1
|
McDonald JMC, Reed RD. Beyond modular enhancers: new questions in cis-regulatory evolution. Trends Ecol Evol 2024; 39:1035-1046. [PMID: 39266441 DOI: 10.1016/j.tree.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 06/28/2024] [Accepted: 07/08/2024] [Indexed: 09/14/2024]
Abstract
Our understanding of how cis-regulatory elements work has advanced rapidly, outpacing our evolutionary models. In this review, we consider the implications of new mechanistic findings for evolutionary developmental biology. We focus on three different debates: whether evolutionary innovation occurs more often via the modification of old cis-regulatory elements or the emergence of new ones; the extent to which individual elements are specific and autonomous or multifunctional and interdependent; and how the robustness of cis-regulatory architectures influences the rate of trait evolution. These discussions lead us to propose new questions for the evo-devo of cis-regulation.
Collapse
Affiliation(s)
- Jeanne M C McDonald
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA.
| | - Robert D Reed
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
| |
Collapse
|
2
|
Cai D, Zhou Z, Cai B, Wang Z, Ju X, Kong S, Yang X, Lin D, Nie Q. Metabolomics reveals the reasons for the occurrence of Pendulous-comb related to egg production performance. Poult Sci 2024; 103:103867. [PMID: 38820880 PMCID: PMC11167520 DOI: 10.1016/j.psj.2024.103867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/30/2024] [Accepted: 05/13/2024] [Indexed: 06/02/2024] Open
Abstract
The chicken comb is an essential secondary sexual characteristic to measure sexual maturity and is closely related to reproductive performance. Pendulous comb (PC) and upright comb (UC) are 2 common comb phenotypes in hens, which have been highly associated with egg production performance. However, the reasons for the formation of PC remain undetermined. In this study, we first characterized the PC and UC chicken at start (at 175 d age), peak (at 217 d age), and postlaying (at 300 d age) and found that PC and UC could transform for each other. Furthermore, we suggested that PC chicken demonstrated better egg production performance than UC chicken, especially characterizing comb type in the start-laying period. Moreover, we performed histological evaluation of PC and UC tissue, which suggested that the low density of collagen fibers and acid mucopolysaccharides might lead to the formation of PC. To further explore the possible reasons for PC formation, we performed an untargeted metabolomic analysis of serum between PC and UC chicken in the start, peak, and postlaying periods. The enrichment analysis of period-unique differentially expressed metabolites (DEMs) between PC and UC showed that the different metabolic pathways and nutritional levels might contribute to the formation of PC in the different laying periods. Our research provided critical insights into the phenotypic diversity of chicken comb, establishing a foundation for early selection of chicken egg production performance.
Collapse
Affiliation(s)
- Danfeng Cai
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Lingnan Guangdong Laboratory of Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, Guangdong 510642, China
| | - Zhen Zhou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Lingnan Guangdong Laboratory of Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, Guangdong 510642, China
| | - Bolin Cai
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Lingnan Guangdong Laboratory of Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, Guangdong 510642, China
| | - Zhijun Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Lingnan Guangdong Laboratory of Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, Guangdong 510642, China; College of Animal Science and Technology, Zhejiang Agriculture and Forestry University, Lin'an 311300, China
| | - Xing Ju
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Lingnan Guangdong Laboratory of Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, Guangdong 510642, China
| | - Shaofen Kong
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Lingnan Guangdong Laboratory of Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, Guangdong 510642, China
| | - Xin Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Lingnan Guangdong Laboratory of Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, Guangdong 510642, China
| | - Duo Lin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Lingnan Guangdong Laboratory of Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, Guangdong 510642, China
| | - Qinghua Nie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Lingnan Guangdong Laboratory of Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, Guangdong 510642, China.
| |
Collapse
|
3
|
Recuerda M, Campagna L. How structural variants shape avian phenotypes: Lessons from model systems. Mol Ecol 2024; 33:e17364. [PMID: 38651830 DOI: 10.1111/mec.17364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 04/04/2024] [Accepted: 04/09/2024] [Indexed: 04/25/2024]
Abstract
Despite receiving significant recent attention, the relevance of structural variation (SV) in driving phenotypic diversity remains understudied, although recent advances in long-read sequencing, bioinformatics and pangenomic approaches have enhanced SV detection. We review the role of SVs in shaping phenotypes in avian model systems, and identify some general patterns in SV type, length and their associated traits. We found that most of the avian SVs so far identified are short indels in chickens, which are frequently associated with changes in body weight and plumage colouration. Overall, we found that relatively short SVs are more frequently detected, likely due to a combination of their prevalence compared to large SVs, and a detection bias, stemming primarily from the widespread use of short-read sequencing and associated analytical methods. SVs most commonly involve non-coding regions, especially introns, and when patterns of inheritance were reported, SVs associated primarily with dominant discrete traits. We summarise several examples of phenotypic convergence across different species, mediated by different SVs in the same or different genes and different types of changes in the same gene that can lead to various phenotypes. Complex rearrangements and supergenes, which can simultaneously affect and link several genes, tend to have pleiotropic phenotypic effects. Additionally, SVs commonly co-occur with single-nucleotide polymorphisms, highlighting the need to consider all types of genetic changes to understand the basis of phenotypic traits. We end by summarising expectations for when long-read technologies become commonly implemented in non-model birds, likely leading to an increase in SV discovery and characterisation. The growing interest in this subject suggests an increase in our understanding of the phenotypic effects of SVs in upcoming years.
Collapse
Affiliation(s)
- María Recuerda
- Fuller Evolutionary Biology Program, Cornell Lab of Ornithology, Ithaca, New York, USA
| | - Leonardo Campagna
- Fuller Evolutionary Biology Program, Cornell Lab of Ornithology, Ithaca, New York, USA
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA
| |
Collapse
|
4
|
Perini F, Cendron F, Lasagna E, Cassandro M, Penasa M. Genomic insights into shank and eggshell color in Italian local chickens. Poult Sci 2024; 103:103677. [PMID: 38593544 PMCID: PMC11004871 DOI: 10.1016/j.psj.2024.103677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/12/2024] [Accepted: 03/14/2024] [Indexed: 04/11/2024] Open
Abstract
Eggshell and shank color in poultry is an intriguing topic of research due to the roles in selection, breed recognition, and environmental adaptation. This study delves into the genomics foundations of shank and eggshell pigmentation in Italian local chickens through genome-wide association studies analysis to uncover the mechanisms governing these phenotypes. To this purpose, 483 animals from 20 local breeds (n = 466) and 2 commercial lines (n = 17) were considered and evaluated for shank and eggshell color. All animals were genotyped using the Affymetrix Axiom 600 K Chicken Genotyping Array. As regards shank color, the most interesting locus was detected on chromosome Z, close to the TYRP1 gene, known to play a key role in avian pigmentation. Additionally, several novel loci and genes associated with shank pigmentation, skin pigmentation, UV protection, and melanocyte regulation were identified (e.g., MTAP, CDKN2A, CDKN2B). In eggshell, fewer significant loci were identified, including SLC7A11 and MITF on chromosomes 4 and 12, respectively, associated with melanocyte processes and pigment synthesis. This comprehensive study shed light on the genetic architecture underlying shank and eggshell color in Italian native chicken breeds, contributing to a better understanding of this phenomenon which plays a role in breed identification and conservation, and has ecological and economic implications.
Collapse
Affiliation(s)
- Francesco Perini
- Department of Agronomy, Food, Natural resources, Animals and Environment, University of Padova, Legnaro, Padua 35020, Italy
| | - Filippo Cendron
- Department of Agronomy, Food, Natural resources, Animals and Environment, University of Padova, Legnaro, Padua 35020, Italy.
| | - Emiliano Lasagna
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia 06121, Italy
| | - Martino Cassandro
- Department of Agronomy, Food, Natural resources, Animals and Environment, University of Padova, Legnaro, Padua 35020, Italy
| | - Mauro Penasa
- Department of Agronomy, Food, Natural resources, Animals and Environment, University of Padova, Legnaro, Padua 35020, Italy
| |
Collapse
|
5
|
Xu X, Fan S, Ji W, Qi S, Liu L, Cao Z, Bao Q, Zhang Y, Xu Q, Chen G. Transcriptome Profiling Unveils Key Genes Regulating the Growth and Development of Yangzhou Goose Knob. Int J Mol Sci 2024; 25:4166. [PMID: 38673752 PMCID: PMC11050116 DOI: 10.3390/ijms25084166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/05/2024] [Accepted: 04/06/2024] [Indexed: 04/28/2024] Open
Abstract
Goose is one of the most economically valuable poultry species and has a distinct appearance due to its possession of a knob. A knob is a hallmark of sexual maturity in goose (Anser cygnoides) and plays crucial roles in artificial selection, health status, social signaling, and body temperature regulation. However, the genetic mechanisms influencing the growth and development of goose knobs remain completely unclear. In this study, histomorphological and transcriptomic analyses of goose knobs in D70, D120, and D300 Yangzhou geese revealed differential changes in tissue morphology during the growth and development of goose knobs and the key core genes that regulate goose knob traits. Observation of tissue sections revealed that as age increased, the thickness of the knob epidermis, cuticle, and spinous cells gradually decreased. Additionally, fat cells in the dermis and subcutaneous connective tissue transitioned from loose to dense. Transcriptome sequencing results, analyzed through differential expression, Weighted Gene Co-expression Network Analysis (WGCNA), and pattern expression analysis methods, showed D70-vs.-D120 (up-regulated: 192; down-regulated: 423), D70-vs.-D300 (up-regulated: 1394; down-regulated: 1893), and D120-vs.-D300 (up-regulated: 1017; down-regulated: 1324). A total of 6243 differentially expressed genes (DEGs) were identified, indicating varied expression levels across the three groups in the knob tissues of D70, D120, and D300 Yangzhou geese. These DEGs are significantly enriched in biological processes (BP) such as skin morphogenesis, the regulation of keratinocyte proliferation, and epidermal cell differentiation. Furthermore, they demonstrate enrichment in pathways related to goose knob development, including ECM-receptor interaction, NF-kappa B, and PPAR signaling. Through pattern expression analysis, three gene expression clusters related to goose knob traits were identified. The joint analysis of candidate genes associated with goose knob development and WGCNA led to the identification of key core genes influencing goose knob development. These core genes comprise WNT4, WNT10A, TCF7L2, GATA3, ADRA2A, CASP3, SFN, KDF1, ERRFI1, SPRY1, and EVPL. In summary, this study provides a reference for understanding the molecular mechanisms of goose knob growth and development and provides effective ideas and methods for the genetic improvement of goose knob traits.
Collapse
Affiliation(s)
- Xinlei Xu
- Key Laboratory for Evaluation and Utilization of Poultry Genetic Resources of Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China; (X.X.); (S.F.); (W.J.); (S.Q.); (L.L.); (Z.C.); (Q.B.); (Q.X.); (G.C.)
| | - Suyu Fan
- Key Laboratory for Evaluation and Utilization of Poultry Genetic Resources of Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China; (X.X.); (S.F.); (W.J.); (S.Q.); (L.L.); (Z.C.); (Q.B.); (Q.X.); (G.C.)
| | - Wangyang Ji
- Key Laboratory for Evaluation and Utilization of Poultry Genetic Resources of Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China; (X.X.); (S.F.); (W.J.); (S.Q.); (L.L.); (Z.C.); (Q.B.); (Q.X.); (G.C.)
| | - Shangzong Qi
- Key Laboratory for Evaluation and Utilization of Poultry Genetic Resources of Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China; (X.X.); (S.F.); (W.J.); (S.Q.); (L.L.); (Z.C.); (Q.B.); (Q.X.); (G.C.)
| | - Linyu Liu
- Key Laboratory for Evaluation and Utilization of Poultry Genetic Resources of Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China; (X.X.); (S.F.); (W.J.); (S.Q.); (L.L.); (Z.C.); (Q.B.); (Q.X.); (G.C.)
| | - Zhi Cao
- Key Laboratory for Evaluation and Utilization of Poultry Genetic Resources of Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China; (X.X.); (S.F.); (W.J.); (S.Q.); (L.L.); (Z.C.); (Q.B.); (Q.X.); (G.C.)
| | - Qiang Bao
- Key Laboratory for Evaluation and Utilization of Poultry Genetic Resources of Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China; (X.X.); (S.F.); (W.J.); (S.Q.); (L.L.); (Z.C.); (Q.B.); (Q.X.); (G.C.)
| | - Yang Zhang
- Key Laboratory for Evaluation and Utilization of Poultry Genetic Resources of Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China; (X.X.); (S.F.); (W.J.); (S.Q.); (L.L.); (Z.C.); (Q.B.); (Q.X.); (G.C.)
| | - Qi Xu
- Key Laboratory for Evaluation and Utilization of Poultry Genetic Resources of Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China; (X.X.); (S.F.); (W.J.); (S.Q.); (L.L.); (Z.C.); (Q.B.); (Q.X.); (G.C.)
| | - Guohong Chen
- Key Laboratory for Evaluation and Utilization of Poultry Genetic Resources of Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China; (X.X.); (S.F.); (W.J.); (S.Q.); (L.L.); (Z.C.); (Q.B.); (Q.X.); (G.C.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
6
|
Zhu F, Yin ZT, Zhao QS, Sun YX, Jie YC, Smith J, Yang YZ, Burt DW, Hincke M, Zhang ZD, Yuan MD, Kaufman J, Sun CJ, Li JY, Shao LW, Yang N, Hou ZC. A chromosome-level genome assembly for the Silkie chicken resolves complete sequences for key chicken metabolic, reproductive, and immunity genes. Commun Biol 2023; 6:1233. [PMID: 38057566 PMCID: PMC10700341 DOI: 10.1038/s42003-023-05619-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 11/21/2023] [Indexed: 12/08/2023] Open
Abstract
A set of high-quality pan-genomes would help identify important genes that are still hidden/incomplete in bird reference genomes. In an attempt to address these issues, we have assembled a de novo chromosome-level reference genome of the Silkie (Gallus gallus domesticus), which is an important avian model for unique traits, like fibromelanosis, with unclear genetic foundation. This Silkie genome includes the complete genomic sequences of well-known, but unresolved, evolutionarily, endocrinologically, and immunologically important genes, including leptin, ovocleidin-17, and tumor-necrosis factor-α. The gap-less and manually annotated MHC (major histocompatibility complex) region possesses 38 recently identified genes, with differentially regulated genes recovered in response to pathogen challenges. We also provide whole-genome methylation and genetic variation maps, and resolve a complex genetic region that may contribute to fibromelanosis in these animals. Finally, we experimentally show leptin binding to the identified leptin receptor in chicken, confirming an active leptin ligand-receptor system. The Silkie genome assembly not only provides a rich data resource for avian genome studies, but also lays a foundation for further functional validation of resolved genes.
Collapse
Affiliation(s)
- Feng Zhu
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA; College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Rd, 100193, Beijing, China
| | - Zhong-Tao Yin
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA; College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Rd, 100193, Beijing, China
| | - Qiang-Sen Zhao
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA; College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Rd, 100193, Beijing, China
| | - Yun-Xiao Sun
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA; College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Rd, 100193, Beijing, China
| | - Yu-Chen Jie
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA; College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Rd, 100193, Beijing, China
| | - Jacqueline Smith
- The Roslin Institute & R(D)SVS, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Yu-Ze Yang
- Beijing General Station of Animal Husbandry, 100101, Beijing, China
| | - David W Burt
- The Roslin Institute & R(D)SVS, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
- The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Maxwell Hincke
- Department of Cellular and Molecular Medicine, Department of Innovation in Medical Education, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, KIH 8M5, Canada
| | - Zi-Ding Zhang
- College of Biological Sciences, China Agricultural University, 100193, Beijing, China
| | - Meng-Di Yuan
- College of Biological Sciences, China Agricultural University, 100193, Beijing, China
| | - Jim Kaufman
- Institute for Immunology and Infection Research, University of Edinburgh, Edinburgh, EH9 3FL, UK
- Department of Pathology, University of Cambridge, Cambridge, CB2 1QP, UK
| | - Cong-Jiao Sun
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA; College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Rd, 100193, Beijing, China
| | - Jun-Ying Li
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA; College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Rd, 100193, Beijing, China
| | - Li-Wa Shao
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA; College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Rd, 100193, Beijing, China.
| | - Ning Yang
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA; College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Rd, 100193, Beijing, China.
| | - Zhuo-Cheng Hou
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA; College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Rd, 100193, Beijing, China.
- Sanya Institute of China Agricultural University, Beijing, China.
| |
Collapse
|
7
|
Zheng X, Zhang Y, Zhang Y, Chen J, Nie R, Li J, Zhang H, Wu C. HOXB8 overexpression induces morphological changes in chicken mandibular skin: an RNA-seq analysis. Poult Sci 2023; 102:102971. [PMID: 37562126 PMCID: PMC10432836 DOI: 10.1016/j.psj.2023.102971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 07/19/2023] [Accepted: 07/23/2023] [Indexed: 08/12/2023] Open
Abstract
The Huiyang beard chicken is a well-known Chinese local breed known for its elongated feathers gathered from both sides of the face (muffs) and below the beak (beard), as well as short wattles (SW). The muff and beard (Mb) mutation is caused by ectopic upregulation of the homeobox B8 (HOXB8) gene in the mandibular skin; and the chi-square test showed a significant correlation between SW and Mb genotypes. However, the underlying molecular mechanisms that regulate Mb and SW variations remain unclear. In this study, we investigated the transcriptomes of the mandibular skin and wattles of chickens with and without the Mb genotype to elucidate the molecular basis of these traits. Our results show that HOXB8 is expressed at significantly higher levels in both the mandibular skin and wattles of Mb chickens than in those of wild-type chickens, indicating that HOXB8 regulates both the Mb and SW phenotypes. Key genes for keratin synthesis were highly expressed in the mandibular skin of Mb chickens, suggesting that HOXB8 may play a role in feather development. In wattles, changes in the expression of extracellular matrix synthesis genes may contribute to SW traits. DNA-binding motif analyses revealed that differentially expressed genes were likely to be directly regulated by HOXB8 binding, indicating that HOXB8 may directly or indirectly regulate feather follicle development and wattle growth. Our study identified both known and novel targets, including several genes not previously implicated in feather development and mesenchymal formation. These findings provide insights into the molecular mechanisms of skin appendage variation in birds and offer potential applications in breeding poultry breeds with unique phenotypes.
Collapse
Affiliation(s)
- Xiaotong Zheng
- State Key Laboratory of Farm Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, Jiangsu Province, China
| | - Ying Zhang
- China Agricultural Museum, Beijing 100026, China
| | - Yawen Zhang
- State Key Laboratory of Farm Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Jianfei Chen
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, Jiangsu Province, China
| | - Ruixue Nie
- State Key Laboratory of Farm Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Junying Li
- State Key Laboratory of Farm Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Hao Zhang
- State Key Laboratory of Farm Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Changxin Wu
- State Key Laboratory of Farm Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
8
|
Tolone M, Sardina MT, Criscione A, Lasagna E, Senczuk G, Rizzuto I, Riggio S, Moscarelli A, Macaluso V, Di Gerlando R, Cassandro M, Portolano B, Mastrangelo S. High-density single nucleotide polymorphism markers reveal the population structure of 2 local chicken genetic resources. Poult Sci 2023; 102:102692. [PMID: 37120867 PMCID: PMC10172703 DOI: 10.1016/j.psj.2023.102692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/21/2023] [Accepted: 03/29/2023] [Indexed: 05/02/2023] Open
Abstract
Italy counts a large number of local chicken populations, some without a recognized genetic structure, such as Val Platani (VPL) and Cornuta (COS), which represent noteworthy local genetic resources. In this study, the genotype data of 34 COS and 42 VPL, obtained with the Affymetrix Axiom600KChicken Genotyping Array, were used with the aim to investigate the genetic diversity, the runs of homozygosity (ROH) pattern, as well as the population structure and relationship within the framework of other local Italian and commercial chickens. The genetic diversity indices, estimated using different approaches, displayed moderate levels of genetic diversity in both populations. The identified ROH hotspots harbored genes related to immune response and adaptation to local hot temperatures. The results on genetic relationship and population structure reported a clear clustering of the populations according to their geographic origin. The COS formed a nonoverlapping genomic cluster and clearly separated from the other populations, but showed evident proximity to the Siciliana breed (SIC). The VPL highlighted intermediate relationships between the COS-SIC group and the rest of the sample, but closer to the other Italian local chickens. Moreover, VPL showed a complex genomic structure, highlighting the presence of 2 subpopulations that match with the different source of the samples. The results obtained from the survey on genetic differentiation underline the hypothesis that Cornuta is a population with a defined genetic structure. The substructure that characterizes the Val Platani chicken is probably the consequence of the combined effects of genetic drift, small population size, reproductive isolation, and inbreeding. These findings contribute to the understanding of genetic diversity and population structure, and represent a starting point for designing programs to monitor and safeguard these local genetic resources, in order to define a possible official recognition program as breeds.
Collapse
Affiliation(s)
- Marco Tolone
- Department of Agricultural, Food and Forest Sciences, University of Palermo, 90128 Palermo, Italy
| | - Maria Teresa Sardina
- Department of Agricultural, Food and Forest Sciences, University of Palermo, 90128 Palermo, Italy
| | - Andrea Criscione
- Department of Agriculture, Food and the Environment, University of Catania, 95131 Catania, Italy
| | - Emiliano Lasagna
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06121 Perugia, Italy
| | - Gabriele Senczuk
- Department of Agricultural, Environmental and Food Sciences, University of Molise, 86100 Campobasso, Italy
| | - Ilaria Rizzuto
- Department of Agricultural, Food and Forest Sciences, University of Palermo, 90128 Palermo, Italy
| | - Silvia Riggio
- Department of Agricultural, Food and Forest Sciences, University of Palermo, 90128 Palermo, Italy
| | - Angelo Moscarelli
- Department of Agricultural, Food and Forest Sciences, University of Palermo, 90128 Palermo, Italy
| | - Vito Macaluso
- Department of Agricultural, Food and Forest Sciences, University of Palermo, 90128 Palermo, Italy
| | - Rosalia Di Gerlando
- Department of Agricultural, Food and Forest Sciences, University of Palermo, 90128 Palermo, Italy
| | - Martino Cassandro
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, 35020 Legnaro, Italy
| | - Baldassare Portolano
- Department of Agricultural, Food and Forest Sciences, University of Palermo, 90128 Palermo, Italy
| | - Salvatore Mastrangelo
- Department of Agricultural, Food and Forest Sciences, University of Palermo, 90128 Palermo, Italy.
| |
Collapse
|
9
|
Xiong X, Liu J, Rao Y. Whole Genome Resequencing Helps Study Important Traits in Chickens. Genes (Basel) 2023; 14:1198. [PMID: 37372379 DOI: 10.3390/genes14061198] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
The emergence of high-throughput sequencing technology promotes life science development, provides technical support to analyze many life mechanisms, and presents new solutions to previously unsolved problems in genomic research. Resequencing technology has been widely used for genome selection and research on chicken population structure, genetic diversity, evolutionary mechanisms, and important economic traits caused by genome sequence differences since the release of chicken genome sequence information. This article elaborates on the factors influencing whole genome resequencing and the differences between these factors and whole genome sequencing. It reviews the important research progress in chicken qualitative traits (e.g., frizzle feather and comb), quantitative traits (e.g., meat quality and growth traits), adaptability, and disease resistance, and provides a theoretical basis to study whole genome resequencing in chickens.
Collapse
Affiliation(s)
- Xinwei Xiong
- Key Laboratory for Genetic Improvement of Indigenous Chicken Breeds of Jiangxi Province, Nanchang Normal University, Nanchang 330032, China
| | - Jianxiang Liu
- Key Laboratory for Genetic Improvement of Indigenous Chicken Breeds of Jiangxi Province, Nanchang Normal University, Nanchang 330032, China
| | - Yousheng Rao
- Key Laboratory for Genetic Improvement of Indigenous Chicken Breeds of Jiangxi Province, Nanchang Normal University, Nanchang 330032, China
| |
Collapse
|
10
|
Cai D, Wang Z, Zhou Z, Lin D, Ju X, Nie Q. Integration of transcriptome sequencing and whole genome resequencing reveal candidate genes in egg production of upright and pendulous-comb chickens. Poult Sci 2023; 102:102504. [PMID: 36739803 PMCID: PMC9932115 DOI: 10.1016/j.psj.2023.102504] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/30/2022] [Accepted: 01/10/2023] [Indexed: 01/18/2023] Open
Abstract
Egg production performance plays an important role in the poultry industry across the world. Previous studies have shown a great difference in egg production performance between pendulous-comb (PC) and upright-comb (UC) chickens. However, there are no reports to identify potential candidate genes for egg production in PC and UC chickens. In the present study, 1,606 laying chickens were raised, and the egg laid by individual chicken was collected for 100 d. Moreover, the expression level of estrogen and progesterone hormones was measured at the start-laying and peak-laying periods of hens. Besides, 4 PC and 4 UC chickens were selected at 217 d of age to perform transcriptome sequencing (RNA-seq) and whole genome resequencing (WGS) to screen the potential candidate genes of egg production. The results showed that PC chicken demonstrated better egg production performance (P < 0.05) and higher estrogen and progesterone hormone expression levels than UC chicken (P < 0.05). RNA-seq analysis showed that 341 upregulated and 1,036 downregulated differentially expressed genes (DEGs) were identified in the ovary tissues of PC and UC chickens. These DEGs were mainly enriched in protein-related, lipid-related, and nucleic acids-related biological processes including ribosome, peptide biosynthetic process, lipid transport terms, and catalytic activity acting on RNA which can significantly affect egg production in chicken. The enrichment results of WGS analysis were consistent with RNA-seq. Further, joint analysis of WGS and RNA-seq data was utilized to screen 30 genes and CAMK1D, CLSTN2, MAST2, PIK3C2G, TBC1D1, STK3, ADGRB3, and PPARGC1A were identified as potential candidate genes for egg production in PC and UC chickens. In summary, our study provides a wealth of information for a better understanding of the genetic and molecular mechanism for the future breeding of PC and UC chickens for egg production.
Collapse
Affiliation(s)
- Danfeng Cai
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Lingnan Guangdong Laboratory of Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China
| | - Zhijun Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Lingnan Guangdong Laboratory of Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China,College of Animal Science and Technology, Zhejiang Agriculture and Forestry University, Lin'an 311300, China
| | - Zhen Zhou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Lingnan Guangdong Laboratory of Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China
| | - Duo Lin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Lingnan Guangdong Laboratory of Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China
| | - Xing Ju
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Lingnan Guangdong Laboratory of Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China
| | - Qinghua Nie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Lingnan Guangdong Laboratory of Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China.
| |
Collapse
|
11
|
Zhang J, Nie C, Li X, Zhao X, Jia Y, Han J, Chen Y, Wang L, Lv X, Yang W, Li K, Zhang J, Ning Z, Bao H, Zhao C, Li J, Qu L. Comprehensive analysis of structural variants in chickens using PacBio sequencing. Front Genet 2022; 13:971588. [PMID: 36338955 PMCID: PMC9632285 DOI: 10.3389/fgene.2022.971588] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 09/08/2022] [Indexed: 11/13/2022] Open
Abstract
Structural variants (SVs) are one of the main sources of genetic variants and have a greater impact on phenotype evolution, disease susceptibility, and environmental adaptations than single nucleotide polymorphisms (SNPs). However, SVs remain challenging to accurately type, with several detection methods showing different limitations. Here, we explored SVs from 10 different chickens using PacBio technology and detected 49,501 high-confidence SVs. The results showed that the PacBio long-read detected more SVs than Illumina short-read technology genomes owing to some SV sites on chromosomes, which are related to chicken growth and development. During chicken domestication, some SVs beneficial to the breed or without any effect on the genomic function of the breed were retained, whereas deleterious SVs were generally eliminated. This study could facilitate the analysis of the genetic characteristics of different chickens and provide a better understanding of their phenotypic characteristics at the SV level, based on the long-read sequencing method. This study enriches our knowledge of SVs in chickens and improves our understanding of chicken genomic diversity.
Collapse
Affiliation(s)
- Jinxin Zhang
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Changsheng Nie
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xinghua Li
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xiurong Zhao
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yaxiong Jia
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jianlin Han
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yu Chen
- Beijing Municipal General Station of Animal Science, Beijing, China
| | - Liang Wang
- Beijing Municipal General Station of Animal Science, Beijing, China
| | - Xueze Lv
- Beijing Municipal General Station of Animal Science, Beijing, China
| | - Weifang Yang
- Beijing Municipal General Station of Animal Science, Beijing, China
| | - Kaiyang Li
- Beijing Municipal General Station of Animal Science, Beijing, China
| | - Jianwei Zhang
- Beijing Municipal General Station of Animal Science, Beijing, China
| | - Zhonghua Ning
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Haigang Bao
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Chunjiang Zhao
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Junying Li
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Lujiang Qu
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
- *Correspondence: Lujiang Qu,
| |
Collapse
|
12
|
Bakovic V, Höglund A, Martin Cerezo ML, Henriksen R, Wright D. Genomic and gene expression associations to morphology of a sexual ornament in the chicken. G3 GENES|GENOMES|GENETICS 2022; 12:6633936. [PMID: 35801935 PMCID: PMC9434260 DOI: 10.1093/g3journal/jkac174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 06/27/2022] [Indexed: 11/12/2022]
Abstract
How sexual selection affects the genome ultimately relies on the strength and type of selection, and the genetic architecture of the involved traits. While associating genotype with phenotype often utilizes standard trait morphology, trait representations in morphospace using geometric morphometric approaches receive less focus in this regard. Here, we identify genetic associations to a sexual ornament, the comb, in the chicken system (Gallus gallus). Our approach combined genome-wide genotype and gene expression data (>30k genes) with different aspects of comb morphology in an advanced intercross line (F8) generated by crossing a wild-type Red Junglefowl with a domestic breed of chicken (White Leghorn). In total, 10 quantitative trait loci were found associated to various aspects of comb shape and size, while 1,184 expression QTL were found associated to gene expression patterns, among which 98 had overlapping confidence intervals with those of quantitative trait loci. Our results highlight both known genomic regions confirming previous records of a large effect quantitative trait loci associated to comb size, and novel quantitative trait loci associated to comb shape. Genes were considered candidates affecting comb morphology if they were found within both confidence intervals of the underlying quantitative trait loci and eQTL. Overlaps between quantitative trait loci and genome-wide selective sweeps identified in a previous study revealed that only loci associated to comb size may be experiencing on-going selection under domestication.
Collapse
Affiliation(s)
- Vid Bakovic
- IFM Biology, University of Linköping , Linköping 581 83, Sweden
| | - Andrey Höglund
- Science for Life Laboratory, Department of Environmental Science, Stockholm University , Stockholm 106 91, Sweden
| | | | - Rie Henriksen
- IFM Biology, University of Linköping , Linköping 581 83, Sweden
| | - Dominic Wright
- IFM Biology, University of Linköping , Linköping 581 83, Sweden
| |
Collapse
|
13
|
Andersson L, Purugganan M. Molecular genetic variation of animals and plants under domestication. Proc Natl Acad Sci U S A 2022; 119:e2122150119. [PMID: 35858409 PMCID: PMC9335317 DOI: 10.1073/pnas.2122150119] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Domesticated plants and animals played crucial roles as models for evolutionary change by means of natural selection and for establishing the rules of inheritance, originally proposed by Charles Darwin and Gregor Mendel, respectively. Here, we review progress that has been made during the last 35 y in unraveling the molecular genetic variation underlying the stunning phenotypic diversity in crops and domesticated animals that inspired Mendel and Darwin. We notice that numerous domestication genes, crucial for the domestication process, have been identified in plants, whereas animal domestication appears to have a polygenic background with no obvious "domestication genes" involved. Although model organisms, such as Drosophila and Arabidopsis, have replaced domesticated species as models for basic research, the latter are still outstanding models for evolutionary research because phenotypic change in these species represents an evolutionary process over thousands of years. A consequence of this is that some alleles contributing to phenotypic diversity have evolved by accumulating multiple changes in the same gene. The continued molecular characterization of crops and farm animals with ever sharper tools is essential for future food security.
Collapse
Affiliation(s)
- Leif Andersson
- Department of Medical Biochemistry and Microbiology, Uppsala University, SE-751 23 Uppsala, Sweden
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843-4458
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, SE-75007 Uppsala, Sweden
| | - Michael Purugganan
- Center for Genomics and Systems Biology, New York University, New York, NY 10003
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, 129188, United Arab Emirates
| |
Collapse
|
14
|
O’Dowd K, Sánchez L, Ben Salem J, Beaudry F, Barjesteh N. Characterization of the Role of Extracellular Vesicles Released from Chicken Tracheal Cells in the Antiviral Responses against Avian Influenza Virus. MEMBRANES 2021; 12:membranes12010053. [PMID: 35054579 PMCID: PMC8780788 DOI: 10.3390/membranes12010053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/24/2021] [Accepted: 12/26/2021] [Indexed: 11/16/2022]
Abstract
During viral respiratory infections, the innate antiviral response engages a complex network of cells and coordinates the secretion of key antiviral factors, such as cytokines, which requires high levels of regulation and communication. Extracellular vesicles (EVs) are particles released from cells that contain an array of biomolecules, including lipids, proteins, and RNAs. The contents of EVs can be influenced by viral infections and may play a role in the regulation of antiviral responses. We hypothesized that the contents of EVs released from chicken tracheal cells are influenced by viral infection and that these EVs regulate the function of other immune cells, such as macrophages. To this end, we characterized the protein profile of EVs during avian influenza virus (AIV) infection and evaluated the impact of EV stimulation on chicken macrophage functions. A total of 140 differentially expressed proteins were identified upon stimulation with various stimuli. These proteins were shown to be involved in immune responses and cell signaling pathways. In addition, we demonstrated that EVs can activate macrophages. These results suggest that EVs play a role in the induction and modulation of antiviral responses during viral respiratory infections in chickens.
Collapse
Affiliation(s)
- Kelsey O’Dowd
- Research Group on Infectious Diseases in Production Animals (GREMIP), Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada;
- Swine and Poultry Infectious Disease Research Center (CRIPA), Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada;
| | - Laura Sánchez
- Swine and Poultry Infectious Disease Research Center (CRIPA), Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada;
| | - Jennifer Ben Salem
- Animal Pharmacology Research Group of Quebec (GREPAQ), Department of Veterinary Medicine, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada; (J.B.S.); (F.B.)
- Centre de Recherche sur le Cerveau et L’apprentissage (CIRCA), Université de Montréal, Montreal, QC J2S 2M2, Canada
| | - Francis Beaudry
- Animal Pharmacology Research Group of Quebec (GREPAQ), Department of Veterinary Medicine, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada; (J.B.S.); (F.B.)
- Centre de Recherche sur le Cerveau et L’apprentissage (CIRCA), Université de Montréal, Montreal, QC J2S 2M2, Canada
| | - Neda Barjesteh
- Research Group on Infectious Diseases in Production Animals (GREMIP), Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada;
- Swine and Poultry Infectious Disease Research Center (CRIPA), Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada;
- Correspondence:
| |
Collapse
|
15
|
Jiao Z, Tian Y, Hu B, Li Q, Liu S. Genome Structural Variation Landscape and Its Selection Signatures in the Fast-growing Strains of the Pacific Oyster, Crassostrea gigas. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2021; 23:736-748. [PMID: 34498173 DOI: 10.1007/s10126-021-10060-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 08/17/2021] [Indexed: 06/13/2023]
Abstract
The Pacific oyster (Crassostrea gigas) genome is highly polymorphic and affluent in structural variations (SVs), a significant source of genetic variation underlying inter-individual differences. Here, we used two genome assemblies and 535 individuals of genome re-sequencing data to construct a comprehensive landscape of structural variations in the Pacific oyster. Through whole-genome alignment, 11,087 short SVs and 11,561 copy number variations (CNVs) were identified. While analysis of re-sequencing data revealed 511,170 short SVs and 979,486 CNVs, a total of 63,100 short SVs and 58,182 CNVs were identified in at least 20 samples and regarded as common variations. Based on the common short SVs, both Fst and Pi ratio statistical methods were employed to detect the selective sweeps between 20 oyster individuals from the fast-growing strain and 20 individuals from their corresponding wild population. A total of 514 overlapped regions (8.76 Mb), containing 746 candidate genes, were identified by both approaches, in addition with 103 genes within 61 common CNVs only detected in the fast-growing strains. The GO enrichment and KEGG pathway analysis indicated that the identified candidate genes were mostly associated with apical part of cell and were significantly enriched in several metabolism-related pathways, including tryptophan metabolism and histidine metabolism. This work provided a comprehensive landscape of SVs and revealed their responses to selection, which will be valuable for further investigations on genome evolution under selection in the oysters.
Collapse
Affiliation(s)
- Zexin Jiao
- Key Laboratory of Mariculture (Ocean University of China), Ocean University of China Ministry of Education College of Fisheries, Qingdao, 266003, China
| | - Yuan Tian
- Key Laboratory of Mariculture (Ocean University of China), Ocean University of China Ministry of Education College of Fisheries, Qingdao, 266003, China
| | - Boyang Hu
- Key Laboratory of Mariculture (Ocean University of China), Ocean University of China Ministry of Education College of Fisheries, Qingdao, 266003, China
| | - Qi Li
- Key Laboratory of Mariculture (Ocean University of China), Ocean University of China Ministry of Education College of Fisheries, Qingdao, 266003, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Shikai Liu
- Key Laboratory of Mariculture (Ocean University of China), Ocean University of China Ministry of Education College of Fisheries, Qingdao, 266003, China.
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| |
Collapse
|
16
|
Sato DX, Rafati N, Ring H, Younis S, Feng C, Blanco-Aguiar JA, Rubin CJ, Villafuerte R, Hallböök F, Carneiro M, Andersson L. Brain Transcriptomics of Wild and Domestic Rabbits Suggests That Changes in Dopamine Signaling and Ciliary Function Contributed to Evolution of Tameness. Genome Biol Evol 2021; 12:1918-1928. [PMID: 32835359 DOI: 10.1093/gbe/evaa158] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2020] [Indexed: 12/13/2022] Open
Abstract
Domestication has resulted in immense phenotypic changes in animals despite their relatively short evolutionary history. The European rabbit is one of the most recently domesticated animals, but exhibits distinct morphological, physiological, and behavioral differences from their wild conspecifics. A previous study revealed that sequence variants with striking allele frequency differences between wild and domestic rabbits were enriched in conserved noncoding regions, in the vicinity of genes involved in nervous system development. This suggests that a large proportion of the genetic changes targeted by selection during domestication might affect gene regulation. Here, we generated RNA-sequencing data for four brain regions (amygdala, hypothalamus, hippocampus, and parietal/temporal cortex) sampled at birth and revealed hundreds of differentially expressed genes (DEGs) between wild and domestic rabbits. DEGs in amygdala were significantly enriched for genes associated with dopaminergic function and all 12 DEGs in this category showed higher expression in domestic rabbits. DEGs in hippocampus were enriched for genes associated with ciliary function, all 21 genes in this category showed lower expression in domestic rabbits. These results indicate an important role of dopamine signaling and ciliary function in the evolution of tameness during rabbit domestication. Our study shows that gene expression in specific pathways has been profoundly altered during domestication, but that the majority of genes showing differential expression in this study have not been the direct targets of selection.
Collapse
Affiliation(s)
- Daiki X Sato
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan.,Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala Biomedical Centre, Sweden
| | - Nima Rafati
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala Biomedical Centre, Sweden.,Science for Life Laboratory, Uppsala University, National Bioinformatics Infrastructure Sweden (NBIS), Sweden
| | - Henrik Ring
- Department of Neuroscience, Uppsala University, Uppsala Biomedical Centre, Sweden
| | - Shady Younis
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala Biomedical Centre, Sweden
| | - Chungang Feng
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala Biomedical Centre, Sweden
| | - José A Blanco-Aguiar
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal.,Instituto de Investigación en Recursos Cinegéticos, IREC (CSIC, UCLM, JCCM), Ciudad Real, Spain
| | - Carl-Johan Rubin
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala Biomedical Centre, Sweden
| | | | - Finn Hallböök
- Department of Neuroscience, Uppsala University, Uppsala Biomedical Centre, Sweden
| | - Miguel Carneiro
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal.,Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Portugal
| | - Leif Andersson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala Biomedical Centre, Sweden.,Department of Veterinary Integrative Biosciences, Texas A&M University.,Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
17
|
Lawal RA, Hanotte O. Domestic chicken diversity: Origin, distribution, and adaptation. Anim Genet 2021; 52:385-394. [PMID: 34060099 DOI: 10.1111/age.13091] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/07/2021] [Indexed: 12/13/2022]
Abstract
Chicken is the most numerous among the domesticated livestock species. Across cultures, religions, and societies, chicken is widely accepted with little or no taboo compared to other domestic animals. Its adaptability to diverse environmental conditions and demonstrated potential for breeding improvement provide a unique genetic resource for addressing the challenges of food security in a world impacted by climatic change and human population growth. Recent studies, shedding new knowledge on the chicken genomes, have helped reconstruct its past evolutionary history. Here, we review the literature concerning the origin, dispersion, and adaptation of domestic chicken. We highlight the role of human and natural selection in shaping the diversity of the species and provide a few examples of knowledge gaps that may be the focus of future research.
Collapse
Affiliation(s)
- R A Lawal
- Cells, Organisms and Molecular Genetics, School of Life Sciences, University of Nottingham, Nottingham, NG7 2RD, UK.,The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA
| | - O Hanotte
- Cells, Organisms and Molecular Genetics, School of Life Sciences, University of Nottingham, Nottingham, NG7 2RD, UK.,Centre for Tropical Livestock Genetics and Health, The Roslin Institute, Edinburgh, EH25 9RG, UK.,LiveGene, International Livestock Research Institute (ILRI), P.O. 5689, Addis Ababa, Ethiopia
| |
Collapse
|
18
|
Li J, Lee M, Davis BW, Lamichhaney S, Dorshorst BJ, Siegel PB, Andersson L. Mutations Upstream of the TBX5 and PITX1 Transcription Factor Genes Are Associated with Feathered Legs in the Domestic Chicken. Mol Biol Evol 2021; 37:2477-2486. [PMID: 32344431 PMCID: PMC7475036 DOI: 10.1093/molbev/msaa093] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Feathered leg is a trait in domestic chickens that has undergone intense selection by fancy breeders. Previous studies have shown that two major loci controlling feathered leg are located on chromosomes 13 and 15. Here, we present genetic evidence for the identification of candidate causal mutations at these loci. This was accomplished by combining classical linkage mapping using an experimental cross segregating for feathered leg and high-resolution identical-by-descent mapping using whole-genome sequence data from 167 samples of chicken with or without feathered legs. The first predicted causal mutation is a single-base change located 25 kb upstream of the gene for the forelimb-specific transcription factor TBX5 on chromosome 15. The second is a 17.7-kb deletion located ∼200 kb upstream of the gene for the hindlimb-specific transcription factor PITX1 on chromosome 13. These mutations are predicted to activate TBX5 and repress PITX1 expression, respectively. The study reveals a remarkable convergence in the evolution of the feathered-leg phenotype in domestic chickens and domestic pigeons, as this phenotype is caused by noncoding mutations upstream of the same two genes. Furthermore, the PITX1 causal variants are large overlapping deletions, 17.7 kb in chicken and 44 kb in pigeons. The results of the present study are consistent with the previously proposed model for pigeon that feathered leg is caused by reduced PITX1 expression and ectopic expression of TBX5 in hindlimb buds resulting in a shift of limb identity from hindlimb to more forelimb-like identity.
Collapse
Affiliation(s)
- Jingyi Li
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX.,Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA
| | - MiOk Lee
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX
| | - Brian W Davis
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX
| | - Sangeet Lamichhaney
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Ben J Dorshorst
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA
| | - Paul B Siegel
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA
| | - Leif Andersson
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX.,Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.,Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
19
|
Zhang J, Nie C, Li X, Ning Z, Chen Y, Jia Y, Han J, Wang L, Lv X, Yang W, Qu L. Genome-Wide Population Genetic Analysis of Commercial, Indigenous, Game, and Wild Chickens Using 600K SNP Microarray Data. Front Genet 2020; 11:543294. [PMID: 33101376 PMCID: PMC7545075 DOI: 10.3389/fgene.2020.543294] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 09/02/2020] [Indexed: 12/13/2022] Open
Abstract
Following chicken domestication, diversified chicken breeds were developed by both natural and artificial selection, which led to the accumulation of abundant genetic and phenotypic variations, making chickens an ideal genetic research model. To better understand the genetic structure of chicken breeds under different selection pressures, we genotyped various chicken populations with specific selection targets, including indigenous, commercial, gamecock, and wild ancestral chickens, using the 600K SNP array. We analyzed the population structure, genetic relationships, run of homozygosity (ROH), effective population number (Ne), and other genetic parameters. The wild ancestral population, red junglefowl (RJF), possessed the highest diversity, in comparison with all other domesticated populations, which was supported by linkage disequilibrium decay (LD), effective population number, and ROH analyses. The gamecock breeds, which were subjected to stronger male-biased selection for fighting-related traits, also presented higher variation than the commercial and indigenous breeds. Admixture analysis also indicated that game breed is a relatively independent branch of Chinese local breeds. Following intense selection for reproductive and productive traits, the commercial lines showed the least diversity. We also observed that the European local chickens had lower genetic variation than the Chinese local breeds, which could be attributed to the shorter history of the European breed. ROH were present in a breed specific manner and 191 ROH island were detected on four groups (commercial, local, game and wild chickens). These ROH islands were involved in egg production, growth and silky feathers and other traits. Moreover, we estimated the effective sex ratio of these breeds to demonstrate the change in the ratio of the two sexes. We found that commercial chickens had a greater sex imbalance between females and males. The commercial lines showed the highest female-to-male ratios. Interestingly, RJF comprised a greater proportion of males than females. Our results show the population genetics of chickens under selection pressures, and can aid in the development of better conservation strategies for different chicken breeds.
Collapse
Affiliation(s)
- Jinxin Zhang
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Changsheng Nie
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xinghua Li
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhonghua Ning
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yu Chen
- Beijing Municipal General Station of Animal Science, Beijing, China
| | - Yaxiong Jia
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jianlin Han
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Liang Wang
- Beijing Municipal General Station of Animal Science, Beijing, China
| | - Xueze Lv
- Beijing Municipal General Station of Animal Science, Beijing, China
| | - Weifang Yang
- Beijing Municipal General Station of Animal Science, Beijing, China
| | - Lujiang Qu
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
20
|
Guo X, Wang J, Ma C, Wang Z, Chen H, Su H, Wan Y, Jiang R. Genome-wide re-sequencing and transcriptome analysis reveal candidate genes associated with the pendulous comb phenotype in domestic chickens. Anim Sci J 2019; 91:e13308. [PMID: 31808219 DOI: 10.1111/asj.13308] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 09/21/2019] [Accepted: 10/17/2019] [Indexed: 12/25/2022]
Abstract
To determine the causative variations associated with two chicken comb phenotypes, pendulous comb (PC) or upright comb (UC), two pooled genomic DNA samples from PC and UC chickens were re-sequenced by Next-Generation Sequencer, and genome-wide Single nucleotide polymorphisms (SNPs) were detected. Using three selective sweep approaches, FST , θπ, and Tajima's D, with top 5% window values serving as the threshold, a total of 84 positively selective genes (PSGs) were identified. There were no SNPs in exons of the PSGs with significant differences in allele frequencies between the two comb phenotype groups. Then, 515 differentially expressed genes (DEGs) between the PC and UC were identified by RNA-seq. Three genes including CD36 (CD36 molecule), ADAMTSL3 (ADAMTS-like 3), and AOX1 (aldehyde oxidases 1) are overlapped between PSGs and DEGs. After genotyping seven candidate SNPs in the regulatory regions of the three overlapping genes in 120 chickens from two other breeds, two variants (rs14607046 and rs731818051) in the regulatory regions of AOX1 and ADAMTSL3 were found to have significant differences in allele frequency between the PC and UC, suggesting that the two variants may be causative mutations for PC. Overall, our study shed light on the genetic basis underlying the PC phenotype in chickens.
Collapse
Affiliation(s)
- Xing Guo
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Jiangxian Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Chendong Ma
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Zhicheng Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Hong Chen
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Hu Su
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Yi Wan
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Runshen Jiang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| |
Collapse
|
21
|
Núñez‐León D, Aguirre‐Fernández G, Steiner A, Nagashima H, Jensen P, Stoeckli E, Schneider RA, Sánchez‐Villagra MR. Morphological diversity of integumentary traits in fowl domestication: Insights from disparity analysis and embryonic development. Dev Dyn 2019; 248:1044-1058. [DOI: 10.1002/dvdy.105] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 08/01/2019] [Accepted: 08/13/2019] [Indexed: 12/18/2022] Open
Affiliation(s)
- Daniel Núñez‐León
- Paläontologisches Institut und Museum, Universität Zürich Zürich Switzerland
| | | | - Andrea Steiner
- Paläontologisches Institut und Museum, Universität Zürich Zürich Switzerland
| | - Hiroshi Nagashima
- Division of Gross Anatomy and MorphogenesisNiigata University Graduate School of Medical and Dental Sciences Niigata Japan
| | - Per Jensen
- IFM Biologi, AVIAN Behavioural Genomics and Physiology GroupLinköping University Linköping Sweden
| | - Esther Stoeckli
- Institute of Molecular Life Sciences, University of Zurich Zurich Switzerland
| | - Richard A. Schneider
- Department of Orthopaedic SurgeryUniversity of California San Francisco California
| | | |
Collapse
|
22
|
Dong X, Li J, Zhang Y, Han D, Hua G, Wang J, Deng X, Wu C. Genomic Analysis Reveals Pleiotropic Alleles at EDN3 and BMP7 Involved in Chicken Comb Color and Egg Production. Front Genet 2019; 10:612. [PMID: 31316551 PMCID: PMC6611142 DOI: 10.3389/fgene.2019.00612] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 06/12/2019] [Indexed: 12/20/2022] Open
Abstract
Artificial selection is often associated with numerous changes in seemingly unrelated phenotypic traits. The genetic mechanisms of correlated phenotypes probably involve pleiotropy or linkage of genes related to such phenotypes. Dongxiang blue-shelled chicken, an indigenous chicken breed of China, has segregated significantly for the dermal hyperpigmentation phenotype. Two lines of the chicken have been divergently selected with respect to comb color for over 20 generations. The red comb line chicken produces significantly higher number of eggs than the dark comb line chicken. The objective of this study was to explore potential mechanisms involved in the relationship between comb color and egg production among chickens. Based on the genome-wide association study results, we identified a genomic region on chromosome 20 involving EDN3 and BMP7, which is associated with hyperpigmentation of chicken comb. Further analyses by selection signatures in the two divergent lines revealed that several candidate genes, including EDN3, BMP7, BPIFB3, and PCK1, closely located on chromosome 20 are involved in the development of neural crest cell and reproductive system. The two genes EDN3 and BMP7 have known roles in regulating both ovarian function and melanogenesis, indicating the pleiotropic effect on hyperpigmentation and egg production in blue-shelled chickens. Association analysis for egg production confirmed the pleiotropic effect of selected loci identified by selection signatures. The study provides insights into phenotypic evolution due to genetic variation across the genome. The information might be useful in the current breeding efforts to develop improved breeds for egg production.
Collapse
Affiliation(s)
- Xianggui Dong
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding, and Reproduction of the Ministry of Agriculture, China Agricultural University, Beijing, China
| | - Junying Li
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding, and Reproduction of the Ministry of Agriculture, China Agricultural University, Beijing, China
| | - Yuanyuan Zhang
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding, and Reproduction of the Ministry of Agriculture, China Agricultural University, Beijing, China
| | - Deping Han
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Guoying Hua
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding, and Reproduction of the Ministry of Agriculture, China Agricultural University, Beijing, China
| | - Jiankui Wang
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding, and Reproduction of the Ministry of Agriculture, China Agricultural University, Beijing, China
| | - Xuemei Deng
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding, and Reproduction of the Ministry of Agriculture, China Agricultural University, Beijing, China
| | - Changxin Wu
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding, and Reproduction of the Ministry of Agriculture, China Agricultural University, Beijing, China
| |
Collapse
|
23
|
Lamichhaney S, Andersson L. A comparison of the association between large haplotype blocks under selection and the presence/absence of inversions. Ecol Evol 2019; 9:4888-4896. [PMID: 31031951 PMCID: PMC6476765 DOI: 10.1002/ece3.5094] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 02/26/2019] [Accepted: 03/04/2019] [Indexed: 12/31/2022] Open
Abstract
Inversions may contribute to ecological adaptation and phenotypic diversity, and with the advent of "second" and "third" generation sequencing technologies, the ability to detect inversion polymorphisms has been enhanced dramatically. A key molecular consequence of an inversion is the suppression of recombination allowing independent accumulation of genetic changes between alleles over time. This may lead to the development of divergent haplotype blocks maintained by balancing selection. Thus, divergent haplotype blocks are often considered as indicating the presence of an inversion. In this paper, we first review the features of a 7.7 Mb inversion causing the Rose-comb phenotype in chicken, as a model for how inversions evolve and directly affect phenotypes. Second, we compare the genetic basis for alternative mating strategies in ruff and timing of reproduction in Atlantic herring, both associated with divergent haplotype blocks. Alternative male mating strategies in ruff are associated with a 4.5 Mb inversion that occurred about 4 million years ago. In fact, the ruff inversion shares some striking features with the Rose-comb inversion such as disruption of a gene at one of the inversion breakpoints and generation of a new allele by recombination between the inverted and noninverted alleles. In contrast, inversions do not appear to be a major reason for the fairly large haplotype blocks (range 10-200 kb) associated with ecological adaptation in the herring. Thus, it is important to note that divergent haplotypes may also be maintained by natural selection in the absence of structural variation.
Collapse
Affiliation(s)
- Sangeet Lamichhaney
- Department of Organismic and Evolutionary Biology and Museum of Comparative ZoologyHarvard UniversityCambridgeMassachusetts
| | - Leif Andersson
- Department of Medical Biochemistry and MicrobiologyUppsala UniversityUppsalaSweden
- Department of Veterinary Integrative BiosciencesTexas A&M UniversityCollege StationTexas
- Department of Animal Breeding and GeneticsSwedish University of Agricultural SciencesUppsalaSweden
| |
Collapse
|
24
|
Lye ZN, Purugganan MD. Copy Number Variation in Domestication. TRENDS IN PLANT SCIENCE 2019; 24:352-365. [PMID: 30745056 DOI: 10.1016/j.tplants.2019.01.003] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 01/08/2019] [Accepted: 01/10/2019] [Indexed: 05/22/2023]
Abstract
Domesticated plants have long served as excellent models for studying evolution. Many genes and mutations underlying important domestication traits have been identified, and most causal mutations appear to be SNPs. Copy number variation (CNV) is an important source of genetic variation that has been largely neglected in studies of domestication. Ongoing work demonstrates the importance of CNVs as a source of genetic variation during domestication, and during the diversification of domesticated taxa. Here, we review how CNVs contribute to evolutionary processes underlying domestication, and review examples of domestication traits caused by CNVs. We draw from examples in plant species, but also highlight cases in animal systems that could illuminate the roles of CNVs in the domestication process.
Collapse
Affiliation(s)
- Zoe N Lye
- Center for Genomics and Systems Biology, 12 Waverly Place, New York University, New York, NY 10003, USA
| | - Michael D Purugganan
- Center for Genomics and Systems Biology, 12 Waverly Place, New York University, New York, NY 10003, USA; Center for Genomics and Systems Biology, New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
25
|
Huang T, Cheng S, Feng Y, Sheng Z, Gong Y. A copy number variation generated by complicated organization of PCDHA gene cluster is associated with egg performance traits in Xinhua E-strain. Poult Sci 2018; 97:3435-3445. [PMID: 30007306 DOI: 10.3382/ps/pey236] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 07/07/2018] [Indexed: 01/15/2023] Open
Abstract
In recent years, a mass of duplicated and deleted DNA sequences have been found in human and animal genomes following the prevalence of employing high-throughput sequencing and SNP array. However, few copy number variation (CNV) studies have been performed on egg performance traits of chicken. In this study, 17 loci reported in previous studies were selected for CNV detection in the Xinhua E-strain by using the CNVplex kit, and the detection results showed that locus14 exhibited CNV. Further association analysis indicated the copies of locus14 could be significantly associated with age at first egg (AFE; P < 0.0086) and egg number at 250 d (250EN; P < 0.036). DNA sequence amplification showed the loss of a 260-bp-long fragment in the upstream of locus14, which mainly occurred in normal or copy-gain individuals. The qPCR results showed that subjects with gain of copies could promote the total expression level of the PCDHA gene cluster in the pituitary gland of adult individuals. Additionally, PCR amplification with randomly combined primers revealed a larger number of chicken variable exons than that previously reported, indicating the complexity of the organization of the PCDHA gene cluster. Those variable exons are divergent in their distribution among the populations of Xinhua E-strain, Chahua, Tibetan, and Tulufan Game Chicken, and most individuals only possess part of variable exons. Overall, the copies of locus14 reflect the variable exon dosage effects on the total expression level of the PCDHA gene cluster, which may regulate the layer egg production by affecting the development of the neural system.
Collapse
Affiliation(s)
- Tao Huang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
| | - Shengqi Cheng
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
| | - Yanping Feng
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
| | - Zheya Sheng
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
| | - Yanzhang Gong
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
| |
Collapse
|
26
|
|
27
|
Letaief R, Rebours E, Grohs C, Meersseman C, Fritz S, Trouilh L, Esquerré D, Barbieri J, Klopp C, Philippe R, Blanquet V, Boichard D, Rocha D, Boussaha M. Identification of copy number variation in French dairy and beef breeds using next-generation sequencing. Genet Sel Evol 2017; 49:77. [PMID: 29065859 PMCID: PMC5655909 DOI: 10.1186/s12711-017-0352-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 10/17/2017] [Indexed: 11/15/2022] Open
Abstract
Background Copy number variations (CNV) are known to play a major role in genetic variability and disease pathogenesis in several species including cattle. In this study, we report the identification and characterization of CNV in eight French beef and dairy breeds using whole-genome sequence data from 200 animals. Bioinformatics analyses to search for CNV were carried out using four different but complementary tools and we validated a subset of the CNV by both in silico and experimental approaches.
Results We report the identification and localization of 4178 putative deletion-only, duplication-only and CNV regions, which cover 6% of the bovine autosomal genome; they were validated by two in silico approaches and/or experimentally validated using array-based comparative genomic hybridization and single nucleotide polymorphism genotyping arrays. The size of these variants ranged from 334 bp to 7.7 Mb, with an average size of ~ 54 kb. Of these 4178 variants, 3940 were deletions, 67 were duplications and 171 corresponded to both deletions and duplications, which were defined as potential CNV regions. Gene content analysis revealed that, among these variants, 1100 deletions and duplications encompassed 1803 known genes, which affect a wide spectrum of molecular functions, and 1095 overlapped with known QTL regions. Conclusions Our study is a large-scale survey of CNV in eight French dairy and beef breeds. These CNV will be useful to study the link between genetic variability and economically important traits, and to improve our knowledge on the genomic architecture of cattle. Electronic supplementary material The online version of this article (doi:10.1186/s12711-017-0352-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rabia Letaief
- GABI, INRA, AgroParisTech, Université Paris-Saclay, 78352, Jouy-en-Josas, France.
| | - Emmanuelle Rebours
- GABI, INRA, AgroParisTech, Université Paris-Saclay, 78352, Jouy-en-Josas, France
| | - Cécile Grohs
- GABI, INRA, AgroParisTech, Université Paris-Saclay, 78352, Jouy-en-Josas, France
| | - Cédric Meersseman
- GABI, INRA, AgroParisTech, Université Paris-Saclay, 78352, Jouy-en-Josas, France.,GMA, INRA, Université de Limoges, UMR1061, Unité Génétique Moléculaire Animale, 123 avenue Albert Thomas, 87060, Limoges Cedex, France
| | - Sébastien Fritz
- GABI, INRA, AgroParisTech, Université Paris-Saclay, 78352, Jouy-en-Josas, France.,Allice, Maison Nationale des Eleveurs, 75012, Paris, France
| | - Lidwine Trouilh
- LISBP, CNRS, INRA, INSA, Université de Toulouse, Toulouse, France
| | - Diane Esquerré
- GenPhySE, INRA, Université de Toulouse INPT ENSAT, Université de Toulouse INPT ENVT, 52627, Castanet-Tolosan, France
| | - Johanna Barbieri
- GenPhySE, INRA, Université de Toulouse INPT ENSAT, Université de Toulouse INPT ENVT, 52627, Castanet-Tolosan, France
| | | | - Romain Philippe
- GMA, INRA, Université de Limoges, UMR1061, Unité Génétique Moléculaire Animale, 123 avenue Albert Thomas, 87060, Limoges Cedex, France
| | - Véronique Blanquet
- GMA, INRA, Université de Limoges, UMR1061, Unité Génétique Moléculaire Animale, 123 avenue Albert Thomas, 87060, Limoges Cedex, France
| | - Didier Boichard
- GABI, INRA, AgroParisTech, Université Paris-Saclay, 78352, Jouy-en-Josas, France
| | - Dominique Rocha
- GABI, INRA, AgroParisTech, Université Paris-Saclay, 78352, Jouy-en-Josas, France
| | - Mekki Boussaha
- GABI, INRA, AgroParisTech, Université Paris-Saclay, 78352, Jouy-en-Josas, France
| |
Collapse
|
28
|
Rebeiz M, Tsiantis M. Enhancer evolution and the origins of morphological novelty. Curr Opin Genet Dev 2017; 45:115-123. [PMID: 28527813 DOI: 10.1016/j.gde.2017.04.006] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 03/25/2017] [Accepted: 04/27/2017] [Indexed: 01/07/2023]
Abstract
A central goal of evolutionary biology is to understand the genetic origin of morphological novelties-i.e. anatomical structures unique to a taxonomic group. Elaboration of morphology during development depends on networks of regulatory genes that activate patterned gene expression through transcriptional enhancer regions. We summarize recent case studies and genome-wide investigations that have uncovered diverse mechanisms though which new enhancers arise. We also discuss how these enhancer-originating mechanisms have clarified the history of genetic networks underlying diversification of genital structures in flies, limbs and neural crest in chordates, and plant leaves. These studies have identified enhancers that were pivotal for morphological divergence and highlighted how novel genetic networks shaping form emerged from pre-existing ones.
Collapse
Affiliation(s)
- Mark Rebeiz
- Department of Biological Sciences, University of Pittsburgh, 4249 Fifth Avenue, Pittsburgh, PA 15215, USA.
| | - Miltos Tsiantis
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linne-Weg 10, 50829 Köln, Germany.
| |
Collapse
|
29
|
Pilot M, Malewski T, Moura AE, Grzybowski T, Oleński K, Kamiński S, Fadel FR, Alagaili AN, Mohammed OB, Bogdanowicz W. Diversifying Selection Between Pure-Breed and Free-Breeding Dogs Inferred from Genome-Wide SNP Analysis. G3 (BETHESDA, MD.) 2016; 6:2285-98. [PMID: 27233669 PMCID: PMC4978884 DOI: 10.1534/g3.116.029678] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 05/20/2016] [Indexed: 12/13/2022]
Abstract
Domesticated species are often composed of distinct populations differing in the character and strength of artificial and natural selection pressures, providing a valuable model to study adaptation. In contrast to pure-breed dogs that constitute artificially maintained inbred lines, free-ranging dogs are typically free-breeding, i.e., unrestrained in mate choice. Many traits in free-breeding dogs (FBDs) may be under similar natural and sexual selection conditions to wild canids, while relaxation of sexual selection is expected in pure-breed dogs. We used a Bayesian approach with strict false-positive control criteria to identify FST-outlier SNPs between FBDs and either European or East Asian breeds, based on 167,989 autosomal SNPs. By identifying outlier SNPs located within coding genes, we found four candidate genes under diversifying selection shared by these two comparisons. Three of them are associated with the Hedgehog (HH) signaling pathway regulating vertebrate morphogenesis. A comparison between FBDs and East Asian breeds also revealed diversifying selection on the BBS6 gene, which was earlier shown to cause snout shortening and dental crowding via disrupted HH signaling. Our results suggest that relaxation of natural and sexual selection in pure-breed dogs as opposed to FBDs could have led to mild changes in regulation of the HH signaling pathway. HH inhibits adhesion and the migration of neural crest cells from the neural tube, and minor deficits of these cells during embryonic development have been proposed as the underlying cause of "domestication syndrome." This suggests that the process of breed formation involved the same genetic and developmental pathways as the process of domestication.
Collapse
Affiliation(s)
- Małgorzata Pilot
- School of Life Sciences, University of Lincoln, Lincolnshire, LN6 7DL, UK Museum and Institute of Zoology, Polish Academy of Sciences, 00-679 Warszawa, Poland
| | - Tadeusz Malewski
- Museum and Institute of Zoology, Polish Academy of Sciences, 00-679 Warszawa, Poland
| | - Andre E Moura
- School of Life Sciences, University of Lincoln, Lincolnshire, LN6 7DL, UK
| | - Tomasz Grzybowski
- Division of Molecular and Forensic Genetics, Department of Forensic Medicine, Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University, 85-094 Bydgoszcz, Poland
| | - Kamil Oleński
- Department of Animal Genetics, University of Warmia and Mazury, 10-711 Olsztyn, Poland
| | - Stanisław Kamiński
- Department of Animal Genetics, University of Warmia and Mazury, 10-711 Olsztyn, Poland
| | | | - Abdulaziz N Alagaili
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Osama B Mohammed
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Wiesław Bogdanowicz
- Museum and Institute of Zoology, Polish Academy of Sciences, 00-679 Warszawa, Poland
| |
Collapse
|
30
|
A Complex Structural Variation on Chromosome 27 Leads to the Ectopic Expression of HOXB8 and the Muffs and Beard Phenotype in Chickens. PLoS Genet 2016; 12:e1006071. [PMID: 27253709 PMCID: PMC4890787 DOI: 10.1371/journal.pgen.1006071] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 04/30/2016] [Indexed: 12/13/2022] Open
Abstract
Muffs and beard (Mb) is a phenotype in chickens where groups of elongated feathers gather from both sides of the face (muffs) and below the beak (beard). It is an autosomal, incomplete dominant phenotype encoded by the Muffs and beard (Mb) locus. Here we use genome-wide association (GWA) analysis, linkage analysis, Identity-by-Descent (IBD) mapping, array-CGH, genome re-sequencing and expression analysis to show that the Mb allele causing the Mb phenotype is a derived allele where a complex structural variation (SV) on GGA27 leads to an altered expression of the gene HOXB8. This Mb allele was shown to be completely associated with the Mb phenotype in nine other independent Mb chicken breeds. The Mb allele differs from the wild-type mb allele by three duplications, one in tandem and two that are translocated to that of the tandem repeat around 1.70 Mb on GGA27. The duplications contain total seven annotated genes and their expression was tested during distinct stages of Mb morphogenesis. A continuous high ectopic expression of HOXB8 was found in the facial skin of Mb chickens, strongly suggesting that HOXB8 directs this regional feather-development. In conclusion, our results provide an interesting example of how genomic structural rearrangements alter the regulation of genes leading to novel phenotypes. Further, it again illustrates the value of utilizing derived phenotypes in domestic animals to dissect the genetic basis of developmental traits, herein providing novel insights into the likely role of HOXB8 in feather development and differentiation. Genetic variation is a key part for the study of evolution, development and differentiation. In domestic animals, many breeds display striking phenotypes that differentiate them from their wild ancestors. Several of these have been related to structural variations, including Fibromelanosis and Rose-comb in chickens, Double-muscled and Osteopetrosis in cattle, Cone degeneration in dogs, and White coat color in pigs. The feather is a type of skin appendages that exists in multiple variants on different body parts, and the derived feathering phenotypes in domestic birds are perfect resources to decipher the mechanisms regulating feather development and differentiation. Here we study the genetics of the Muffs and beard trait, a variant that alters the feather development in the facial area of chickens. We show that this phenotype is associated with a genomic structural variant that leads to an ectopic expression of HOXB8 in the facial skin during feather development. This is thus another example of how structural variants in the genome lead to novel, derived phenotypic changes in domestic animals and suggests an important role for HOXB8 in feather development.
Collapse
|
31
|
Lamichhaney S, Han F, Berglund J, Wang C, Almén MS, Webster MT, Grant BR, Grant PR, Andersson L. A beak size locus in Darwin's finches facilitated character displacement during a drought. Science 2016; 352:470-4. [PMID: 27102486 DOI: 10.1126/science.aad8786] [Citation(s) in RCA: 163] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 03/14/2016] [Indexed: 01/22/2023]
Abstract
Ecological character displacement is a process of morphological divergence that reduces competition for limited resources. We used genomic analysis to investigate the genetic basis of a documented character displacement event in Darwin's finches on Daphne Major in the Galápagos Islands: The medium ground finch diverged from its competitor, the large ground finch, during a severe drought. We discovered a genomic region containing the HMGA2 gene that varies systematically among Darwin's finch species with different beak sizes. Two haplotypes that diverged early in the radiation were involved in the character displacement event: Genotypes associated with large beak size were at a strong selective disadvantage in medium ground finches (selection coefficient s = 0.59). Thus, a major locus has apparently facilitated a rapid ecological diversification in the adaptive radiation of Darwin's finches.
Collapse
Affiliation(s)
- Sangeet Lamichhaney
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Fan Han
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Jonas Berglund
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Chao Wang
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Markus Sällman Almén
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Matthew T Webster
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - B Rosemary Grant
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
| | - Peter R Grant
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
| | - Leif Andersson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden. Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden. Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
32
|
Abstract
Domestic animals are unique models for biomedical research due to their long history (thousands of years) of strong phenotypic selection. This process has enriched for novel mutations that have contributed to phenotype evolution in domestic animals. The characterization of such mutations provides insights in gene function and biological mechanisms. This review summarizes genetic dissection of about 50 genetic variants affecting pigmentation, behaviour, metabolic regulation, and the pattern of locomotion. The variants are controlled by mutations in about 30 different genes, and for 10 of these our group was the first to report an association between the gene and a phenotype. Almost half of the reported mutations occur in non-coding sequences, suggesting that this is the most common type of polymorphism underlying phenotypic variation since this is a biased list where the proportion of coding mutations are inflated as they are easier to find. The review documents that structural changes (duplications, deletions, and inversions) have contributed significantly to the evolution of phenotypic diversity in domestic animals. Finally, we describe five examples of evolution of alleles, which means that alleles have evolved by the accumulation of several consecutive mutations affecting the function of the same gene.
Collapse
Affiliation(s)
- Leif Andersson
- Correspondence: Professor Leif Andersson, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
33
|
Wright D. The Genetic Architecture of Domestication in Animals. Bioinform Biol Insights 2015; 9:11-20. [PMID: 26512200 PMCID: PMC4603525 DOI: 10.4137/bbi.s28902] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 08/24/2015] [Accepted: 08/26/2015] [Indexed: 12/12/2022] Open
Abstract
Domestication has been essential to the progress of human civilization, and the process itself has fascinated biologists for hundreds of years. Domestication has led to a series of remarkable changes in a variety of plants and animals, in what is termed the “domestication phenotype.” In domesticated animals, this general phenotype typically consists of similar changes in tameness, behavior, size/morphology, color, brain composition, and adrenal gland size. This domestication phenotype is seen in a range of different animals. However, the genetic basis of these associated changes is still puzzling. The genes for these different traits tend to be grouped together in clusters in the genome, though it is still not clear whether these clusters represent pleiotropic effects, or are in fact linked clusters. This review focuses on what is currently known about the genetic architecture of domesticated animal species, if genes of large effect (often referred to as major genes) are prevalent in driving the domestication phenotype, and whether pleiotropy can explain the loci underpinning these diverse traits being colocated.
Collapse
Affiliation(s)
- Dominic Wright
- IFM Biology, AVIAN Behavioural Genomics and Physiology Group, Linköping University, Linköping, Sweden
| |
Collapse
|
34
|
Genome-Wide Linkage Analysis Identifies Loci for Physical Appearance Traits in Chickens. G3-GENES GENOMES GENETICS 2015; 5:2037-41. [PMID: 26248982 PMCID: PMC4592986 DOI: 10.1534/g3.115.020883] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Physical appearance traits, such as feather-crested head, comb size and type, beard, wattles size, and feathered feet, are used to distinguish between breeds of chicken and also may be associated with economic traits. In this study, a genome-wide linkage analysis was used to identify candidate regions and genes for physical appearance traits and to potentially provide further knowledge of the molecular mechanisms that underlie these traits. The linkage analysis was conducted with an F2 population derived from Beijing-You chickens and a commercial broiler line. Single-nucleotide polymorphisms were analyzed using the Illumina 60K Chicken SNP Beadchip. The data were used to map quantitative trait loci and genes for six physical appearance traits. A 10-cM/0.51-Mb region (0.0−10.0 cM/0.00−0.51 Mb) with 1% genome-wide significant level on LGE22C19W28_E50C23 linkage group (LGE22) for crest trait was identified, which is likely very closely linked to the HOXC8. A QTL with 5% chromosome-wide significant level for comb weight, which partly overlaps with a region identified in a previous study, was identified at 74 cM/25.55 Mb on chicken (Gallus gallus; GG) chromosome 3 (i.e., GGA3). For beard and wattles traits, an identical region 11 cM/2.23 Mb (0.0−11.0 cM/0.00−2.23 Mb) including WNT3 and GH genes on GGA27 was identified. Two QTL with 1% genome-wide significant level for feathered feet trait, one 9-cM/2.80-Mb (48.0-57.0/13.40-16.20 Mb) region on GGA13, and another 12-cM/1.45-Mb (41.0−53.0 cM/11.37−12.82 Mb) region on GGA15 were identified. These candidate regions and genes provide important genetic information for the physical appearance traits in chicken.
Collapse
|
35
|
Affiliation(s)
- Denis Headon
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Roslin, United Kingdom
- * E-mail:
| |
Collapse
|