1
|
Querci L, Piccioli M, Ciofi-Baffoni S, Banci L. Structural aspects of iron‑sulfur protein biogenesis: An NMR view. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119786. [PMID: 38901495 DOI: 10.1016/j.bbamcr.2024.119786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/15/2024] [Accepted: 06/10/2024] [Indexed: 06/22/2024]
Abstract
Over the last decade, structural aspects involving iron‑sulfur (Fe/S) protein biogenesis have played an increasingly important role in understanding the high mechanistic complexity of mitochondrial and cytosolic machineries maturing Fe/S proteins. In this respect, solution NMR has had a significant impact because of its ability to monitor transient protein-protein interactions, which are abundant in the networks of pathways leading to Fe/S cluster biosynthesis and transfer, as well as thanks to the developments of paramagnetic NMR in both terms of new methodologies and accurate data interpretation. Here, we review the use of solution NMR in characterizing the structural aspects of human Fe/S proteins and their interactions in the framework of Fe/S protein biogenesis. We will first present a summary of the recent advances that have been achieved by paramagnetic NMR and then we will focus our attention on the role of solution NMR in the field of human Fe/S protein biogenesis.
Collapse
Affiliation(s)
- Leonardo Querci
- Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, Sesto Fiorentino, 50019 Florence, Italy; Department of Chemistry, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, 50019 Florence, Italy
| | - Mario Piccioli
- Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, Sesto Fiorentino, 50019 Florence, Italy; Department of Chemistry, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, 50019 Florence, Italy
| | - Simone Ciofi-Baffoni
- Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, Sesto Fiorentino, 50019 Florence, Italy; Department of Chemistry, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, 50019 Florence, Italy.
| | - Lucia Banci
- Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, Sesto Fiorentino, 50019 Florence, Italy; Department of Chemistry, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, 50019 Florence, Italy; Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP), Via Luigi Sacconi 6, Sesto Fiorentino, 50019 Florence, Italy.
| |
Collapse
|
2
|
Dancis A, Pandey AK, Pain D. Mitochondria function in cytoplasmic FeS protein biogenesis. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119733. [PMID: 38641180 DOI: 10.1016/j.bbamcr.2024.119733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 03/18/2024] [Accepted: 04/12/2024] [Indexed: 04/21/2024]
Abstract
Iron‑sulfur (FeS) clusters are cofactors of numerous proteins involved in essential cellular functions including respiration, protein translation, DNA synthesis and repair, ribosome maturation, anti-viral responses, and isopropylmalate isomerase activity. Novel FeS proteins are still being discovered due to the widespread use of cryogenic electron microscopy (cryo-EM) and elegant genetic screens targeted at protein discovery. A complex sequence of biochemical reactions mediated by a conserved machinery controls biosynthesis of FeS clusters. In eukaryotes, a remarkable epistasis has been observed: the mitochondrial machinery, termed ISC (Iron-Sulfur Cluster), lies upstream of the cytoplasmic machinery, termed CIA (Cytoplasmic Iron‑sulfur protein Assembly). The basis for this arrangement is the production of a hitherto uncharacterized intermediate, termed X-S or (Fe-S)int, produced in mitochondria by the ISC machinery, exported by the mitochondrial ABC transporter Atm1 (ABCB7 in humans), and then utilized by the CIA machinery for the cytoplasmic/nuclear FeS cluster assembly. Genetic and biochemical findings supporting this sequence of events are herein presented. New structural views of the Atm1 transport phases are reviewed. The key compartmental roles of glutathione in cellular FeS cluster biogenesis are highlighted. Finally, data are presented showing that every one of the ten core components of the mitochondrial ISC machinery and Atm1, when mutated or depleted, displays similar phenotypes: mitochondrial and cytoplasmic FeS clusters are both rendered deficient, consistent with the epistasis noted above.
Collapse
Affiliation(s)
- Andrew Dancis
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA.
| | - Ashutosh K Pandey
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
| | - Debkumar Pain
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
| |
Collapse
|
3
|
Characteristics of the Isu1 C-terminus in relation to [2Fe-2S] cluster assembly and ISCU Myopathy. J Biol Inorg Chem 2022; 27:759-773. [PMID: 36309885 DOI: 10.1007/s00775-022-01964-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 09/30/2022] [Indexed: 01/05/2023]
Abstract
Mitochondrial [2Fe-2S] cluster biosynthesis is driven by the coordinated activities of the Iron-Sulfur Cluster (ISC) pathway protein machinery. Within the ISC machinery, the protein that provides a structural scaffold on which [2Fe-2S] clusters are assembled is the ISCU protein in humans; this protein is referred to as the "Scaffold" protein. Truncation of the C-terminal portion of ISCU causes the fatal disease "ISCU Myopathy", which exhibits phenotypes of reduced Fe-S cluster assembly in cells. In this report, the yeast ISCU ortholog "Isu1" has been characterized to gain a better understanding of the role of the scaffold protein in relation to [2Fe-2S] assembly and ISCU Myopathy. Here we explored the biophysical characteristics of the C-terminal region of Isu1, the segment of the protein that is truncated on the human ortholog during the disease ISCU Myopathy. We characterized the role of this region in relation to iron binding, protein stability, assembly of the ISC multiprotein complex required to accomplish Fe-S cluster assembly, and finally on overall cell viability. We determined the Isu1 C-terminus is essential for the completion of the Fe-S cluster assembly but serves a function independent of protein iron binding.
Collapse
|
4
|
Srour B, Gervason S, Hoock MH, Monfort B, Want K, Larkem D, Trabelsi N, Landrot G, Zitolo A, Fonda E, Etienne E, Gerbaud G, Müller CS, Oltmanns J, Gordon JB, Yadav V, Kleczewska M, Jelen M, Toledano MB, Dutkiewicz R, Goldberg DP, Schünemann V, Guigliarelli B, Burlat B, Sizun C, D'Autréaux B. Iron Insertion at the Assembly Site of the ISCU Scaffold Protein Is a Conserved Process Initiating Fe-S Cluster Biosynthesis. J Am Chem Soc 2022; 144:17496-17515. [PMID: 36121382 PMCID: PMC10163866 DOI: 10.1021/jacs.2c06338] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Iron-sulfur (Fe-S) clusters are prosthetic groups of proteins biosynthesized on scaffold proteins by highly conserved multi-protein machineries. Biosynthesis of Fe-S clusters into the ISCU scaffold protein is initiated by ferrous iron insertion, followed by sulfur acquisition, via a still elusive mechanism. Notably, whether iron initially binds to the ISCU cysteine-rich assembly site or to a cysteine-less auxiliary site via N/O ligands remains unclear. We show here by SEC, circular dichroism (CD), and Mössbauer spectroscopies that iron binds to the assembly site of the monomeric form of prokaryotic and eukaryotic ISCU proteins via either one or two cysteines, referred to the 1-Cys and 2-Cys forms, respectively. The latter predominated at pH 8.0 and correlated with the Fe-S cluster assembly activity, whereas the former increased at a more acidic pH, together with free iron, suggesting that it constitutes an intermediate of the iron insertion process. Iron not binding to the assembly site was non-specifically bound to the aggregated ISCU, ruling out the existence of a structurally defined auxiliary site in ISCU. Characterization of the 2-Cys form by site-directed mutagenesis, CD, NMR, X-ray absorption, Mössbauer, and electron paramagnetic resonance spectroscopies showed that the iron center is coordinated by four strictly conserved amino acids of the assembly site, Cys35, Asp37, Cys61, and His103, in a tetrahedral geometry. The sulfur receptor Cys104 was at a very close distance and apparently bound to the iron center when His103 was missing, which may enable iron-dependent sulfur acquisition. Altogether, these data provide the structural basis to elucidate the Fe-S cluster assembly process and establish that the initiation of Fe-S cluster biosynthesis by insertion of a ferrous iron in the assembly site of ISCU is a conserved mechanism.
Collapse
Affiliation(s)
- Batoul Srour
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Sylvain Gervason
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Maren Hellen Hoock
- Fachbereich Physik, Technische Universität Kaiserslautern, Erwin-Schrödinger-Str. 56, 67663 Kaiserslautern, Germany
| | - Beata Monfort
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Kristian Want
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Djabir Larkem
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Nadine Trabelsi
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Gautier Landrot
- Synchrotron SOLEIL, L'Orme des Merisiers, BP48 Saint Aubin 91192 Gif-Sur-Yvette, France
| | - Andrea Zitolo
- Synchrotron SOLEIL, L'Orme des Merisiers, BP48 Saint Aubin 91192 Gif-Sur-Yvette, France
| | - Emiliano Fonda
- Synchrotron SOLEIL, L'Orme des Merisiers, BP48 Saint Aubin 91192 Gif-Sur-Yvette, France
| | - Emilien Etienne
- Aix Marseille Univ, CNRS, Laboratoire de Bioénergétique et Ingénierie des Protéines (BIP), 31 Chemin Joseph Aiguier, 13402 Marseille, France
| | - Guillaume Gerbaud
- Aix Marseille Univ, CNRS, Laboratoire de Bioénergétique et Ingénierie des Protéines (BIP), 31 Chemin Joseph Aiguier, 13402 Marseille, France
| | - Christina Sophia Müller
- Fachbereich Physik, Technische Universität Kaiserslautern, Erwin-Schrödinger-Str. 56, 67663 Kaiserslautern, Germany
| | - Jonathan Oltmanns
- Fachbereich Physik, Technische Universität Kaiserslautern, Erwin-Schrödinger-Str. 56, 67663 Kaiserslautern, Germany
| | - Jesse B Gordon
- Department of Chemistry, The Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States
| | - Vishal Yadav
- Department of Chemistry, The Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States
| | - Malgorzata Kleczewska
- Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland
| | - Marcin Jelen
- Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland
| | - Michel B Toledano
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Rafal Dutkiewicz
- Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland
| | - David P Goldberg
- Department of Chemistry, The Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States
| | - Volker Schünemann
- Fachbereich Physik, Technische Universität Kaiserslautern, Erwin-Schrödinger-Str. 56, 67663 Kaiserslautern, Germany
| | - Bruno Guigliarelli
- Aix Marseille Univ, CNRS, Laboratoire de Bioénergétique et Ingénierie des Protéines (BIP), 31 Chemin Joseph Aiguier, 13402 Marseille, France
| | - Bénédicte Burlat
- Aix Marseille Univ, CNRS, Laboratoire de Bioénergétique et Ingénierie des Protéines (BIP), 31 Chemin Joseph Aiguier, 13402 Marseille, France
| | - Christina Sizun
- Institut de Chimie des Substances Naturelles, CNRS, Université Paris Saclay, Avenue de La Terrasse, 91190 Gif-sur-Yvette, France
| | - Benoit D'Autréaux
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| |
Collapse
|
5
|
Genetic suppressors of Δgrx3 Δgrx4, lacking redundant multidomain monothiol yeast glutaredoxins, rescue growth and iron homeostasis. Biosci Rep 2022; 42:231328. [PMID: 35593209 PMCID: PMC9202360 DOI: 10.1042/bsr20212665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 05/05/2022] [Accepted: 05/09/2022] [Indexed: 11/26/2022] Open
Abstract
Saccharomyces cerevisiae Grx3 and Grx4 are multidomain monothiol glutaredoxins that are redundant with each other. They can be efficiently complemented by heterologous expression of their mammalian ortholog, PICOT, which has been linked to tumor development and embryogenesis. PICOT is now believed to act as a chaperone distributing Fe-S clusters, although the first link to iron metabolism was observed with its yeast counterparts. Like PICOT, yeast Grx3 and Grx4 reside in the cytosol and nucleus where they form unusual Fe-S clusters coordinated by two glutaredoxins with CGFS motifs and two molecules of glutathione. Depletion or deletion of Grx3/Grx4 leads to functional impairment of virtually all cellular iron-dependent processes and loss of cell viability, thus making these genes the most upstream components of the iron utilization system. Nevertheless, the Δgrx3/4 double mutant in the BY4741 genetic background is viable and exhibits slow but stable growth under hypoxic conditions. Upon exposure to air, growth of the double deletion strain ceases, and suppressor mutants appear. Adopting a high copy-number library screen approach, we discovered novel genetic interactions: overexpression of ESL1, ESL2, SOK1, SFP1 or BDF2 partially rescues growth and iron utilization defects of Δgrx3/4. This genetic escape from the requirement for Grx3/Grx4 has not been previously described. Our study shows that even a far-upstream component of the iron regulatory machinery (Grx3/4) can be bypassed, and cellular networks involving RIM101 pH sensing, cAMP signaling, mTOR nutritional signaling, or bromodomain acetylation, may confer the bypassing activities.
Collapse
|
6
|
Medlock AE, Hixon JC, Bhuiyan T, Cobine PA. Prime Real Estate: Metals, Cofactors and MICOS. Front Cell Dev Biol 2022; 10:892325. [PMID: 35669513 PMCID: PMC9163361 DOI: 10.3389/fcell.2022.892325] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/02/2022] [Indexed: 12/23/2022] Open
Abstract
Metals are key elements for the survival and normal development of humans but can also be toxic to cells when mishandled. In fact, even mild disruption of metal homeostasis causes a wide array of disorders. Many of the metals essential to normal physiology are required in mitochondria for enzymatic activities and for the formation of essential cofactors. Copper is required as a cofactor in the terminal electron transport chain complex cytochrome c oxidase, iron is required for the for the formation of iron-sulfur (Fe-S) clusters and heme, manganese is required for the prevention of oxidative stress production, and these are only a few examples of the critical roles that mitochondrial metals play. Even though the targets of these metals are known, we are still identifying transporters, investigating the roles of known transporters, and defining regulators of the transport process. Mitochondria are dynamic organelles whose content, structure and localization within the cell vary in different tissues and organisms. Our knowledge of the impact that alterations in mitochondrial physiology have on metal content and utilization in these organelles is very limited. The rates of fission and fusion, the ultrastructure of the organelle, and rates of mitophagy can all affect metal homeostasis and cofactor assembly. This review will focus of the emerging areas of overlap between metal homeostasis, cofactor assembly and the mitochondrial contact site and cristae organizing system (MICOS) that mediates multiple aspects of mitochondrial physiology. Importantly the MICOS complexes may allow for localization and organization of complexes not only involved in cristae formation and contact between the inner and outer mitochondrial membranes but also acts as hub for metal-related proteins to work in concert in cofactor assembly and homeostasis.
Collapse
Affiliation(s)
- Amy E. Medlock
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
- Augusta University/University of Georgia Medical Partnership, University of Georgia, Athens, GA, United States
| | - J. Catrice Hixon
- Department of Biological Sciences, Auburn University, Auburn, AL, United States
| | - Tawhid Bhuiyan
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
| | - Paul A. Cobine
- Department of Biological Sciences, Auburn University, Auburn, AL, United States
- *Correspondence: Paul A. Cobine,
| |
Collapse
|
7
|
Mitochondrial De Novo Assembly of Iron–Sulfur Clusters in Mammals: Complex Matters in a Complex That Matters. INORGANICS 2022. [DOI: 10.3390/inorganics10030031] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2022] Open
Abstract
Iron–sulfur clusters (Fe–S or ISC) are essential cofactors that function in a wide range of biological pathways. In mammalian cells, Fe–S biosynthesis primarily relies on mitochondria and involves a concerted group of evolutionary-conserved proteins forming the ISC pathway. In the early stage of the ISC pathway, the Fe–S core complex is required for de novo assembly of Fe–S. In humans, the Fe–S core complex comprises the cysteine desulfurase NFS1, the scaffold protein ISCU2, frataxin (FXN), the ferredoxin FDX2, and regulatory/accessory proteins ISD11 and Acyl Carrier Protein (ACP). In recent years, the field has made significant advances in unraveling the structure of the Fe–S core complex and the mechanism underlying its function. Herein, we review the key recent findings related to the Fe–S core complex and its components. We highlight some of the unanswered questions and provide a model of the Fe–S assembly within the complex. In addition, we briefly touch on the genetic diseases associated with mutations in the Fe–S core complex components.
Collapse
|
8
|
Maio N, Rouault TA. Mammalian iron sulfur cluster biogenesis: From assembly to delivery to recipient proteins with a focus on novel targets of the chaperone and co‐chaperone proteins. IUBMB Life 2022; 74:684-704. [PMID: 35080107 PMCID: PMC10118776 DOI: 10.1002/iub.2593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/05/2021] [Accepted: 12/23/2021] [Indexed: 12/17/2022]
Affiliation(s)
- Nunziata Maio
- Molecular Medicine Branch Eunice Kennedy Shriver National Institute of Child Health and Human Development Bethesda Maryland USA
| | - Tracey A. Rouault
- Molecular Medicine Branch Eunice Kennedy Shriver National Institute of Child Health and Human Development Bethesda Maryland USA
| |
Collapse
|
9
|
Freibert SA, Boniecki MT, Stümpfig C, Schulz V, Krapoth N, Winge DR, Mühlenhoff U, Stehling O, Cygler M, Lill R. N-terminal tyrosine of ISCU2 triggers [2Fe-2S] cluster synthesis by ISCU2 dimerization. Nat Commun 2021; 12:6902. [PMID: 34824239 PMCID: PMC8617193 DOI: 10.1038/s41467-021-27122-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 11/03/2021] [Indexed: 12/03/2022] Open
Abstract
Synthesis of iron-sulfur (Fe/S) clusters in living cells requires scaffold proteins for both facile synthesis and subsequent transfer of clusters to target apoproteins. The human mitochondrial ISCU2 scaffold protein is part of the core ISC (iron-sulfur cluster assembly) complex that synthesizes a bridging [2Fe-2S] cluster on dimeric ISCU2. Initial iron and sulfur loading onto monomeric ISCU2 have been elucidated biochemically, yet subsequent [2Fe-2S] cluster formation and dimerization of ISCU2 is mechanistically ill-defined. Our structural, biochemical and cell biological experiments now identify a crucial function of the universally conserved N-terminal Tyr35 of ISCU2 for these late reactions. Mixing two, per se non-functional ISCU2 mutant proteins with oppositely charged Asp35 and Lys35 residues, both bound to different cysteine desulfurase complexes NFS1-ISD11-ACP, restores wild-type ISCU2 maturation demonstrating that ionic forces can replace native Tyr-Tyr interactions during dimerization-induced [2Fe-2S] cluster formation. Our studies define the essential mechanistic role of Tyr35 in the reaction cycle of de novo mitochondrial [2Fe-2S] cluster synthesis. [2Fe-2S] protein cofactors are essential for life and are synthesized on ISCU2 scaffolds. Here, the authors show that hydrophobic interaction of two conserved N-terminal tyrosines induces ISCU2 dimerization and concomitant [2Fe-2S] cluster synthesis.
Collapse
Affiliation(s)
- Sven-A Freibert
- Institut für Zytobiologie im Zentrum SYNMIKRO, Philipps-Universität Marburg, Karl-von-Frisch-Str. 14, 35032, Marburg, Germany.,Core Facility 'Protein Biochemistry and Spectroscopy', Karl-von-Frisch-Str. 14, 35032, Marburg, Germany
| | - Michal T Boniecki
- Department of Biochemistry, Microbiology & Immunology, University of Saskatchewan, 107 Wiggins Rd, Saskatoon, SK, S7N 5E5, Canada
| | - Claudia Stümpfig
- Institut für Zytobiologie im Zentrum SYNMIKRO, Philipps-Universität Marburg, Karl-von-Frisch-Str. 14, 35032, Marburg, Germany
| | - Vinzent Schulz
- Institut für Zytobiologie im Zentrum SYNMIKRO, Philipps-Universität Marburg, Karl-von-Frisch-Str. 14, 35032, Marburg, Germany
| | - Nils Krapoth
- Institut für Zytobiologie im Zentrum SYNMIKRO, Philipps-Universität Marburg, Karl-von-Frisch-Str. 14, 35032, Marburg, Germany
| | - Dennis R Winge
- Institut für Zytobiologie im Zentrum SYNMIKRO, Philipps-Universität Marburg, Karl-von-Frisch-Str. 14, 35032, Marburg, Germany.,Department of Medicine, University of Utah Health Sciences Center, Salt Lake City, UT, USA
| | - Ulrich Mühlenhoff
- Institut für Zytobiologie im Zentrum SYNMIKRO, Philipps-Universität Marburg, Karl-von-Frisch-Str. 14, 35032, Marburg, Germany
| | - Oliver Stehling
- Institut für Zytobiologie im Zentrum SYNMIKRO, Philipps-Universität Marburg, Karl-von-Frisch-Str. 14, 35032, Marburg, Germany.,Core Facility 'Protein Biochemistry and Spectroscopy', Karl-von-Frisch-Str. 14, 35032, Marburg, Germany
| | - Miroslaw Cygler
- Department of Biochemistry, Microbiology & Immunology, University of Saskatchewan, 107 Wiggins Rd, Saskatoon, SK, S7N 5E5, Canada.
| | - Roland Lill
- Institut für Zytobiologie im Zentrum SYNMIKRO, Philipps-Universität Marburg, Karl-von-Frisch-Str. 14, 35032, Marburg, Germany. .,Core Facility 'Protein Biochemistry and Spectroscopy', Karl-von-Frisch-Str. 14, 35032, Marburg, Germany. .,LOEWE Zentrum für Synthetische Mikrobiologie SynMikro, Hans-Meerwein-Str., 35043, Marburg, Germany.
| |
Collapse
|
10
|
Hinton TV, Batelu S, Gleason N, Stemmler TL. Molecular characteristics of proteins within the mitochondrial Fe-S cluster assembly complex. Micron 2021; 153:103181. [PMID: 34823116 DOI: 10.1016/j.micron.2021.103181] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 11/29/2022]
Abstract
Iron-Sulfur (Fe-S) clusters are essential for life, as they are widely utilized in nearly every biochemical pathway. When bound to proteins, Fe-S clusters assist in catalysis, signal recognition, and energy transfer events, as well as additional cellular pathways including cellular respiration and DNA repair and replication. In Eukaryotes, Fe-S clusters are produced through coordinated activity by mitochondrial Iron-Sulfur Cluster (ISC) assembly pathway proteins through direct assembly, or through the production of the activated sulfur substrate used by the Cytosolic Iron-Sulfur Cluster Assembly (CIA) pathway. In the mitochondria, Fe-S cluster assembly is accomplished through the coordinated activity of the ISC pathway protein complex composed of a cysteine desulfurase, a scaffold protein, the accessory ISD11 protein, the acyl carrier protein, frataxin, and a ferredoxin; downstream events that accomplish Fe-S cluster transfer and delivery are driven by additional chaperone/delivery proteins that interact with the ISC assembly complex. Deficiency in human production or activity of Fe-S cluster containing proteins is often detrimental to cell and organism viability. Here we summarize what is known about the structure and functional activities of the proteins involved in the early steps of assembling [2Fe-2S] clusters before they are transferred to proteins devoted to their delivery. Our goal is to provide a comprehensive overview of how the ISC assembly apparatus proteins interact to make the Fe-S cluster which can be delivered to proteins downstream to the assembly event.
Collapse
Affiliation(s)
- Tiara V Hinton
- Department of Pharmaceutical Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI 48201, USA.
| | - Sharon Batelu
- Department of Pharmaceutical Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI 48201, USA.
| | - Noah Gleason
- Department of Pharmaceutical Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI 48201, USA.
| | - Timothy L Stemmler
- Department of Pharmaceutical Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI 48201, USA.
| |
Collapse
|
11
|
Sato S, Matsushima Y, Kanazawa M, Tanaka N, Fujishiro T, Kunichika K, Nakamura R, Tomioka H, Wada K, Takahashi Y. Evidence for dynamic in vivo interconversion of the conformational states of IscU during iron-sulfur cluster biosynthesis. Mol Microbiol 2020; 115:807-818. [PMID: 33202070 DOI: 10.1111/mmi.14646] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 11/02/2020] [Accepted: 11/12/2020] [Indexed: 11/28/2022]
Abstract
IscU is a central component of the ISC machinery and serves as a scaffold for de novo assembly of Fe-S clusters. The dedicated chaperone system composed of the Hsp70-chaperone HscA and the J-protein cochaperone HscB synergistically interacts with IscU and facilitates cluster transfer from IscU to recipient apo-proteins. Here, we report that the otherwise essential roles of HscA and HscB can be bypassed in vivo by a number of single amino acid substitutions in IscU. CD spectroscopic studies of the variant IscU proteins capable of this bypass activity revealed dynamic interconversion between two conformations: the denatured (D) and the structured (S) state in the absence and presence of Zn2+ , respectively, which was far more prominent than interconversion observed in wild-type IscU. Furthermore, we found that neither the S-shifted (more structured) variants of IscU nor the perpetually denatured variants could perform their in vivo role regardless of whether the chaperone system was present or not. The present study thus provides for the first time evidence that an in vivo D-state of IscU exists and implies that conformational interconversion between the S- and D-states of the scaffolding protein is a fundamental requirement for the assembly and transfer of the Fe-S cluster.
Collapse
Affiliation(s)
- Sakiko Sato
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | - Yumeka Matsushima
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | - Miaki Kanazawa
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | - Naoyuki Tanaka
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | - Takashi Fujishiro
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | - Kouhei Kunichika
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | - Ryosuke Nakamura
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | - Hiroaki Tomioka
- Department of Science Education, Graduate School of Education, Saitama University, Saitama, Japan
| | - Kei Wada
- Department of Medical Sciences, University of Miyazaki, Miyazaki, Japan
| | - Yasuhiro Takahashi
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| |
Collapse
|
12
|
Baussier C, Fakroun S, Aubert C, Dubrac S, Mandin P, Py B, Barras F. Making iron-sulfur cluster: structure, regulation and evolution of the bacterial ISC system. Adv Microb Physiol 2020; 76:1-39. [PMID: 32408945 DOI: 10.1016/bs.ampbs.2020.01.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Iron sulfur (Fe-S) clusters rank among the most ancient and conserved prosthetic groups. Fe-S clusters containing proteins are present in most, if not all, organisms. Fe-S clusters containing proteins are involved in a wide range of cellular processes, from gene regulation to central metabolism, via gene expression, RNA modification or bioenergetics. Fe-S clusters are built by biogenesis machineries conserved throughout both prokaryotes and eukaryotes. We focus mostly on bacterial ISC machinery, but not exclusively, as we refer to eukaryotic ISC system when it brings significant complementary information. Besides covering the structural and regulatory aspects of Fe-S biogenesis, this review aims to highlight Fe-S biogenesis facets remaining matters of discussion, such as the role of frataxin, or the link between fatty acid metabolism and Fe-S homeostasis. Last, we discuss recent advances on strategies used by different species to make and use Fe-S clusters in changing redox environmental conditions.
Collapse
Affiliation(s)
- Corentin Baussier
- Laboratoire de Chimie Bactérienne, CNRS-Aix Marseille Université, UMR 7283, Institut de Microbiologie de la Méditerranée, Institut de Microbiologie, Bioénergies et Biotechnologies, Marseille, France
| | - Soufyan Fakroun
- Stress Adaptation and Metabolism Unit, Department of Microbiology, Institut Pasteur, Paris, France; ERL CNRS 6002, CNRS, Paris, France; Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Corinne Aubert
- Laboratoire de Chimie Bactérienne, CNRS-Aix Marseille Université, UMR 7283, Institut de Microbiologie de la Méditerranée, Institut de Microbiologie, Bioénergies et Biotechnologies, Marseille, France
| | - Sarah Dubrac
- Stress Adaptation and Metabolism Unit, Department of Microbiology, Institut Pasteur, Paris, France; ERL CNRS 6002, CNRS, Paris, France
| | - Pierre Mandin
- Laboratoire de Chimie Bactérienne, CNRS-Aix Marseille Université, UMR 7283, Institut de Microbiologie de la Méditerranée, Institut de Microbiologie, Bioénergies et Biotechnologies, Marseille, France
| | - Béatrice Py
- Laboratoire de Chimie Bactérienne, CNRS-Aix Marseille Université, UMR 7283, Institut de Microbiologie de la Méditerranée, Institut de Microbiologie, Bioénergies et Biotechnologies, Marseille, France
| | - Frédéric Barras
- Stress Adaptation and Metabolism Unit, Department of Microbiology, Institut Pasteur, Paris, France; ERL CNRS 6002, CNRS, Paris, France
| |
Collapse
|
13
|
Outlining the Complex Pathway of Mammalian Fe-S Cluster Biogenesis. Trends Biochem Sci 2020; 45:411-426. [PMID: 32311335 DOI: 10.1016/j.tibs.2020.02.001] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 01/27/2020] [Accepted: 02/04/2020] [Indexed: 12/14/2022]
Abstract
Iron-sulfur (Fe-S) clusters (ISCs) are ubiquitous cofactors essential to numerous fundamental cellular processes. Assembly of ISCs and their insertion into apoproteins involves the function of complex cellular machineries that operate in parallel in the mitochondrial and cytosolic/nuclear compartments of mammalian cells. The spectrum of diseases caused by inherited defects in genes that encode the Fe-S assembly proteins has recently expanded to include multiple rare human diseases, which manifest distinctive combinations and severities of global and tissue-specific impairments. In this review, we provide an overview of our understanding of ISC biogenesis in mammalian cells, discuss recent work that has shed light on the molecular interactions that govern ISC assembly, and focus on human diseases caused by failures of the biogenesis pathway.
Collapse
|
14
|
Lewis BE, Mason Z, Rodrigues AV, Nuth M, Dizin E, Cowan JA, Stemmler TL. Unique roles of iron and zinc binding to the yeast Fe-S cluster scaffold assembly protein "Isu1". Metallomics 2019; 11:1820-1835. [PMID: 31532427 DOI: 10.1039/c9mt00172g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Mitochondrial Fe-S cluster biosynthesis is accomplished within yeast utilizing the biophysical attributes of the "Isu1" scaffold assembly protein. As a member of a highly homologous protein family, Isu1 has sequence conservation between orthologs and a conserved ability to assemble [2Fe-2S] clusters. Regardless of species, scaffold orthologs have been shown to exist in both "disordered" and "structured" conformations, a structural architecture that is directly related to conformations utilized during Fe-S cluster assembly. During assembly, the scaffold helps direct the delivery and utilization of Fe(ii) and persulfide substrates to produce [2Fe-2S] clusters, however Zn(ii) binding alters the activity of the scaffold while at the same time stabilizes the protein in its structured state. Additional studies confirm Zn binds to the scaffold's Cys rich active site, and has an impact on the protein's ability to make Fe-S clusters. Understanding the interplay between Fe(ii) and Zn(ii) binding to Isu1 in vitro may help clarify metal loading events that occur during Fe-S cluster assembly in vivo. Here we determine the metal : protein stoichiometry for Isu1 Zn and Fe binding to be 1 : 1 and 2 : 1, respectively. As expected, while Zn binding shifts the Isu1 to its structured state, folding is not influenced by Fe(ii) binding. X-ray absorption spectroscopy (XAS) confirms Zn(ii) binds to the scaffold's cysteine rich active site but Fe(ii) binds at a location distinct from the active site. XAS results show Isu1 binding initially of either Fe(ii) or Zn(ii) does not significantly perturb the metal site structure of alternate metal. XAS confirmed that four scaffold orthologs bind iron as high-spin Fe(ii) at a site composed of ca. 6 oxygen and nitrogen nearest neighbor ligands. Finally, in our report Zn binding dramatically reduces the Fe-S cluster assembly activity of Isu1 even in the presence of frataxin. Given the Fe-binding activity we report for Isu1 and its orthologs here, a possible mechanism involving Fe(ii) transport to the scaffold's active site during cluster assembly has been considered.
Collapse
Affiliation(s)
- Brianne E Lewis
- Department of Pharmaceutical Science, Wayne State University, Detroit, MI 48201, USA.
| | - Zachary Mason
- Department of Pharmaceutical Science, Wayne State University, Detroit, MI 48201, USA.
| | - Andria V Rodrigues
- Department of Pharmaceutical Science, Wayne State University, Detroit, MI 48201, USA.
| | - Manunya Nuth
- Department of Chemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Eric Dizin
- Department of Chemistry, The Ohio State University, Columbus, OH 43210, USA
| | - J A Cowan
- Department of Chemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Timothy L Stemmler
- Department of Pharmaceutical Science, Wayne State University, Detroit, MI 48201, USA.
| |
Collapse
|
15
|
Delatycki MB, Bidichandani SI. Friedreich ataxia- pathogenesis and implications for therapies. Neurobiol Dis 2019; 132:104606. [PMID: 31494282 DOI: 10.1016/j.nbd.2019.104606] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/08/2019] [Accepted: 09/04/2019] [Indexed: 01/01/2023] Open
Abstract
Friedreich ataxia is the most common of the hereditary ataxias. It is due to homozygous/compound heterozygous mutations in FXN. This gene encodes frataxin, a protein largely localized to mitochondria. In about 96% of affected individuals there is homozygosity for a GAA repeat expansion in intron 1 of the FXN gene. Studies of people with Friedreich ataxia and of animal and cell models, have provided much insight into the pathogenesis of this disorder. The expanded GAA repeat leads to transcriptional deficiency of the FXN gene. The consequent deficiency of frataxin protein leads to reduced iron-sulfur cluster biogenesis and mitochondrial ATP production, elevated mitochondrial iron, and oxidative stress. More recently, a role for inflammation has emerged as being important in the pathogenesis of Friedreich ataxia. These findings have led to a number of potential therapies that have been subjected to clinical trials or are being developed toward human studies. Therapies that have been proposed include pharmaceuticals that increase frataxin levels, protein and gene replacement therapies, antioxidants, iron chelators and modulators of inflammation. Whilst no therapies have yet been approved for Friedreich ataxia, there is much optimism that the advances in the understanding of the pathogenesis of this disorder since the discovery its genetic basis, will result in approved disease modifying therapies in the near future.
Collapse
Affiliation(s)
- Martin B Delatycki
- Bruce Lefroy Centre, Murdoch Children's Research Institute, Parkville, Victoria, Australia; Victorian Clinical Genetics Services, Parkville, Victoria, Australia; Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia.
| | - Sanjay I Bidichandani
- Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
16
|
Vacek V, Novák LVF, Treitli SC, Táborský P, Cepicka I, Kolísko M, Keeling PJ, Hampl V. Fe-S Cluster Assembly in Oxymonads and Related Protists. Mol Biol Evol 2019; 35:2712-2718. [PMID: 30184127 PMCID: PMC6231488 DOI: 10.1093/molbev/msy168] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The oxymonad Monocercomonoides exilis was recently reported to be the first eukaryote that has completely lost the mitochondrial compartment. It was proposed that an important prerequisite for such a radical evolutionary step was the acquisition of the SUF Fe–S cluster assembly pathway from prokaryotes, making the mitochondrial ISC pathway dispensable. We have investigated genomic and transcriptomic data from six oxymonad species and their relatives, composing the group Preaxostyla (Metamonada, Excavata), for the presence and absence of enzymes involved in Fe–S cluster biosynthesis. None possesses enzymes of mitochondrial ISC pathway and all apparently possess the SUF pathway, composed of SufB, C, D, S, and U proteins, altogether suggesting that the transition from ISC to SUF preceded their last common ancestor. Interestingly, we observed that SufDSU were fused in all three oxymonad genomes, and in the genome of Paratrimastix pyriformis. The donor of the SUF genes is not clear from phylogenetic analyses, but the enzyme composition of the pathway and the presence of SufDSU fusion suggests Firmicutes, Thermotogae, Spirochaetes, Proteobacteria, or Chloroflexi as donors. The inventory of the downstream CIA pathway enzymes is consistent with that of closely related species that retain ISC, indicating that the switch from ISC to SUF did not markedly affect the downstream process of maturation of cytosolic and nuclear Fe–S proteins.
Collapse
Affiliation(s)
- Vojtech Vacek
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Lukáš V F Novák
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Sebastian C Treitli
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Petr Táborský
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Ivan Cepicka
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Martin Kolísko
- Institute of Parasitology, Biology Centre, Czech Academy of Science, České Budějovice, Czech Republic.,Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | - Patrick J Keeling
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | - Vladimír Hampl
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| |
Collapse
|
17
|
Fox NG, Yu X, Feng X, Bailey HJ, Martelli A, Nabhan JF, Strain-Damerell C, Bulawa C, Yue WW, Han S. Structure of the human frataxin-bound iron-sulfur cluster assembly complex provides insight into its activation mechanism. Nat Commun 2019; 10:2210. [PMID: 31101807 PMCID: PMC6525205 DOI: 10.1038/s41467-019-09989-y] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 04/05/2019] [Indexed: 12/13/2022] Open
Abstract
The core machinery for de novo biosynthesis of iron-sulfur clusters (ISC), located in the mitochondria matrix, is a five-protein complex containing the cysteine desulfurase NFS1 that is activated by frataxin (FXN), scaffold protein ISCU, accessory protein ISD11, and acyl-carrier protein ACP. Deficiency in FXN leads to the loss-of-function neurodegenerative disorder Friedreich's ataxia (FRDA). Here the 3.2 Å resolution cryo-electron microscopy structure of the FXN-bound active human complex, containing two copies of the NFS1-ISD11-ACP-ISCU-FXN hetero-pentamer, delineates the interactions of FXN with other component proteins of the complex. FXN binds at the interface of two NFS1 and one ISCU subunits, modifying the local environment of a bound zinc ion that would otherwise inhibit NFS1 activity in complexes without FXN. Our structure reveals how FXN facilitates ISC production through stabilizing key loop conformations of NFS1 and ISCU at the protein-protein interfaces, and suggests how FRDA clinical mutations affect complex formation and FXN activation.
Collapse
Affiliation(s)
- Nicholas G Fox
- Structural Genomics Consortium, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7DQ, UK
- Merck & Co, 2000 Galloping Hill Rd, Kenilworth, NJ, 07033, USA
| | - Xiaodi Yu
- Discovery Sciences, Worldwide Research and Development, Pfizer Inc., Eastern Point Road, Groton, CT, 06340, USA
- SMPS, Janssen Research and Development, 1400 McKean Rd, Spring House, PA, 19477, USA
| | - Xidong Feng
- Discovery Sciences, Worldwide Research and Development, Pfizer Inc., Eastern Point Road, Groton, CT, 06340, USA
| | - Henry J Bailey
- Structural Genomics Consortium, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7DQ, UK
| | - Alain Martelli
- Rare Disease Research Unit, Worldwide Research and Development, Pfizer Inc., 610 Main Street, Cambridge, MA, 02139, USA
| | - Joseph F Nabhan
- Rare Disease Research Unit, Worldwide Research and Development, Pfizer Inc., 610 Main Street, Cambridge, MA, 02139, USA
| | - Claire Strain-Damerell
- Structural Genomics Consortium, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7DQ, UK
| | - Christine Bulawa
- Rare Disease Research Unit, Worldwide Research and Development, Pfizer Inc., 610 Main Street, Cambridge, MA, 02139, USA
| | - Wyatt W Yue
- Structural Genomics Consortium, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7DQ, UK.
| | - Seungil Han
- Discovery Sciences, Worldwide Research and Development, Pfizer Inc., Eastern Point Road, Groton, CT, 06340, USA.
| |
Collapse
|
18
|
Pandey AK, Pain J, Dancis A, Pain D. Mitochondria export iron-sulfur and sulfur intermediates to the cytoplasm for iron-sulfur cluster assembly and tRNA thiolation in yeast. J Biol Chem 2019; 294:9489-9502. [PMID: 31040179 DOI: 10.1074/jbc.ra119.008600] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 04/26/2019] [Indexed: 12/28/2022] Open
Abstract
Iron-sulfur clusters are essential cofactors of proteins. In eukaryotes, iron-sulfur cluster biogenesis requires a mitochondrial iron-sulfur cluster machinery (ISC) and a cytoplasmic iron-sulfur protein assembly machinery (CIA). Here we used mitochondria and cytoplasm isolated from yeast cells, and [35S]cysteine to detect cytoplasmic Fe-35S cluster assembly on a purified apoprotein substrate. We showed that mitochondria generate an intermediate, called (Fe-S)int, needed for cytoplasmic iron-sulfur cluster assembly. The mitochondrial biosynthesis of (Fe-S)int required ISC components such as Nfs1 cysteine desulfurase, Isu1/2 scaffold, and Ssq1 chaperone. Mitochondria then exported (Fe-S)int via the Atm1 transporter in the inner membrane, and we detected (Fe-S)int in active form. When (Fe-S)int was added to cytoplasm, CIA utilized it for iron-sulfur cluster assembly without any further help from the mitochondria. We found that both iron and sulfur for cytoplasmic iron-sulfur cluster assembly originate from the mitochondria, revealing a surprising and novel mitochondrial role. Mitochondrial (Fe-S)int export was most efficient in the presence of cytoplasm containing an apoprotein substrate, suggesting that mitochondria respond to the cytoplasmic demand for iron-sulfur cluster synthesis. Of note, the (Fe-S)int is distinct from the sulfur intermediate called Sint, which is also made and exported by mitochondria but is instead used for cytoplasmic tRNA thiolation. In summary, our findings establish a direct and vital role of mitochondria in cytoplasmic iron-sulfur cluster assembly in yeast cells.
Collapse
Affiliation(s)
- Ashutosh K Pandey
- From the Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, New Jersey 07103 and
| | - Jayashree Pain
- From the Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, New Jersey 07103 and
| | - Andrew Dancis
- the Department of Medicine, Division of Hematology-Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Debkumar Pain
- From the Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, New Jersey 07103 and
| |
Collapse
|
19
|
Metallocluster transactions: dynamic protein interactions guide the biosynthesis of Fe-S clusters in bacteria. Biochem Soc Trans 2018; 46:1593-1603. [PMID: 30381339 DOI: 10.1042/bst20180365] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 09/12/2018] [Accepted: 09/14/2018] [Indexed: 12/22/2022]
Abstract
Iron-sulfur (Fe-S) clusters are ubiquitous cofactors present in all domains of life. The chemistries catalyzed by these inorganic cofactors are diverse and their associated enzymes are involved in many cellular processes. Despite the wide range of structures reported for Fe-S clusters inserted into proteins, the biological synthesis of all Fe-S clusters starts with the assembly of simple units of 2Fe-2S and 4Fe-4S clusters. Several systems have been associated with the formation of Fe-S clusters in bacteria with varying phylogenetic origins and number of biosynthetic and regulatory components. All systems, however, construct Fe-S clusters through a similar biosynthetic scheme involving three main steps: (1) sulfur activation by a cysteine desulfurase, (2) cluster assembly by a scaffold protein, and (3) guided delivery of Fe-S units to either final acceptors or biosynthetic enzymes involved in the formation of complex metalloclusters. Another unifying feature on the biological formation of Fe-S clusters in bacteria is that these systems are tightly regulated by a network of protein interactions. Thus, the formation of transient protein complexes among biosynthetic components allows for the direct transfer of reactive sulfur and Fe-S intermediates preventing oxygen damage and reactions with non-physiological targets. Recent studies revealed the importance of reciprocal signature sequence motifs that enable specific protein-protein interactions and consequently guide the transactions between physiological donors and acceptors. Such findings provide insights into strategies used by bacteria to regulate the flow of reactive intermediates and provide protein barcodes to uncover yet-unidentified cellular components involved in Fe-S metabolism.
Collapse
|
20
|
Fox NG, Martelli A, Nabhan JF, Janz J, Borkowska O, Bulawa C, Yue WW. Zinc(II) binding on human wild-type ISCU and Met140 variants modulates NFS1 desulfurase activity. Biochimie 2018; 152:211-218. [PMID: 30031876 PMCID: PMC6098246 DOI: 10.1016/j.biochi.2018.07.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 07/18/2018] [Indexed: 12/01/2022]
Abstract
Human de novo iron-sulfur (Fe-S) assembly complex consists of cysteine desulfurase NFS1, accessory protein ISD11, acyl carrier protein ACP, scaffold protein ISCU, and allosteric activator frataxin (FXN). FXN binds the NFS1-ISD11-ACP-ISCU complex (SDAU), to activate the desulfurase activity and Fe-S cluster biosynthesis. In the absence of FXN, the NFS1-ISD11-ACP (SDA) complex was reportedly inhibited by binding of recombinant ISCU. Recent studies also reported a substitution at position Met141 on the yeast ISCU orthologue Isu, to Ile, Leu, Val, or Cys, could bypass the requirement of FXN for Fe-S cluster biosynthesis and cell viability. Here, we show that recombinant human ISCU binds zinc(II) ion, as previously demonstrated with the E. coli orthologue IscU. Surprisingly, the relative proportion between zinc-bound and zinc-depleted forms varies among purification batches. Importantly the presence of zinc in ISCU impacts SDAU desulfurase activity. Indeed, removal of zinc(II) ion from ISCU causes a moderate but significant increase in activity compared to SDA alone, and FXN can activate both zinc-depleted and zinc-bound forms of ISCU complexed to SDA. Taking into consideration the inhibition of desulfurase activity by zinc-bound ISCU, we characterized wild type ISCU and the M140I, M140L, and M140V variants under both zinc-bound and zinc-depleted conditions, and did not observe significant differences in the biochemical and biophysical properties between wild-type and variants. Importantly, in the absence of FXN, ISCU variants behaved like wild-type and did not stimulate the desulfurase activity of the SDA complex. This study therefore identifies an important regulatory role for zinc-bound ISCU in modulation of the human Fe-S assembly system in vitro and reports no 'FXN bypass' effect on mutations at position Met140 in human ISCU. Furthermore, this study also calls for caution in interpreting studies involving recombinant ISCU by taking into consideration the influence of the bound zinc(II) ion on SDAU complex activity.
Collapse
Affiliation(s)
- Nicholas G Fox
- Structural Genomics Consortium, Nuffield Department of Clinical Medicine, University of Oxford, OX3 7DQ, UK
| | - Alain Martelli
- Pfizer Rare Disease Research Unit, Worldwide Research and Development, Pfizer Inc., 610 Main Street, Cambridge, MA, 02139, United States
| | - Joseph F Nabhan
- Pfizer Rare Disease Research Unit, Worldwide Research and Development, Pfizer Inc., 610 Main Street, Cambridge, MA, 02139, United States
| | - Jay Janz
- Pfizer Rare Disease Research Unit, Worldwide Research and Development, Pfizer Inc., 610 Main Street, Cambridge, MA, 02139, United States
| | - Oktawia Borkowska
- Structural Genomics Consortium, Nuffield Department of Clinical Medicine, University of Oxford, OX3 7DQ, UK
| | - Christine Bulawa
- Pfizer Rare Disease Research Unit, Worldwide Research and Development, Pfizer Inc., 610 Main Street, Cambridge, MA, 02139, United States.
| | - Wyatt W Yue
- Structural Genomics Consortium, Nuffield Department of Clinical Medicine, University of Oxford, OX3 7DQ, UK.
| |
Collapse
|
21
|
NMR as a Tool to Investigate the Processes of Mitochondrial and Cytosolic Iron-Sulfur Cluster Biosynthesis. Molecules 2018; 23:molecules23092213. [PMID: 30200358 PMCID: PMC6205161 DOI: 10.3390/molecules23092213] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/03/2018] [Accepted: 08/20/2018] [Indexed: 12/15/2022] Open
Abstract
Iron-sulfur (Fe-S) clusters, the ubiquitous protein cofactors found in all kingdoms of life, perform a myriad of functions including nitrogen fixation, ribosome assembly, DNA repair, mitochondrial respiration, and metabolite catabolism. The biogenesis of Fe-S clusters is a multi-step process that involves the participation of many protein partners. Recent biophysical studies, involving X-ray crystallography, nuclear magnetic resonance (NMR) spectroscopy, mass spectrometry (MS), and small angle X-ray scattering (SAXS), have greatly improved our understanding of these steps. In this review, after describing the biological importance of iron sulfur proteins, we focus on the contributions of NMR spectroscopy has made to our understanding of the structures, dynamics, and interactions of proteins involved in the biosynthesis of Fe-S cluster proteins.
Collapse
|
22
|
Pontieri P, Hartings H, Di Salvo M, Massardo DR, De Stefano M, Pizzolante G, Romano R, Troisi J, Del Giudice A, Alifano P, Del Giudice L. Mitochondrial ribosomal proteins involved in tellurite resistance in yeast Saccharomyces cerevisiae. Sci Rep 2018; 8:12022. [PMID: 30104660 PMCID: PMC6089990 DOI: 10.1038/s41598-018-30479-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 07/23/2018] [Indexed: 11/22/2022] Open
Abstract
A considerable body of evidence links together mitochondrial dysfunctions, toxic action of metalloid oxyanions, and system and neurodegenerative disorders. In this study we have used the model yeast Saccharomyces cerevisiae to investigate the genetic determinants associated with tellurite resistance/sensitivity. Nitrosoguanidine-induced K2TeO3-resistant mutants were isolated, and one of these mutants, named Sc57-Te5R, was characterized. Both random spore analysis and tetrad analysis and growth of heterozygous (TeS/Te5R) diploid from Sc57-Te5R mutant revealed that nuclear and recessive mutation(s) was responsible for the resistance. To get insight into the mechanisms responsible for K2TeO3-resistance, RNA microarray analyses were performed with K2TeO3-treated and untreated Sc57-Te5R cells. A total of 372 differentially expressed loci were identified corresponding to 6.37% of the S. cerevisiae transcriptome. Of these, 288 transcripts were up-regulated upon K2TeO3 treatment. About half of up-regulated transcripts were associated with the following molecular functions: oxidoreductase activity, structural constituent of cell wall, transporter activity. Comparative whole-genome sequencing allowed us to identify nucleotide variants distinguishing Sc57-Te5R from parental strain Sc57. We detected 15 CDS-inactivating mutations, and found that 3 of them affected genes coding mitochondrial ribosomal proteins (MRPL44 and NAM9) and mitochondrial ribosomal biogenesis (GEP3) pointing out to alteration of mitochondrial ribosome as main determinant of tellurite resistance.
Collapse
Affiliation(s)
- Paola Pontieri
- Istituto di Bioscienze e BioRisorse-UOS Portici-CNR c/o Dipartimento di Biologia, Sezione di Igiene, Via Mezzocannone 16, Napoli, 80134, Italy
| | - Hans Hartings
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria, Via Stezzano 24, Bergamo, 24126, Italy
| | - Marco Di Salvo
- Dipartimento di Scienze e Tecnologie Biologiche e Ambientali, Università del Salento, Lecce, 73100, Italy
| | - Domenica R Massardo
- Istituto di Bioscienze e BioRisorse-UOS Portici-CNR c/o Dipartimento di Biologia, Sezione di Igiene, Via Mezzocannone 16, Napoli, 80134, Italy
| | - Mario De Stefano
- Dipartimento di Scienze Ambientali, Seconda Università degli Studi di Napoli, Via A. Vivaldi 43, Caserta, 81100, Italy
| | - Graziano Pizzolante
- ZooPlantLab, Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Piazza della Scienza 2, Milano, 20126, Italy
| | - Roberta Romano
- Dipartimento di Ingegneria Civile, Chimica, Ambientale e dei Materiali (DICAM), Università di Bologna, Via Terracini 28, Bologna, 40131, Italy
| | - Jacopo Troisi
- Theoreo srl - Spin off dell' Università di Salerno, Via Salvatore Derenzi 50, Montecorvino Pugliano, 84125, (SA), Italy
| | - Angelica Del Giudice
- Amb di allergologia Osp Martini asl città di Torino, via Tofane 71, Torino, 10171, Italy
| | - Pietro Alifano
- Dipartimento di Scienze e Tecnologie Biologiche e Ambientali, Università del Salento, Lecce, 73100, Italy
| | - Luigi Del Giudice
- Istituto di Bioscienze e BioRisorse-UOS Portici-CNR c/o Dipartimento di Biologia, Sezione di Igiene, Via Mezzocannone 16, Napoli, 80134, Italy.
| |
Collapse
|
23
|
Pandey A, Pain J, Dziuba N, Pandey AK, Dancis A, Lindahl PA, Pain D. Mitochondria Export Sulfur Species Required for Cytosolic tRNA Thiolation. Cell Chem Biol 2018; 25:738-748.e3. [PMID: 29706592 PMCID: PMC6014917 DOI: 10.1016/j.chembiol.2018.04.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 03/09/2018] [Accepted: 04/03/2018] [Indexed: 12/15/2022]
Abstract
In eukaryotes, mitochondria have been hypothesized to generate sulfur species required for tRNA thiolation in the cytosol, although no direct evidence thus far exists. Here we have detected these sulfur species, making use of our observation that isolated yeast cytosol alone is unable to thiolate tRNAs but can do so upon addition of mitochondria. Mitochondria were found to utilize the cysteine desulfurase Nfs1 to produce sulfur-containing species with masses ranging from 700 to 1,100 Da. Mitochondria exported these species via the Atm1 transporter in the inner membrane. Once exported to the cytosol, these sulfur species promoted cytosolic tRNA thiolation with no further requirement of mitochondria. Furthermore, we found that the Isu1/2 scaffolds but not the Ssq1 chaperone of the mitochondrial iron-sulfur cluster machinery were required for cytosolic tRNA thiolation, and thus the sulfur utilization pathway bifurcates at the Isu1/2 site for intra-organellar use in mitochondria or export to the cytosol.
Collapse
Affiliation(s)
- Alok Pandey
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
| | - Jayashree Pain
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
| | - Nathaniel Dziuba
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Ashutosh K Pandey
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
| | - Andrew Dancis
- Department of Medicine, Division of Hematology-Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Paul A Lindahl
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA; Department of Chemistry, Texas A&M University, College Station, TX 77843, USA
| | - Debkumar Pain
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA.
| |
Collapse
|
24
|
Cai K, Frederick RO, Tonelli M, Markley JL. Interactions of iron-bound frataxin with ISCU and ferredoxin on the cysteine desulfurase complex leading to Fe-S cluster assembly. J Inorg Biochem 2018; 183:107-116. [PMID: 29576242 PMCID: PMC5951399 DOI: 10.1016/j.jinorgbio.2018.03.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 03/08/2018] [Accepted: 03/12/2018] [Indexed: 12/15/2022]
Abstract
Frataxin (FXN) is involved in mitochondrial iron‑sulfur (Fe-S) cluster biogenesis and serves to accelerate Fe-S cluster formation. FXN deficiency is associated with Friedreich ataxia, a neurodegenerative disease. We have used a combination of isothermal titration calorimetry and multinuclear NMR spectroscopy to investigate interactions among the components of the biological machine that carries out the assembly of iron‑sulfur clusters in human mitochondria. Our results show that FXN tightly binds a single Fe2+ but not Fe3+. While FXN (with or without bound Fe2+) does not bind the scaffold protein ISCU directly, the two proteins interact mutually when each is bound to the cysteine desulfurase complex ([NFS1]2:[ISD11]2:[Acp]2), abbreviated as (NIA)2, where "N" represents the cysteine desulfurase (NFS1), "I" represents the accessory protein (ISD11), and "A" represents acyl carrier protein (Acp). FXN binds (NIA)2 weakly in the absence of ISCU but more strongly in its presence. Fe2+-FXN binds to the (NIA)2-ISCU2 complex without release of iron. However, upon the addition of both l-cysteine and a reductant (either reduced FDX2 or DTT), Fe2+ is released from FXN as consistent with Fe2+-FXN being the proximal source of iron for Fe-S cluster assembly.
Collapse
Affiliation(s)
- Kai Cai
- National Magnetic Resonance Facility at Madison and Biochemistry Department, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, United States
| | - Ronnie O Frederick
- National Magnetic Resonance Facility at Madison and Biochemistry Department, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, United States
| | - Marco Tonelli
- National Magnetic Resonance Facility at Madison and Biochemistry Department, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, United States
| | - John L Markley
- National Magnetic Resonance Facility at Madison and Biochemistry Department, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, United States.
| |
Collapse
|
25
|
Cai K, Frederick RO, Tonelli M, Markley JL. ISCU(M108I) and ISCU(D39V) Differ from Wild-Type ISCU in Their Failure To Form Cysteine Desulfurase Complexes Containing Both Frataxin and Ferredoxin. Biochemistry 2018; 57:1491-1500. [PMID: 29406711 PMCID: PMC5842376 DOI: 10.1021/acs.biochem.7b01234] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 02/06/2018] [Indexed: 01/09/2023]
Abstract
Whereas iron-sulfur (Fe-S) cluster assembly on the wild-type scaffold protein ISCU, as catalyzed by the human cysteine desulfurase complex (NIA)2, exhibits a requirement for frataxin (FXN), in yeast, ISCU variant M108I has been shown to bypass the FXN requirement. Wild-type ISCU populates two interconverting conformational states: one structured and one dynamically disordered. We show here that variants ISCU(M108I) and ISCU(D39V) of human ISCU populate only the structured state. We have compared the properties of ISCU, ISCU(M108I), and ISCU(D39V), with and without FXN, in both the cysteine desulfurase step of Fe-S cluster assembly and the overall Fe-S cluster assembly reaction catalyzed by (NIA)2. In the cysteine desulfurase step with dithiothreitol (DTT) as the reductant, FXN was found to stimulate cysteine desulfurase activity with both the wild-type and structured variants, although the effect was less prominent with ISCU(D39V) than with the wild-type or ISCU(M108I). In overall Fe-S cluster assembly, frataxin was found to stimulate cluster assembly with both the wild-type and structured variants when the reductant was DTT; however, with the physiological reductant, reduced ferredoxin 2 (rdFDX2), FXN stimulated the reaction with wild-type ISCU but not with either ISCU(M108I) or ISCU(D39V). Nuclear magnetic resonance titration experiments revealed that wild-type ISCU, FXN, and rdFDX2 all bind to (NIA)2. However, when ISCU was replaced by the fully structured variant ISCU(M108I), the addition of rdFDX2 to the [NIA-ISCU(M108I)-FXN]2 complex led to the release of FXN. Thus, the displacement of FXN by rdFDX2 explains the failure of FXN to stimulate Fe-S cluster assembly on ISCU(M108I).
Collapse
Affiliation(s)
- Kai Cai
- National Magnetic Resonance
Facility at Madison and Department of Biochemistry, University of Wisconsin—Madison, 433 Babcock Drive, Madison, Wisconsin 53706, United States
| | - Ronnie O. Frederick
- National Magnetic Resonance
Facility at Madison and Department of Biochemistry, University of Wisconsin—Madison, 433 Babcock Drive, Madison, Wisconsin 53706, United States
| | - Marco Tonelli
- National Magnetic Resonance
Facility at Madison and Department of Biochemistry, University of Wisconsin—Madison, 433 Babcock Drive, Madison, Wisconsin 53706, United States
| | - John L. Markley
- National Magnetic Resonance
Facility at Madison and Department of Biochemistry, University of Wisconsin—Madison, 433 Babcock Drive, Madison, Wisconsin 53706, United States
| |
Collapse
|
26
|
Abstract
Iron-sulfur clusters (Fe/S clusters) are essential cofactors required throughout the clades of biology for performing a myriad of unique functions including nitrogen fixation, ribosome assembly, DNA repair, mitochondrial respiration, and metabolite catabolism. Although Fe/S clusters can be synthesized in vitro and transferred to a client protein without enzymatic assistance, biology has evolved intricate mechanisms to assemble and transfer Fe/S clusters within the cellular environment. In eukaryotes, the foundation of all cellular clusters starts within the mitochondria. The focus of this review is to detail the mitochondrial Fe/S biogenesis (ISC) pathway along with the Fe/S cluster transfer steps necessary to mature Fe/S proteins. New advances in our understanding of the mitochondrial Fe/S biogenesis machinery will be highlighted. Additionally, we will address various experimental approaches that have been successful in the identification and characterization of components of the ISC pathway.
Collapse
Affiliation(s)
- Andrew Melber
- University of Utah Health Sciences Center, Salt Lake City, Utah, United States
| | - Dennis R Winge
- University of Utah Health Sciences Center, Salt Lake City, Utah, United States.
| |
Collapse
|
27
|
Dzul SP, Rocha AG, Rawat S, Kandegedara A, Kusowski A, Pain J, Murari A, Pain D, Dancis A, Stemmler TL. In vitro characterization of a novel Isu homologue from Drosophila melanogaster for de novo FeS-cluster formation. Metallomics 2017; 9:48-60. [PMID: 27738674 DOI: 10.1039/c6mt00163g] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
FeS-clusters are utilized by numerous proteins within several biological pathways that are essential for life. In eukaryotes, the primary FeS-cluster production pathway is the mitochondrial iron-sulfur cluster (ISC) pathway. In Saccharomyces cerevisiae, de novo FeS-cluster formation is accomplished through coordinated assembly with the substrates iron and sulfur by the scaffold assembly protein "Isu1". Sulfur for cluster assembly is provided by cysteine desulfurase "Nfs1", a protein that works in union with its accessory protein "Isd11". Frataxin "Yfh1" helps direct cluster assembly by serving as a modulator of Nfs1 activity, by assisting in the delivery of sulfur and Fe(ii) to Isu1, or more likely through a combination of these and other possible roles. In vitro studies on the yeast ISC machinery have been limited, however, due to the inherent instability of recombinant Isu1. Isu1 is a molecule prone to degradation and aggregation. To circumvent Isu1 instability, we have replaced yeast Isu1 with the fly ortholog to stabilize our in vitro ISC assembly system and assist us in elucidating molecular details of the yeast ISC pathway. Our laboratory previously observed that recombinant frataxin from Drosophila melanogaster has remarkable stability compared to the yeast ortholog. Here we provide the first characterization of D. melanogaster Isu1 (fIscU) and demonstrate its ability to function within the yeast ISC machinery both in vivo and in vitro. Recombinant fIscU has physical properties similar to that of yeast Isu1. It functions as a stable dimer with similar Fe(ii) affinity and ability to form two 2Fe-2S clusters as the yeast dimer. The fIscU and yeast ISC proteins are compatible in vitro; addition of Yfh1 to Nfs1-Isd11 increases the rate of FeS-cluster formation on fIscU to a similar extent observed with Isu1. Finally, fIscU expressed in mitochondria of a yeast strain lacking Isu1 (and its paralog Isu2) is able to completely reverse the deletion phenotypes. These results demonstrate fIscU can functionally replace yeast Isu1 and it can serve as a powerful tool for exploring molecular details within the yeast ISC pathway.
Collapse
Affiliation(s)
- Stephen P Dzul
- Departments of Pharmaceutical Science, and Biochemistry and Molecular Biology, Wayne State University, Detroit, MI 48201, USA
| | - Agostinho G Rocha
- Department of Medicine, Division of Hematology-Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Swati Rawat
- Departments of Pharmaceutical Science, and Biochemistry and Molecular Biology, Wayne State University, Detroit, MI 48201, USA
| | - Ashoka Kandegedara
- Departments of Pharmaceutical Science, and Biochemistry and Molecular Biology, Wayne State University, Detroit, MI 48201, USA
| | - April Kusowski
- Departments of Pharmaceutical Science, and Biochemistry and Molecular Biology, Wayne State University, Detroit, MI 48201, USA
| | - Jayashree Pain
- Department of Pharmacology, Physiology, and Neuroscience, New Jersey Medical School, Rutgers University, Newark, New Jersey 07103, USA
| | - Anjaneyulu Murari
- Department of Pharmacology, Physiology, and Neuroscience, New Jersey Medical School, Rutgers University, Newark, New Jersey 07103, USA
| | - Debkumar Pain
- Department of Pharmacology, Physiology, and Neuroscience, New Jersey Medical School, Rutgers University, Newark, New Jersey 07103, USA
| | - Andrew Dancis
- Department of Medicine, Division of Hematology-Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Timothy L Stemmler
- Departments of Pharmaceutical Science, and Biochemistry and Molecular Biology, Wayne State University, Detroit, MI 48201, USA
| |
Collapse
|
28
|
Han THL, Camadro JM, Santos R, Lesuisse E, El Hage Chahine JM, Ha-Duong NT. Mechanisms of iron and copper-frataxin interactions. Metallomics 2017; 9:1073-1085. [PMID: 28573291 DOI: 10.1039/c7mt00031f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Frataxin is a mitochondrial protein whose deficiency is the cause of Friedreich's ataxia, a hereditary neurodegenerative disease. This protein plays a role in iron-sulfur cluster biosynthesis, protection against oxidative stress and iron metabolism. In an attempt to provide a better understanding of the role played by metals in its metabolic functions, the mechanisms of mitochondrial metal binding to frataxin in vitro have been investigated. A purified recombinant yeast frataxin homolog Yfh1 binds two Cu(ii) ions with a Kd1(CuII) of 1.3 × 10-7 M and a Kd2(CuII) of 3.1 × 10-4 M and a single Cu(i) ion with a higher affinity than for Cu(ii) (Kd(CuI) = 3.2 × 10-8 M). Mn(ii) forms two complexes with Yfh1 (Kd1(MnII) = 4.0 × 10-8 M; Kd2(MnII) = 4.0 × 10-7 M). Cu and Mn bind Yfh1 with higher affinities than Fe(ii). It is established for the first time that the mechanisms of the interaction of iron and copper with frataxin are comparable and involve three kinetic steps. The first step occurs in the 50-500 ms range and corresponds to a first metal uptake. This is followed by two other kinetic processes that are related to a second metal uptake and/or to a change in the conformation leading to thermodynamic equilibrium. Frataxin deficient Δyfh1 yeast cells exhibited a marked growth defect in the presence of exogenous Cu or Mn. Mitochondria from Δyfh1 strains also accumulated higher amounts of copper, suggesting a functional role of frataxin in vivo in copper homeostasis.
Collapse
Affiliation(s)
- T H L Han
- Université Paris Diderot, Sorbonne Paris Cité, "Interfaces, Traitements, Organisation et Dynamique des Systèmes", CNRS-UMR 7086, 15 rue Jean Antoine de Baïf, 75205 Paris Cedex 13, France.
| | | | | | | | | | | |
Collapse
|
29
|
Abstract
The biogenesis of iron-sulfur (Fe/S) proteins in eukaryotes is a multistage, multicompartment process that is essential for a broad range of cellular functions, including genome maintenance, protein translation, energy conversion, and the antiviral response. Genetic and cell biological studies over almost 2 decades have revealed some 30 proteins involved in the synthesis of cellular [2Fe-2S] and [4Fe-4S] clusters and their incorporation into numerous apoproteins. Mechanistic aspects of Fe/S protein biogenesis continue to be elucidated by biochemical and ultrastructural investigations. Here, we review recent developments in the pursuit of constructing a comprehensive model of Fe/S protein assembly in the mitochondrion.
Collapse
Affiliation(s)
- Joseph J Braymer
- Institut für Zytobiologie und Zytopathologie, Philipps-Universität Marburg, Robert-Koch-Strasse 6, 35032 Marburg
| | - Roland Lill
- Institut für Zytobiologie und Zytopathologie, Philipps-Universität Marburg, Robert-Koch-Strasse 6, 35032 Marburg; LOEWE Zentrum für Synthetische Mikrobiologie SynMikro, Hans-Meerwein-Strasse, 35043 Marburg, Germany.
| |
Collapse
|
30
|
Blauenburg B, Mielcarek A, Altegoer F, Fage CD, Linne U, Bange G, Marahiel MA. Crystal Structure of Bacillus subtilis Cysteine Desulfurase SufS and Its Dynamic Interaction with Frataxin and Scaffold Protein SufU. PLoS One 2016; 11:e0158749. [PMID: 27382962 PMCID: PMC4934914 DOI: 10.1371/journal.pone.0158749] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 06/21/2016] [Indexed: 12/31/2022] Open
Abstract
The biosynthesis of iron sulfur (Fe-S) clusters in Bacillus subtilis is mediated by a SUF-type gene cluster, consisting of the cysteine desulfurase SufS, the scaffold protein SufU, and the putative chaperone complex SufB/SufC/SufD. Here, we present the high-resolution crystal structure of the SufS homodimer in its product-bound state (i.e., in complex with pyrodoxal-5'-phosphate, alanine, Cys361-persulfide). By performing hydrogen/deuterium exchange (H/DX) experiments, we characterized the interaction of SufS with SufU and demonstrate that SufU induces an opening of the active site pocket of SufS. Recent data indicate that frataxin could be involved in Fe-S cluster biosynthesis by facilitating iron incorporation. H/DX experiments show that frataxin indeed interacts with the SufS/SufU complex at the active site. Our findings deepen the current understanding of Fe-S cluster biosynthesis, a complex yet essential process, in the model organism B. subtilis.
Collapse
Affiliation(s)
- Bastian Blauenburg
- Department of Chemistry, Biochemistry, Hans-Meerwein Str. 4, Philipps University Marburg, 35043 Marburg, Germany
| | - Andreas Mielcarek
- Department of Chemistry, Biochemistry, Hans-Meerwein Str. 4, Philipps University Marburg, 35043 Marburg, Germany
| | - Florian Altegoer
- LOEWE Center for Synthetic Microbiology, Philipps University Marburg, 35043 Marburg, Germany
| | - Christopher D. Fage
- Department of Chemistry, Biochemistry, Hans-Meerwein Str. 4, Philipps University Marburg, 35043 Marburg, Germany
| | - Uwe Linne
- Department of Chemistry, Biochemistry, Hans-Meerwein Str. 4, Philipps University Marburg, 35043 Marburg, Germany
| | - Gert Bange
- Department of Chemistry, Biochemistry, Hans-Meerwein Str. 4, Philipps University Marburg, 35043 Marburg, Germany
- LOEWE Center for Synthetic Microbiology, Philipps University Marburg, 35043 Marburg, Germany
| | - Mohamed A. Marahiel
- Department of Chemistry, Biochemistry, Hans-Meerwein Str. 4, Philipps University Marburg, 35043 Marburg, Germany
| |
Collapse
|
31
|
Abstract
Iron-sulfur (Fe-S) clusters are fundamental to numerous biological processes in most organisms, but these protein cofactors can be prone to damage by various oxidants (e.g., O2, reactive oxygen species, and reactive nitrogen species) and toxic levels of certain metals (e.g., cobalt and copper). Furthermore, their synthesis can also be directly influenced by the level of available iron in the environment. Consequently, the cellular need for Fe-S cluster biogenesis varies with fluctuating growth conditions. To accommodate changes in Fe-S demand, microorganisms employ diverse regulatory strategies to tailor Fe-S cluster biogenesis according to their surroundings. Here, we review the mechanisms that regulate Fe-S cluster formation in bacteria, primarily focusing on control of the Isc and Suf Fe-S cluster biogenesis systems in the model bacterium Escherichia coli.
Collapse
Affiliation(s)
- Erin L Mettert
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin-Madison, ,
| | - Patricia J Kiley
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin-Madison, ,
| |
Collapse
|
32
|
Dean DR, Dos Santos PC. Trading Places-Switching Frataxin Function by a Single Amino Acid Substitution within the [Fe-S] Cluster Assembly Scaffold. PLoS Genet 2015; 11:e1005192. [PMID: 25996679 PMCID: PMC4440749 DOI: 10.1371/journal.pgen.1005192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Affiliation(s)
- Dennis R. Dean
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Patricia C. Dos Santos
- Department of Chemistry, Wake Forest University, Winston-Salem, North Carolina, United States of America
| |
Collapse
|