1
|
Stewart RK, Nguyen P, Laederach A, Volkan PC, Sawyer JK, Fox DT. Orb2 enables rare-codon-enriched mRNA expression during Drosophila neuron differentiation. Nat Commun 2024; 15:5270. [PMID: 38902233 PMCID: PMC11190236 DOI: 10.1038/s41467-024-48344-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 04/25/2024] [Indexed: 06/22/2024] Open
Abstract
Regulation of codon optimality is an increasingly appreciated layer of cell- and tissue-specific protein expression control. Here, we use codon-modified reporters to show that differentiation of Drosophila neural stem cells into neurons enables protein expression from rare-codon-enriched genes. From a candidate screen, we identify the cytoplasmic polyadenylation element binding (CPEB) protein Orb2 as a positive regulator of rare-codon-dependent mRNA stability in neurons. Using RNA sequencing, we reveal that Orb2-upregulated mRNAs in the brain with abundant Orb2 binding sites have a rare-codon bias. From these Orb2-regulated mRNAs, we demonstrate that rare-codon enrichment is important for mRNA stability and social behavior function of the metabotropic glutamate receptor (mGluR). Our findings reveal a molecular mechanism by which neural stem cell differentiation shifts genetic code regulation to enable critical mRNA stability and protein expression.
Collapse
Affiliation(s)
- Rebeccah K Stewart
- Department of Pharmacology & Cancer Biology, Duke University, Durham, NC, USA
- Duke Regeneration Center, Duke University, Durham, NC, USA
| | - Patrick Nguyen
- Department of Pharmacology & Cancer Biology, Duke University, Durham, NC, USA
| | - Alain Laederach
- Department of Biology, University of North Carolina, Chapel Hill, NC, USA
| | | | - Jessica K Sawyer
- Department of Pharmacology & Cancer Biology, Duke University, Durham, NC, USA
- Duke Regeneration Center, Duke University, Durham, NC, USA
| | - Donald T Fox
- Department of Pharmacology & Cancer Biology, Duke University, Durham, NC, USA.
- Duke Regeneration Center, Duke University, Durham, NC, USA.
| |
Collapse
|
2
|
Stewart RK, Nguyen P, Laederach A, Volkan PC, Sawyer JK, Fox DT. Orb2 enables rare-codon-enriched mRNA expression during Drosophila neuron differentiation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.26.550700. [PMID: 37546801 PMCID: PMC10402044 DOI: 10.1101/2023.07.26.550700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Regulation of codon optimality is an increasingly appreciated layer of cell- and tissue-specific protein expression control. Here, we use codon-modified reporters to show that differentiation of Drosophila neural stem cells into neurons enables protein expression from rare-codon-enriched genes. From a candidate screen, we identify the cytoplasmic polyadenylation element binding (CPEB) protein Orb2 as a positive regulator of rare-codon-dependent expression in neurons. Using RNA sequencing, we reveal that Orb2-upregulated mRNAs in the brain with abundant Orb2 binding sites have a rare-codon bias. From these Orb2-regulated mRNAs, we demonstrate that rare-codon enrichment is important for expression control and social behavior function of the metabotropic glutamate receptor (mGluR). Our findings reveal a molecular mechanism by which neural stem cell differentiation shifts genetic code regulation to enable critical mRNA and protein expression.
Collapse
|
3
|
Raz AA, Vida GS, Stern SR, Mahadevaraju S, Fingerhut JM, Viveiros JM, Pal S, Grey JR, Grace MR, Berry CW, Li H, Janssens J, Saelens W, Shao Z, Hu C, Yamashita YM, Przytycka T, Oliver B, Brill JA, Krause H, Matunis EL, White-Cooper H, DiNardo S, Fuller MT. Emergent dynamics of adult stem cell lineages from single nucleus and single cell RNA-Seq of Drosophila testes. eLife 2023; 12:e82201. [PMID: 36795469 PMCID: PMC9934865 DOI: 10.7554/elife.82201] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 01/19/2023] [Indexed: 02/17/2023] Open
Abstract
Proper differentiation of sperm from germline stem cells, essential for production of the next generation, requires dramatic changes in gene expression that drive remodeling of almost all cellular components, from chromatin to organelles to cell shape itself. Here, we provide a single nucleus and single cell RNA-seq resource covering all of spermatogenesis in Drosophila starting from in-depth analysis of adult testis single nucleus RNA-seq (snRNA-seq) data from the Fly Cell Atlas (FCA) study. With over 44,000 nuclei and 6000 cells analyzed, the data provide identification of rare cell types, mapping of intermediate steps in differentiation, and the potential to identify new factors impacting fertility or controlling differentiation of germline and supporting somatic cells. We justify assignment of key germline and somatic cell types using combinations of known markers, in situ hybridization, and analysis of extant protein traps. Comparison of single cell and single nucleus datasets proved particularly revealing of dynamic developmental transitions in germline differentiation. To complement the web-based portals for data analysis hosted by the FCA, we provide datasets compatible with commonly used software such as Seurat and Monocle. The foundation provided here will enable communities studying spermatogenesis to interrogate the datasets to identify candidate genes to test for function in vivo.
Collapse
Affiliation(s)
- Amelie A Raz
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, Howard Hughes Medical InstituteCambridgeUnited States
| | - Gabriela S Vida
- Department of Cell and Developmental Biology, The Perelman School of Medicine and The Penn Institute for Regenerative MedicinePhiladelphiaUnited States
| | - Sarah R Stern
- Department of Developmental Biology, Stanford University School of MedicineStanfordUnited States
| | - Sharvani Mahadevaraju
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of HealthBethesdaUnited States
| | - Jaclyn M Fingerhut
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, Howard Hughes Medical InstituteCambridgeUnited States
| | - Jennifer M Viveiros
- Department of Cell Biology, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Soumitra Pal
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of HealthBethesdaUnited States
| | - Jasmine R Grey
- Department of Cell Biology, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Mara R Grace
- Department of Cell Biology, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Cameron W Berry
- Department of Developmental Biology, Stanford University School of MedicineStanfordUnited States
| | - Hongjie Li
- Huffington Center on Aging and Department of Molecular and Human Genetics, Baylor College of MedicineHoustonUnited States
| | - Jasper Janssens
- JVIB Center for Brain & Disease Research, and the Department of Human Genetics, KU LeuvenLeuvenBelgium
| | - Wouter Saelens
- Data Mining and Modeling for Biomedicine, VIB Center for Inflammation Research, and Department of Applied Mathematics, Computer Science and Statistics, Ghent UniversityGhentBelgium
| | - Zhantao Shao
- Donnelly Centre for Cellular and Biomolecular Research, University of TorontoTorontoCanada
| | - Chun Hu
- Donnelly Centre for Cellular and Biomolecular Research, University of TorontoTorontoCanada
| | - Yukiko M Yamashita
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, Howard Hughes Medical InstituteCambridgeUnited States
| | - Teresa Przytycka
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of HealthBethesdaUnited States
| | - Brian Oliver
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of HealthBethesdaUnited States
| | - Julie A Brill
- Cell Biology Program, The Hospital for Sick ChildrenTorontoCanada
- Department of Molecular Genetics, University of TorontoTorontoCanada
- Institute of Medical Science, University of TorontoTorontoCanada
| | - Henry Krause
- Donnelly Centre for Cellular and Biomolecular Research, University of TorontoTorontoCanada
- Department of Molecular Genetics, University of TorontoTorontoCanada
| | - Erika L Matunis
- Department of Cell Biology, Johns Hopkins University School of MedicineBaltimoreUnited States
| | | | - Stephen DiNardo
- Department of Cell and Developmental Biology, The Perelman School of Medicine and The Penn Institute for Regenerative MedicinePhiladelphiaUnited States
| | - Margaret T Fuller
- Department of Developmental Biology, Stanford University School of MedicineStanfordUnited States
- Department of Genetics, Stanford UniversityStanfordUnited States
| |
Collapse
|
4
|
Shao L, Fingerhut JM, Falk BL, Han H, Maldonado G, Qiao Y, Lee V, Hall E, Chen L, Polevoy G, Hernández G, Lasko P, Brill JA. Eukaryotic translation initiation factor eIF4E-5 is required for spermiogenesis in Drosophila melanogaster. Development 2023; 150:286752. [PMID: 36695474 DOI: 10.1242/dev.200477] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/16/2023] [Indexed: 01/26/2023]
Abstract
Drosophila sperm development is characterized by extensive post-transcriptional regulation whereby thousands of transcripts are preserved for translation during later stages. A key step in translation initiation is the binding of eukaryotic initiation factor 4E (eIF4E) to the 5' mRNA cap. In addition to canonical eIF4E-1, Drosophila has multiple eIF4E paralogs, including four (eIF4E-3, -4, -5, and -7) that are highly expressed in the testis. Among these, only eIF4E-3 has been characterized genetically. Here, using CRISPR/Cas9 mutagenesis, we determined that eIF4E-5 is essential for male fertility. eIF4E-5 protein localizes to the distal ends of elongated spermatid cysts, and eIF4E-5 mutants exhibit defects during post-meiotic stages, including a mild defect in spermatid cyst polarization. eIF4E-5 mutants also have a fully penetrant defect in individualization, resulting in failure to produce mature sperm. Indeed, our data indicate that eIF4E-5 regulates non-apoptotic caspase activity during individualization by promoting local accumulation of the E3 ubiquitin ligase inhibitor Soti. Our results further extend the diversity of non-canonical eIF4Es that carry out distinct spatiotemporal roles during spermatogenesis.
Collapse
Affiliation(s)
- Lisa Shao
- Cell Biology Program, The Hospital for Sick Children, PGCRL Building, 686 Bay Street, Toronto, Ontario, M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada
| | - Jaclyn M Fingerhut
- Whitehead Institute for Biomedical Research, Department of Biology, Massachusetts Institute of Technology, 455 Main Street, Cambridge, MA 02142, USA
- Howard Hughes Medical Institute, 455 Main Street, Cambridge, MA 02142, USA
| | - Brook L Falk
- Cell Biology Program, The Hospital for Sick Children, PGCRL Building, 686 Bay Street, Toronto, Ontario, M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada
| | - Hong Han
- Department of Biology, McGill University, 3649 Promenade Sir William Osler, Montréal, Quebec, H3G 0B1, Canada
| | - Giovanna Maldonado
- Laboratory of Translation and Cancer, Unit of Biomedical Research on Cancer, Instituto Nacional de Cancerología (INCan), Av San Fernando 22, Mexico City 14080, Mexico
| | - Yuemeng Qiao
- Cell Biology Program, The Hospital for Sick Children, PGCRL Building, 686 Bay Street, Toronto, Ontario, M5G 0A4, Canada
- Human Biology Program, University of Toronto, 300 Huron Street, Toronto, Ontario, M5S 3J6, Canada
| | - Vincent Lee
- Cell Biology Program, The Hospital for Sick Children, PGCRL Building, 686 Bay Street, Toronto, Ontario, M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada
| | - Elizabeth Hall
- Cell Biology Program, The Hospital for Sick Children, PGCRL Building, 686 Bay Street, Toronto, Ontario, M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada
| | - Liang Chen
- Department of Biology, McGill University, 3649 Promenade Sir William Osler, Montréal, Quebec, H3G 0B1, Canada
| | - Gordon Polevoy
- Cell Biology Program, The Hospital for Sick Children, PGCRL Building, 686 Bay Street, Toronto, Ontario, M5G 0A4, Canada
| | - Greco Hernández
- Laboratory of Translation and Cancer, Unit of Biomedical Research on Cancer, Instituto Nacional de Cancerología (INCan), Av San Fernando 22, Mexico City 14080, Mexico
| | - Paul Lasko
- Department of Biology, McGill University, 3649 Promenade Sir William Osler, Montréal, Quebec, H3G 0B1, Canada
| | - Julie A Brill
- Cell Biology Program, The Hospital for Sick Children, PGCRL Building, 686 Bay Street, Toronto, Ontario, M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada
| |
Collapse
|
5
|
Kozlov EN, Tokmatcheva EV, Khrustaleva AM, Grebenshchikov ES, Deev RV, Gilmutdinov RA, Lebedeva LA, Zhukova M, Savvateeva-Popova EV, Schedl P, Shidlovskii YV. Long-Term Memory Formation in Drosophila Depends on the 3'UTR of CPEB Gene orb2. Cells 2023; 12:cells12020318. [PMID: 36672258 PMCID: PMC9856895 DOI: 10.3390/cells12020318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/30/2022] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Activation of local translation in neurites in response to stimulation is an important step in the formation of long-term memory (LTM). CPEB proteins are a family of translation factors involved in LTM formation. The Drosophila CPEB protein Orb2 plays an important role in the development and function of the nervous system. Mutations of the coding region of the orb2 gene have previously been shown to impair LTM formation. We found that a deletion of the 3'UTR of the orb2 gene similarly results in loss of LTM in Drosophila. As a result of the deletion, the content of the Orb2 protein remained the same in the neuron soma, but significantly decreased in synapses. Using RNA immunoprecipitation followed by high-throughput sequencing, we detected more than 6000 potential Orb2 mRNA targets expressed in the Drosophila brain. Importantly, deletion of the 3'UTR of orb2 mRNA also affected the localization of the Csp, Pyd, and Eya proteins, which are encoded by putative mRNA targets of Orb2. Therefore, the 3'UTR of the orb2 mRNA is important for the proper localization of Orb2 and other proteins in synapses of neurons and the brain as a whole, providing a molecular basis for LTM formation.
Collapse
Affiliation(s)
- Eugene N. Kozlov
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Elena V. Tokmatcheva
- Institute of Physiology, Russian Academy of Sciences, 188680 St. Petersburg, Russia
| | - Anastasia M. Khrustaleva
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Eugene S. Grebenshchikov
- Department of Biology and General Genetics, Sechenov First Moscow State Medical University (Sechenov University), 119992 Moscow, Russia
| | - Roman V. Deev
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Rudolf A. Gilmutdinov
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Lyubov A. Lebedeva
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Mariya Zhukova
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | | | - Paul Schedl
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
- Department of Molecular Biology, Princeton University, Princeton University, Princeton, NJ 08544-1014, USA
| | - Yulii V. Shidlovskii
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
- Department of Biology and General Genetics, Sechenov First Moscow State Medical University (Sechenov University), 119992 Moscow, Russia
- Correspondence:
| |
Collapse
|
6
|
miR-125-3p and miR-276b-3p Regulate the Spermatogenesis of Bactrocera dorsalis by Targeting the orb2 Gene. Genes (Basel) 2022; 13:genes13101861. [PMID: 36292746 PMCID: PMC9601815 DOI: 10.3390/genes13101861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/07/2022] [Accepted: 10/08/2022] [Indexed: 11/04/2022] Open
Abstract
Bactrocera dorsalis is considered a major threat to horticultural crops. It has evolved resistance against insecticides. It is believed that development of new methods is highly desirable to control this destructive agricultural pest. Sterile insect technique is emerging as a potential tool to control this insect pest by reducing their reproductive ability. Here we report that orb2 has high expression in the testis of B. dorsalis which is the target of miR-125-3p and miR-276b-3p and plays a critical role in the spermatogenesis. Dual luciferase reporter assay using HEKT293 cells demonstrates that orb2 gene is downregulated by miR-125-3p and miR-276b-3p and is a common target of these miRNAs. Dietary treatment of adult male flies separately and in combination of agomir-125-3p (Ago-125-3p) and agomir-276b-3p (Ago-276b-3p) significantly downregulated the mRNA of orb2. The combined treatments of agomirs suppressed the level of mRNA of orb2 significantly more than any single treatment. Altered expression of miR-125-3p and miR-276b-3p significantly decreased the total and live spermatozoa in the testis which ultimately caused reduction in male fertility. Furthermore, we demonstrate that miR-125-3p, miR-276b-3p, and orb2 dsRNA are the novel agents that could be used in a genetic-based sterile insect technique (SIT) to control the B. dorsalis.
Collapse
|
7
|
Córdova-García G, Esquivel CJ, Pérez-Staples D, Ruiz-May E, Herrera-Cruz M, Reyes-Hernández M, Abraham S, Aluja M, Sirot L. Characterization of reproductive proteins in the Mexican fruit fly points towards the evolution of novel functions. Proc Biol Sci 2022; 289:20212806. [PMID: 35765836 PMCID: PMC9240691 DOI: 10.1098/rspb.2021.2806] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Seminal fluid proteins (Sfps) modify female phenotypes and have wide-ranging evolutionary implications on fitness in many insects. However, in the Mexican fruit fly, Anastrepha ludens, a highly destructive agricultural pest, the functions of Sfps are still largely unknown. To gain insights into female phenotypes regulated by Sfps, we used nano-liquid chromatography mass spectrometry to conduct a proteomic analysis of the soluble proteins from reproductive organs of A. ludens. The proteins predicted to be transferred from males to females during copulation were 100 proteins from the accessory glands, 69 from the testes and 20 from the ejaculatory bulb, resulting in 141 unique proteins after accounting for redundancies from multiple tissues. These 141 included orthologues to Drosophila melanogaster proteins involved mainly in oogenesis, spermatogenesis, immune response, lifespan and fecundity. In particular, we found one protein associated with female olfactory response to repellent stimuli (Scribble), and two related to memory formation (aPKC and Shibire). Together, these results raise the possibility that A. ludens Sfps could play a role in regulating female olfactory responses and memory formation and could be indicative of novel evolutionary functions in this important agricultural pest.
Collapse
Affiliation(s)
- Guadalupe Córdova-García
- INBIOTECA, Universidad Veracruzana, Av. de las Culturas Veracruzanas 101, Col. E. Zapata, Xalapa, CP 91090 Veracruz, México
| | | | - Diana Pérez-Staples
- INBIOTECA, Universidad Veracruzana, Av. de las Culturas Veracruzanas 101, Col. E. Zapata, Xalapa, CP 91090 Veracruz, México
| | - Eliel Ruiz-May
- Red de Manejo Biorracional de Plagas y Vectores, Clúster Científico y Tecnológico BioMimic®, Instituto de Ecología A.C. (INECOL), Antigua Carretera a Coatepec 351, Xalapa, Veracruz, México
| | - Mariana Herrera-Cruz
- Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Ex-Hda de Aguilera S/N, C.P. 68020, Oaxaca, Oaxaca, México
| | - Martha Reyes-Hernández
- Universidad Autónoma de Guadalajara, Av. Patria 1201, Col. Lomas del Valle, CP 45129 Zapopan, Jalisco, México
| | - Solana Abraham
- Laboratorio de Investigaciones Ecoetológicas de Moscas de la Fruta y sus Enemigos Naturales (LIEMEN), PROIMI-Biotecnología, CONICET, Avenida Belgrano y Pasaje Caseros s/n, CP 4000 San Miguel de Tucumán, Tucumán, Argentina
| | - Martín Aluja
- Red de Manejo Biorracional de Plagas y Vectores, Clúster Científico y Tecnológico BioMimic®, Instituto de Ecología A.C. (INECOL), Antigua Carretera a Coatepec 351, Xalapa, Veracruz, México
| | - Laura Sirot
- Department of Biology, College of Wooster, 931 College Mall, Wooster, OH 44691, USA
| |
Collapse
|
8
|
Miao G, Guo L, Montell DJ. Border cell polarity and collective migration require the spliceosome component Cactin. J Cell Biol 2022; 221:213245. [PMID: 35612426 PMCID: PMC9136304 DOI: 10.1083/jcb.202202146] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/22/2022] [Accepted: 05/09/2022] [Indexed: 01/07/2023] Open
Abstract
Border cells are an in vivo model for collective cell migration. Here, we identify the gene cactin as essential for border cell cluster organization, delamination, and migration. In Cactin-depleted cells, the apical proteins aPKC and Crumbs (Crb) become abnormally concentrated, and overall cluster polarity is lost. Apically tethering excess aPKC is sufficient to cause delamination defects, and relocalizing apical aPKC partially rescues delamination. Cactin is conserved from yeast to humans and has been implicated in diverse processes. In border cells, Cactin's evolutionarily conserved spliceosome function is required. Whole transcriptome analysis revealed alterations in isoform expression in Cactin-depleted cells. Mutations in two affected genes, Sec23 and Sec24CD, which traffic Crb to the apical cell surface, partially rescue border cell cluster organization and migration. Overexpression of Rab5 or Rab11, which promote Crb and aPKC recycling, similarly rescues. Thus, a general splicing factor is specifically required for coordination of cluster polarity and migration, and migrating border cells are particularly sensitive to splicing and cell polarity disruptions.
Collapse
Affiliation(s)
- Guangxia Miao
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, Santa Barbara, CA,Guangxia Miao:
| | - Li Guo
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, Santa Barbara, CA
| | - Denise J. Montell
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, Santa Barbara, CA,Correspondence to Denise Montell:
| |
Collapse
|
9
|
Gilmutdinov R, Kozlov EN, Yakovlev KV, Olenina LV, Kotov AA, Barr J, Zhukova M, Schedl P, Shidlovskii YV. The 3'UTR of the Drosophila CPEB translation factor gene orb2 plays a crucial role in spermatogenesis. Development 2021; 148:272122. [PMID: 34473243 DOI: 10.1242/dev.198788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 07/22/2021] [Indexed: 01/27/2023]
Abstract
CPEB proteins are conserved translation regulators involved in multiple biological processes. One of these proteins in Drosophila, Orb2, is a principal player in spermatogenesis. It is required for meiosis and spermatid differentiation. During the later process, orb2 mRNA and protein are localized within the developing spermatid. To evaluate the role of the orb2 mRNA 3'UTR in spermatogenesis, we used the CRISPR/Cas9 system to generate a deletion of the orb2 3'UTR, orb2R. This deletion disrupts the process of spermatid differentiation but has no apparent effect on meiosis. Differentiation abnormalities include defects in the initial polarization of the 64-cell spermatid cysts, mislocalization of mRNAs and proteins in the elongating spermatid tails, altered morphology of the elongating spermatid tails, and defects in the assembly of the individualization complex. These disruptions in differentiation appear to arise because orb2 mRNA and protein are not properly localized within the 64-cell spermatid cyst.
Collapse
Affiliation(s)
- Rudolf Gilmutdinov
- Department of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Eugene N Kozlov
- Department of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Konstantin V Yakovlev
- Department of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia.,Laboratory of Cytotechnology, A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok 690041, Russia
| | - Ludmila V Olenina
- Department of Molecular Genetics of Cell, Institute of Molecular Genetics, National Research Centre Kurchatov Institute, Moscow 123182, Russia
| | - Alexei A Kotov
- Department of Molecular Genetics of Cell, Institute of Molecular Genetics, National Research Centre Kurchatov Institute, Moscow 123182, Russia
| | - Justinn Barr
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544-1014, USA
| | - Mariya Zhukova
- Department of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Paul Schedl
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544-1014, USA
| | - Yulii V Shidlovskii
- Department of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia.,Department of Biology and General Genetics, I.M. Sechenov First Moscow State Medical University, Moscow 119048, Russia
| |
Collapse
|
10
|
Eshraghi M, Karunadharma PP, Blin J, Shahani N, Ricci EP, Michel A, Urban NT, Galli N, Sharma M, Ramírez-Jarquín UN, Florescu K, Hernandez J, Subramaniam S. Mutant Huntingtin stalls ribosomes and represses protein synthesis in a cellular model of Huntington disease. Nat Commun 2021; 12:1461. [PMID: 33674575 PMCID: PMC7935949 DOI: 10.1038/s41467-021-21637-y] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 01/29/2021] [Indexed: 02/08/2023] Open
Abstract
The polyglutamine expansion of huntingtin (mHTT) causes Huntington disease (HD) and neurodegeneration, but the mechanisms remain unclear. Here, we found that mHtt promotes ribosome stalling and suppresses protein synthesis in mouse HD striatal neuronal cells. Depletion of mHtt enhances protein synthesis and increases the speed of ribosomal translocation, while mHtt directly inhibits protein synthesis in vitro. Fmrp, a known regulator of ribosome stalling, is upregulated in HD, but its depletion has no discernible effect on protein synthesis or ribosome stalling in HD cells. We found interactions of ribosomal proteins and translating ribosomes with mHtt. High-resolution global ribosome footprint profiling (Ribo-Seq) and mRNA-Seq indicates a widespread shift in ribosome occupancy toward the 5' and 3' end and unique single-codon pauses on selected mRNA targets in HD cells, compared to controls. Thus, mHtt impedes ribosomal translocation during translation elongation, a mechanistic defect that can be exploited for HD therapeutics.
Collapse
Affiliation(s)
- Mehdi Eshraghi
- grid.214007.00000000122199231The Scripps Research Institute, Department of Neuroscience, Jupiter, FL USA
| | - Pabalu P. Karunadharma
- grid.214007.00000000122199231The Scripps Research Institute, Genomic Core, Jupiter, FL USA
| | - Juliana Blin
- grid.462957.b0000 0004 0598 0706Laboratory of Biology and Cellular Modelling at Ecole Normale Supérieure of Lyon, RNA Metabolism in Immunity and Infection Lab, LBMC, Lyon, France
| | - Neelam Shahani
- grid.214007.00000000122199231The Scripps Research Institute, Department of Neuroscience, Jupiter, FL USA
| | - Emiliano P. Ricci
- grid.462957.b0000 0004 0598 0706Laboratory of Biology and Cellular Modelling at Ecole Normale Supérieure of Lyon, RNA Metabolism in Immunity and Infection Lab, LBMC, Lyon, France
| | | | | | - Nicole Galli
- grid.214007.00000000122199231The Scripps Research Institute, Department of Neuroscience, Jupiter, FL USA
| | - Manish Sharma
- grid.214007.00000000122199231The Scripps Research Institute, Department of Neuroscience, Jupiter, FL USA
| | - Uri Nimrod Ramírez-Jarquín
- grid.214007.00000000122199231The Scripps Research Institute, Department of Neuroscience, Jupiter, FL USA
| | - Katie Florescu
- grid.214007.00000000122199231The Scripps Research Institute, Department of Neuroscience, Jupiter, FL USA
| | - Jennifer Hernandez
- grid.214007.00000000122199231The Scripps Research Institute, Department of Neuroscience, Jupiter, FL USA
| | - Srinivasa Subramaniam
- grid.214007.00000000122199231The Scripps Research Institute, Department of Neuroscience, Jupiter, FL USA
| |
Collapse
|
11
|
Wang Y, Xu R, Cheng Y, Cao H, Wang Z, Zhu T, Jiang J, Zhang H, Wang C, Qi L, Liu M, Guo X, Huang J, Sha J. RSBP15 interacts with and stabilizes dRSPH3 during sperm axoneme assembly in Drosophila. J Genet Genomics 2019; 46:281-290. [DOI: 10.1016/j.jgg.2019.05.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 05/28/2019] [Accepted: 05/29/2019] [Indexed: 10/26/2022]
|
12
|
Barr J, Charania S, Gilmutdinov R, Yakovlev K, Shidlovskii Y, Schedl P. The CPEB translational regulator, Orb, functions together with Par proteins to polarize the Drosophila oocyte. PLoS Genet 2019; 15:e1008012. [PMID: 30865627 PMCID: PMC6433291 DOI: 10.1371/journal.pgen.1008012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 03/25/2019] [Accepted: 02/12/2019] [Indexed: 01/05/2023] Open
Abstract
orb is a founding member of the CPEB family of translational regulators and is required at multiple steps during Drosophila oogenesis. Previous studies showed that orb is required during mid-oogenesis for the translation of the posterior/germline determinant oskar mRNA and the dorsal-ventral determinant gurken mRNA. Here, we report that orb also functions upstream of these axes determinants in the polarization of the microtubule network (MT). Prior to oskar and gurken translational activation, the oocyte MT network is repolarized. The MT organizing center at the oocyte posterior is disassembled, and a new MT network is established at the oocyte anterior. Repolarization depends upon cross-regulatory interactions between anterior (apical) and posterior (basal) Par proteins. We show that repolarization of the oocyte also requires orb and that orb is needed for the proper functioning of the Par proteins. orb interacts genetically with aPKC and cdc42 and in egg chambers compromised for orb activity, Par-1 and aPKC protein and aPKC mRNA are mislocalized. Moreover, like cdc42-, the defects in Par protein localization appear to be connected to abnormalities in the cortical actin cytoskeleton. These abnormalities also disrupt the localization of the spectraplakin Shot and the microtubule minus-end binding protein Patronin. These two proteins play a critical role in the repolarization of the MT network.
Collapse
Affiliation(s)
- Justinn Barr
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Sofia Charania
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Rudolf Gilmutdinov
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Konstantin Yakovlev
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Yulii Shidlovskii
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Paul Schedl
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
13
|
Subcellular Specialization and Organelle Behavior in Germ Cells. Genetics 2018; 208:19-51. [PMID: 29301947 DOI: 10.1534/genetics.117.300184] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2016] [Accepted: 08/17/2017] [Indexed: 11/18/2022] Open
Abstract
Gametes, eggs and sperm, are the highly specialized cell types on which the development of new life solely depends. Although all cells share essential organelles, such as the ER (endoplasmic reticulum), Golgi, mitochondria, and centrosomes, germ cells display unique regulation and behavior of organelles during gametogenesis. These germ cell-specific functions of organelles serve critical roles in successful gamete production. In this chapter, I will review the behaviors and roles of organelles during germ cell differentiation.
Collapse
|
14
|
The Germline Linker Histone dBigH1 and the Translational Regulator Bam Form a Repressor Loop Essential for Male Germ Stem Cell Differentiation. Cell Rep 2018; 21:3178-3189. [PMID: 29241545 DOI: 10.1016/j.celrep.2017.11.060] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 08/31/2017] [Accepted: 11/15/2017] [Indexed: 12/13/2022] Open
Abstract
Drosophila spermatogenesis constitutes a paradigmatic system to study maintenance, proliferation, and differentiation of adult stem cell lineages. Each Drosophila testis contains 6-12 germ stem cells (GSCs) that divide asymmetrically to produce gonialblast cells that undergo four transit-amplifying (TA) spermatogonial divisions before entering spermatocyte differentiation. Mechanisms governing these crucial transitions are not fully understood. Here, we report the essential role of the germline linker histone dBigH1 during early spermatogenesis. Our results suggest that dBigH1 is a general silencing factor that represses Bam, a key regulator of spermatogonia proliferation that is silenced in spermatocytes. Reciprocally, Bam represses dBigH1 during TA divisions. This double-repressor mechanism switches dBigH1/Bam expression from off/on in spermatogonia to on/off in spermatocytes, regulating progression into spermatocyte differentiation. dBigH1 is also required for GSC maintenance and differentiation. These results show the critical importance of germline H1s for male GSC lineage differentiation, unveiling a regulatory interaction that couples transcriptional and translational repression.
Collapse
|
15
|
Vangl2 regulates spermatid planar cell polarity through microtubule (MT)-based cytoskeleton in the rat testis. Cell Death Dis 2018; 9:340. [PMID: 29497043 PMCID: PMC5832773 DOI: 10.1038/s41419-018-0339-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 01/15/2018] [Accepted: 01/23/2018] [Indexed: 12/12/2022]
Abstract
During spermatogenesis, developing elongating/elongated spermatids are highly polarized cells, displaying unique apico-basal polarity. For instance, the heads of spermatids align perpendicular to the basement membrane with their tails pointing to the tubule lumen. Thus, the maximal number of spermatids are packed within the limited space of the seminiferous epithelium to support spermatogenesis. Herein, we reported findings that elongating/elongated spermatids displayed planar cell polarity (PCP) in adult rat testes in which the proximal end of polarized spermatid heads were aligned uniformly across the plane of the seminiferous epithelium based on studies using confocal microscopy and 3-dimensional (D) reconstruction of the seminiferous tubules. We also discovered that spermatid PCP was regulated by PCP protein Vangl2 (Van Gogh-like protein 2) since Vangl2 knockdown by RNAi was found to perturb spermatid PCP. More important, Vangl2 exerted its regulatory effects through changes in the organization of the microtubule (MT)-based cytoskeleton in the seminiferous epithelium. These changes were mediated via the downstream signaling proteins atypical protein kinase C ξ (PKCζ) and MT-associated protein (MAP)/microtubule affinity-regulating kinase 2 (MARK2). These findings thus provide new insights regarding the biology of spermatid PCP during spermiogenesis.
Collapse
|
16
|
Chen H, Mruk DD, Lui WY, Wong CKC, Lee WM, Cheng CY. Cell polarity and planar cell polarity (PCP) in spermatogenesis. Semin Cell Dev Biol 2017; 81:71-77. [PMID: 28923514 DOI: 10.1016/j.semcdb.2017.09.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 09/04/2017] [Accepted: 09/06/2017] [Indexed: 12/22/2022]
Abstract
In adult mammalian testes, spermatids, most notably step 17-19 spermatids in stage IV-VIII tubules, are aligned with their heads pointing toward the basement membrane and their tails toward the tubule lumen. On the other hand, these polarized spermatids also align across the plane of seminiferous epithelium, mimicking planar cell polarity (PCP) found in other hair cells in cochlea (inner ear). This orderly alignment of developing spermatids during spermiogenesis is important to support spermatogenesis, such that the maximal number of developing spermatids can be packed and supported by a fixed population of differentiated Sertoli cells in the limited space of the seminiferous epithelium in adult testes. In this review, we provide emerging evidence to demonstrate spermatid PCP in the seminiferous epithelium to support spermatogenesis. We also review findings in the field regarding the biology of spermatid cellular polarity (e.g., head-tail polarity and apico-basal polarity) and its inter-relationship to spermatid PCP. Furthermore, we also provide a hypothetical concept on the importance of PCP proteins in endocytic vesicle-mediated protein trafficking events to support spermatogenesis through protein endocytosis and recycling.
Collapse
Affiliation(s)
- Haiqi Chen
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave, New York, NY 10065, United States
| | - Dolores D Mruk
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave, New York, NY 10065, United States
| | - Wing-Yee Lui
- School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong, China
| | - Chris K C Wong
- Department of Biology, Hong Kong Baptist University, Kowloon, Hong Kong, China
| | - Will M Lee
- School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong, China
| | - C Yan Cheng
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave, New York, NY 10065, United States.
| |
Collapse
|
17
|
Identification of genetic networks that act in the somatic cells of the testis to mediate the developmental program of spermatogenesis. PLoS Genet 2017; 13:e1007026. [PMID: 28957323 PMCID: PMC5634645 DOI: 10.1371/journal.pgen.1007026] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 10/10/2017] [Accepted: 09/17/2017] [Indexed: 11/19/2022] Open
Abstract
Spermatogenesis is a dynamic developmental process requiring precisely timed transitions between discrete stages. Specifically, the germline undergoes three transitions: from mitotic spermatogonia to spermatocytes, from meiotic spermatocytes to spermatids, and from morphogenetic spermatids to spermatozoa. The somatic cells of the testis provide essential support to the germline throughout spermatogenesis, but their precise role during these developmental transitions has not been comprehensively explored. Here, we describe the identification and characterization of genes that are required in the somatic cells of the Drosophila melanogaster testis for progress through spermatogenesis. Phenotypic analysis of candidate genes pinpointed the stage of germline development disrupted. Bioinformatic analysis revealed that particular gene classes were associated with specific developmental transitions. Requirement for genes associated with endocytosis, cell polarity, and microtubule-based transport corresponded with the development of spermatogonia, spermatocytes, and spermatids, respectively. Overall, we identify mechanisms that act specifically in the somatic cells of the testis to regulate spermatogenesis. Sexual reproduction in animals requires the production of male and female gametes, spermatozoa and ova, respectively. Gametes are derived from specialized cells known as the germline through a process called gametogenesis. Gametogenesis typically takes place in a gonad and requires the germ cells to be surrounded by specialized somatic cells that support germline development. While many prior studies have identified germline specific genes required for gametogenesis few have systematically identified genes required in the somatic cells for gametogenesis. To this end we performed an RNAi screen where we disrupted the function of genes specifically in the somatic cyst cells of the Drosophila melanogaster testis. Using fertility assays we identified 281 genes that are required in somatic cyst cells for fertility. To better understand the role of these genes in regulating spermatogenesis we classified the resulting phenotypes by the stage of germline development disrupted. This revealed distinct sets of genes required to support specific stages of spermatogenesis. Our study characterizes the somatic specific defects resulting from disruption of candidate genes and provides insight into their function in the testes. Overall, our findings reveal the mechanisms controlling Drosophila melanogaster spermatogenesis and provide a resource for studying soma-germline interactions more broadly.
Collapse
|
18
|
Khan MR, Li L, Pérez-Sánchez C, Saraf A, Florens L, Slaughter BD, Unruh JR, Si K. Amyloidogenic Oligomerization Transforms Drosophila Orb2 from a Translation Repressor to an Activator. Cell 2016; 163:1468-83. [PMID: 26638074 DOI: 10.1016/j.cell.2015.11.020] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 07/02/2015] [Accepted: 11/10/2015] [Indexed: 12/21/2022]
Abstract
Memories are thought to be formed in response to transient experiences, in part through changes in local protein synthesis at synapses. In Drosophila, the amyloidogenic (prion-like) state of the RNA binding protein Orb2 has been implicated in long-term memory, but how conformational conversion of Orb2 promotes memory formation is unclear. Combining in vitro and in vivo studies, we find that the monomeric form of Orb2 represses translation and removes mRNA poly(A) tails, while the oligomeric form enhances translation and elongates the poly(A) tails and imparts its translational state to the monomer. The CG13928 protein, which binds only to monomeric Orb2, promotes deadenylation, whereas the putative poly(A) binding protein CG4612 promotes oligomeric Orb2-dependent translation. Our data support a model in which monomeric Orb2 keeps target mRNA in a translationally dormant state and experience-dependent conversion to the amyloidogenic state activates translation, resulting in persistent alteration of synaptic activity and stabilization of memory.
Collapse
Affiliation(s)
- Mohammed Repon Khan
- Stowers Institute for Medical Research, 1000 East 50(th) Street, Kansas City, MO 64110, USA; Department of Molecular and Integrative Physiology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| | - Liying Li
- Stowers Institute for Medical Research, 1000 East 50(th) Street, Kansas City, MO 64110, USA; Department of Molecular and Integrative Physiology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| | - Consuelo Pérez-Sánchez
- Stowers Institute for Medical Research, 1000 East 50(th) Street, Kansas City, MO 64110, USA
| | - Anita Saraf
- Stowers Institute for Medical Research, 1000 East 50(th) Street, Kansas City, MO 64110, USA
| | - Laurence Florens
- Stowers Institute for Medical Research, 1000 East 50(th) Street, Kansas City, MO 64110, USA
| | - Brian D Slaughter
- Stowers Institute for Medical Research, 1000 East 50(th) Street, Kansas City, MO 64110, USA
| | - Jay R Unruh
- Stowers Institute for Medical Research, 1000 East 50(th) Street, Kansas City, MO 64110, USA
| | - Kausik Si
- Stowers Institute for Medical Research, 1000 East 50(th) Street, Kansas City, MO 64110, USA; Department of Molecular and Integrative Physiology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA.
| |
Collapse
|
19
|
Barr J, Yakovlev KV, Shidlovskii Y, Schedl P. Establishing and maintaining cell polarity with mRNA localization in Drosophila. Bioessays 2016; 38:244-53. [PMID: 26773560 DOI: 10.1002/bies.201500088] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
How cell polarity is established and maintained is an important question in diverse biological contexts. Molecular mechanisms used to localize polarity proteins to distinct domains are likely context-dependent and provide a feedback loop in order to maintain polarity. One such mechanism is the localized translation of mRNAs encoding polarity proteins, which will be the focus of this review and may play a more important role in the establishment and maintenance of polarity than is currently known. Localized translation of mRNAs encoding polarity proteins can be used to establish polarity in response to an external signal, and to maintain polarity by local production of polarity determinants. The importance of this mechanism is illustrated by recent findings, including orb2-dependent localized translation of aPKC mRNA at the apical end of elongating spermatid tails in the Drosophila testis, and the apical localization of stardust A mRNA in Drosophila follicle and embryonic epithelia.
Collapse
Affiliation(s)
- Justinn Barr
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Konstantin V Yakovlev
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology RAS, Moscow, Russia.,A.V. Zhirmunsky Institute of Marine Biology, FEB RAS Laboratory of Cytotechnology, Vladivostok, Russia
| | - Yulii Shidlovskii
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology RAS, Moscow, Russia
| | - Paul Schedl
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA.,Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology RAS, Moscow, Russia
| |
Collapse
|