1
|
Bammidi LS, Gayen S. Multifaceted role of CTCF in X-chromosome inactivation. Chromosoma 2024; 133:217-231. [PMID: 39433641 DOI: 10.1007/s00412-024-00826-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 10/02/2024] [Accepted: 10/07/2024] [Indexed: 10/23/2024]
Abstract
Therian female mammals compensate for the dosage of X-linked gene expression by inactivating one of the X-chromosomes. X-inactivation is facilitated by the master regulator Xist long non-coding RNA, which coats the inactive-X and facilitates heterochromatinization through recruiting different chromatin modifiers and changing the X-chromosome 3D conformation. However, many mechanistic aspects behind the X-inactivation process remain poorly understood. Among the many contributing players, CTCF has emerged as one of the key players in orchestrating various aspects related to X-chromosome inactivation by interacting with several other protein and RNA partners. In general, CTCF is a well-known architectural protein, which plays an important role in chromatin organization and transcriptional regulation. Here, we provide significant insight into the role of CTCF in orchestrating X-chromosome inactivation and highlight future perspectives.
Collapse
Affiliation(s)
- Lakshmi Sowjanya Bammidi
- Chromatin RNA and Genome (CRG) Lab, Department of Developmental Biology and Genetics, Indian Institute of Science, Bangalore-560012, India
| | - Srimonta Gayen
- Chromatin RNA and Genome (CRG) Lab, Department of Developmental Biology and Genetics, Indian Institute of Science, Bangalore-560012, India.
| |
Collapse
|
2
|
Peeters SB, Posynick BJ, Brown CJ. Out of the Silence: Insights into How Genes Escape X-Chromosome Inactivation. EPIGENOMES 2023; 7:29. [PMID: 38131901 PMCID: PMC10742877 DOI: 10.3390/epigenomes7040029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/08/2023] [Accepted: 11/14/2023] [Indexed: 12/23/2023] Open
Abstract
The silencing of all but one X chromosome in mammalian cells is a remarkable epigenetic process leading to near dosage equivalence in X-linked gene products between the sexes. However, equally remarkable is the ability of a subset of genes to continue to be expressed from the otherwise inactive X chromosome-in some cases constitutively, while other genes are variable between individuals, tissues or cells. In this review we discuss the advantages and disadvantages of the approaches that have been used to identify escapees. The identity of escapees provides important clues to mechanisms underlying escape from XCI, an arena of study now moving from correlation to functional studies. As most escapees show greater expression in females, the not-so-inactive X chromosome is a substantial contributor to sex differences in humans, and we highlight some examples of such impact.
Collapse
Affiliation(s)
| | | | - Carolyn J. Brown
- Molecular Epigenetics Group, Department of Medical Genetics, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
3
|
Peeters S, Leung T, Fornes O, Farkas R, Wasserman W, Brown C. Refining the genomic determinants underlying escape from X-chromosome inactivation. NAR Genom Bioinform 2023; 5:lqad052. [PMID: 37260510 PMCID: PMC10227363 DOI: 10.1093/nargab/lqad052] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/01/2023] [Accepted: 05/19/2023] [Indexed: 06/02/2023] Open
Abstract
X-chromosome inactivation (XCI) epigenetically silences one X chromosome in every cell in female mammals. Although the majority of X-linked genes are silenced, in humans 20% or more are able to escape inactivation and continue to be expressed. Such escape genes are important contributors to sex differences in gene expression, and may impact the phenotypes of X aneuploidies; yet the mechanisms regulating escape from XCI are not understood. We have performed an enrichment analysis of transcription factor binding on the X chromosome, providing new evidence for enriched factors at the transcription start sites of escape genes. The top escape-enriched transcription factors were detected at the RPS4X promoter, a well-described human escape gene previously demonstrated to escape from XCI in a transgenic mouse model. Using a cell line model system that allows for targeted integration and inactivation of transgenes on the mouse X chromosome, we further assessed combinations of RPS4X promoter and genic elements for their ability to drive escape from XCI. We identified a small transgenic construct of only 6 kb capable of robust escape from XCI, establishing that gene-proximal elements are sufficient to permit escape, and highlighting the additive effect of multiple elements that work together in a context-specific fashion.
Collapse
Affiliation(s)
- Samantha Peeters
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Tiffany Leung
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
- Centre for Molecular Medicine and Therapeutics at British Columbia Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Oriol Fornes
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
- Centre for Molecular Medicine and Therapeutics at British Columbia Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Rachelle A Farkas
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
- Centre for Molecular Medicine and Therapeutics at British Columbia Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Wyeth W Wasserman
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
- Centre for Molecular Medicine and Therapeutics at British Columbia Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Carolyn J Brown
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
4
|
Fang H, Tronco AR, Bonora G, Nguyen T, Thakur J, Berletch JB, Filippova GN, Henikoff S, Shendure J, Noble WS, Disteche CM, Deng X. CTCF-mediated insulation and chromatin environment modulate Car5b escape from X inactivation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.04.539469. [PMID: 37205597 PMCID: PMC10187265 DOI: 10.1101/2023.05.04.539469] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Background The number and escape levels of genes that escape X chromosome inactivation (XCI) in female somatic cells vary among tissues and cell types, potentially contributing to specific sex differences. Here we investigate the role of CTCF, a master chromatin conformation regulator, in regulating escape from XCI. CTCF binding profiles and epigenetic features were systematically examined at constitutive and facultative escape genes using mouse allelic systems to distinguish the inactive X (Xi) and active X (Xa) chromosomes. Results We found that escape genes are located inside domains flanked by convergent arrays of CTCF binding sites, consistent with the formation of loops. In addition, strong and divergent CTCF binding sites often located at the boundaries between escape genes and adjacent neighbors subject to XCI would help insulate domains. Facultative escapees show clear differences in CTCF binding dependent on their XCI status in specific cell types/tissues. Concordantly, deletion but not inversion of a CTCF binding site at the boundary between the facultative escape gene Car5b and its silent neighbor Siah1b resulted in loss of Car5b escape. Reduced CTCF binding and enrichment of a repressive mark over Car5b in cells with a boundary deletion indicated loss of looping and insulation. In mutant lines in which either the Xi-specific compact structure or its H3K27me3 enrichment was disrupted, escape genes showed an increase in gene expression and associated active marks, supporting the roles of the 3D Xi structure and heterochromatic marks in constraining levels of escape. Conclusion Our findings indicate that escape from XCI is modulated both by looping and insulation of chromatin via convergent arrays of CTCF binding sites and by compaction and epigenetic features of the surrounding heterochromatin.
Collapse
Affiliation(s)
- He Fang
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195
| | - Ana R Tronco
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195
| | - Giancarlo Bonora
- Department of Genome Sciences, University of Washington, Seattle, WA, 98195
| | - Truong Nguyen
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195
| | - Jitendra Thakur
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109
| | - Joel B Berletch
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195
| | - Galina N Filippova
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195
| | - Steven Henikoff
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109
| | - Jay Shendure
- Department of Genome Sciences, University of Washington, Seattle, WA, 98195
| | - William S Noble
- Department of Genome Sciences, University of Washington, Seattle, WA, 98195
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA, 98195
| | - Christine M Disteche
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195
- Department of Medicine, University of Washington, Seattle, WA, 98195
| | - Xinxian Deng
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195
| |
Collapse
|
5
|
A lifelong duty: how Xist maintains the inactive X chromosome. Curr Opin Genet Dev 2022; 75:101927. [PMID: 35717799 PMCID: PMC9472561 DOI: 10.1016/j.gde.2022.101927] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 05/10/2022] [Accepted: 05/14/2022] [Indexed: 11/22/2022]
Abstract
Female eutherians transcriptionally silence one X chromosome to balance gene dosage between the sexes. X-chromosome inactivation (XCI) is initiated by the lncRNA Xist, which assembles many proteins within the inactive X chromosome (Xi) to trigger gene silencing and heterochromatin formation. It is well established that gene silencing on the Xi is maintained through repressive epigenetic processes, including histone deacetylation and DNA methylation. Recent studies revealed a new mechanism where RNA-binding proteins that interact directly with the RNA contribute to the maintenance of Xist localization and gene silencing. In addition, a surprising plasticity of the Xi was uncovered with many genes becoming upregulated upon experimental deletion of Xist. Intriguingly, immune cells normally lose Xist from the Xi, suggesting that thisXist dependence is utilized in vivo to dynamically regulate gene expression from the Xi. These new studies expose fundamental regulatory mechanisms for the chromatin association of RNAs, highlight the need for studying the maintenance of XCI and Xist localization in a gene- and cell-type-specific manner, and are likely to have clinical impact.
Collapse
|
6
|
Dossin F, Heard E. The Molecular and Nuclear Dynamics of X-Chromosome Inactivation. Cold Spring Harb Perspect Biol 2022; 14:a040196. [PMID: 34312245 PMCID: PMC9121902 DOI: 10.1101/cshperspect.a040196] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In female eutherian mammals, dosage compensation of X-linked gene expression is achieved during development through transcriptional silencing of one of the two X chromosomes. Following X chromosome inactivation (XCI), the inactive X chromosome remains faithfully silenced throughout somatic cell divisions. XCI is dependent on Xist, a long noncoding RNA that coats and silences the X chromosome from which it is transcribed. Xist coating triggers a cascade of chromosome-wide changes occurring at the levels of transcription, chromatin composition, chromosome structure, and spatial organization within the nucleus. XCI has emerged as a paradigm for the study of such crucial nuclear processes and the dissection of their functional interplay. In the past decade, the advent of tools to characterize and perturb these processes have provided an unprecedented understanding into their roles during XCI. The mechanisms orchestrating the initiation of XCI as well as its maintenance are thus being unraveled, although many questions still remain. Here, we introduce key aspects of the XCI process and review the recent discoveries about its molecular basis.
Collapse
Affiliation(s)
- François Dossin
- European Molecular Biology Laboratory, Director's Unit, 69117 Heidelberg, Germany
| | - Edith Heard
- European Molecular Biology Laboratory, Director's Unit, 69117 Heidelberg, Germany
| |
Collapse
|
7
|
Balaton BP, Brown CJ. Contribution of genetic and epigenetic changes to escape from X-chromosome inactivation. Epigenetics Chromatin 2021; 14:30. [PMID: 34187555 PMCID: PMC8244145 DOI: 10.1186/s13072-021-00404-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/17/2021] [Indexed: 01/26/2023] Open
Abstract
Background X-chromosome inactivation (XCI) is the epigenetic inactivation of one of two X chromosomes in XX eutherian mammals. The inactive X chromosome is the result of multiple silencing pathways that act in concert to deposit chromatin changes, including DNA methylation and histone modifications. Yet over 15% of genes escape or variably escape from inactivation and continue to be expressed from the otherwise inactive X chromosome. To the extent that they have been studied, epigenetic marks correlate with this expression. Results Using publicly available data, we compared XCI status calls with DNA methylation, H3K4me1, H3K4me3, H3K9me3, H3K27ac, H3K27me3 and H3K36me3. At genes subject to XCI we found heterochromatic marks enriched, and euchromatic marks depleted on the inactive X when compared to the active X. Genes escaping XCI were more similar between the active and inactive X. Using sample-specific XCI status calls, we found some marks differed significantly with variable XCI status, but which marks were significant was not consistent between genes. A model trained to predict XCI status from these epigenetic marks obtained over 75% accuracy for genes escaping and over 90% for genes subject to XCI. This model made novel XCI status calls for genes without allelic differences or CpG islands required for other methods. Examining these calls across a domain of variably escaping genes, we saw XCI status vary across individual genes rather than at the domain level. Lastly, we compared XCI status calls to genetic polymorphisms, finding multiple loci associated with XCI status changes at variably escaping genes, but none individually sufficient to induce an XCI status change. Conclusion The control of expression from the inactive X chromosome is multifaceted, but ultimately regulated at the individual gene level with detectable but limited impact of distant polymorphisms. On the inactive X, at silenced genes euchromatic marks are depleted while heterochromatic marks are enriched. Genes escaping inactivation show a less significant enrichment of heterochromatic marks and depletion of H3K27ac. Combining all examined marks improved XCI status prediction, particularly for genes without CpG islands or polymorphisms, as no single feature is a consistent feature of silenced or expressed genes. Supplementary Information The online version contains supplementary material available at 10.1186/s13072-021-00404-9.
Collapse
Affiliation(s)
- Bradley P Balaton
- Department of Medical Genetics, The University of British Columbia, Vancouver, Canada
| | - Carolyn J Brown
- Department of Medical Genetics, The University of British Columbia, Vancouver, Canada.
| |
Collapse
|
8
|
Hatch HAM, O'Neil MH, Marion RW, Secombe J, Shulman LH. Caregiver-reported characteristics of children diagnosed with pathogenic variants in KDM5C. Am J Med Genet A 2021; 185:2951-2958. [PMID: 34089235 DOI: 10.1002/ajmg.a.62381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 05/08/2021] [Accepted: 05/22/2021] [Indexed: 11/09/2022]
Abstract
Loss of function variants in the lysine demethylase 5C (KDM5C) gene account for approximately 0.7-2.8% of X-linked intellectual disability (ID) cases and pose significant burdens for patients and their caregivers. To date, 45 unique variants in KDM5C have been reported in individuals with ID. As a rare disorder, its etiology and natural history remain an area of active investigation, with treatment limited to symptom management. Previous studies have found that males present with moderate to severe ID with significant syndromic comorbidities such as epilepsy, short stature, and craniofacial abnormalities. Although not as well characterized, females have been reported to predominantly display mild to moderate ID with approximately half being asymptomatic. Here, we present caregiver-reported data for 37 unrelated individuals with pathogenic variants in KDM5C; the largest cohort reported to-date. We find that up to 70% of affected females were reported to display syndromic features including gastrointestinal dysfunction and hearing impairment. Additionally, more than half of individuals reported a diagnosis of autism spectrum disorder or described features consistent with this spectrum. Our data thus provide further evidence of sexually dimorphic heterogeneity in disease presentation and suggest that pathogenic variants in KDM5C may be more common than previously assumed.
Collapse
Affiliation(s)
- Hayden A M Hatch
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Molly H O'Neil
- Rose F. Kennedy Children's Evaluation and Rehabilitation Center, The Children's Hospital at Montefiore, Bronx, New York, USA
| | - Robert W Marion
- Division of Genetic Medicine, The Children's Hospital at Montefiore, Bronx, New York, USA
| | - Julie Secombe
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, USA.,Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Lisa H Shulman
- Rose F. Kennedy Children's Evaluation and Rehabilitation Center, The Children's Hospital at Montefiore, Bronx, New York, USA
| |
Collapse
|
9
|
Bansal P, Ahern DT, Kondaveeti Y, Qiu CW, Pinter SF. Contiguous erosion of the inactive X in human pluripotency concludes with global DNA hypomethylation. Cell Rep 2021; 35:109215. [PMID: 34107261 PMCID: PMC8267460 DOI: 10.1016/j.celrep.2021.109215] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 08/18/2020] [Accepted: 05/13/2021] [Indexed: 01/21/2023] Open
Abstract
Female human pluripotent stem cells (hPSCs) routinely undergo inactive X (Xi) erosion. This progressive loss of key repressive features follows the loss of XIST expression, the long non-coding RNA driving X inactivation, and causes reactivation of silenced genes across the eroding X (Xe). To date, the sporadic and progressive nature of erosion has obscured its scale, dynamics, and key transition events. To address this problem, we perform an integrated analysis of DNA methylation (DNAme), chromatin accessibility, and gene expression across hundreds of hPSC samples. Differential DNAme orders female hPSCs across a trajectory from initiation to terminal Xi erosion. Our results identify a cis-regulatory element crucial for XIST expression, trace contiguously growing reactivated domains to a few euchromatic origins, and indicate that the late-stage Xe impairs DNAme genome-wide. Surprisingly, from this altered regulatory landscape emerge select features of naive pluripotency, suggesting that its link to X dosage may be partially conserved in human embryonic development. Reactivation of the silenced X in human female iPSC/ESCs compromises their utility. Bansal et al. perform an integrated genomics analysis to reveal a prevalent X erosion trajectory that they validate in long-term culture. Starting with XIST loss, this trajectory indicates that reactivation may spread contiguously from escapees to silenced genes.
Collapse
Affiliation(s)
- Prakhar Bansal
- Graduate Program in Genetics and Developmental Biology, UCONN Health, University of Connecticut, Farmington, CT, USA; Department of Genetics and Genome Sciences, UCONN Health, University of Connecticut, Farmington, CT, USA
| | - Darcy T Ahern
- Graduate Program in Genetics and Developmental Biology, UCONN Health, University of Connecticut, Farmington, CT, USA; Department of Genetics and Genome Sciences, UCONN Health, University of Connecticut, Farmington, CT, USA
| | - Yuvabharath Kondaveeti
- Department of Genetics and Genome Sciences, UCONN Health, University of Connecticut, Farmington, CT, USA
| | - Catherine W Qiu
- Department of Genetics and Genome Sciences, UCONN Health, University of Connecticut, Farmington, CT, USA
| | - Stefan F Pinter
- Graduate Program in Genetics and Developmental Biology, UCONN Health, University of Connecticut, Farmington, CT, USA; Department of Genetics and Genome Sciences, UCONN Health, University of Connecticut, Farmington, CT, USA; Institute for Systems Genomics, University of Connecticut, Farmington, CT, USA.
| |
Collapse
|
10
|
Navarro-Cobos MJ, Balaton BP, Brown CJ. Genes that escape from X-chromosome inactivation: Potential contributors to Klinefelter syndrome. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2020; 184:226-238. [PMID: 32441398 PMCID: PMC7384012 DOI: 10.1002/ajmg.c.31800] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/01/2020] [Accepted: 05/03/2020] [Indexed: 12/18/2022]
Abstract
One of the two X chromosomes in females is epigenetically inactivated, thereby compensating for the dosage difference in X-linked genes between XX females and XY males. Not all X-linked genes are completely inactivated, however, with 12% of genes escaping X chromosome inactivation and another 15% of genes varying in their X chromosome inactivation status across individuals, tissues or cells. Expression of these genes from the second and otherwise inactive X chromosome may underlie sex differences between males and females, and feature in many of the symptoms of XXY Klinefelter males, who have both an inactive X and a Y chromosome. We review the approaches used to identify genes that escape from X-chromosome inactivation and discuss the nature of their sex-biased expression. These genes are enriched on the short arm of the X chromosome, and, in addition to genes in the pseudoautosomal regions, include genes with and without Y-chromosomal counterparts. We highlight candidate escape genes for some of the features of Klinefelter syndrome and discuss our current understanding of the mechanisms underlying silencing and escape on the X chromosome as well as additional differences between the X in males and females that may contribute to Klinefelter syndrome.
Collapse
Affiliation(s)
- Maria Jose Navarro-Cobos
- Department of Medical Genetics, Molecular Epigenetics Group, Life Sciences Institute, Vancouver, British Columbia, Canada
| | - Bradley P Balaton
- Department of Medical Genetics, Molecular Epigenetics Group, Life Sciences Institute, Vancouver, British Columbia, Canada
| | - Carolyn J Brown
- Department of Medical Genetics, Molecular Epigenetics Group, Life Sciences Institute, Vancouver, British Columbia, Canada
| |
Collapse
|
11
|
Posynick BJ, Brown CJ. Escape From X-Chromosome Inactivation: An Evolutionary Perspective. Front Cell Dev Biol 2019; 7:241. [PMID: 31696116 PMCID: PMC6817483 DOI: 10.3389/fcell.2019.00241] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 10/02/2019] [Indexed: 12/14/2022] Open
Abstract
Sex chromosomes originate as a pair of homologus autosomes that then follow a general pattern of divergence. This is evident in mammalian sex chromosomes, which have undergone stepwise recombination suppression events that left footprints of evolutionary strata on the X chromosome. The loss of genes on the Y chromosome led to Ohno’s hypothesis of dosage equivalence between XY males and XX females, which is achieved through X-chromosome inactivation (XCI). This process transcriptionally silences all but one X chromosome in each female cell, although 15–30% of human X-linked genes still escape inactivation. There are multiple evolutionary pathways that may lead to a gene escaping XCI, including remaining Y chromosome homology, or female advantage to escape. The conservation of some escape genes across multiple species and the ability of the mouse inactive X to recapitulate human escape status both suggest that escape from XCI is controlled by conserved processes. Evolutionary pressures to minimize dosage imbalances have led to the accumulation of genetic elements that favor either silencing or escape; lack of dosage sensitivity might also allow for the escape of flanking genes near another escapee, if a boundary element is not present between them. Delineation of the elements involved in escape is progressing, but mechanistic understanding of how they interact to allow escape from XCI is still lacking. Although increasingly well-studied in humans and mice, non-trivial challenges to studying escape have impeded progress in other species. Mouse models that can dissect the role of the sex chromosomes distinct from sex of the organism reveal an important contribution for escape genes to multiple diseases. In humans, with their elevated number of escape genes, the phenotypic consequences of sex chromosome aneuplodies and sexual dimorphism in disease both highlight the importance of escape genes.
Collapse
Affiliation(s)
- Bronwyn J Posynick
- Department of Medical Genetics, Molecular Epigenetics Group, Life Sciences Institute, The University of British Columbia, Vancouver, BC, Canada
| | - Carolyn J Brown
- Department of Medical Genetics, Molecular Epigenetics Group, Life Sciences Institute, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
12
|
Fang H, Disteche CM, Berletch JB. X Inactivation and Escape: Epigenetic and Structural Features. Front Cell Dev Biol 2019; 7:219. [PMID: 31632970 PMCID: PMC6779695 DOI: 10.3389/fcell.2019.00219] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 09/18/2019] [Indexed: 12/27/2022] Open
Abstract
X inactivation represents a complex multi-layer epigenetic mechanism that profoundly modifies chromatin composition and structure of one X chromosome in females. The heterochromatic inactive X chromosome adopts a unique 3D bipartite structure and a location close to the nuclear periphery or the nucleolus. X-linked lncRNA loci and their transcripts play important roles in the recruitment of proteins that catalyze chromatin and DNA modifications for silencing, as well as in the control of chromatin condensation and location of the inactive X chromosome. A subset of genes escapes X inactivation, raising questions about mechanisms that preserve their expression despite being embedded within heterochromatin. Escape gene expression differs between males and females, which can lead to physiological sex differences. We review recent studies that emphasize challenges in understanding the role of lncRNAs in the control of epigenetic modifications, structural features and nuclear positioning of the inactive X chromosome. Second, we highlight new findings about the distribution of genes that escape X inactivation based on single cell studies, and discuss the roles of escape genes in eliciting sex differences in health and disease.
Collapse
Affiliation(s)
- He Fang
- Department of Pathology, University of Washington, Seattle, WA, United States
| | - Christine M. Disteche
- Department of Pathology, University of Washington, Seattle, WA, United States
- Department of Medicine, University of Washington, Seattle, WA, United States
| | - Joel B. Berletch
- Department of Pathology, University of Washington, Seattle, WA, United States
| |
Collapse
|
13
|
Balaton BP, Dixon-McDougall T, Peeters SB, Brown CJ. The eXceptional nature of the X chromosome. Hum Mol Genet 2019; 27:R242-R249. [PMID: 29701779 DOI: 10.1093/hmg/ddy148] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 04/20/2018] [Indexed: 12/16/2022] Open
Abstract
The X chromosome is unique in the genome. In this review we discuss recent advances in our understanding of the genetics and epigenetics of the X chromosome. The X chromosome shares limited conservation with its ancestral homologue the Y chromosome and the resulting difference in X-chromosome dosage between males and females is largely compensated for by X-chromosome inactivation. The process of inactivation is initiated by the long non-coding RNA X-inactive specific transcript (XIST) and achieved through interaction with multiple synergistic silencing pathways. Identification of Xist-interacting proteins has given insight into these processes yet the cascade of events from initiation to maintenance have still to be resolved. In particular, the initiation of inactivation in humans has been challenging to study as: it occurs very early in development; most human embryonic stem cell lines already have an inactive X; and the process seems to differ from mouse. Another difference between human and mouse X inactivation is the larger number of human genes that escape silencing. In humans over 20% of X-linked genes continue to be expressed from the otherwise inactive X chromosome. We are only beginning to understand how such escape occurs but there is growing recognition that escapees contribute to sexually dimorphic traits. The unique biology and epigenetics of the X chromosome have often led to its exclusion from disease studies, yet the X constitutes 5% of the genome and is an important contributor to disease, often in a sex-specific manner.
Collapse
Affiliation(s)
- Bradley P Balaton
- Molecular Epigenetics Group, Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Thomas Dixon-McDougall
- Molecular Epigenetics Group, Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Samantha B Peeters
- Molecular Epigenetics Group, Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Carolyn J Brown
- Molecular Epigenetics Group, Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
14
|
Peeters SB, Korecki AJ, Simpson EM, Brown CJ. Human cis-acting elements regulating escape from X-chromosome inactivation function in mouse. Hum Mol Genet 2019; 27:1252-1262. [PMID: 29401310 PMCID: PMC6159535 DOI: 10.1093/hmg/ddy039] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 01/29/2018] [Indexed: 12/18/2022] Open
Abstract
A long-standing question concerning X-chromosome inactivation (XCI) has been how some genes avoid the otherwise stable chromosome-wide heterochromatinization of the inactive X chromosome. As 20% or more of human X-linked genes escape from inactivation, such genes are an important contributor to sex differences in gene expression. Although both human and mouse have genes that escape from XCI, more genes escape in humans than mice, with human escape genes often clustering in larger domains than the single escape genes of mouse. Mouse models offer a well-characterized and readily manipulated system in which to study XCI, but given the differences in genes that escape it is unclear whether the mechanism of escape gene regulation is conserved. To address conservation of the process and the potential to identify elements by modelling human escape gene regulation using mouse, we integrated a human and a mouse BAC each containing an escape gene and flanking subject genes at the mouse X-linked Hprt gene. Escape-level expression and corresponding low promoter DNA methylation of human genes RPS4X and CITED1 demonstrated that the mouse system is capable of recognizing human elements and therefore can be used as a model for further refinement of critical elements necessary for escape from XCI in humans.
Collapse
Affiliation(s)
- Samantha B Peeters
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Andrea J Korecki
- Centre for Molecular Medicine and Therapeutics at British Columbia Children's Hospital, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Elizabeth M Simpson
- Centre for Molecular Medicine and Therapeutics at British Columbia Children's Hospital, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Carolyn J Brown
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
15
|
Galupa R, Heard E. X-Chromosome Inactivation: A Crossroads Between Chromosome Architecture and Gene Regulation. Annu Rev Genet 2018; 52:535-566. [PMID: 30256677 DOI: 10.1146/annurev-genet-120116-024611] [Citation(s) in RCA: 144] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In somatic nuclei of female therian mammals, the two X chromosomes display very different chromatin states: One X is typically euchromatic and transcriptionally active, and the other is mostly silent and forms a cytologically detectable heterochromatic structure termed the Barr body. These differences, which arise during female development as a result of X-chromosome inactivation (XCI), have been the focus of research for many decades. Initial approaches to define the structure of the inactive X chromosome (Xi) and its relationship to gene expression mainly involved microscopy-based approaches. More recently, with the advent of genomic techniques such as chromosome conformation capture, molecular details of the structure and expression of the Xi have been revealed. Here, we review our current knowledge of the 3D organization of the mammalian X-chromosome chromatin and discuss its relationship with gene activity in light of the initiation, spreading, and maintenance of XCI, as well as escape from gene silencing.
Collapse
Affiliation(s)
- Rafael Galupa
- Genetics and Developmental Biology Unit and Mammalian Developmental Epigenetics Group, Institut Curie, PSL Research University, CNRS UMR3215, INSERM U934, 75248 Paris, France; .,Current affiliation: Developmental Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Edith Heard
- Genetics and Developmental Biology Unit and Mammalian Developmental Epigenetics Group, Institut Curie, PSL Research University, CNRS UMR3215, INSERM U934, 75248 Paris, France; .,Collège de France, 75231 Paris, France
| |
Collapse
|
16
|
Bonora G, Disteche CM. Structural aspects of the inactive X chromosome. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0357. [PMID: 28947656 PMCID: PMC5627159 DOI: 10.1098/rstb.2016.0357] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/09/2017] [Indexed: 12/20/2022] Open
Abstract
A striking difference between male and female nuclei was recognized early on by the presence of a condensed chromatin body only in female cells. Mary Lyon proposed that X inactivation or silencing of one X chromosome at random in females caused this structural difference. Subsequent studies have shown that the inactive X chromosome (Xi) does indeed have a very distinctive structure compared to its active counterpart and all autosomes in female mammals. In this review, we will recap the discovery of this fascinating biological phenomenon and seminal studies in the field. We will summarize imaging studies using traditional microscopy and super-resolution technology, which revealed uneven compaction of the Xi. We will then discuss recent findings based on high-throughput sequencing techniques, which uncovered the distinct three-dimensional bipartite configuration of the Xi and the role of specific long non-coding RNAs in eliciting and maintaining this structure. The relative position of specific genomic elements, including genes that escape X inactivation, repeat elements and chromatin features, will be reviewed. Finally, we will discuss the position of the Xi, either near the nuclear periphery or the nucleolus, and the elements implicated in this positioning. This article is part of the themed issue ‘X-chromosome inactivation: a tribute to Mary Lyon’.
Collapse
Affiliation(s)
- Giancarlo Bonora
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Christine M Disteche
- Department of Pathology, University of Washington, Seattle, WA 98195, USA .,Department of Medicine, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
17
|
Creamer KM, Lawrence JB. XIST RNA: a window into the broader role of RNA in nuclear chromosome architecture. Philos Trans R Soc Lond B Biol Sci 2017; 372:20160360. [PMID: 28947659 PMCID: PMC5627162 DOI: 10.1098/rstb.2016.0360] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2017] [Indexed: 12/31/2022] Open
Abstract
XIST RNA triggers the transformation of an active X chromosome into a condensed, inactive Barr body and therefore provides a unique window into transitions of higher-order chromosome architecture. Despite recent progress, how XIST RNA localizes and interacts with the X chromosome remains poorly understood. Genetic engineering of XIST into a trisomic autosome demonstrates remarkable capacity of XIST RNA to localize and comprehensively silence that autosome. Thus, XIST does not require X chromosome-specific sequences but operates on mechanisms available genome-wide. Prior results suggested XIST localization is controlled by attachment to the insoluble nuclear scaffold. Our recent work affirms that scaffold attachment factor A (SAF-A) is involved in anchoring XIST, but argues against the view that SAF-A provides a unimolecular bridge between RNA and the chromosome. Rather, we suggest that a complex meshwork of architectural proteins interact with XIST RNA. Parallel work studying the territory of actively transcribed chromosomes suggests that repeat-rich RNA 'coats' euchromatin and may impact chromosome architecture in a manner opposite of XIST A model is discussed whereby RNA may not just recruit histone modifications, but more directly impact higher-order chromatin condensation via interaction with architectural proteins of the nucleus.This article is part of the themed issue 'X-chromosome inactivation: a tribute to Mary Lyon'.
Collapse
Affiliation(s)
- K M Creamer
- Department of Neurology and Pediatrics, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - J B Lawrence
- Department of Neurology and Pediatrics, University of Massachusetts Medical School, Worcester, MA 01655, USA
| |
Collapse
|
18
|
Carrel L, Brown CJ. When the Lyon(ized chromosome) roars: ongoing expression from an inactive X chromosome. Philos Trans R Soc Lond B Biol Sci 2017; 372:20160355. [PMID: 28947654 PMCID: PMC5627157 DOI: 10.1098/rstb.2016.0355] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/24/2017] [Indexed: 12/21/2022] Open
Abstract
A tribute to Mary Lyon was held in October 2016. Many remarked about Lyon's foresight regarding many intricacies of the X-chromosome inactivation process. One such example is that a year after her original 1961 hypothesis she proposed that genes with Y homologues should escape from X inactivation to achieve dosage compensation between males and females. Fifty-five years later we have learned many details about these escapees that we attempt to summarize in this review, with a particular focus on recent findings. We now know that escapees are not rare, particularly on the human X, and that most lack functionally equivalent Y homologues, leading to their increasingly recognized role in sexually dimorphic traits. Newer sequencing technologies have expanded profiling of primary tissues that will better enable connections to sex-biased disorders as well as provide additional insights into the X-inactivation process. Chromosome organization, nuclear location and chromatin environments distinguish escapees from other X-inactivated genes. Nevertheless, several big questions remain, including what dictates their distinct epigenetic environment, the underlying basis of species differences in escapee regulation, how different classes of escapees are distinguished, and the roles that local sequences and chromosome ultrastructure play in escapee regulation.This article is part of the themed issue 'X-chromosome inactivation: a tribute to Mary Lyon'.
Collapse
Affiliation(s)
- Laura Carrel
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, 500 University Drive, Mail code H171, Hershey, PA 17033, USA
| | - Carolyn J Brown
- Department of Medical Genetics, Molecular Epigenetics Group, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, Canada BC V6T 1Z3
| |
Collapse
|
19
|
Genetic and epigenetic features direct differential efficiency of Xist-mediated silencing at X-chromosomal and autosomal locations. Nat Commun 2017; 8:690. [PMID: 28947736 PMCID: PMC5612955 DOI: 10.1038/s41467-017-00528-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 07/06/2017] [Indexed: 02/02/2023] Open
Abstract
Xist is indispensable for X chromosome inactivation. However, how Xist RNA directs chromosome-wide silencing and why some regions are more efficiently silenced than others remains unknown. Here, we explore the function of Xist by inducing ectopic Xist expression from multiple different X-linked and autosomal loci in mouse aneuploid and female diploid embryonic stem cells in which Xist-mediated silencing does not lead to lethal functional monosomy. We show that ectopic Xist expression faithfully recapitulates endogenous X chromosome inactivation from any location on the X chromosome, whereas long-range silencing of autosomal genes is less efficient. Long interspersed elements facilitate inactivation of genes located far away from the Xist transcription locus, and genes escaping X chromosome inactivation show enrichment of CTCF on X chromosomal but not autosomal loci. Our findings highlight important genomic and epigenetic features acquired during sex chromosome evolution to facilitate an efficient X chromosome inactivation process.Xist RNA is required for X chromosome inactivation but it is not well understood how Xist silences some regions more efficiently than others. Here, the authors induce ectopic Xist expression from multiple different X-linked and autosomal loci in cells to explore Xist function.
Collapse
|
20
|
Abstract
X chromosome inactivation (XCI) is a dosage compensation process that was adopted by female mammals to balance gene dosage between XX females and XY males. XCI starts with the upregulation of the non-coding RNA Xist, after which most X-linked genes are silenced and acquire a repressive chromatin state. Even though the chromatin marks of the inactive X have been fairly well described, the mechanisms responsible for the initiation of XCI remain largely unknown. In this review, we discuss recent developments that revealed unexpected factors playing a role in XCI and that might be of crucial importance to understand the mechanisms responsible for the very first steps of this chromosome-wide gene-silencing event.
Collapse
Affiliation(s)
- Ines Pinheiro
- Mammalian Developmental Epigenetics Group (équipe labellisée La Ligue), Institut Curie, PSL Research University, CNRS UMR3215, INSERM U934, 26 Rue d'Ulm, 11 75248 Paris Cedex 05, France
| | - Edith Heard
- Mammalian Developmental Epigenetics Group (équipe labellisée La Ligue), Institut Curie, PSL Research University, CNRS UMR3215, INSERM U934, 26 Rue d'Ulm, 11 75248 Paris Cedex 05, France
| |
Collapse
|
21
|
Narang P, Wilson Sayres MA. Variable Autosomal and X Divergence Near and Far from Genes Affects Estimates of Male Mutation Bias in Great Apes. Genome Biol Evol 2016; 8:3393-3405. [PMID: 27702816 PMCID: PMC5203777 DOI: 10.1093/gbe/evw232] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Male mutation bias, when more mutations are passed on via the male germline than via the female germline, is observed across mammals. One common way to infer the magnitude of male mutation bias, α, is to compare levels of neutral sequence divergence between genomic regions that spend different amounts of time in the male and female germline. For great apes, including human, we show that estimates of divergence are reduced in putatively unconstrained regions near genes relative to unconstrained regions far from genes. Divergence increases with increasing distance from genes on both the X chromosome and autosomes, but increases faster on the X chromosome than autosomes. As a result, ratios of X/A divergence increase with increasing distance from genes and corresponding estimates of male mutation bias are significantly higher in intergenic regions near genes versus far from genes. Future studies in other species will need to carefully consider the effect that genomic location will have on estimates of male mutation bias.
Collapse
Affiliation(s)
- Pooja Narang
- School of Life Sciences, Arizona State University, Tempe
| | - Melissa A Wilson Sayres
- School of Life Sciences, Arizona State University, Tempe .,Center for Evolution and Medicine, The Biodesign Institute, Arizona State University, Tempe
| |
Collapse
|
22
|
Wheeler BS, Anderson E, Frøkjær-Jensen C, Bian Q, Jorgensen E, Meyer BJ. Chromosome-wide mechanisms to decouple gene expression from gene dose during sex-chromosome evolution. eLife 2016; 5. [PMID: 27572259 PMCID: PMC5047749 DOI: 10.7554/elife.17365] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 08/29/2016] [Indexed: 11/24/2022] Open
Abstract
Changes in chromosome number impair fitness by disrupting the balance of gene expression. Here we analyze mechanisms to compensate for changes in gene dose that accompanied the evolution of sex chromosomes from autosomes. Using single-copy transgenes integrated throughout the Caenorhabditis elegans genome, we show that expression of all X-linked transgenes is balanced between XX hermaphrodites and XO males. However, proximity of a dosage compensation complex (DCC) binding site (rex site) is neither necessary to repress X-linked transgenes nor sufficient to repress transgenes on autosomes. Thus, X is broadly permissive for dosage compensation, and the DCC acts via a chromosome-wide mechanism to balance transcription between sexes. In contrast, no analogous X-chromosome-wide mechanism balances transcription between X and autosomes: expression of compensated hermaphrodite X-linked transgenes is half that of autosomal transgenes. Furthermore, our results argue against an X-chromosome dosage compensation model contingent upon rex-directed positioning of X relative to the nuclear periphery. DOI:http://dx.doi.org/10.7554/eLife.17365.001 DNA inside cells is packaged into structures called chromosomes, each of which contains numerous genes. Many organisms, including humans, have two copies of most chromosomes in their cells. If the process of cell division goes awry, cells can end up with too many or too few copies of their chromosomes, which can cause serious illnesses. Sex chromosomes pose a conundrum for cells. In humans, females have two copies of the X chromosome, whereas males only have one. This means that males have half the copy number (dose) of genes on the X chromosome. Human cells correct this imbalance by suppressing the activity, or expression, of most of the genes on one of the X chromosomes in females. “Dosage compensation” also occurs in the roundworm species Caenorhabditis elegans, because male worms have one X chromosome whilst hermaphrodites have two. The dosage compensation mechanism in roundworms differs from that in humans. It involves turning down the expression of both hermaphrodite X chromosomes by half. The process is enacted by a dosage compensation complex that binds to specific sites along both hermaphrodite X chromosomes. Dosage compensation mechanisms that reduce X chromosome expression in females cause sex chromosomes to have lower gene expression than non-sex chromosomes. Modern sex chromosomes evolved from a pair of non-sex chromosomes, and males lost one copy of all of the genes located on those ancestral chromosomes. This evolutionary history causes both sexes to have lower gene expression from X chromosomes than the other chromosomes, raising the question of whether a mechanism exists to balance out the difference in gene expression between sex chromosomes and non-sex chromosomes. Wheeler et al. now show that the expression of any foreign gene artificially added to the X chromosomes of C. elegans is equalized between males and hermaphrodites despite the difference in gene dose. The equalization works regardless of where on the X chromosome the new gene is added. The foreign gene does not need to be adjacent to a binding site for the dosage compensation complex. These results indicate that dosage compensation mechanisms regulate gene expression on a chromosome-wide scale. Wheeler et al. also show that genes added to X chromosomes are expressed at half the level as the same genes added to non-sex chromosomes. These results mean that no chromosome-wide mechanism balances gene expression levels between the X chromosome and the non-sex chromosomes. It remains unknown how C. elegans, and many other living organisms, evolved to tolerate a lower level of gene expression from the sex chromosomes. Instead of a chromosome-wide mechanism, it is likely that individual genes evolved different ways to alter their expression levels. Working out what these mechanisms are remains a challenge for further research. DOI:http://dx.doi.org/10.7554/eLife.17365.002
Collapse
Affiliation(s)
- Bayly S Wheeler
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
| | - Erika Anderson
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
| | - Christian Frøkjær-Jensen
- Department of Biology, Howard Hughes Medical Institute, University of Utah, Salt Lake City, United States.,Danish National Research Foundation Centre for Cardiac Arrhythmia, University of Copenhagen, Copenhagen, Denmark
| | - Qian Bian
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
| | - Erik Jorgensen
- Department of Biology, Howard Hughes Medical Institute, University of Utah, Salt Lake City, United States
| | - Barbara J Meyer
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
| |
Collapse
|
23
|
Escape Artists of the X Chromosome. Trends Genet 2016; 32:348-359. [PMID: 27103486 DOI: 10.1016/j.tig.2016.03.007] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 03/23/2016] [Accepted: 03/24/2016] [Indexed: 01/24/2023]
Abstract
Inactivation of one X chromosome in mammalian females achieves dosage compensation between XX females and XY males; however, over 15% of human X-linked genes continue to be expressed from the inactive X chromosome. New genomic methodologies have improved our identification and characterization of these escape genes, revealing the importance of DNA sequence, chromatin structure, and chromosome ultrastructure in regulating expression from an otherwise inactive chromosome. Study of these exceptions to the rule of silencing highlights the interconnectedness of chromatin and chromosome structure in X-chromosome inactivation (XCI). Recent advances also demonstrate the importance of these genes in sexually dimorphic disease risk, particularly cancer.
Collapse
|
24
|
Galupa R, Heard E. X-chromosome inactivation: new insights into cis and trans regulation. Curr Opin Genet Dev 2015; 31:57-66. [PMID: 26004255 DOI: 10.1016/j.gde.2015.04.002] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 04/02/2015] [Indexed: 12/19/2022]
Abstract
X-chromosome inactivation (XCI) is a developmentally associated process that evolved in mammals to enable gene dosage compensation between XX and XY individuals. In placental mammals, it is triggered by the long noncoding RNA Xist, which is produced from a complex regulatory locus, the X-inactivation centre (Xic). Recent insights into the regulatory landscape of the Xic, including its partitioning into topological associating domains (TADs) and its genetic dissection, have important implications for the monoallelic regulation of Xist. Here, we present some of the latest studies on X inactivation with a special focus on the regulation of Xist, its various functions and the putative role of chromosome conformation in regulating the dynamics of this locus during development and differentiation.
Collapse
Affiliation(s)
- Rafael Galupa
- Mammalian Developmental Epigenetics Group, Institut Curie, PSL University, CNRS UMR3215, INSERM U934, 26, rue d'Ulm, 75005 Paris, France
| | - Edith Heard
- Mammalian Developmental Epigenetics Group, Institut Curie, PSL University, CNRS UMR3215, INSERM U934, 26, rue d'Ulm, 75005 Paris, France.
| |
Collapse
|
25
|
Seruggia D, Fernández A, Cantero M, Pelczar P, Montoliu L. Functional validation of mouse tyrosinase non-coding regulatory DNA elements by CRISPR-Cas9-mediated mutagenesis. Nucleic Acids Res 2015; 43:4855-67. [PMID: 25897126 PMCID: PMC4446435 DOI: 10.1093/nar/gkv375] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Accepted: 04/08/2015] [Indexed: 12/26/2022] Open
Abstract
Newly developed genome-editing tools, such as the clustered regularly interspaced short palindromic repeat (CRISPR)-Cas9 system, allow simple and rapid genetic modification in most model organisms and human cell lines. Here, we report the production and analysis of mice carrying the inactivation via deletion of a genomic insulator, a key non-coding regulatory DNA element found 5' upstream of the mouse tyrosinase (Tyr) gene. Targeting sequences flanking this boundary in mouse fertilized eggs resulted in the efficient deletion or inversion of large intervening DNA fragments delineated by the RNA guides. The resulting genome-edited mice showed a dramatic decrease in Tyr gene expression as inferred from the evident decrease of coat pigmentation, thus supporting the functionality of this boundary sequence in vivo, at the endogenous locus. Several potential off-targets bearing sequence similarity with each of the two RNA guides used were analyzed and found to be largely intact. This study reports how non-coding DNA elements, even if located in repeat-rich genomic sequences, can be efficiently and functionally evaluated in vivo and, furthermore, it illustrates how the regulatory elements described by the ENCODE and EPIGENOME projects, in the mouse and human genomes, can be systematically validated.
Collapse
Affiliation(s)
- Davide Seruggia
- Department of Molecular and Cellular Biology, National Centre for Biotechnology (CNB-CSIC), Campus Cantoblanco, Darwin 3, 28049 Madrid, Spain CIBERER-ISCIII, Madrid, Spain
| | - Almudena Fernández
- Department of Molecular and Cellular Biology, National Centre for Biotechnology (CNB-CSIC), Campus Cantoblanco, Darwin 3, 28049 Madrid, Spain CIBERER-ISCIII, Madrid, Spain
| | - Marta Cantero
- Department of Molecular and Cellular Biology, National Centre for Biotechnology (CNB-CSIC), Campus Cantoblanco, Darwin 3, 28049 Madrid, Spain CIBERER-ISCIII, Madrid, Spain
| | - Pawel Pelczar
- Institute of Laboratory Animal Science, University of Zurich, Zurich, Switzerland
| | - Lluis Montoliu
- Department of Molecular and Cellular Biology, National Centre for Biotechnology (CNB-CSIC), Campus Cantoblanco, Darwin 3, 28049 Madrid, Spain CIBERER-ISCIII, Madrid, Spain
| |
Collapse
|
26
|
Berletch JB, Ma W, Yang F, Shendure J, Noble WS, Disteche CM, Deng X. Escape from X inactivation varies in mouse tissues. PLoS Genet 2015; 11:e1005079. [PMID: 25785854 PMCID: PMC4364777 DOI: 10.1371/journal.pgen.1005079] [Citation(s) in RCA: 185] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 02/17/2015] [Indexed: 12/22/2022] Open
Abstract
X chromosome inactivation (XCI) silences most genes on one X chromosome in female mammals, but some genes escape XCI. To identify escape genes in vivo and to explore molecular mechanisms that regulate this process we analyzed the allele-specific expression and chromatin structure of X-linked genes in mouse tissues and cells with skewed XCI and distinguishable alleles based on single nucleotide polymorphisms. Using a binomial model to assess allelic expression, we demonstrate a continuum between complete silencing and expression from the inactive X (Xi). The validity of the RNA-seq approach was verified using RT-PCR with species-specific primers or Sanger sequencing. Both common escape genes and genes with significant differences in XCI status between tissues were identified. Such genes may be candidates for tissue-specific sex differences. Overall, few genes (3-7%) escape XCI in any of the mouse tissues examined, suggesting stringent silencing and escape controls. In contrast, an in vitro system represented by the embryonic-kidney-derived Patski cell line showed a higher density of escape genes (21%), representing both kidney-specific escape genes and cell-line specific escape genes. Allele-specific RNA polymerase II occupancy and DNase I hypersensitivity at the promoter of genes on the Xi correlated well with levels of escape, consistent with an open chromatin structure at escape genes. Allele-specific CTCF binding on the Xi clustered at escape genes and was denser in brain compared to the Patski cell line, possibly contributing to a more compartmentalized structure of the Xi and fewer escape genes in brain compared to the cell line where larger domains of escape were observed.
Collapse
Affiliation(s)
- Joel B. Berletch
- Department of Pathology, University of Washington, Seattle, Washington, United States of America
| | - Wenxiu Ma
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Fan Yang
- Department of Pathology, University of Washington, Seattle, Washington, United States of America
| | - Jay Shendure
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - William S. Noble
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Christine M. Disteche
- Department of Pathology, University of Washington, Seattle, Washington, United States of America
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Xinxian Deng
- Department of Pathology, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
27
|
Merzouk S, Deuve JL, Dubois A, Navarro P, Avner P, Morey C. Lineage-specific regulation of imprinted X inactivation in extraembryonic endoderm stem cells. Epigenetics Chromatin 2014; 7:11. [PMID: 25053977 PMCID: PMC4105886 DOI: 10.1186/1756-8935-7-11] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 06/02/2014] [Indexed: 01/09/2023] Open
Abstract
Background Silencing of the paternal X chromosome (Xp), a phenomenon known as imprinted X-chromosome inactivation (I-XCI), characterises, amongst mouse extraembryonic lineages, the primitive endoderm and the extraembryonic endoderm (XEN) stem cells derived from it. Results Using a combination of chromatin immunoprecipitation characterisation of histone modifications and single-cell expression studies, we show that whilst the Xp in XEN cells, like the inactive X chromosome in other cell types, globally accumulates the repressive histone mark H3K27me3, a large number of Xp genes locally lack H3K27me3 and escape from I-XCI. In most cases this escape is specific to the XEN cell lineage. Importantly, the degree of escape and the genes concerned remain unchanged upon XEN conversion into visceral endoderm, suggesting stringent control of I-XCI in XEN derivatives. Surprisingly, chemical inhibition of EZH2, a member of the Polycomb repressive complex 2 (PRC2), and subsequent loss of H3K27me3 on the Xp, do not drastically perturb the pattern of silencing of Xp genes in XEN cells. Conclusions The observations that we report here suggest that the maintenance of gene expression profiles of the inactive Xp in XEN cells involves a tissue-specific mechanism that acts partly independently of PRC2 catalytic activity.
Collapse
Affiliation(s)
- Sarra Merzouk
- Mouse Molecular Genetics Laboratory, Pasteur Institute, 25 rue du Dr Roux, 75015 Paris, France ; Pasteur Cell, Pierre and Marie Curie University (UPMC), 25 rue du Dr Roux, 75015 Paris, France
| | - Jane Lynda Deuve
- Mouse Molecular Genetics Laboratory, Pasteur Institute, 25 rue du Dr Roux, 75015 Paris, France ; Present address: Pierre and Marie Curie University (UPMC), UMR7622, Institute of Biology of Paris-Seine (IBPS), 75005 Paris, France
| | - Agnès Dubois
- Mouse Molecular Genetics Laboratory, Pasteur Institute, 25 rue du Dr Roux, 75015 Paris, France ; Present address: Epigenetics of Stem Cells Laboratory', Pasteur Institute, 25 rue du Dr Roux, 75015 Paris, France
| | - Pablo Navarro
- Present address: Epigenetics of Stem Cells Laboratory', Pasteur Institute, 25 rue du Dr Roux, 75015 Paris, France
| | - Philip Avner
- Mouse Molecular Genetics Laboratory, Pasteur Institute, 25 rue du Dr Roux, 75015 Paris, France ; Present address: Dynamics of Epigenetic Regulation, EMBL Monterotondo, Adriano Buzzati-Traverso Campus, Via Ramarini 32, 00015 Monterotondo, Italy
| | - Céline Morey
- Mouse Molecular Genetics Laboratory, Pasteur Institute, 25 rue du Dr Roux, 75015 Paris, France
| |
Collapse
|
28
|
Chaligné R, Heard E. X-chromosome inactivation in development and cancer. FEBS Lett 2014; 588:2514-22. [PMID: 24937141 DOI: 10.1016/j.febslet.2014.06.023] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 06/06/2014] [Indexed: 12/21/2022]
Abstract
X-chromosome inactivation represents an epigenetics paradigm and a powerful model system of facultative heterochromatin formation triggered by a non-coding RNA, Xist, during development. Once established, the inactive state of the Xi is highly stable in somatic cells, thanks to a combination of chromatin associated proteins, DNA methylation and nuclear organization. However, sporadic reactivation of X-linked genes has been reported during ageing and in transformed cells and disappearance of the Barr body is frequently observed in cancer cells. In this review we summarise current knowledge on the epigenetic changes that accompany X inactivation and discuss the extent to which the inactive X chromosome may be epigenetically or genetically perturbed in breast cancer.
Collapse
Affiliation(s)
- Ronan Chaligné
- Mammalian Developmental Epigenetics Group, Genetics and Developmental Biology Unit, Institut Curie, CNRS UMR3215, INSERM U934, 75248 Paris, France
| | - Edith Heard
- Mammalian Developmental Epigenetics Group, Genetics and Developmental Biology Unit, Institut Curie, CNRS UMR3215, INSERM U934, 75248 Paris, France.
| |
Collapse
|
29
|
Peeters SB, Cotton AM, Brown CJ. Variable escape from X-chromosome inactivation: identifying factors that tip the scales towards expression. Bioessays 2014; 36:746-56. [PMID: 24913292 PMCID: PMC4143967 DOI: 10.1002/bies.201400032] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In humans over 15% of X-linked genes have been shown to ‘escape’ from X-chromosome inactivation (XCI): they continue to be expressed to some extent from the inactive X chromosome. Mono-allelic expression is anticipated within a cell for genes subject to XCI, but random XCI usually results in expression of both alleles in a cell population. Using a study of allelic expression from cultured lymphoblasts and fibroblasts, many of which showed substantial skewing of XCI, we recently reported that the expression of genes lies on a contiunuum between those that are subject to inactivation, and those that escape. We now review allelic expression studies from mouse, and discuss the variability in escape seen in both humans and mice in genic expression levels, between X chromosomes and between tissues. We also discuss current knowledge of the heterochromatic features, DNA elements and three-dimensional topology of the inactive X that contribute to the balance of expression from the otherwise inactive X chromosome.
Collapse
Affiliation(s)
- Samantha B Peeters
- Department of Medical Genetics, Molecular Epigenetics Group, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | | | | |
Collapse
|
30
|
Deng X, Berletch JB, Nguyen DK, Disteche CM. X chromosome regulation: diverse patterns in development, tissues and disease. Nat Rev Genet 2014; 15:367-78. [PMID: 24733023 PMCID: PMC4117651 DOI: 10.1038/nrg3687] [Citation(s) in RCA: 220] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Genes on the mammalian X chromosome are present in one copy in males and two copies in females. The complex mechanisms that regulate the X chromosome lead to evolutionary and physiological variability in gene expression between species, the sexes, individuals, developmental stages, tissues and cell types. In early development, delayed and incomplete X chromosome inactivation (XCI) in some species causes variability in gene expression. Additional diversity stems from escape from XCI and from mosaicism or XCI skewing in females. This causes sex-specific differences that manifest as differential gene expression and associated phenotypes. Furthermore, the complexity and diversity of X dosage regulation affect the severity of diseases caused by X-linked mutations.
Collapse
Affiliation(s)
- Xinxian Deng
- Department of Pathology, School of Medicine, University of Washington, 1959 NE Pacific Street, Seattle, Washington 98115, USA
| | - Joel B Berletch
- Department of Pathology, School of Medicine, University of Washington, 1959 NE Pacific Street, Seattle, Washington 98115, USA
| | - Di K Nguyen
- Department of Pathology, School of Medicine, University of Washington, 1959 NE Pacific Street, Seattle, Washington 98115, USA
| | - Christine M Disteche
- 1] Department of Pathology, School of Medicine, University of Washington, 1959 NE Pacific Street, Seattle, Washington 98115, USA. [2] Department of Medicine, School of Medicine, University of Washington, 1959 NE Pacific Street, Seattle, Washington 98115, USA
| |
Collapse
|
31
|
Abstract
Genes on the mammalian X chromosome are present in one copy in males and two copies in females. The complex mechanisms that regulate the X chromosome lead to evolutionary and physiological variability in gene expression between species, the sexes, individuals, developmental stages, tissues and cell types. In early development, delayed and incomplete X chromosome inactivation (XCI) in some species causes variability in gene expression. Additional diversity stems from escape from XCI and from mosaicism or XCI skewing in females. This causes sex-specific differences that manifest as differential gene expression and associated phenotypes. Furthermore, the complexity and diversity of X dosage regulation affect the severity of diseases caused by X-linked mutations.
Collapse
|
32
|
Deng X, Berletch JB, Nguyen DK, Disteche CM. X chromosome regulation: diverse patterns in development, tissues and disease. Nat Rev Genet 2014. [PMID: 24733023 DOI: 10.1038/nrg3687,+10.1038/nrn3745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Genes on the mammalian X chromosome are present in one copy in males and two copies in females. The complex mechanisms that regulate the X chromosome lead to evolutionary and physiological variability in gene expression between species, the sexes, individuals, developmental stages, tissues and cell types. In early development, delayed and incomplete X chromosome inactivation (XCI) in some species causes variability in gene expression. Additional diversity stems from escape from XCI and from mosaicism or XCI skewing in females. This causes sex-specific differences that manifest as differential gene expression and associated phenotypes. Furthermore, the complexity and diversity of X dosage regulation affect the severity of diseases caused by X-linked mutations.
Collapse
Affiliation(s)
- Xinxian Deng
- Department of Pathology, School of Medicine, University of Washington, 1959 NE Pacific Street, Seattle, Washington 98115, USA
| | - Joel B Berletch
- Department of Pathology, School of Medicine, University of Washington, 1959 NE Pacific Street, Seattle, Washington 98115, USA
| | - Di K Nguyen
- Department of Pathology, School of Medicine, University of Washington, 1959 NE Pacific Street, Seattle, Washington 98115, USA
| | - Christine M Disteche
- 1] Department of Pathology, School of Medicine, University of Washington, 1959 NE Pacific Street, Seattle, Washington 98115, USA. [2] Department of Medicine, School of Medicine, University of Washington, 1959 NE Pacific Street, Seattle, Washington 98115, USA
| |
Collapse
|