1
|
Chakrabarty P, Sen R, Sengupta S. From parasites to partners: exploring the intricacies of host-transposon dynamics and coevolution. Funct Integr Genomics 2023; 23:278. [PMID: 37610667 DOI: 10.1007/s10142-023-01206-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/01/2023] [Accepted: 08/07/2023] [Indexed: 08/24/2023]
Abstract
Transposable elements, often referred to as "jumping genes," have long been recognized as genomic parasites due to their ability to integrate and disrupt normal gene function and induce extensive genomic alterations, thereby compromising the host's fitness. To counteract this, the host has evolved a plethora of mechanisms to suppress the activity of the transposons. Recent research has unveiled the host-transposon relationships to be nuanced and complex phenomena, resulting in the coevolution of both entities. Transposition increases the mutational rate in the host genome, often triggering physiological pathways such as immune and stress responses. Current gene transfer technologies utilizing transposable elements have potential drawbacks, including off-target integration, induction of mutations, and modifications of cellular machinery, which makes an in-depth understanding of the host-transposon relationship imperative. This review highlights the dynamic interplay between the host and transposable elements, encompassing various factors and components of the cellular machinery. We provide a comprehensive discussion of the strategies employed by transposable elements for their propagation, as well as the mechanisms utilized by the host to mitigate their parasitic effects. Additionally, we present an overview of recent research identifying host proteins that act as facilitators or inhibitors of transposition. We further discuss the evolutionary outcomes resulting from the genetic interactions between the host and the transposable elements. Finally, we pose open questions in this field and suggest potential avenues for future research.
Collapse
Affiliation(s)
- Prayas Chakrabarty
- Department of Life Sciences, Presidency University Kolkata, 86/1 College Street, Kolkata, 700073, India
| | - Raneet Sen
- Department of Life Sciences, Presidency University Kolkata, 86/1 College Street, Kolkata, 700073, India
- Institute of Bioorganic Chemistry, Department of RNA Metabolism, Polish Academy of Sciences, Poznan, Poland
| | - Sugopa Sengupta
- Department of Life Sciences, Presidency University Kolkata, 86/1 College Street, Kolkata, 700073, India.
| |
Collapse
|
2
|
Barkova A, Adhya I, Conesa C, Asif-Laidin A, Bonnet A, Rabut E, Chagneau C, Lesage P, Acker J. A proteomic screen of Ty1 integrase partners identifies the protein kinase CK2 as a regulator of Ty1 retrotransposition. Mob DNA 2022; 13:26. [PMCID: PMC9673352 DOI: 10.1186/s13100-022-00284-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 10/13/2022] [Indexed: 11/19/2022] Open
Abstract
Abstract
Background
Transposable elements are ubiquitous and play a fundamental role in shaping genomes during evolution. Since excessive transposition can be mutagenic, mechanisms exist in the cells to keep these mobile elements under control. Although many cellular factors regulating the mobility of the retrovirus-like transposon Ty1 in Saccharomyces cerevisiae have been identified in genetic screens, only very few of them interact physically with Ty1 integrase (IN).
Results
Here, we perform a proteomic screen to establish Ty1 IN interactome. Among the 265 potential interacting partners, we focus our study on the conserved CK2 kinase. We confirm the interaction between IN and CK2, demonstrate that IN is a substrate of CK2 in vitro and identify the modified residues. We find that Ty1 IN is phosphorylated in vivo and that these modifications are dependent in part on CK2. No significant change in Ty1 retromobility could be observed when we introduce phospho-ablative mutations that prevent IN phosphorylation by CK2 in vitro. However, the absence of CK2 holoenzyme results in a strong stimulation of Ty1 retrotransposition, characterized by an increase in Ty1 mRNA and protein levels and a high accumulation of cDNA.
Conclusion
Our study shows that Ty1 IN is phosphorylated, as observed for retroviral INs and highlights an important role of CK2 in the regulation of Ty1 retrotransposition. In addition, the proteomic approach enabled the identification of many new Ty1 IN interacting partners, whose potential role in the control of Ty1 mobility will be interesting to study.
Collapse
|
3
|
Salinero AC, Emerson S, Cormier TC, Yin J, Morse RH, Curcio MJ. Reliance of Host-Encoded Regulators of Retromobility on Ty1 Promoter Activity or Architecture. Front Mol Biosci 2022; 9:896215. [PMID: 35847981 PMCID: PMC9283973 DOI: 10.3389/fmolb.2022.896215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 06/10/2022] [Indexed: 11/13/2022] Open
Abstract
The Ty1 retrotransposon family is maintained in a functional but dormant state by its host, Saccharomyces cerevisiae. Several hundred RHF and RTT genes encoding co-factors and restrictors of Ty1 retromobility, respectively, have been identified. Well-characterized examples include MED3 and MED15, encoding subunits of the Mediator transcriptional co-activator complex; control of retromobility by Med3 and Med15 requires the Ty1 promoter in the U3 region of the long terminal repeat. To characterize the U3-dependence of other Ty1 regulators, we screened a library of 188 known rhf and rtt mutants for altered retromobility of Ty1his3AI expressed from the strong, TATA-less TEF1 promoter or the weak, TATA-containing U3 promoter. Two classes of genes, each including both RHFs and RTTs, were identified. The first class comprising 82 genes that regulated Ty1his3AI retromobility independently of U3 is enriched for RHF genes that restrict the G1 phase of the cell cycle and those involved in transcriptional elongation and mRNA catabolism. The second class of 51 genes regulated retromobility of Ty1his3AI driven only from the U3 promoter. Nineteen U3-dependent regulators (U3DRs) also controlled retromobility of Ty1his3AI driven by the weak, TATA-less PSP2 promoter, suggesting reliance on the low activity of U3. Thirty-one U3DRs failed to modulate PPSP2-Ty1his3AI retromobility, suggesting dependence on the architecture of U3. To further investigate the U3-dependency of Ty1 regulators, we developed a novel fluorescence-based assay to monitor expression of p22-Gag, a restriction factor expressed from the internal Ty1i promoter. Many U3DRs had minimal effects on levels of Ty1 RNA, Ty1i RNA or p22-Gag. These findings uncover a role for the Ty1 promoter in integrating signals from diverse host factors to modulate Ty1 RNA biogenesis or fate.
Collapse
Affiliation(s)
- Alicia C. Salinero
- Laboratory of Molecular Genetics, Wadsworth Center, New York State Department of Health, Albany, NY, United States
- Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, NY, United States
| | - Simey Emerson
- Laboratory of Molecular Genetics, Wadsworth Center, New York State Department of Health, Albany, NY, United States
| | - Tayla C. Cormier
- Laboratory of Molecular Genetics, Wadsworth Center, New York State Department of Health, Albany, NY, United States
| | - John Yin
- Laboratory of Molecular Genetics, Wadsworth Center, New York State Department of Health, Albany, NY, United States
| | - Randall H. Morse
- Laboratory of Molecular Genetics, Wadsworth Center, New York State Department of Health, Albany, NY, United States
- Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, NY, United States
| | - M. Joan Curcio
- Laboratory of Molecular Genetics, Wadsworth Center, New York State Department of Health, Albany, NY, United States
- Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, NY, United States
- *Correspondence: M. Joan Curcio,
| |
Collapse
|
4
|
Bonnet A, Lesage P. Light and shadow on the mechanisms of integration site selection in yeast Ty retrotransposon families. Curr Genet 2021; 67:347-357. [PMID: 33590295 DOI: 10.1007/s00294-021-01154-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/04/2021] [Accepted: 01/07/2021] [Indexed: 12/21/2022]
Abstract
Transposable elements are ubiquitous in genomes. Their successful expansion depends in part on their sites of integration in their host genome. In Saccharomyces cerevisiae, evolution has selected various strategies to target the five Ty LTR-retrotransposon families into gene-poor regions in a genome, where coding sequences occupy 70% of the DNA. The integration of Ty1/Ty2/Ty4 and Ty3 occurs upstream and at the transcription start site of the genes transcribed by RNA polymerase III, respectively. Ty5 has completely different integration site preferences, targeting heterochromatin regions. Here, we review the history that led to the identification of the cellular tethering factors that play a major role in anchoring Ty retrotransposons to their preferred sites. We also question the involvement of additional factors in the fine-tuning of the integration site selection, with several studies converging towards an importance of the structure and organization of the chromatin.
Collapse
Affiliation(s)
- Amandine Bonnet
- INSERM U944, CNRS UMR 7212, Genomes and Cell Biology of Disease Unit, Institut de Recherche Saint-Louis, Université de Paris, Hôpital Saint-Louis, Paris, France
| | - Pascale Lesage
- INSERM U944, CNRS UMR 7212, Genomes and Cell Biology of Disease Unit, Institut de Recherche Saint-Louis, Université de Paris, Hôpital Saint-Louis, Paris, France.
| |
Collapse
|
5
|
Abstract
Separase is a large cysteine protease in eukaryotes and has crucial roles in many cellular processes, especially chromosome segregation during mitosis and meiosis, apoptosis, DNA damage repair, centrosome disengagement and duplication, spindle stabilization and elongation. It dissolves the cohesion between sister chromatids by cleaving one of the subunits of the cohesin ring for chromosome segregation. The activity of separase is tightly controlled at many levels, through direct binding of inhibitory proteins as well as posttranslational modification. Dysregulation of separase activity is linked to cancer and genome instability, making it a target for drug discovery. One of the best-known inhibitors of separase is securin, which has been identified in yeast, plants, and animals. Securin forms a tight complex with separase and potently inhibits its catalytic activity. Recent structures of the separase-securin complex have revealed the molecular mechanism for the inhibitory activity of securin. A segment of securin is bound in the active site of separase, thereby blocking substrate binding. Securin itself is not cleaved by separase as its binding mode is not compatible with catalysis. Securin also has extensive interactions with separase outside the active site, consistent with its function as a chaperone to stabilize this enzyme.
Collapse
Affiliation(s)
- Shukun Luo
- Department of Biological Sciences, Columbia University, New York, NY, 10027, USA
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Liang Tong
- Department of Biological Sciences, Columbia University, New York, NY, 10027, USA.
| |
Collapse
|
6
|
Khondker S, Kajjo S, Chandler-Brown D, Skotheim J, Rudner A, Ikui AE. PP2A Cdc55 dephosphorylates Pds1 and inhibits spindle elongation in S. cerevisiae. J Cell Sci 2020; 133:jcs243766. [PMID: 32591482 PMCID: PMC7406319 DOI: 10.1242/jcs.243766] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 06/11/2020] [Indexed: 11/20/2022] Open
Abstract
PP2ACdc55 (the form of protein phosphatase 2A containing Cdc55) regulates cell cycle progression by reversing cyclin-dependent kinase (CDK)- and polo-like kinase (Cdc5)-dependent phosphorylation events. In S. cerevisiae, Cdk1 phosphorylates securin (Pds1), which facilitates Pds1 binding and inhibits separase (Esp1). During anaphase, Esp1 cleaves the cohesin subunit Scc1 and promotes spindle elongation. Here, we show that PP2ACdc55 directly dephosphorylates Pds1 both in vivo and in vitro Pds1 hyperphosphorylation in a cdc55 deletion mutant enhanced the Pds1-Esp1 interaction, which played a positive role in Pds1 nuclear accumulation and in spindle elongation. We also show that nuclear PP2ACdc55 plays a role during replication stress to inhibit spindle elongation. This pathway acted independently of the known Mec1, Swe1 or spindle assembly checkpoint (SAC) checkpoint pathways. We propose a model where Pds1 dephosphorylation by PP2ACdc55 disrupts the Pds1-Esp1 protein interaction and inhibits Pds1 nuclear accumulation, which prevents spindle elongation, a process that is elevated during replication stress.
Collapse
Affiliation(s)
- Shoily Khondker
- Biology Department, Brooklyn College, The City University of New York, Brooklyn, NY 11238, USA
- Biology Program, CUNY Graduate Center, New York, NY 10016, USA
| | - Sam Kajjo
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | | | - Jan Skotheim
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Adam Rudner
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Amy E. Ikui
- Biology Department, Brooklyn College, The City University of New York, Brooklyn, NY 11238, USA
- Biology Program, CUNY Graduate Center, New York, NY 10016, USA
| |
Collapse
|
7
|
Hsieh YYP, Makrantoni V, Robertson D, Marston AL, Murray AW. Evolutionary repair: Changes in multiple functional modules allow meiotic cohesin to support mitosis. PLoS Biol 2020; 18:e3000635. [PMID: 32155147 PMCID: PMC7138332 DOI: 10.1371/journal.pbio.3000635] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 04/07/2020] [Accepted: 02/21/2020] [Indexed: 12/12/2022] Open
Abstract
The role of proteins often changes during evolution, but we do not know how cells adapt when a protein is asked to participate in a different biological function. We forced the budding yeast, Saccharomyces cerevisiae, to use the meiosis-specific kleisin, recombination 8 (Rec8), during the mitotic cell cycle, instead of its paralog, Scc1. This perturbation impairs sister chromosome linkage, advances the timing of genome replication, and reduces reproductive fitness by 45%. We evolved 15 parallel populations for 1,750 generations, substantially increasing their fitness, and analyzed the genotypes and phenotypes of the evolved cells. Only one population contained a mutation in Rec8, but many populations had mutations in the transcriptional mediator complex, cohesin-related genes, and cell cycle regulators that induce S phase. These mutations improve sister chromosome cohesion and delay genome replication in Rec8-expressing cells. We conclude that changes in known and novel partners allow cells to use an existing protein to participate in new biological functions.
Collapse
Affiliation(s)
- Yu-Ying Phoebe Hsieh
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Vasso Makrantoni
- The Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Daniel Robertson
- The Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Adèle L. Marston
- The Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Andrew W. Murray
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, United States of America
| |
Collapse
|
8
|
Cheung S, Manhas S, Measday V. Retrotransposon targeting to RNA polymerase III-transcribed genes. Mob DNA 2018; 9:14. [PMID: 29713390 PMCID: PMC5911963 DOI: 10.1186/s13100-018-0119-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 04/16/2018] [Indexed: 12/20/2022] Open
Abstract
Retrotransposons are genetic elements that are similar in structure and life cycle to retroviruses by replicating via an RNA intermediate and inserting into a host genome. The Saccharomyces cerevisiae (S. cerevisiae) Ty1-5 elements are long terminal repeat (LTR) retrotransposons that are members of the Ty1-copia (Pseudoviridae) or Ty3-gypsy (Metaviridae) families. Four of the five S. cerevisiae Ty elements are inserted into the genome upstream of RNA Polymerase (Pol) III-transcribed genes such as transfer RNA (tRNA) genes. This particular genomic locus provides a safe environment for Ty element insertion without disruption of the host genome and is a targeting strategy used by retrotransposons that insert into compact genomes of hosts such as S. cerevisiae and the social amoeba Dictyostelium. The mechanism by which Ty1 targeting is achieved has been recently solved due to the discovery of an interaction between Ty1 Integrase (IN) and RNA Pol III subunits. We describe the methods used to identify the Ty1-IN interaction with Pol III and the Ty1 targeting consequences if the interaction is perturbed. The details of Ty1 targeting are just beginning to emerge and many unexplored areas remain including consideration of the 3-dimensional shape of genome. We present a variety of other retrotransposon families that insert adjacent to Pol III-transcribed genes and the mechanism by which the host machinery has been hijacked to accomplish this targeting strategy. Finally, we discuss why retrotransposons selected Pol III-transcribed genes as a target during evolution and how retrotransposons have shaped genome architecture.
Collapse
Affiliation(s)
- Stephanie Cheung
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z4 Canada
| | - Savrina Manhas
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z4 Canada
| | - Vivien Measday
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z4 Canada
- Department of Food Science, Wine Research Centre, Faculty of Land and Food Systems, University of British Columbia, Room 325-2205 East Mall, Vancouver, British Columbia V6T 1Z4 Canada
| |
Collapse
|
9
|
Manhas S, Ma L, Measday V. The yeast Ty1 retrotransposon requires components of the nuclear pore complex for transcription and genomic integration. Nucleic Acids Res 2018; 46:3552-3578. [PMID: 29514267 PMCID: PMC5909446 DOI: 10.1093/nar/gky109] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 02/01/2018] [Accepted: 02/26/2018] [Indexed: 01/06/2023] Open
Abstract
Nuclear pore complexes (NPCs) orchestrate cargo between the cytoplasm and nucleus and regulate chromatin organization. NPC proteins, or nucleoporins (Nups), are required for human immunodeficiency virus type 1 (HIV-1) gene expression and genomic integration of viral DNA. We utilize the Ty1 retrotransposon of Saccharomyces cerevisiae (S. cerevisiae) to study retroviral integration because retrotransposons are the progenitors of retroviruses and have conserved integrase (IN) enzymes. Ty1-IN targets Ty1 elements into the genome upstream of RNA polymerase (Pol) III transcribed genes such as transfer RNA (tRNA) genes. Evidence that S. cerevisiae tRNA genes are recruited to NPCs prompted our investigation of a functional role for the NPC in Ty1 targeting into the genome. We find that Ty1 mobility is reduced in multiple Nup mutants that cannot be accounted for by defects in Ty1 gene expression, cDNA production or Ty1-IN nuclear entry. Instead, we find that Ty1 insertion upstream of tRNA genes is impaired. We also identify Nup mutants with wild type Ty1 mobility but impaired Ty1 targeting. The NPC nuclear basket, which interacts with chromatin, is required for both Ty1 expression and nucleosome targeting. Deletion of components of the NPC nuclear basket causes mis-targeting of Ty1 elements to the ends of chromosomes.
Collapse
Affiliation(s)
- Savrina Manhas
- Department of Biochemistry and Molecular Biology, 2350 Health Sciences Mall, Life Sciences Centre, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada
| | - Lina Ma
- Wine Research Centre, 2205 East Mall, Faculty of Land and Food Systems, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| | - Vivien Measday
- Department of Biochemistry and Molecular Biology, 2350 Health Sciences Mall, Life Sciences Centre, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada
- Wine Research Centre, 2205 East Mall, Faculty of Land and Food Systems, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| |
Collapse
|
10
|
Integration site selection by retroviruses and transposable elements in eukaryotes. Nat Rev Genet 2017; 18:292-308. [PMID: 28286338 DOI: 10.1038/nrg.2017.7] [Citation(s) in RCA: 145] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Transposable elements and retroviruses are found in most genomes, can be pathogenic and are widely used as gene-delivery and functional genomics tools. Exploring whether these genetic elements target specific genomic sites for integration and how this preference is achieved is crucial to our understanding of genome evolution, somatic genome plasticity in cancer and ageing, host-parasite interactions and genome engineering applications. High-throughput profiling of integration sites by next-generation sequencing, combined with large-scale genomic data mining and cellular or biochemical approaches, has revealed that the insertions are usually non-random. The DNA sequence, chromatin and nuclear context, and cellular proteins cooperate in guiding integration in eukaryotic genomes, leading to a remarkable diversity of insertion site distribution and evolutionary strategies.
Collapse
|
11
|
Kumar R. Separase: Function Beyond Cohesion Cleavage and an Emerging Oncogene. J Cell Biochem 2017; 118:1283-1299. [PMID: 27966791 DOI: 10.1002/jcb.25835] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Accepted: 12/12/2016] [Indexed: 12/22/2022]
Abstract
Proper and timely segregation of genetic endowment is necessary for survival and perpetuation of every species. Mis-segregation of chromosomes and resulting aneuploidy leads to genetic instability, which can jeopardize the survival of an individual or population as a whole. Abnormality with segregation of genetic contents has been associated with several medical consequences including cancer, sterility, mental retardation, spontaneous abortion, miscarriages, and other birth related defects. Separase, by irreversible cleavage of cohesin complex subunit, paves the way for metaphase/anaphase transition during the cell cycle. Both over or reduced expression and altered level of separase have been associated with several medical consequences including cancer, as a result separase now emerges as an important oncogene and potential molecular target for medical intervenes. Recently, separase is also found to be essential in separation and duplication of centrioles. Here, I review the role of separase in mitosis, meiosis, non-canonical roles of separase, separase regulation, as a regulator of centriole disengagement, nonproteolytic roles, diverse substrates, structural insights, and association of separase with cancer. At the ends, I proposed a model which showed that separase is active throughout the cell cycle and there is a mere increase in separase activity during metaphase contrary to the common believes that separase is inactive throughout cell cycle except for metaphase. J. Cell. Biochem. 118: 1283-1299, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ravinder Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400 076, Maharashtra, India
| |
Collapse
|
12
|
Kamenz J, Hauf S. Time To Split Up: Dynamics of Chromosome Separation. Trends Cell Biol 2017; 27:42-54. [DOI: 10.1016/j.tcb.2016.07.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 07/14/2016] [Accepted: 07/29/2016] [Indexed: 11/16/2022]
|
13
|
Cheung S, Ma L, Chan PHW, Hu HL, Mayor T, Chen HT, Measday V. Ty1 Integrase Interacts with RNA Polymerase III-specific Subcomplexes to Promote Insertion of Ty1 Elements Upstream of Polymerase (Pol) III-transcribed Genes. J Biol Chem 2016; 291:6396-411. [PMID: 26797132 DOI: 10.1074/jbc.m115.686840] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Indexed: 01/01/2023] Open
Abstract
Retrotransposons are eukaryotic mobile genetic elements that transpose by reverse transcription of an RNA intermediate and are derived from retroviruses. The Ty1 retrotransposon of Saccharomyces cerevisiae belongs to the Ty1/Copia superfamily, which is present in every eukaryotic genome. Insertion of Ty1 elements into the S. cerevisiae genome, which occurs upstream of genes transcribed by RNA Pol III, requires the Ty1 element-encoded integrase (IN) protein. Here, we report that Ty1-IN interacts in vivo and in vitro with RNA Pol III-specific subunits to mediate insertion of Ty1 elements upstream of Pol III-transcribed genes. Purification of Ty1-IN from yeast cells followed by mass spectrometry (MS) analysis identified an enrichment of peptides corresponding to the Rpc82/34/31 and Rpc53/37 Pol III-specific subcomplexes. GFP-Trap purification of multiple GFP-tagged RNA Pol III subunits from yeast extracts revealed that the majority of Pol III subunits co-purify with Ty1-IN but not two other complexes required for Pol III transcription, transcription initiation factors (TF) IIIB and IIIC. In vitro binding studies with bacterially purified RNA Pol III proteins demonstrate that Rpc31, Rpc34, and Rpc53 interact directly with Ty1-IN. Deletion of the N-terminal 280 amino acids of Rpc53 abrogates insertion of Ty1 elements upstream of the hot spot SUF16 tRNA locus and abolishes the interaction of Ty1-IN with Rpc37. The Rpc53/37 complex therefore has an important role in targeting Ty1-IN to insert Ty1 elements upstream of Pol III-transcribed genes.
Collapse
Affiliation(s)
- Stephanie Cheung
- From the Department of Biochemistry and Molecular Biology, Wine Research Centre, and
| | | | - Patrick H W Chan
- Centre for High-Throughput Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada and
| | - Hui-Lan Hu
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan 115
| | - Thibault Mayor
- From the Department of Biochemistry and Molecular Biology, Centre for High-Throughput Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada and
| | - Hung-Ta Chen
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan 115
| | - Vivien Measday
- From the Department of Biochemistry and Molecular Biology, Wine Research Centre, and
| |
Collapse
|