1
|
Yang Q, Wijaya F, Kapoor R, Chandrasekaran H, Jagtiani S, Moran I, Hime GR. Unusual modes of cell and nuclear divisions characterise Drosophila development. Biochem Soc Trans 2024; 52:2281-2295. [PMID: 39508395 DOI: 10.1042/bst20231341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 10/03/2024] [Accepted: 10/07/2024] [Indexed: 11/15/2024]
Abstract
The growth and development of metazoan organisms is dependent upon a co-ordinated programme of cellular proliferation and differentiation, from the initial formation of the zygote through to maintenance of mature organs in adult organisms. Early studies of proliferation of ex vivo cultures and unicellular eukaryotes described a cyclic nature of cell division characterised by periods of DNA synthesis (S-phase) and segregation of newly synthesized chromosomes (M-phase) interspersed by seeming inactivity, the gap phases, G1 and G2. We now know that G1 and G2 play critical roles in regulating the cell cycle, including monitoring of favourable environmental conditions to facilitate cell division, and ensuring genomic integrity prior to DNA replication and nuclear division. M-phase is usually followed by the physical separation of nascent daughters, termed cytokinesis. These phases where G1 leads to S phase, followed by G2 prior to M phase and the subsequent cytokinesis to produce two daughters, both identical in genomic composition and cellular morphology are what might be termed an archetypal cell division. Studies of development of many different organs in different species have demonstrated that this stereotypical cell cycle is often subverted to produce specific developmental outcomes, and examples from over 100 years of analysis of the development of Drosophila melanogaster have uncovered many different modes of cell division within this one species.
Collapse
Affiliation(s)
- Qiaolin Yang
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Fernando Wijaya
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Ridam Kapoor
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Harshaa Chandrasekaran
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Siddhant Jagtiani
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Izaac Moran
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Gary R Hime
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, VIC 3010, Australia
| |
Collapse
|
2
|
Bolkent S. Cellular and molecular mechanisms of asymmetric stem cell division in tissue homeostasis. Genes Cells 2024; 29:1099-1110. [PMID: 39379096 PMCID: PMC11609605 DOI: 10.1111/gtc.13172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 09/09/2024] [Accepted: 09/25/2024] [Indexed: 10/10/2024]
Abstract
The asymmetric cell division determines cell diversity and distinct sibling cell fates by mechanisms linked to mitosis. Many adult stem cells divide asymmetrically to balance self-renewal and differentiation. The process of asymmetric cell division involves an axis of polarity and, second, the localization of cell fate determinants at the cell poles. Asymmetric division of stem cells is achieved by intrinsic and extrinsic fate determinants such as signaling molecules, epigenetics factors, molecules regulating gene expression, and polarized organelles. At least some stem cells perform asymmetric and symmetric cell divisions during development. Asymmetric division ensures that the number of stem cells remains constant throughout life. The asymmetric division of stem cells plays an important role in biological events such as embryogenesis, tissue regeneration and carcinogenesis. This review summarizes recent advances in the regulation of asymmetric stem cell division in model organisms.
Collapse
Affiliation(s)
- Sema Bolkent
- Cerrahpaşa Faculty of Medicine, Department of Medical BiologyIstanbul University‐CerrahpaşaCerrahpaşaIstanbulTurkey
| |
Collapse
|
3
|
Warder BN, Nelson KA, Sui J, Anllo L, DiNardo S. An actomyosin network organizes niche morphology and responds to feedback from recruited stem cells. Curr Biol 2024; 34:3917-3930.e6. [PMID: 39137785 PMCID: PMC11387155 DOI: 10.1016/j.cub.2024.07.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 04/18/2024] [Accepted: 07/10/2024] [Indexed: 08/15/2024]
Abstract
Stem cells often rely on signals from a niche, which in many tissues adopts a precise morphology. What remains elusive is how niches are formed and how morphology impacts function. To address this, we leverage the Drosophila gonadal niche, which affords genetic tractability and live-imaging. We have previously shown mechanisms dictating niche cell migration to their appropriate position within the gonad and the resultant consequences on niche function. Here, we show that once positioned, niche cells robustly polarize filamentous actin (F-actin) and non-muscle myosin II (MyoII) toward neighboring germ cells. Actomyosin tension along the niche periphery generates a highly reproducible smoothened contour. Without contractility, niches are misshapen and exhibit defects in their ability to regulate germline stem cell behavior. We additionally show that germ cells aid in polarizing MyoII within niche cells and that extrinsic input is required for niche morphogenesis and function. Our work reveals a feedback mechanism where stem cells shape the niche that guides their behavior.
Collapse
Affiliation(s)
- Bailey N Warder
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kara A Nelson
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Justin Sui
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lauren Anllo
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Stephen DiNardo
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
4
|
Warder BN, Nelson KA, Sui J, Anllo L, DiNardo S. An actomyosin network organizes niche morphology and responds to feedback from recruited stem cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.08.556877. [PMID: 38746236 PMCID: PMC11092431 DOI: 10.1101/2023.09.08.556877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Stem cells often rely on signals from a niche, which in many tissues adopts a precise morphology. What remains elusive is how niches are formed, and how morphology impacts function. To address this, we leverage the Drosophila gonadal niche, which affords genetic tractability and live-imaging. We have previously shown mechanisms dictating niche cell migration to their appropriate position within the gonad, and the resultant consequences on niche function. Here, we show that once positioned, niche cells robustly polarize filamentous actin (F-actin) and Non-muscle Myosin II (MyoII) towards neighboring germ cells. Actomyosin tension along the niche periphery generates a highly reproducible smoothened contour. Without contractility, niches are misshapen and exhibit defects in their ability to regulate germline stem cell behavior. We additionally show that germ cells aid in polarizing MyoII within niche cells, and that extrinsic input is required for niche morphogenesis and function. Our work reveals a feedback mechanism where stem cells shape the niche that guides their behavior.
Collapse
Affiliation(s)
- Bailey N. Warder
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kara A. Nelson
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Justin Sui
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lauren Anllo
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Stephen DiNardo
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
5
|
Gonzalez C. Centrosomes in asymmetric cell division. Curr Opin Struct Biol 2020; 66:178-182. [PMID: 33279730 DOI: 10.1016/j.sbi.2020.10.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/07/2020] [Accepted: 10/18/2020] [Indexed: 02/04/2023]
Abstract
Asymmetric cell division (ACD) is a strategy for achieving cell diversity. Research carried out over the last two decades has shown that in some cell types that divide asymmetrically, mother and daughter centrosomes are noticeably different from one another in structure, behaviour, and fate, and that robust ACD depends upon centrosome function. Here, I review the latest advances in this field with special emphasis on the complex structure-function relationship of centrosomes with regards to ACD and on mechanistic insight derived from cell types that divide symmetrically but is likely to be relevant in ACD. I also include a comment arguing for the need to investigate the centrosome cycle in other cell types that divide asymmetrically.
Collapse
Affiliation(s)
- Cayetano Gonzalez
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain; Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain.
| |
Collapse
|
6
|
Pajuelo-Lozano N, Alcalá S, Sainz B, Perona R, Sanchez-Perez I. Targeting MAD2 modulates stemness and tumorigenesis in human Gastric Cancer cell lines. Am J Cancer Res 2020; 10:9601-9618. [PMID: 32863948 PMCID: PMC7449921 DOI: 10.7150/thno.49270] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 07/12/2020] [Indexed: 12/11/2022] Open
Abstract
Rationale: Gastric cancer (GC) is a solid tumor that contains subpopulations of cancer stem cells (CSCs), which are considered drivers of tumor initiation and metastasis; responsible for therapeutic resistance; and promoters of tumor relapse. The balance between symmetric and asymmetric division is crucial for stem cell maintenance. The objective of this study is to evaluate the role of MAD2, a key protein for proper mitotic checkpoint activity, in the tumorigenesis of GC. Methods: Gastric cancer stem cells (GCSCs) were obtained from MKN45, SNU638 and ST2957 cell lines. Pluripotency and stemness markers were evaluated by RT-qPCR and autofluorescence and membrane markers by flow cytometry. Relevant signal transduction pathways were studied by WB. We analysed cell cycle progression, migration and invasion after modulation of MAD2 activity or protein expression levels in these in vitro models. In vivo assays were performed in a nude mouse subcutaneous xenograft model. Results: We found that NANOG, CXCR4 and autofluorescence are common and consistent markers for the GCSCs analysed, with other markers showing more variability. The three main signalling pathways (Wnt/β-catenin; Hedgehog and Notch) were activated in GCSCs. Downregulation of MAD2 in MKN45CSCs decreased the expression of markers CXCR4, CD133, CD90, LGR5 and VIM, without affecting cell cycle profile or therapy resistance. Moreover, migration, invasion and tumor growth were clearly reduced, and accordingly, we found that metalloprotease expression decreased. These results were accompanied by a reduction in the levels of transcription factors related with epithelial-to-mesenchymal transition. Conclusions: We can conclude that MAD2 is important for GCSCs stemness and its downregulation in MKN45CSCs plays a central role in GC tumorigenesis, likely through CXCR4-SNAI2-MMP1. Thus, its potential use in the clinical setting should be studied as its functions appear to extend beyond mitosis.
Collapse
|
7
|
Ubiquitylation Dynamics of the Clock Cell Proteome and TIMELESS during a Circadian Cycle. Cell Rep 2019; 23:2273-2282. [PMID: 29791839 DOI: 10.1016/j.celrep.2018.04.064] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 02/10/2018] [Accepted: 04/13/2018] [Indexed: 12/14/2022] Open
Abstract
Circadian clocks have evolved as time-measuring molecular devices to help organisms adapt their physiology to daily changes in light and temperature. Transcriptional oscillations account for a large fraction of rhythmic protein abundance. However, cycling of various posttranslational modifications, such as ubiquitylation, also contributes to shape the rhythmic protein landscape. In this study, we used an in vivo ubiquitin labeling assay to investigate the circadian ubiquitylated proteome of Drosophila melanogaster. We find that cyclic ubiquitylation affects MEGATOR (MTOR), a chromatin-associated nucleoporin that, in turn, feeds back to regulate the core molecular oscillator. Furthermore, we show that the ubiquitin ligase subunits CULLIN-3 (CUL-3) and SUPERNUMERARY LIMBS (SLMB) cooperate for ubiquitylating the TIMELESS protein. These findings stress the importance of ubiquitylation pathways in the Drosophila circadian clock and reveal a key component of this system.
Collapse
|
8
|
Subcellular Specialization and Organelle Behavior in Germ Cells. Genetics 2018; 208:19-51. [PMID: 29301947 DOI: 10.1534/genetics.117.300184] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2016] [Accepted: 08/17/2017] [Indexed: 11/18/2022] Open
Abstract
Gametes, eggs and sperm, are the highly specialized cell types on which the development of new life solely depends. Although all cells share essential organelles, such as the ER (endoplasmic reticulum), Golgi, mitochondria, and centrosomes, germ cells display unique regulation and behavior of organelles during gametogenesis. These germ cell-specific functions of organelles serve critical roles in successful gamete production. In this chapter, I will review the behaviors and roles of organelles during germ cell differentiation.
Collapse
|
9
|
Stamp C, Zupanic A, Sachdeva A, Stoll EA, Shanley DP, Mathers JC, Kirkwood TBL, Heer R, Simons BD, Turnbull DM, Greaves LC. Predominant Asymmetrical Stem Cell Fate Outcome Limits the Rate of Niche Succession in Human Colonic Crypts. EBioMedicine 2018; 31:166-173. [PMID: 29748033 PMCID: PMC6013780 DOI: 10.1016/j.ebiom.2018.04.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 03/20/2018] [Accepted: 04/19/2018] [Indexed: 01/10/2023] Open
Abstract
Stem cell (SC) dynamics within the human colorectal crypt SC niche remain poorly understood, with previous studies proposing divergent hypotheses on the predominant mode of SC self-renewal and the rate of SC replacement. Here we use age-related mitochondrial oxidative phosphorylation (OXPHOS) defects to trace clonal lineages within human colorectal crypts across the adult life-course. By resolving the frequency and size distribution of OXPHOS-deficient clones, quantitative analysis shows that, in common with mouse, long-term maintenance of the colonic epithelial crypt relies on stochastic SC loss and replacement mediated by competition for limited niche access. We find that the colonic crypt is maintained by ~5 effective SCs. However, with a SC loss/replacement rate estimated to be slower than once per year, our results indicate that the vast majority of individual SC divisions result in asymmetric fate outcome. These findings provide a quantitative platform to detect and study deviations from human colorectal crypt SC niche homeostasis during the process of colorectal carcinogenesis.
Collapse
Affiliation(s)
- Craig Stamp
- LLHW Centre for Ageing and Vitality, Newcastle University Institute for Ageing, The Medical School, Newcastle upon Tyne NE2 4HH, UK; Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Anze Zupanic
- Swiss Federal Institute of Aquatic Science and Technology, Department of Environmental Toxicology, Dübendorf, Switzerland
| | - Ashwin Sachdeva
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne NE2 4AD, UK
| | - Elizabeth A Stoll
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Daryl P Shanley
- Institute of Cell and Molecular Biosciences, Newcastle University Institute for Ageing, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne NE4 5PL, UK
| | - John C Mathers
- LLHW Centre for Ageing and Vitality, Newcastle University Institute for Ageing, The Medical School, Newcastle upon Tyne NE2 4HH, UK; Human Nutrition Research Centre, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne NE4 5PL, UK
| | - Thomas B L Kirkwood
- Institute of Cell and Molecular Biosciences, Newcastle University Institute for Ageing, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne NE4 5PL, UK
| | - Rakesh Heer
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne NE2 4AD, UK
| | - Benjamin D Simons
- Cavendish Laboratory, Department of Physics, University of Cambridge, J.J. Thomson Avenue, Cambridge CB3 0HE, UK; Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK; Wellcome Trust/Medical Research Council SC Institute, Cambridge CB2 1QR, UK
| | - Doug M Turnbull
- LLHW Centre for Ageing and Vitality, Newcastle University Institute for Ageing, The Medical School, Newcastle upon Tyne NE2 4HH, UK; Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Laura C Greaves
- LLHW Centre for Ageing and Vitality, Newcastle University Institute for Ageing, The Medical School, Newcastle upon Tyne NE2 4HH, UK; Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.
| |
Collapse
|
10
|
Liu Y, Ge Q, Chan B, Liu H, Singh SR, Manley J, Lee J, Weideman AM, Hou G, Hou SX. Whole-animal genome-wide RNAi screen identifies networks regulating male germline stem cells in Drosophila. Nat Commun 2016; 7:12149. [PMID: 27484291 PMCID: PMC4976209 DOI: 10.1038/ncomms12149] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 06/03/2016] [Indexed: 12/21/2022] Open
Abstract
Stem cells are regulated both intrinsically and externally, including by signals from the local environment and distant organs. To identify genes and pathways that regulate stem-cell fates in the whole organism, we perform a genome-wide transgenic RNAi screen through ubiquitous gene knockdowns, focusing on regulators of adult Drosophila testis germline stem cells (GSCs). Here we identify 530 genes that regulate GSC maintenance and differentiation. Of these, we further knock down 113 selected genes using cell-type-specific Gal4s and find that more than half were external regulators, that is, from the local microenvironment or more distal sources. Some genes, for example, versatile (vers), encoding a heterochromatin protein, regulates GSC fates differentially in different cell types and through multiple pathways. We also find that mitosis/cytokinesis proteins are especially important for male GSC maintenance. Our findings provide valuable insights and resources for studying stem cell regulation at the organismal level.
Collapse
Affiliation(s)
- Ying Liu
- Basic Research Laboratory, National Cancer Institute at Frederick, National Institutes of Health, 1050 Boyles Street, Building 560, Room 12-70, Frederick, Maryland 21702, USA
| | - Qinglan Ge
- Basic Research Laboratory, National Cancer Institute at Frederick, National Institutes of Health, 1050 Boyles Street, Building 560, Room 12-70, Frederick, Maryland 21702, USA
| | - Brian Chan
- Basic Research Laboratory, National Cancer Institute at Frederick, National Institutes of Health, 1050 Boyles Street, Building 560, Room 12-70, Frederick, Maryland 21702, USA
| | - Hanhan Liu
- Basic Research Laboratory, National Cancer Institute at Frederick, National Institutes of Health, 1050 Boyles Street, Building 560, Room 12-70, Frederick, Maryland 21702, USA
| | - Shree Ram Singh
- Basic Research Laboratory, National Cancer Institute at Frederick, National Institutes of Health, 1050 Boyles Street, Building 560, Room 12-70, Frederick, Maryland 21702, USA
| | - Jacob Manley
- Basic Research Laboratory, National Cancer Institute at Frederick, National Institutes of Health, 1050 Boyles Street, Building 560, Room 12-70, Frederick, Maryland 21702, USA
| | - Jae Lee
- Basic Research Laboratory, National Cancer Institute at Frederick, National Institutes of Health, 1050 Boyles Street, Building 560, Room 12-70, Frederick, Maryland 21702, USA
| | - Ann Marie Weideman
- Basic Research Laboratory, National Cancer Institute at Frederick, National Institutes of Health, 1050 Boyles Street, Building 560, Room 12-70, Frederick, Maryland 21702, USA
| | - Gerald Hou
- Basic Research Laboratory, National Cancer Institute at Frederick, National Institutes of Health, 1050 Boyles Street, Building 560, Room 12-70, Frederick, Maryland 21702, USA
| | - Steven X Hou
- Basic Research Laboratory, National Cancer Institute at Frederick, National Institutes of Health, 1050 Boyles Street, Building 560, Room 12-70, Frederick, Maryland 21702, USA
| |
Collapse
|