stem Cell Biology and Regenerative Medicine, Bangalore, India CSIR Center for Cellular and Molecular Biology, Hyderabad, India
| | - Sunil Laxman
- Institute for Stem Cell Biology and Regenerative Medicine, Bangalore, India
| |
Collapse
|