1
|
Mojgani N, Bagheri M, Ashique S, Islam A, Moharrami M, Modirrousta H, Hussain A. Honeybee defense mechanisms: Role of honeybee gut microbiota and antimicrobial peptides in maintaining colony health and preventing diseases. Microb Pathog 2025; 198:107161. [PMID: 39603566 DOI: 10.1016/j.micpath.2024.107161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/20/2024] [Accepted: 11/24/2024] [Indexed: 11/29/2024]
Abstract
Honeybees play a vital role in pollination and the maintenance of ecosystem biodiversity, making their health and well-being crucial for agriculture and environmental sustainability. Bee health is modulated by symbiotic microorganisms colonizing the gut in balanced proportions. Studies have demonstrated that these beneficial bacteria have the capacity to enhance the immune system of honey bees, having substantial impact on regulating their immunological responses and hence aiding in defending against pathogenic illnesses. Another important aspect of honeybee health is their innate immune system that is related to their ability to synthesize antimicrobial peptides (AMP). AMPs, the small, cationic peptides are the humoral effector molecules that are synthesized in the hemolymph of the insects after being exposed to microbial infectious agents. A number of honeybee's gut microbiota especially Lactic Acid Bacteria (LAB), are known to regulate the production of several AMPs and hence are able to provide protection to these insects against a number of disease agents by modulating their innate immune response via induction of the AMPs genes. These AMPs mainly produced by adult workers are an important and integral part of an insect's immune response. Several AMPs namely apidaecins, abaecins, hymenoptaecins and defensins produced in the adult honeybee, hold the ability to control or prevent a number of diseases in these pollinator insects.
Collapse
Affiliation(s)
- Naheed Mojgani
- Razi Vaccine and Serum Research Institute- Agriculture Research, Education and Extension Organization (AREEO), Karaj, Iran.
| | - Masoumeh Bagheri
- Razi Vaccine and Serum Research Institute- Agriculture Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Sumel Ashique
- Department of Pharmaceutics, Bengal College of Pharmaceutical Sciences & Research, Durgapur, 713212, West Bengal, India; School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Anas Islam
- Faculty of Pharmacy, Integral University, Lucknow, 226026, Uttar Pradesh, India
| | - Mojtaba Moharrami
- Razi Vaccine and Serum Research Institute- Agriculture Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Hossein Modirrousta
- Razi Vaccine and Serum Research Institute- Agriculture Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Abrar Hussain
- H.E.J Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| |
Collapse
|
2
|
Tleiss F, Montanari M, Milleville R, Pierre O, Royet J, Osman D, Gallet A, Kurz CL. Spatial and temporal coordination of Duox/TrpA1/Dh31 and IMD pathways is required for the efficient elimination of pathogenic bacteria in the intestine of Drosophila larvae. eLife 2024; 13:RP98716. [PMID: 39576741 PMCID: PMC11584180 DOI: 10.7554/elife.98716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2024] Open
Abstract
Multiple gut antimicrobial mechanisms are coordinated in space and time to efficiently fight foodborne pathogens. In Drosophila melanogaster, production of reactive oxygen species (ROS) and antimicrobial peptides (AMPs) together with intestinal cell renewal play a key role in eliminating gut microbes. A complementary mechanism would be to isolate and treat pathogenic bacteria while allowing colonization by commensals. Using real-time imaging to follow the fate of ingested bacteria, we demonstrate that while commensal Lactiplantibacillus plantarum freely circulate within the intestinal lumen, pathogenic strains such as Erwinia carotovora or Bacillus thuringiensis, are blocked in the anterior midgut where they are rapidly eliminated by antimicrobial peptides. This sequestration of pathogenic bacteria in the anterior midgut requires the Duox enzyme in enterocytes, and both TrpA1 and Dh31 in enteroendocrine cells. Supplementing larval food with hCGRP, the human homolog of Dh31, is sufficient to block the bacteria, suggesting the existence of a conserved mechanism. While the immune deficiency (IMD) pathway is essential for eliminating the trapped bacteria, it is dispensable for the blockage. Genetic manipulations impairing bacterial compartmentalization result in abnormal colonization of posterior midgut regions by pathogenic bacteria. Despite a functional IMD pathway, this ectopic colonization leads to bacterial proliferation and larval death, demonstrating the critical role of bacteria anterior sequestration in larval defense. Our study reveals a temporal orchestration during which pathogenic bacteria, but not innocuous, are confined in the anterior part of the midgut in which they are eliminated in an IMD-pathway-dependent manner.
Collapse
Affiliation(s)
- Fatima Tleiss
- Université Côte d'Azur, CNRS, INRAE, ISA, Nice, France
| | | | | | | | - Julien Royet
- Aix-Marseille Université, CNRS, IBDM, Marseille, France
| | - Dani Osman
- UMR PIMIT (Processus Infectieux en Milieu Insulaire Tropical) CNRS 9192-INSERM 1187-IRD 249-Université de La Réunion, île de La Réunion, France
| | - Armel Gallet
- Université Côte d'Azur, CNRS, INRAE, ISA, Nice, France
| | | |
Collapse
|
3
|
Du EJ, Lee M, Kim SY, Park SH, Ohk HJ, Kang K. Linkage of alternative exon assembly in Drosophila TrpA1 transcripts. Mol Cells 2024; 47:100110. [PMID: 39271057 PMCID: PMC11471635 DOI: 10.1016/j.mocell.2024.100110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/15/2024] Open
Abstract
Drosophila TrpA1 (transient receptor potential ankyrin 1) transcripts are alternatively spliced at 2 distinct sites each with a choice of mutually exclusive exons. The first site determines exon1 encoding the amino terminus to produce either nucleophile-, electrophile- and noxious temperature-gated TRPA1(A) or electrophile- and innocuous warmth-gated TRPA1(B). The second site selects for exon10, resulting in TrpA1 variants with either exon10a or exon10b encoding a domain between the N-terminal ankyrin repeats and the transmembrane segments. Although unbiased assembly would generate TRPA1 with 4 different domain combinations, the functional impact of these alternative domains remains to be thoroughly examined. Here, we find that there is a relatively strong linkage in mRNA splicing between the 2 sites in the case of TrpA1(B), but not TrpA1(A), transcripts. Our semiquantitative assay, consisting of reverse transcription polymerase chain reaction and Sanger sequencing, revealed that exon10b is little coupled with TrpA1(B) transcripts, suggesting that only 3 isoforms, TRPA1(A)-exon10a [denoted as TRPA1(A)], TRPA1(A)-exon10b [TRPA1(A)10b], and TRPA1(B)-exon10a [TRPA1(B)], are present at detectable levels using our method. Interestingly, heterologously expressed TRPA1(A)10b showed elevated sensitivity to low concentrations of N-methyl maleimide, a cysteine-modifying electrophile, compared with other isoforms. Equivalent isoforms in malaria-transmitting Anopheles gambiae displayed a similar pattern of isoform-dependent N-methyl maleimide dose dependences, suggesting that the chemosensory regulation by selective domain assembly is conserved in insect TRPA1s. Thus, alternative RNA splicing of exon10 is coordinated in conjunction with the first exons, regulating chemical sensitivity of insect TRPA1s.
Collapse
Affiliation(s)
- Eun Jo Du
- Neurovascular Unit Research Group, Korea Brain Research Institute, Daegu 41062, Republic of Korea
| | - MinHyuk Lee
- Neurovascular Unit Research Group, Korea Brain Research Institute, Daegu 41062, Republic of Korea
| | - Seon Yeong Kim
- Neurovascular Unit Research Group, Korea Brain Research Institute, Daegu 41062, Republic of Korea; Department of Brain Sciences, DGIST, Daegu 42988, Republic of Korea
| | - Se Hoon Park
- Neurovascular Unit Research Group, Korea Brain Research Institute, Daegu 41062, Republic of Korea; Department of Brain Sciences, DGIST, Daegu 42988, Republic of Korea
| | - Hye-Jung Ohk
- Neurovascular Unit Research Group, Korea Brain Research Institute, Daegu 41062, Republic of Korea
| | - KyeongJin Kang
- Neurovascular Unit Research Group, Korea Brain Research Institute, Daegu 41062, Republic of Korea.
| |
Collapse
|
4
|
Sato R. Molecular Functions and Physiological Roles of Gustatory Receptors of the Silkworm Bombyx mori. Int J Mol Sci 2024; 25:10157. [PMID: 39337641 PMCID: PMC11432556 DOI: 10.3390/ijms251810157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Complete elucidation of members of the gustatory receptor (Gr) family in lepidopteran insects began in the silkworm Bombyx mori. Grs of lepidopteran insects were initially classified into four subfamilies based on the results of phylogenetic studies and analyses of a few ligands. However, with further ligand analysis, it has become clear that plant secondary metabolites are important targets not only for Grs in the bitter subfamily but also for the Drosophila melanogaster Gr43a orthologue subfamily and Grs in the sugar subfamily. Gene knockout experiments showed that B. mori Gr6 (BmGr6) and BmGr9 are involved in the recognition of the feeding-promoting compounds chlorogenic acid and isoquercetin in mulberry leaves by the maxillary palps, suggesting that these Grs are responsible for palpation-dependent host recognition without biting. On the other hand, BmGr expression was also confirmed in nonsensory organs. Midgut enteroendocrine cells that produce specific neuropeptides were shown to express specific BmGrs, suggesting that BmGrs are involved in the induction of endocrine secretion in response to changes in the midgut contents. Furthermore, gene knockout experiments indicated that BmGr6 is indeed involved in the secretion of myosuppressin. On the other hand, BmGr9 was shown to induce signal transduction that is not derived from the intracellular signaling cascade mediated by G proteins but from the fructose-regulated cation channel of BmGr9 itself. Cryogenic electron microscopy revealed the mechanism by which the ion channel of the BmGr9 homotetramer opens upon binding of fructose to the ligand-binding pocket. Research on BmGrs has contributed greatly to our understanding of the functions and roles of Grs in insects.
Collapse
Affiliation(s)
- Ryoichi Sato
- Graduate School of Bio-Application and Systems Engineering, Tokyo University of Agriculture and Technology, Naka 2-24-16, Koganei 184-8588, Tokyo, Japan
| |
Collapse
|
5
|
Hachfi S, Brun-Barale A, Fichant A, Munro P, Nawrot-Esposito MP, Michel G, Ruimy R, Rousset R, Bonis M, Boyer L, Gallet A. Ingestion of Bacillus cereus spores dampens the immune response to favor bacterial persistence. Nat Commun 2024; 15:7733. [PMID: 39231950 PMCID: PMC11375157 DOI: 10.1038/s41467-024-51689-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 08/13/2024] [Indexed: 09/06/2024] Open
Abstract
Strains of the Bacillus cereus (Bc) group are sporulating bacteria commonly associated with foodborne outbreaks. Spores are dormant cells highly resistant to extreme conditions. Nevertheless, the pathological processes associated with the ingestion of either vegetative cells or spores remain poorly understood. Here, we demonstrate that while ingestion of vegetative bacteria leads to their rapid elimination from the intestine of Drosophila melanogaster, a single ingestion of spores leads to the persistence of bacteria for at least 10 days. We show that spores do not germinate in the anterior part of the intestine which bears the innate immune defenses. Consequently, spores reach the posterior intestine where they germinate and activate both the Imd and Toll immune pathways. Unexpectedly, this leads to the induction of amidases, which are negative regulators of the immune response, but not to antimicrobial peptides. Thereby, the local germination of spores in the posterior intestine dampens the immune signaling that in turn fosters the persistence of Bc bacteria. This study provides evidence for how Bc spores hijack the intestinal immune defenses allowing the localized birth of vegetative bacteria responsible for the digestive symptoms associated with foodborne illness outbreaks.
Collapse
Affiliation(s)
- Salma Hachfi
- Université Côte d'Azur, CNRS, INRAE, ISA, Sophia Antipolis, France
- Université Côte d'Azur, Inserm, C3M, Nice, France
| | | | - Arnaud Fichant
- Université Côte d'Azur, CNRS, INRAE, ISA, Sophia Antipolis, France
- Anses (Laboratoire de Sécurité des Aliments), Université Paris-Est, Maisons-Alfort, France
| | | | | | | | - Raymond Ruimy
- Université Côte d'Azur, Inserm, C3M, Nice, France
- Bacteriology Laboratory, Archet 2 Hospital, CHU, Université Côte d'Azur, Nice, France
| | - Raphaël Rousset
- Université Côte d'Azur, CNRS, INRAE, ISA, Sophia Antipolis, France
| | - Mathilde Bonis
- Anses (Laboratoire de Sécurité des Aliments), Université Paris-Est, Maisons-Alfort, France
| | | | - Armel Gallet
- Université Côte d'Azur, CNRS, INRAE, ISA, Sophia Antipolis, France.
| |
Collapse
|
6
|
Liu Z, Zhang H, Lemaitre B, Li X. Duox activation in Drosophila Malpighian tubules stimulates intestinal epithelial renewal through a countercurrent flow. Cell Rep 2024; 43:114109. [PMID: 38613782 DOI: 10.1016/j.celrep.2024.114109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 02/26/2024] [Accepted: 03/28/2024] [Indexed: 04/15/2024] Open
Abstract
The gut must perform a dual role of protecting the host against toxins and pathogens while harboring mutualistic microbiota. Previous studies suggested that the NADPH oxidase Duox contributes to intestinal homeostasis in Drosophila by producing reactive oxygen species (ROS) in the gut that stimulate epithelial renewal. We find instead that the ROS generated by Duox in the Malpighian tubules leads to the production of Upd3, which enters the gut and stimulates stem cell proliferation. We describe in Drosophila the existence of a countercurrent flow system, which pushes tubule-derived Upd3 to the anterior part of the gut and stimulates epithelial renewal at a distance. Thus, our paper clarifies the role of Duox in gut homeostasis and describes the existence of retrograde fluid flow in the gut, collectively revealing a fascinating example of inter-organ communication.
Collapse
Affiliation(s)
- Zhonggeng Liu
- Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Hongyu Zhang
- Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Bruno Lemaitre
- Global Health Institute, School of Life Science, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| | - Xiaoxue Li
- Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China; Global Health Institute, School of Life Science, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| |
Collapse
|
7
|
Goerlinger A, Develay C, Balourdet A, Rigaud T, Moret Y. Infection risk by oral contamination does not induce immune priming in the mealworm beetle ( Tenebrio molitor) but triggers behavioral and physiological responses. Front Immunol 2024; 15:1354046. [PMID: 38404577 PMCID: PMC10885348 DOI: 10.3389/fimmu.2024.1354046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 01/29/2024] [Indexed: 02/27/2024] Open
Abstract
In invertebrates, immune priming is the ability of individuals to enhance their immune response based on prior immunological experiences. This adaptive-like immunity likely evolved due to the risk of repeated infections by parasites in the host's natural habitat. The expression of immune priming varies across host and pathogen species, as well as infection routes (oral or wounds), reflecting finely tuned evolutionary adjustments. Evidence from the mealworm beetle (Tenebrio molitor) suggests that Gram-positive bacterial pathogens play a significant role in immune priming after systemic infection. Despite the likelihood of oral infections by natural bacterial pathogens in T. molitor, it remains debated whether ingestion of contaminated food leads to systemic infection, and whether oral immune priming is possible is currently unknown. We first attempted to induce immune priming in both T. molitor larvae and adults by exposing them to food contaminated with living or dead Gram-positive and Gram-negative bacterial pathogens. We found that oral ingestion of living bacteria did not kill them, but septic wounds caused rapid mortality. Intriguingly, the consumption of either dead or living bacteria did not protect against reinfection, contrasting with injury-induced priming. We further examined the effects of infecting food with various living bacterial pathogens on variables such as food consumption, mass gain, and feces production in larvae. We found that larvae exposed to Gram-positive bacteria in their food ingested less food, gained less mass and/or produced more feces than larvae exposed to contaminated food with Gram-negative bacteria or control food. This suggests that oral contamination with Gram-positive bacteria induced both behavioral responses and peristalsis defense mechanisms, even though no immune priming was observed here. Considering that the oral route of infection neither caused the death of the insects nor induced priming, we propose that immune priming in T. molitor may have primarily evolved as a response to the infection risk associated with wounds rather than oral ingestion.
Collapse
Affiliation(s)
| | | | | | | | - Yannick Moret
- CNRS UMR 6282 Biogéosciences, Université de Bourgogne, Dijon, France
| |
Collapse
|
8
|
Liu Y, Luo R, Bai S, Lemaitre B, Zhang H, Li X. Pathobiont and symbiont contribute to microbiota homeostasis through Malpighian tubules-gut countercurrent flow in Bactrocera dorsalis. THE ISME JOURNAL 2024; 18:wrae221. [PMID: 39530356 PMCID: PMC11697180 DOI: 10.1093/ismejo/wrae221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/18/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
Host-gut microbiota interactions are more complex than good or bad. Both gut symbiotic bacteria and pathobionts can provide essential functions to their host in one scenario and yet be detrimental to host health in another. So, these gut-dwelling bacteria must be tightly controlled to avoid harmful effects on the host. However, how pathobionts and other symbiotic bacteria coordinate to establish a host immune defense system remains unclear. Here, using a Tephritidae fruit fly Bactrocera dorsalis, we report that both pathobionts and other gut symbiotic bacteria release tyramine, which is recognized by the host insects. These tyramines induce the formation of insect-conserved Malpighian tubules-gut countercurrent flow upon bacterial infection, which requires tyramine receptors and aquaporins. At the same time, pathobionts but not gut symbiotic bacteria induce the generation of reactive oxygen species, which are preserved by the countercurrent flow, promoting bacteria elimination through increasing gut peristalsis. More importantly, our results show that the Malpighian tubules-gut countercurrent flow maintains proper microbiota composition. Our work suggests a model where pathobiont-induced reactive oxygen species are preserved by Malpighian tubules-gut countercurrent flow involving both pathobionts and symbiotic bacteria. Furthermore, our work provides a Malpighian tubules-gut interaction that ensures efficient maintenance of the gut microbiota.
Collapse
Affiliation(s)
- Yanning Liu
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Hubei Hongshan Laboratory, China–Australia Joint Research Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
| | - Rengang Luo
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Hubei Hongshan Laboratory, China–Australia Joint Research Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
| | - Shuai Bai
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Hubei Hongshan Laboratory, China–Australia Joint Research Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
| | - Bruno Lemaitre
- Global Health Institute, School of Life Science, École Polytechnique Fédérale de Lausanne (EPFL), Station 19, 1015, Lausanne, Switzerland
| | - Hongyu Zhang
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Hubei Hongshan Laboratory, China–Australia Joint Research Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
| | - Xiaoxue Li
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Hubei Hongshan Laboratory, China–Australia Joint Research Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
| |
Collapse
|
9
|
Böhringer AC, Deters L, Windfelder AG, Merzendorfer H. Dextran sulfate sodium and uracil induce inflammatory effects and disrupt the chitinous peritrophic matrix in the midgut of Tribolium castaneum. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2023; 163:104029. [PMID: 37907139 DOI: 10.1016/j.ibmb.2023.104029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/02/2023]
Abstract
Dextran sulfate sodium is used in inflammatory bowel disease (IBD) mice models to trigger chronic intestinal inflammation. In this study, we have analyzed DSS effects in the genetic model and pest beetle, Tribolium castaneum, which can be easily and cost-effectively cultivated and examined in very large quantities compensating for individual variations. We fed the larvae with DSS and uracil, which is known to induce the production of reactive oxygen species by activating DUOX, a member of the NADPH oxidase family. Both chemicals induced IBD-like phenotypes, including impaired growth and development, midgut thickening, epithelial swelling, and a loss of epithelial barrier function. RNAi mediated knockdown of DUOX expression enhanced the effects of DSS and uracil on mortality. Finally, we showed that both treatments result in an altered activity of the intestinal microbiome, similar as observed in IBD patients. Our findings suggest that both chemicals impair the epithelial barrier by increasing the permeability of the peritrophic matrix. The loss of the barrier function may facilitate the entry of midgut bacteria triggering innate immune responses that also affect the intestinal microbiome. As the observed effects resemble those induced by DSS treatment in mice, T. castaneum might be suitable high-throughput invertebrate model for IBD research and preclinical studies.
Collapse
Affiliation(s)
| | - Lara Deters
- University of Siegen, Department of Chemistry-Biology, 57068, Siegen, Germany
| | - Anton George Windfelder
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, 35392, Gießen, Germany; Experimental Radiology, Department of Medicine, Justus Liebig University, 35392, Gießen, Germany
| | - Hans Merzendorfer
- University of Siegen, Department of Chemistry-Biology, 57068, Siegen, Germany.
| |
Collapse
|
10
|
Aalto AL, Saadabadi A, Lindholm F, Kietz C, Himmelroos E, Marimuthu P, Salo-Ahen OMH, Eklund P, Meinander A. Stilbenoid compounds inhibit NF-κB-mediated inflammatory responses in the Drosophila intestine. Front Immunol 2023; 14:1253805. [PMID: 37809071 PMCID: PMC10556681 DOI: 10.3389/fimmu.2023.1253805] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/04/2023] [Indexed: 10/10/2023] Open
Abstract
Introduction Stilbenoid compounds have been described to have anti-inflammatory properties in animal models in vivo, and have been shown to inhibit Ca2+-influx through the transient receptor potential ankyrin 1 (TrpA1). Methods To study how stilbenoid compounds affect inflammatory signaling in vivo, we have utilized the fruit fly, Drosophila melanogaster, as a model system. To induce intestinal inflammation in the fly, we have fed flies with the intestinal irritant dextran sodium sulphate (DSS). Results We found that DSS induces severe changes in the bacteriome of the Drosophila intestine, and that this dysbiosis causes activation of the NF-κB transcription factor Relish. We have taken advantage of the DSS-model to study the anti-inflammatory properties of the stilbenoid compounds pinosylvin (PS) and pinosylvin monomethyl ether (PSMME). With the help of in vivo approaches, we have identified PS and PSMME to be transient receptor ankyrin 1 (TrpA1)-dependent antagonists of NF-κB-mediated intestinal immune responses in Drosophila. We have also computationally predicted the putative antagonist binding sites of these compounds at Drosophila TrpA1. Discussion Taken together, we show that the stilbenoids PS and PSMME have anti-inflammatory properties in vivo in the intestine and can be used to alleviate chemically induced intestinal inflammation in Drosophila.
Collapse
Affiliation(s)
- Anna L. Aalto
- Cell Biology, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship Center, Åbo Akademi University, Turku, Finland
| | - Atefeh Saadabadi
- Pharmaceutical Sciences Laboratory, Pharmacy, Åbo Akademi University, Turku, Finland
- Structural Bioinformatics Laboratory, Biochemistry, Åbo Akademi University, Turku, Finland
- Laboratory of Molecular Science and Engineering, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Fanny Lindholm
- Cell Biology, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Christa Kietz
- Cell Biology, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Emmy Himmelroos
- Cell Biology, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Parthiban Marimuthu
- Pharmaceutical Sciences Laboratory, Pharmacy, Åbo Akademi University, Turku, Finland
- Structural Bioinformatics Laboratory, Biochemistry, Åbo Akademi University, Turku, Finland
| | - Outi M. H. Salo-Ahen
- Pharmaceutical Sciences Laboratory, Pharmacy, Åbo Akademi University, Turku, Finland
- Structural Bioinformatics Laboratory, Biochemistry, Åbo Akademi University, Turku, Finland
| | - Patrik Eklund
- Laboratory of Molecular Science and Engineering, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Annika Meinander
- Cell Biology, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship Center, Åbo Akademi University, Turku, Finland
| |
Collapse
|
11
|
Toyam T, Yamagishi T, Sato R. The roles of enteroendocrine cell distribution and gustatory receptor expression in regulating peptide hormone secretion in the midgut of Bombyx mori larvae. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2023; 114:e22032. [PMID: 37424326 DOI: 10.1002/arch.22032] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/08/2023] [Accepted: 06/15/2023] [Indexed: 07/11/2023]
Abstract
To regulate physiological homeostasis and behavior in Bombyx mori, more than 20 peptide hormones in the midgut of larvae are secreted upon detection of food substances at the lumen. Although it is logical to assume that the timings of peptide hormone secretions are regulated, little is known about the mechanisms. In this study, the distributions of enteroendocrine cells (EECs) producing five peptide hormones and EECs expressing gustatory receptors (Grs), as candidate receptors for luminal food substances and nutrients, were examined via immunostaining in B. mori larvae. Three patterns of peptide hormone distribution were observed. Tachykinin (Tk)- and K5-producing EECs were located throughout the midgut; myosuppressin-producing EECs were located in the middle-to-posterior midgut; and allatostatin C- and CCHamide-2-producing EECs were located in the anterior-to-middle midgut. BmGr4 was expressed in some Tk-producing EECs in the anterior midgut, where food and its digestive products arrived 5 min after feeding began. Enzyme-linked immunosorbent assay (ELISA) revealed secretion of Tk starting approximately 5 min after feeding began, suggesting that food sensing by BmGr4 may regulate Tk secretion. BmGr6 was expressed in a few Tk-producing EECs in the middle-to-posterior midgut, although its significance was unclear. BmGr6 was also expressed in many myosuppressin-producing EECs in the middle midgut, where food and its digestive products arrived 60 min after feeding began. ELISA revealed secretion of myosuppressin starting approximately 60 min after feeding began, suggesting that food sensing by BmGr6 may regulate myosuppressin secretion. Finally, BmGr9 was expressed in many BmK5-producing EECs throughout the midgut, suggesting that BmGr9 may function as a sensor for the secretion of BmK5.
Collapse
Affiliation(s)
- Tomoko Toyam
- Graduate School of Bio-Application and Systems Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Takayuki Yamagishi
- Graduate School of Bio-Application and Systems Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Ryoichi Sato
- Graduate School of Bio-Application and Systems Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan
| |
Collapse
|
12
|
Gong J, Nirala NK, Chen J, Wang F, Gu P, Wen Q, Ip YT, Xiang Y. TrpA1 is a shear stress mechanosensing channel regulating intestinal stem cell proliferation in Drosophila. SCIENCE ADVANCES 2023; 9:eadc9660. [PMID: 37224252 PMCID: PMC10208578 DOI: 10.1126/sciadv.adc9660] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 04/18/2023] [Indexed: 05/26/2023]
Abstract
Adult stem cells are essential for tissue maintenance and repair. Although genetic pathways for controlling adult stem cells are extensively investigated in various tissues, much less is known about how mechanosensing could regulate adult stem cells and tissue growth. Here, we demonstrate that shear stress sensing regulates intestine stem cell proliferation and epithelial cell number in adult Drosophila. Ca2+ imaging in ex vivo midguts shows that shear stress, but not other mechanical forces, specifically activates enteroendocrine cells among all epithelial cell types. This activation is mediated by transient receptor potential A1 (TrpA1), a Ca2+-permeable channel expressed in enteroendocrine cells. Furthermore, specific disruption of shear stress, but not chemical, sensitivity of TrpA1 markedly reduces proliferation of intestinal stem cells and midgut cell number. Therefore, we propose that shear stress may act as a natural mechanical stimulation to activate TrpA1 in enteroendocrine cells, which, in turn, regulates intestine stem cell behavior.
Collapse
Affiliation(s)
- Jiaxin Gong
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Niraj K. Nirala
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Jiazhang Chen
- Department of Physics, Worcester Polytechnic Institute, Worcester, MA 01609, USA
| | - Fei Wang
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Pengyu Gu
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Qi Wen
- Department of Physics, Worcester Polytechnic Institute, Worcester, MA 01609, USA
| | - Y. Tony Ip
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Yang Xiang
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| |
Collapse
|
13
|
Li Y, Zhou X, Cheng C, Ding G, Zhao P, Tan K, Chen L, Perrimon N, Veenstra JA, Zhang L, Song W. Gut AstA mediates sleep deprivation-induced energy wasting in Drosophila. Cell Discov 2023; 9:49. [PMID: 37221172 DOI: 10.1038/s41421-023-00541-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 03/13/2023] [Indexed: 05/25/2023] Open
Abstract
Severe sleep deprivation (SD) has been highly associated with systemic energy wasting, such as lipid loss and glycogen depletion. Despite immune dysregulation and neurotoxicity observed in SD animals, whether and how the gut-secreted hormones participate in SD-induced disruption of energy homeostasis remains largely unknown. Using Drosophila as a conserved model organism, we characterize that production of intestinal Allatostatin A (AstA), a major gut-peptide hormone, is robustly increased in adult flies bearing severe SD. Interestingly, the removal of AstA production in the gut using specific drivers significantly improves lipid loss and glycogen depletion in SD flies without affecting sleep homeostasis. We reveal the molecular mechanisms whereby gut AstA promotes the release of an adipokinetic hormone (Akh), an insulin counter-regulatory hormone functionally equivalent to mammalian glucagon, to mobilize systemic energy reserves by remotely targeting its receptor AstA-R2 in Akh-producing cells. Similar regulation of glucagon secretion and energy wasting by AstA/galanin is also observed in SD mice. Further, integrating single-cell RNA sequencing and genetic validation, we uncover that severe SD results in ROS accumulation in the gut to augment AstA production via TrpA1. Altogether, our results demonstrate the essential roles of the gut-peptide hormone AstA in mediating SD-associated energy wasting.
Collapse
Affiliation(s)
- Yingge Li
- Department of Hepatobiliary and Pancreatic Surgery, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Xiaoya Zhou
- Department of Hepatobiliary and Pancreatic Surgery, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Chen Cheng
- Department of Hepatobiliary and Pancreatic Surgery, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Guangming Ding
- Department of Hepatobiliary and Pancreatic Surgery, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Peng Zhao
- Department of Hepatobiliary and Pancreatic Surgery, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Kai Tan
- Department of Hepatobiliary and Pancreatic Surgery, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
| | - Lixia Chen
- Key Laboratory of Molecular Biophysics of Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Norbert Perrimon
- Department of Genetics, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Jan A Veenstra
- INCIA, UMR 5287 CNRS, University of Bordeaux, Talence, France
| | - Luoying Zhang
- Key Laboratory of Molecular Biophysics of Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wei Song
- Department of Hepatobiliary and Pancreatic Surgery, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China.
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
14
|
Liu L, Xu M, Zhang Z, Qiao Z, Tang Z, Wan F, Lan L. TRPA1 protects mice from pathogenic Citrobacter rodentium infection via maintaining the colonic epithelial barrier function. FASEB J 2023; 37:e22739. [PMID: 36583647 DOI: 10.1096/fj.202200483rrr] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 12/07/2022] [Accepted: 12/16/2022] [Indexed: 12/31/2022]
Abstract
Transient receptor potential ankyrin 1 (TRPA1) is expressed in gastrointestinal tract and plays important roles in intestinal motility and visceral hypersensitivity. However, the potential role of TRPA1 in host defense, particularly against intestinal pathogens, is unknown. Here, we show that Trpa1 knockout mice exhibited increased susceptibility to Citrobacter rodentium infection, associated with the increased severity of diarrhea and intestinal permeability associated with the disrupted tight junctions (TJs) in colonic epithelia. We further demonstrated the expression of TRPA1 in murine colonic epithelial cells (CECs) and human epithelial Caco-2 cells both at protein level and transcription level. Using calcium imaging, TRPA1 agonists allyl isothiocyanates (AITC) and hydrogen peroxide were observed to induce a transient Ca2+ response in Caco-2 cells, respectively. Moreover, TRPA1 knockdown in Caco-2 cells resulted in the decreased expression of TJ proteins, ZO-1 and Occludin, and in the increased paracellular permeabilities and the reduced TEER values of Caco-2 monolayers in vitro. Furthermore, inhibition of TRPA1 by HC-030031 in the confluent Caco-2 cells caused the altered distribution and expression of TJ proteins, ZO-1, Occludin, and Claudin-3, and exacerbated the bacterial endotoxin lipopolysaccharide (LPS)-induced damage to these TJ proteins and actin cytoskeleton. By contrast, AITC pretreatment restored the distribution and expression of these TJ proteins in the confluent Caco-2 cells upon LPS challenge. Our results identify an unrecognized protective role of TRPA1 in host defense against an enteric bacterial pathogen by maintaining colonic epithelium barrier function, at least in part, via preserving the distribution and expression of TJ proteins in CECs.
Collapse
Affiliation(s)
- Lin Liu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, PR China
| | - Min Xu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, PR China
| | - Zhudi Zhang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, PR China
| | - Zhao Qiao
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, PR China
| | - Zongxiang Tang
- Key Laboratory of Chinese Medicine for Prevention and Treatment of Neurological Diseases, School of medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, PR China
| | - Fengyi Wan
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Lei Lan
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, PR China
| |
Collapse
|
15
|
Hrithik MTH, Ahmed S, Kim Y. Damage signal induced by Bacillus thuringiensis infection triggers immune responses via a DAMP molecule in lepidopteran insect, Spodoptera exigua. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 139:104559. [PMID: 36181778 DOI: 10.1016/j.dci.2022.104559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Insect immunity defends the infection of an insect pathogenic bacterium, Bacillus thuringiensis (Bt). However, it was not clear on the recognition of Bt infection by the insect immune system. This study tested a physiological function of dorsal switch protein 1 (DSP1) in the Bt infection. DSP1 is classified into HMGB1-like damage-associated molecular pattern (DAMP) in insects. Upon Bt infection in a lepidopteran Spodoptera exigua, DSP1 was released from the nuclei of the midgut epithelium and activated immune responses. For this DSP1 release, a functional binding between Bt and its receptors on the midgut epithelium was required because any RNA interference (RNAi) treatments of Bt receptor (cadherin or ABCC) prevented the DSP1 release and became susceptible to the bacterial infection. The DSP1 release was required for the gene induction of Repat33, which is a member of response to pathogen gene family and its gene product mediated cellular and humoral immune responses against pathogen infection in S. exigua. The released DSP1 activated phospholipase A2 (PLA2) to produce eicosanoids, which induced the Repat33 expression because a hemocoelic injection of a recombinant DSP1 induced the Repat33 expression without Bt infection. However, any inhibition of PLA2 activity impaired the DAMP signaling between DSP1 and Repat33. DSP1 also up-regulated two other immune mediators, nitric oxide (NO) and a cytokine called plasmatocyte-spreading peptide (PSP). Either NO or PSP activated PLA2 to up-regulate Repat33 expression. These results suggest that Bt infection of the insect midgut generates a DAMP signal via DSP1 release, which turns on NO or the cytokine-PLA2-Repat33 immune signaling pathway.
Collapse
Affiliation(s)
| | - Shabbir Ahmed
- Department of Plant Medicals, Andong National University, Andong, 36729, South Korea
| | - Yonggyun Kim
- Department of Plant Medicals, Andong National University, Andong, 36729, South Korea.
| |
Collapse
|
16
|
Roy MC, Ahmed S, Kim Y. Dorsal switch protein 1 as a damage signal in insect gut immunity to activate dual oxidase via an eicosanoid, PGE 2. Front Immunol 2022; 13:994626. [PMID: 36439105 PMCID: PMC9691268 DOI: 10.3389/fimmu.2022.994626] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 10/18/2022] [Indexed: 08/05/2023] Open
Abstract
Various microbiota including beneficial symbionts reside in the insect gut. Infections of pathogens cause dysregulation of the microflora and threaten insect survival. Reactive oxygen species (ROS) have been used in the gut immune responses, in which its production is tightly regulated by controlling dual oxidase (Duox) activity via Ca2+ signal to protect beneficial microflora and gut epithelium due to its high cytotoxicity. However, it was not clear how the insects discriminate the pathogens from the various microbes in the gut lumen to trigger ROS production. An entomopathogenic nematode (Steinernema feltiae) infection elevated ROS level in the gut lumen of a lepidopteran insect, Spodoptera exigua. Dorsal switch protein 1 (DSP1) localized in the nucleus in the midgut epithelium was released into plasma upon the nematode infection and activated phospholipase A2 (PLA2). The activated PLA2 led to an increase of PGE2 level in the midgut epithelium, in which rising Ca2+ signal up-regulated ROS production. Inhibiting DSP1 release by its specific RNA interference (RNAi) or specific inhibitor, 3-ethoxy-4-methoxyphenol, treatment failed to increase the intracellular Ca2+ level and subsequently prevented ROS production upon the nematode infection. A specific PLA2 inhibitor treatment also prevented the up-regulation of Ca2+ and subsequent ROS production upon the nematode infection. However, the addition of PGE2 to the inhibitor treatment rescued the gut immunity. DSP1 release was not observed at infection with non-pathogenic pathogens but detected in plasma with pathogenic infections that would lead to damage to the gut epithelium. These results indicate that DSP1 acts as a damage-associated molecular pattern in gut immunity through DSP1/PLA2/Ca2+/Duox.
Collapse
|
17
|
Bioelectric regulation of intestinal stem cells. Trends Cell Biol 2022:S0962-8924(22)00234-3. [PMID: 36396487 PMCID: PMC10183058 DOI: 10.1016/j.tcb.2022.10.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/21/2022] [Accepted: 10/24/2022] [Indexed: 11/17/2022]
Abstract
Proper regulation of ion balance across the intestinal epithelium is essential for physiological functions, while ion imbalance causes intestinal disorders with dire health consequences. Ion channels, pumps, and exchangers are vital for regulating ion movements (i.e., bioelectric currents) that control epithelial absorption and secretion. Recent in vivo studies used the Drosophila gut to identify conserved pathways that link regulators of Ca2+, Na+ and Cl- with intestinal stem cell (ISC) proliferation. These studies laid a foundation for using the Drosophila gut to identify conserved proliferative responses triggered by bioelectric regulators. Here, we review these studies, discuss their significance, as well as the advantages of using Drosophila to unravel conserved bioelectrically induced molecular pathways in the intestinal epithelium under physiological, pathophysiological, and regenerative conditions.
Collapse
|
18
|
Ørsted M, Yashiro E, Hoffmann AA, Kristensen TN. Population bottlenecks constrain host microbiome diversity and genetic variation impeding fitness. PLoS Genet 2022; 18:e1010206. [PMID: 35604942 PMCID: PMC9166449 DOI: 10.1371/journal.pgen.1010206] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 06/03/2022] [Accepted: 04/18/2022] [Indexed: 11/23/2022] Open
Abstract
It is becoming increasingly clear that microbial symbionts influence key aspects of their host’s fitness, and vice versa. This may fundamentally change our thinking about how microbes and hosts interact in influencing fitness and adaptation to changing environments. Here we explore how reductions in population size commonly experienced by threatened species influence microbiome diversity. Consequences of such reductions are normally interpreted in terms of a loss of genetic variation, increased inbreeding and associated inbreeding depression. However, fitness effects of population bottlenecks might also be mediated through microbiome diversity, such as through loss of functionally important microbes. Here we utilise 50 Drosophila melanogaster lines with different histories of population bottlenecks to explore these questions. The lines were phenotyped for egg-to-adult viability and their genomes sequenced to estimate genetic variation. The bacterial 16S rRNA gene was amplified in these lines to investigate microbial diversity. We found that 1) host population bottlenecks constrained microbiome richness and diversity, 2) core microbiomes of hosts with low genetic variation were constituted from subsets of microbiomes found in flies with higher genetic variation, 3) both microbiome diversity and host genetic variation contributed to host population fitness, 4) connectivity and robustness of bacterial networks was low in the inbred lines regardless of host genetic variation, 5) reduced microbial diversity was associated with weaker evolutionary responses of hosts in stressful environments, and 6) these effects were unrelated to Wolbachia density. These findings suggest that population bottlenecks reduce hologenomic variation (combined host and microbial genetic variation). Thus, while the current biodiversity crisis focuses on population sizes and genetic variation of eukaryotes, an additional focal point should be the microbial diversity carried by the eukaryotes, which in turn may influence host fitness and adaptability with consequences for the persistence of populations. It is becoming increasingly clear that organisms and the microbes that live on or in them–their microbiome–affect each other in profound ways that we are just beginning to understand. For instance, a diverse microbiome can help maintain metabolic functions or fight pathogens causing diseases. A disrupted microbiome may be especially critical for animals and plants that occur in low numbers because of threats from e.g. human exploitation or climate change, as they may already suffer from genetic challenges such as inbreeding and reduced evolutionary potential. The importance of such a reduction in population size, called a bottleneck, on the microbial diversity and the potential interactive effects on host health remains unexplored. Here we experimentally test these associations by investigating the microbiomes of 50 inbred or non-inbred populations of vinegar flies. We found that restricting the population size constrain the host’s genetic variation and simultaneously decreases the diversity of the microbiome that they harbor, and that both effects were detrimental to host fitness. The microbial communities in inbred host populations were less robust than in their non-inbred counterparts, suggesting that we should increasingly consider the microbiome diversity, which may ultimately influence the health and persistence of threatened species.
Collapse
Affiliation(s)
- Michael Ørsted
- Section for Zoophysiology, Department of Biology, Aarhus University, Aarhus, Denmark
- Section for Bioscience and Engineering, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
- * E-mail:
| | - Erika Yashiro
- Section for Bioscience and Engineering, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
- Institute for Plant Sciences, Department of Biology, University of Cologne, Cologne, Germany
| | - Ary A. Hoffmann
- Section for Bioscience and Engineering, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
- School of Biosciences, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, Australia
| | - Torsten Nygaard Kristensen
- Section for Bioscience and Engineering, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| |
Collapse
|
19
|
Nociception and hypersensitivity involve distinct neurons and molecular transducers in Drosophila. Proc Natl Acad Sci U S A 2022; 119:e2113645119. [PMID: 35294287 PMCID: PMC8944580 DOI: 10.1073/pnas.2113645119] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
SignificanceFunctional plasticity of the nociceptive circuit is a remarkable feature and is of clinical relevance. As an example, nociceptors lower their threshold upon tissue injury, a process known as allodynia that would facilitate healing by guarding the injured areas. However, long-lasting hypersensitivity could lead to chronic pain, a debilitating disease not effectively treated. Therefore, it is crucial to dissect the mechanisms underlying basal nociception and nociceptive hypersensitivity. In both vertebrate and invertebrate species, conserved transient receptor potential (Trp) channels are the primary transducers of noxious stimuli. Here, we provide a precedent that in Drosophila larvae, heat sensing in the nociception and hypersensitivity states is mediated by distinct heat-sensitive neurons and TrpA1 alternative isoforms.
Collapse
|
20
|
Zhao X, Karpac J. Glutamate metabolism directs energetic trade-offs to shape host-pathogen susceptibility in Drosophila. Cell Metab 2021; 33:2428-2444.e8. [PMID: 34710355 PMCID: PMC9153082 DOI: 10.1016/j.cmet.2021.10.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 07/26/2021] [Accepted: 10/04/2021] [Indexed: 12/27/2022]
Abstract
Individual hosts within populations often show inter-individual variation in their susceptibility to bacterial pathogen-related diseases. Utilizing Drosophila, we highlight that phenotypic variation in host-pathogen susceptibility within populations is driven by energetic trade-offs, facilitated by infection-mediated changes in glutamate metabolism. Furthermore, host-pathogen susceptibility is conditioned by life history, which adjusts immunometabolic sensing in muscles to direct vitamin-dependent reallocation of host energy substrates from the adipose tissue (i.e., a muscle-adipose tissue axis). Life history conditions inter-individual variation in the activation strength of intra-muscular NF-κB signaling. Limited intra-muscular NF-κB signaling activity allows for enhanced infection-mediated mitochondrial biogenesis and function, which stimulates glutamate dehydrogenase-dependent synthesis of glutamate. Muscle-derived glutamate acts as a systemic metabolite to promote lipid mobilization through modulating vitamin B enzymatic cofactor transport and function in the adipose tissue. This energy substrate reallocation improves pathogen clearance and boosts host survival. Finally, life history events that adjust energetic trade-offs can shape inter-individual variation in host-pathogen susceptibility after infection.
Collapse
Affiliation(s)
- Xiao Zhao
- Department of Molecular and Cellular Medicine, Texas A&M University, College of Medicine, Bryan, TX 77807, USA
| | - Jason Karpac
- Department of Molecular and Cellular Medicine, Texas A&M University, College of Medicine, Bryan, TX 77807, USA.
| |
Collapse
|
21
|
Boonen B, Startek JB, Milici A, López-Requena A, Beelen M, Callaerts P, Talavera K. Activation of Drosophila melanogaster TRPA1 Isoforms by Citronellal and Menthol. Int J Mol Sci 2021; 22:ijms222010997. [PMID: 34681657 PMCID: PMC8541009 DOI: 10.3390/ijms222010997] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/07/2021] [Accepted: 10/08/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The transient receptor potential ankyrin 1 (TRPA1) cation channels function as broadly-tuned sensors of noxious chemicals in many species. Recent studies identified four functional TRPA1 isoforms in Drosophila melanogaster (dTRPA1(A) to (D)), but their responses to non-electrophilic chemicals are yet to be fully characterized. METHODS We determined the behavioral responses of adult flies to the mammalian TRPA1 non-electrophilic activators citronellal and menthol, and characterized the effects of these compounds on all four dTRPA1 channel isoforms using intracellular Ca2+ imaging and whole-cell patch-clamp recordings. RESULTS Wild type flies avoided citronellal and menthol in an olfactory test and this behavior was reduced in dTrpA1 mutant flies. Both compounds activate all dTRPA1 isoforms in the heterologous expression system HEK293T, with the following sensitivity series: dTRPA1(C) = dTRPA1(D) > dTRPA1(A) ≫ dTRPA1(B) for citronellal and dTRPA1(A) > dTRPA1(D) > dTRPA1(C) > dTRPA1(B) for menthol. CONCLUSIONS dTrpA1 was required for the normal avoidance of Drosophila melanogaster towards citronellal and menthol. All dTRPA1 isoforms are activated by both compounds, but the dTRPA1(B) is consistently the least sensitive. We discuss how these findings may guide further studies on the physiological roles and the structural bases of chemical sensitivity of TRPA1 channels.
Collapse
Affiliation(s)
- Brett Boonen
- Leuven Center for Brain & Disease Research, Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, VIB-KU 3000 Leuven, Belgium; (B.B.); (J.B.S.); (A.M.); (A.L.-R.)
| | - Justyna B. Startek
- Leuven Center for Brain & Disease Research, Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, VIB-KU 3000 Leuven, Belgium; (B.B.); (J.B.S.); (A.M.); (A.L.-R.)
| | - Alina Milici
- Leuven Center for Brain & Disease Research, Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, VIB-KU 3000 Leuven, Belgium; (B.B.); (J.B.S.); (A.M.); (A.L.-R.)
| | - Alejandro López-Requena
- Leuven Center for Brain & Disease Research, Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, VIB-KU 3000 Leuven, Belgium; (B.B.); (J.B.S.); (A.M.); (A.L.-R.)
| | - Melissa Beelen
- Laboratory of Behavioral and Developmental Genetics, Department of Human Genetics, KU Leuven, 3000 Leuven, Belgium; (M.B.); (P.C.)
| | - Patrick Callaerts
- Laboratory of Behavioral and Developmental Genetics, Department of Human Genetics, KU Leuven, 3000 Leuven, Belgium; (M.B.); (P.C.)
| | - Karel Talavera
- Leuven Center for Brain & Disease Research, Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, VIB-KU 3000 Leuven, Belgium; (B.B.); (J.B.S.); (A.M.); (A.L.-R.)
- Correspondence: ; Tel.: +32-16-330-469
| |
Collapse
|
22
|
Brown LD, Maness R, Hall C, Gibson JD. Reactive oxygen species-mediated immunity against bacterial infection in the gut of cat fleas (Ctenocephalides felis). INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2021; 136:103620. [PMID: 34216781 DOI: 10.1016/j.ibmb.2021.103620] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/21/2021] [Accepted: 06/29/2021] [Indexed: 06/13/2023]
Abstract
Fleas (Order Siphonaptera) transmit numerous bacterial pathogens that cause severe human diseases (e.g., cat scratch disease, flea-borne spotted fever, murine typhus, plague). Because initial entry of these infectious agents occurs while blood feeding, the immune response in the flea gut is considered to be the first line of defense against invading microbes. However, relatively few studies have identified the flea immune molecules that effectively resist or limit infection in the gut. In other hematophagous insects, an immediate immune response to imbibed pathogens is the generation of reactive oxygen species (ROS). In this study, we utilized cat fleas (Ctenocephalides felis) to investigate whether oral infection with a well-known insect bacterial pathogen (Serratia marcescens) induces ROS synthesis in the flea gut, and whether production of ROS provides a defense mechanism against microbial colonization. Specifically, we treated fleas with an antioxidant to limit the number of free radicals in the digestive tract prior to infection, and then measured the following: S. marcescens infection loads, hydrogen peroxide (ROS) levels, and mRNA abundance of ROS signaling pathway genes. Overall, our data shows that ROS levels increase in response to infection in the flea gut, and that this increase helps to strengthen the flea immune response through the microbicidal activity of ROS.
Collapse
Affiliation(s)
- Lisa D Brown
- Department of Biology, Georgia Southern University, 4324 Old Register Rd., Statesboro, GA, 30460, USA.
| | - Ryne Maness
- Department of Biology, Georgia Southern University, 4324 Old Register Rd., Statesboro, GA, 30460, USA
| | - Clark Hall
- Department of Biology, Georgia Southern University, 4324 Old Register Rd., Statesboro, GA, 30460, USA
| | - Joshua D Gibson
- Department of Biology, Georgia Southern University, 4324 Old Register Rd., Statesboro, GA, 30460, USA
| |
Collapse
|
23
|
Bai S, Yao Z, Raza MF, Cai Z, Zhang H. Regulatory mechanisms of microbial homeostasis in insect gut. INSECT SCIENCE 2021; 28:286-301. [PMID: 32888254 DOI: 10.1111/1744-7917.12868] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/20/2020] [Accepted: 08/04/2020] [Indexed: 06/11/2023]
Abstract
Insects live in incredibly complex environments. The intestinal epithelium of insects is in constant contact with microorganisms, some of which are beneficial and some harmful to the host. Insect gut health and function are maintained through multidimensional mechanisms that can proficiently remove foreign pathogenic microorganisms while effectively maintaining local symbiotic microbial homeostasis. The basic immune mechanisms of the insect gut, such as the dual oxidase-reactive oxygen species (Duox-ROS) system and the immune deficiency (Imd)-signaling pathway, are involved in the maintenance of microbial homeostasis. This paper reviews the role of physical defenses, the Duox-ROS and Imd signaling pathways, the Janus kinase/signal transducers and activators of transcription signaling pathway, and intestinal symbiotic flora in the homeostatic maintenance of the insect gut microbiome.
Collapse
Affiliation(s)
- Shuai Bai
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Horticultural Plant Biology (MOE), China-Australia Joint Research Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhichao Yao
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Horticultural Plant Biology (MOE), China-Australia Joint Research Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Muhammad Fahim Raza
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Horticultural Plant Biology (MOE), China-Australia Joint Research Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhaohui Cai
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Horticultural Plant Biology (MOE), China-Australia Joint Research Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Hongyu Zhang
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Horticultural Plant Biology (MOE), China-Australia Joint Research Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
24
|
Gandara ACP, Dias FA, de Lemos PC, Stiebler R, Bombaça ACS, Menna-Barreto R, Oliveira PL. "Urate and NOX5 Control Blood Digestion in the Hematophagous Insect Rhodnius prolixus". Front Physiol 2021; 12:633093. [PMID: 33716782 PMCID: PMC7947236 DOI: 10.3389/fphys.2021.633093] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 01/27/2021] [Indexed: 11/16/2022] Open
Abstract
Low levels of reactive oxygen species (ROS) are now recognized as essential players in cell signaling. Here, we studied the role of two conserved enzymes involved in redox regulation that play a critical role in the control of ROS in the digestive physiology of a blood-sucking insect, the kissing bug Rhodnius prolixus. RNAi-mediated silencing of RpNOX5 and RpXDH induced early mortality in adult females after a blood meal. Recently, a role for RpNOX5 in gut motility was reported, and here, we show that midgut peristalsis is also under the control of RpXDH. Together with impaired peristalsis, silencing either genes impaired egg production and hemoglobin digestion, and decreased hemolymph urate titers. Ultrastructurally, the silencing of RpNOX5 or RpXDH affected midgut cells, changing the cells of blood-fed insects to a phenotype resembling the cells of unfed insects, suggesting that these genes work together in the control of blood digestion. Injection of either allopurinol (an XDH inhibitor) or uricase recapitulated the gene silencing effects, suggesting that urate itself is involved in the control of blood digestion. The silencing of each of these genes influenced the expression of the other gene in a complex way both in the unfed state and after a blood meal, revealing signaling crosstalk between them that influences redox metabolism and nitrogen excretion and plays a central role in the control of digestive physiology.
Collapse
Affiliation(s)
- Ana Caroline P Gandara
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Felipe A Dias
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Paula C de Lemos
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Renata Stiebler
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | - Pedro L Oliveira
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
| |
Collapse
|
25
|
Melo N, Capek M, Arenas OM, Afify A, Yilmaz A, Potter CJ, Laminette PJ, Para A, Gallio M, Stensmyr MC. The irritant receptor TRPA1 mediates the mosquito repellent effect of catnip. Curr Biol 2021; 31:1988-1994.e5. [PMID: 33667373 PMCID: PMC8764911 DOI: 10.1016/j.cub.2021.02.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 02/07/2023]
Abstract
Catnip (Nepeta cataria) is a common garden herb well known for its euphoric and hallucinogenic effects on domestic cats,1–3 for its medicinal properties,4,5 as well as for its powerful repellent action on insects.6,7 Catnip extracts have been proposed as a natural alternative to synthetic insect repellents, such as N,N-diethyl-3-methylbenzamide (DEET),8,9 but how catnip triggers aversion in insects is not known. Here, we show that, both in Drosophila melanogaster flies and Aedes aegypti mosquitoes, the major mediator of catnip repellency is the widely conserved chemical irritant receptor TRPA1. In vitro, both catnip extract and its active ingredient nepetalactone can directly activate fly and mosquito TRPA1. In vivo, D. melanogaster and Ae. aegypti TRPA1 mutants are no longer repelled by catnip and nepetalactone. Interestingly, our data show that some, but not all, fly and mosquito TRPA1 variants are catnip targets. Moreover, unlike the broad TRPA1 agonist allyl isothiocyanate (AITC) (an active ingredient of tear gas and wasabi), catnip does not activate human TRPA1. Our results support the use of catnip and nepetalactone as insect-selective irritants and suggest that, despite TRPA1’s broad conservation, insect TRPA1 can be targeted for the development of safe repellents. Catnip has been used for millennia as an insect repellent. Melo et al. find that catnip and its major iridoid component nepetalactone activate insect isoforms of the irritant receptor TRPA1. Mosquitoes lacking TRPA1 are no longer repelled by catnip. Catnip does not activate human TRPA1, and this supports its use as a safe natural mosquito repellent.
Collapse
Affiliation(s)
- Nadia Melo
- Department of Biology, Lund University, 22362 Lund, Sweden
| | - Matthew Capek
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA
| | - Oscar M Arenas
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA
| | - Ali Afify
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ayse Yilmaz
- Department of Biology, Lund University, 22362 Lund, Sweden
| | - Christopher J Potter
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Peter J Laminette
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA
| | - Alessia Para
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA
| | - Marco Gallio
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA.
| | | |
Collapse
|
26
|
Sloan MA, Sadlova J, Lestinova T, Sanders MJ, Cotton JA, Volf P, Ligoxygakis P. The Phlebotomus papatasi systemic transcriptional response to trypanosomatid-contaminated blood does not differ from the non-infected blood meal. Parasit Vectors 2021; 14:15. [PMID: 33407867 PMCID: PMC7789365 DOI: 10.1186/s13071-020-04498-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 11/23/2020] [Indexed: 02/13/2023] Open
Abstract
Background Leishmaniasis, caused by parasites of the genus Leishmania, is a disease that affects up to 8 million people worldwide. Parasites are transmitted to human and animal hosts through the bite of an infected sand fly. Novel strategies for disease control require a better understanding of the key step for transmission, namely the establishment of infection inside the fly. Methods The aim of this work was to identify sand fly systemic transcriptomic signatures associated with Leishmania infection. We used next generation sequencing to describe the transcriptome of whole Phlebotomus papatasi sand flies when fed with blood alone (control) or with blood containing one of three trypanosomatids: Leishmania major, L. donovani and Herpetomonas muscarum, the latter being a parasite not transmitted to humans. Results Of the trypanosomatids studied, only L. major was able to successfully establish an infection in the host P. papatasi. However, the transcriptional signatures observed after each parasite-contaminated blood meal were not specific to success or failure of a specific infection and they did not differ from each other. The transcriptional signatures were also indistinguishable after a non-contaminated blood meal. Conclusions The results imply that sand flies perceive Leishmania as just one feature of their microbiome landscape and that any strategy to tackle transmission should focus on the response towards the blood meal rather than parasite establishment. Alternatively, Leishmania could suppress host responses. These results will generate new thinking around the concept of stopping transmission by controlling the parasite inside the insect.![]()
Collapse
Affiliation(s)
- Megan A Sloan
- Department of Biochemistry, University of Oxford, South Parks Rd, Oxford, OX1 3QU, UK
| | - Jovana Sadlova
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Tereza Lestinova
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Mandy J Sanders
- The Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, Cambridgeshire, UK
| | - James A Cotton
- The Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, Cambridgeshire, UK
| | - Petr Volf
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Petros Ligoxygakis
- Department of Biochemistry, University of Oxford, South Parks Rd, Oxford, OX1 3QU, UK.
| |
Collapse
|
27
|
Zhou X, Ding G, Li J, Xiang X, Rushworth E, Song W. Physiological and Pathological Regulation of Peripheral Metabolism by Gut-Peptide Hormones in Drosophila. Front Physiol 2020; 11:577717. [PMID: 33117196 PMCID: PMC7552570 DOI: 10.3389/fphys.2020.577717] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 09/07/2020] [Indexed: 12/18/2022] Open
Abstract
The gastrointestinal (GI) tract in both vertebrates and invertebrates is now recognized as a major source of signals modulating, via gut-peptide hormones, the metabolic activities of peripheral organs, and carbo-lipid balance. Key advances in the understanding of metabolic functions of gut-peptide hormones and their mediated interorgan communication have been made using Drosophila as a model organism, given its powerful genetic tools and conserved metabolic regulation. Here, we summarize recent studies exploring peptide hormones that are involved in the communication between the midgut and other peripheral organs/tissues during feeding conditions. We also highlight the emerging impacts of fly gut-peptide hormones on stress sensing and carbo-lipid metabolism in various disease models, such as energy overload, pathogen infection, and tumor progression. Due to the functional similarity of intestine and its derived peptide hormones between Drosophila and mammals, it can be anticipated that findings obtained in the fly system will have important implications for the understanding of human physiology and pathology.
Collapse
Affiliation(s)
- Xiaoya Zhou
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, China.,Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| | - Guangming Ding
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, China.,Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| | - Jiaying Li
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, China.,Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| | - Xiaoxiang Xiang
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, China.,Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| | - Elisabeth Rushworth
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, China.,Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| | - Wei Song
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, China.,Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| |
Collapse
|
28
|
Du EJ, Kang K. A Single Natural Variation Determines Cytosolic Ca 2+-Mediated Hyperthermosensitivity of TRPA1s from Rattlesnakes and Boas. Mol Cells 2020; 43:572-580. [PMID: 32484163 PMCID: PMC7332359 DOI: 10.14348/molcells.2020.0036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 03/21/2020] [Accepted: 05/11/2020] [Indexed: 11/27/2022] Open
Abstract
Transient receptor potential ankyrin 1 from rattlesnakes (rsTRPA1) and boas (bTRPA1) was previously proposed to underlie thermo-sensitive infrared sensing based on transcript enrichment in infrared-sensing neurons and hyper-thermosensitivity expressed in Xenopus oocytes. It is unknown how these TRPA1s show thermosensitivities that overwhelm other thermoreceptors, and why rsTRPA1 is more thermosensitive than bTRPA1. Here, we show that snake TRPA1s differentially require Ca2+ for hyper-thermosensitivity and that predisposition to cytosolic Ca2+ potentiation correlates with superior thermosensitivity. Extracellularly applied Ca2+ upshifted the temperature coefficients (Q10s) of both TRPA1s, for which rsTRPA1, but not bTRPA1, requires cytosolic Ca2+. Intracellular Ca2+ chelation and substitutive mutations of the conserved cytosolic Ca2+-binding domain lowered rsTRPA1 thermosensitivity comparable to that of bTRPA1. Thapsigargin-evoked Ca2+ or calmodulin little affected rsTRPA1 activity or thermosensitivity, implying the importance of precise spatiotemporal action of Ca2+. Remarkably, a single rattlesnake-mimicking substitution in the conserved but presumably dormant cytosolic Ca2+-binding domain of bTRPA1 substantially enhanced thermosensitivity through cytosolic Ca2+ like rsTRPA1, indicating the capability of this single site in the determination of both cytosolic Ca2+ dependence and thermosensitivity. Collectively, these data suggest that Ca2+ is essential for the hyper-thermosensitivity of these TRPA1s, and cytosolic potentiation by permeating Ca2+ may contribute to the natural variation of infrared senses between rattlesnakes and boas.
Collapse
Affiliation(s)
- Eun Jo Du
- Department of Anatomy and Cell Biology and Samsung Biomedical Research Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon 16419, Korea
| | - KyeongJin Kang
- Department of Anatomy and Cell Biology and Samsung Biomedical Research Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon 16419, Korea
| |
Collapse
|
29
|
Bacterial Nucleoside Catabolism Controls Quorum Sensing and Commensal-to-Pathogen Transition in the Drosophila Gut. Cell Host Microbe 2020; 27:345-357.e6. [DOI: 10.1016/j.chom.2020.01.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 01/03/2020] [Accepted: 01/29/2020] [Indexed: 02/08/2023]
|
30
|
Yu Y, Yang W, Li Y, Cong Y. Enteroendocrine Cells: Sensing Gut Microbiota and Regulating Inflammatory Bowel Diseases. Inflamm Bowel Dis 2020; 26:11-20. [PMID: 31560044 PMCID: PMC7539793 DOI: 10.1093/ibd/izz217] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Indexed: 12/12/2022]
Abstract
Host sensing in the gut microbiota has been crucial in the regulation of intestinal homeostasis. Although inflammatory bowel diseases (IBDs), multifactorial chronic inflammatory conditions of the gastrointestinal tract, have been associated with intestinal dysbiosis, the detailed interactions between host and gut microbiota are still not completely understood. Enteroendocrine cells (EECs) represent 1% of the intestinal epithelium. Accumulating evidence indicates that EECs are key sensors of gut microbiota and/or microbial metabolites. They can secrete cytokines and peptide hormones in response to microbiota, either in traditional endocrine regulation or by paracrine impact on proximal tissues and/or cells or via afferent nerve fibers. Enteroendocrine cells also play crucial roles in mucosal immunity, gut barrier function, visceral hyperalgesia, and gastrointestinal (GI) motility, thereby regulating several GI diseases, including IBD. In this review, we will focus on EECs in sensing microbiota, correlating enteroendocrine perturbations with IBD, and the underlying mechanisms.
Collapse
Affiliation(s)
- Yanbo Yu
- Department of Gastroenterology, Qilu Hospital, Shandong University, Jinan, P.R. China,Department of Microbiology and Immunology and Branch, Galveston, Texas, USA
| | - Wenjing Yang
- Department of Microbiology and Immunology and Branch, Galveston, Texas, USA
| | - Yanqing Li
- Department of Gastroenterology, Qilu Hospital, Shandong University, Jinan, P.R. China
| | - Yingzi Cong
- Department of Microbiology and Immunology and Branch, Galveston, Texas, USA,Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA,Address correspondence to: Yingzi Cong, PhD, Department of Microbiology and Immunology, University of Texas Medical Branch, 4.142C Medical Research Building, 301 University Blvd, Galveston, TX 77555-1019 ()
| |
Collapse
|
31
|
Houtz P, Bonfini A, Bing X, Buchon N. Recruitment of Adult Precursor Cells Underlies Limited Repair of the Infected Larval Midgut in Drosophila. Cell Host Microbe 2019; 26:412-425.e5. [PMID: 31492656 DOI: 10.1016/j.chom.2019.08.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 06/11/2019] [Accepted: 08/06/2019] [Indexed: 12/19/2022]
Abstract
Surviving infection requires immune and repair mechanisms. Developing organisms face the additional challenge of integrating these mechanisms with tightly controlled developmental processes. The larval Drosophila midgut lacks dedicated intestinal stem cells. We show that, upon infection, larvae perform limited repair using adult midgut precursors (AMPs). AMPs differentiate in response to damage to generate new enterocytes, transiently depleting their pool. Developmental delay allows for AMP reconstitution, ensuring the completion of metamorphosis. Notch signaling is required for the differentiation of AMPs into the encasing, niche-like peripheral cells (PCs), but not to differentiate PCs into enterocytes. Dpp (TGF-β) signaling is sufficient, but not necessary, to induce PC differentiation into enterocytes. Infection-induced JAK-STAT pathway is both required and sufficient for differentiation of AMPs and PCs into new enterocytes. Altogether, this work highlights the constraints imposed by development on an organism's response to infection and demonstrates the transient use of adult precursors for tissue repair.
Collapse
Affiliation(s)
- Philip Houtz
- Cornell Institute of Host-Microbe Interactions and Disease, Department of Entomology, Cornell University, 129 Garden Ave., Ithaca, NY 14853, USA
| | - Alessandro Bonfini
- Cornell Institute of Host-Microbe Interactions and Disease, Department of Entomology, Cornell University, 129 Garden Ave., Ithaca, NY 14853, USA
| | - Xiaoli Bing
- Cornell Institute of Host-Microbe Interactions and Disease, Department of Entomology, Cornell University, 129 Garden Ave., Ithaca, NY 14853, USA
| | - Nicolas Buchon
- Cornell Institute of Host-Microbe Interactions and Disease, Department of Entomology, Cornell University, 129 Garden Ave., Ithaca, NY 14853, USA.
| |
Collapse
|
32
|
Analysis of phototoxin taste closely correlates nucleophilicity to type 1 phototoxicity. Proc Natl Acad Sci U S A 2019; 116:12013-12018. [PMID: 31138707 DOI: 10.1073/pnas.1905998116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Pigments often inflict tissue-damaging and proaging toxicity on light illumination by generating free radicals and reactive oxygen species (ROS). However, the molecular mechanism by which organisms sense phototoxic pigments is unknown. Here, we discover that Transient Receptor Potential Ankyrin 1-A isoform [TRPA1(A)], previously shown to serve as a receptor for free radicals and ROS induced by photochemical reactions, enables Drosophila melanogaster to aphotically sense phototoxic pigments for feeding deterrence. Thus, TRPA1(A) detects both cause (phototoxins) and effect (free radicals and ROS) of photochemical reactions. A group of pigment molecules not only activates TRPA1(A) in darkness but also generates free radicals on light illumination. Such aphotic detection of phototoxins harboring the type 1 (radical-generating) photochemical potential requires the nucleophile-sensing ability of TRPA1. In addition, agTRPA1(A) from malaria-transmitting mosquitoes Anopheles gambiae heterologously produces larger current responses to phototoxins than Drosophila TRPA1(A), similar to their disparate nucleophile responsiveness. Along with TRPA1(A)-stimulating capabilities, type 1 phototoxins exhibit relatively strong photo-absorbance and low energy gaps between the highest occupied molecular orbital and the lowest unoccupied molecular orbital. However, TRPA1(A) activation is more highly concordant to type 1 phototoxicity than are those photochemical parameters. Collectively, nucleophile sensitivity of TRPA1(A) allows flies to taste potential phototoxins for feeding deterrence, preventing postingestive photo-injury. Conversely, pigments need to bear high nucleophilicity (electron-donating propensity) to act as type 1 phototoxins, which is consistent with the fact that transferring photoexcited electrons from phototoxins to other molecules causes free radicals. Thus, identification of a sensory mechanism in Drosophila reveals a property fundamental to type 1 phototoxins.
Collapse
|
33
|
Miguel-Aliaga I, Jasper H, Lemaitre B. Anatomy and Physiology of the Digestive Tract of Drosophila melanogaster. Genetics 2018; 210:357-396. [PMID: 30287514 PMCID: PMC6216580 DOI: 10.1534/genetics.118.300224] [Citation(s) in RCA: 270] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 07/26/2018] [Indexed: 12/15/2022] Open
Abstract
The gastrointestinal tract has recently come to the forefront of multiple research fields. It is now recognized as a major source of signals modulating food intake, insulin secretion and energy balance. It is also a key player in immunity and, through its interaction with microbiota, can shape our physiology and behavior in complex and sometimes unexpected ways. The insect intestine had remained, by comparison, relatively unexplored until the identification of adult somatic stem cells in the Drosophila intestine over a decade ago. Since then, a growing scientific community has exploited the genetic amenability of this insect organ in powerful and creative ways. By doing so, we have shed light on a broad range of biological questions revolving around stem cells and their niches, interorgan signaling and immunity. Despite their relatively recent discovery, some of the mechanisms active in the intestine of flies have already been shown to be more widely applicable to other gastrointestinal systems, and may therefore become relevant in the context of human pathologies such as gastrointestinal cancers, aging, or obesity. This review summarizes our current knowledge of both the formation and function of the Drosophila melanogaster digestive tract, with a major focus on its main digestive/absorptive portion: the strikingly adaptable adult midgut.
Collapse
Affiliation(s)
- Irene Miguel-Aliaga
- Medical Research Council London Institute of Medical Sciences, Imperial College London, W12 0NN, United Kingdom
| | - Heinrich Jasper
- Buck Institute for Research on Aging, Novato, California 94945-1400
- Immunology Discovery, Genentech, Inc., San Francisco, California 94080
| | - Bruno Lemaitre
- Global Health Institute, School of Life Sciences, École polytechnique fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| |
Collapse
|
34
|
Su HA, Bai X, Zeng T, Lu YY, Qi YX. Identification, characterization and expression analysis of transient receptor potential channel genes in the oriental fruit fly, Bactrocera dorsalis. BMC Genomics 2018; 19:674. [PMID: 30217143 PMCID: PMC6137742 DOI: 10.1186/s12864-018-5053-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 08/31/2018] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Members of the transient receptor potential (TRP) superfamily are proteins that are critical for insects to detect changes in environmental stimuli and also play key roles in their sensory physiology. Moreover, this family provides potential targets for the design of insecticides. In contrast to a large number of studies conducted on Drosophila melanogaster, molecular studies to characterize TRP channels in agricultural pests are lacking. RESULTS In this study, we identified 15 TRP channel genes in the genome of a notorious agricultural pest, the oriental fruit fly (Bactrocera dorsalis). Comparative analysis of the TRP channels (TRPs) in B. dorsalis with those in D. melanogaster, Glossina morsitans, Musca domestica and the closely related Ceratitis capitata, and TRPs from mosquitoes, Hymenoptera, Lepidoptera, Coleoptera and Hemiptera reveals that members of TRPA and TRPP subfamily are most diverse among insects. The results also suggest that Tephritidae family have two TRP-Polycystin 2 members even though most insects either possess just one or none. The highest expression levels of these two genes are in the testes of B. dorsalis, implying a role in regulating sperm function. We analyzed the expression profiles of the TRP channels identified in this study at different life stages using quantitative real time PCR. The results of this study demonstrate that all TRP channels are mainly expressed in adults, especially at mature stages. The one exception to this trend is BdTRPM, which is more highly expressed in the eggs of B. dorsalis, implying an important role in early development. We also detected the spatial expression of TRP channels in mature adult fruit flies by investigating expression levels within various tissues including those involved in sensory function, such as antennae, compound eyes, mouthparts, legs, and wings, as well as tissues critical for homeostasis and physiology (i.e., Malpighian tubules, the brain and gut as well as fat bodies, ovaries, and testes). CONCLUSION The results of this study establish a solid foundation for future functional characterization of B. dorsalis TRP channels as well as those of other insects and will help future insecticide design targeting these channels.
Collapse
Affiliation(s)
- Hong-ai Su
- Department of Entomology, College of Agriculture, South China Agricultural University, Wushan Road 483, Tianhe District, Guangzhou, 510642 China
| | - Xue Bai
- Department of Entomology, College of Agriculture, South China Agricultural University, Wushan Road 483, Tianhe District, Guangzhou, 510642 China
| | - Tian Zeng
- Department of Entomology, College of Agriculture, South China Agricultural University, Wushan Road 483, Tianhe District, Guangzhou, 510642 China
| | - Yong-yue Lu
- Department of Entomology, College of Agriculture, South China Agricultural University, Wushan Road 483, Tianhe District, Guangzhou, 510642 China
| | - Yi-xiang Qi
- Department of Entomology, College of Agriculture, South China Agricultural University, Wushan Road 483, Tianhe District, Guangzhou, 510642 China
| |
Collapse
|
35
|
Benguettat O, Jneid R, Soltys J, Loudhaief R, Brun-Barale A, Osman D, Gallet A. The DH31/CGRP enteroendocrine peptide triggers intestinal contractions favoring the elimination of opportunistic bacteria. PLoS Pathog 2018; 14:e1007279. [PMID: 30180210 PMCID: PMC6138423 DOI: 10.1371/journal.ppat.1007279] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 09/14/2018] [Accepted: 08/13/2018] [Indexed: 02/06/2023] Open
Abstract
The digestive tract is the first organ affected by the ingestion of foodborne bacteria. While commensal bacteria become resident, opportunistic or virulent bacteria are eliminated from the gut by the local innate immune system. Here we characterize a new mechanism of defense, independent of the immune system, in Drosophila melanogaster. We observed strong contractions of longitudinal visceral muscle fibers for the first 2 hours following bacterial ingestion. We showed that these visceral muscle contractions are induced by immune reactive oxygen species (ROS) that accumulate in the lumen and depend on the ROS-sensing TRPA1 receptor. We then demonstrate that both ROS and TRPA1 are required in a subset of anterior enteroendocrine cells for the release of the DH31 neuropeptide which activates its receptor in the neighboring visceral muscles. The resulting contractions of the visceral muscles favors quick expulsion of the bacteria, limiting their presence in the gut. Our results unveil a precocious mechanism of defense against ingested opportunistic bacteria, whether they are Gram-positive like Bacillus thuringiensis or Gram-negative like Erwinia carotovora carotovora. Finally, we found that the human homolog of DH31, CGRP, has a conserved function in Drosophila. The intestine is the first barrier to fight non-commensal bacteria ingested along with the food. The innate immune system is the main mean mounted by the gut lining in response to ill-causing bacteria to avoid detrimental impact. Intestinal cells produce chlorine bleach and antimicrobial peptides that destroy exogenous bacteria. Here, we identified and characterized a new mechanism of gut defense that occurs rapidly after ingestion of exogenous bacteria. We found that the enteroendocrine cells perceive the presence of chlorine bleach in the lumen thanks to a sensor. This sensor promotes a calcium flux within enteroendocrine cells that allows the release of a hormone. This hormone acts locally on the visceral muscle surrounding the intestine by provoking its strong contractions (or spasms). We show that these strong but brief visceral contractions are helping to the quick expulsion of the ingested bacteria thus limiting their potential detrimental impact on the intestine. Markedly, the bleach-sensor is well known to be involved in pain. Therefore we have deciphered in this study a biological mechanism that has so far been described only empirically by medicine, potentially explaining intestinal pain and visceral spasms upon food poisoning.
Collapse
Affiliation(s)
| | - Rouba Jneid
- Université Côte d'Azur, CNRS, INRA, ISA, France
- Faculty of Sciences III and Azm Center for Research in Biotechnology and its Applications, LBA3B, EDST, Lebanese University, Tripoli, Lebanon
| | | | | | | | - Dani Osman
- Faculty of Sciences III and Azm Center for Research in Biotechnology and its Applications, LBA3B, EDST, Lebanese University, Tripoli, Lebanon
| | - Armel Gallet
- Université Côte d'Azur, CNRS, INRA, ISA, France
- * E-mail:
| |
Collapse
|
36
|
Boonen B, Alpizar YA, Meseguer VM, Talavera K. TRP Channels as Sensors of Bacterial Endotoxins. Toxins (Basel) 2018; 10:toxins10080326. [PMID: 30103489 PMCID: PMC6115757 DOI: 10.3390/toxins10080326] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 08/02/2018] [Accepted: 08/08/2018] [Indexed: 02/07/2023] Open
Abstract
The cellular and systemic effects induced by bacterial lipopolysaccharides (LPS) have been solely attributed to the activation of the Toll-like receptor 4 (TLR4) signalling cascade. However, recent studies have shown that LPS activates several members of the Transient Receptor Potential (TRP) family of cation channels. Indeed, LPS induces activation of the broadly-tuned chemosensor TRPA1 in sensory neurons in a TLR4-independent manner, and genetic ablation of this channel reduced mouse pain and inflammatory responses triggered by LPS and the gustatory-mediated avoidance to LPS in fruit flies. LPS was also shown to activate TRPV4 channels in airway epithelial cells, an effect leading to an immediate production of bactericidal nitric oxide and to an increase in ciliary beat frequency. In this review, we discuss the role of TRP channels as sensors of bacterial endotoxins, and therefore, as crucial players in the timely detection of invading gram-negative bacteria.
Collapse
Affiliation(s)
- Brett Boonen
- Laboratory for Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, VIB Center for Brain & Disease Research, O&N1 Herestraat 49 - box 802, 3000 Leuven, Belgium.
| | - Yeranddy A Alpizar
- Laboratory for Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, VIB Center for Brain & Disease Research, O&N1 Herestraat 49 - box 802, 3000 Leuven, Belgium.
| | - Victor M Meseguer
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, 03550 San Juan de Alicante, Spain.
| | - Karel Talavera
- Laboratory for Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, VIB Center for Brain & Disease Research, O&N1 Herestraat 49 - box 802, 3000 Leuven, Belgium.
| |
Collapse
|
37
|
Lee MJ, Sung HY, Jo H, Kim HW, Choi MS, Kwon JY, Kang K. Ionotropic Receptor 76b Is Required for Gustatory Aversion to Excessive Na+ in Drosophila. Mol Cells 2017; 40:787-795. [PMID: 29081083 PMCID: PMC5682255 DOI: 10.14348/molcells.2017.0160] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 08/23/2017] [Indexed: 12/31/2022] Open
Abstract
Avoiding ingestion of excessively salty food is essential for cation homeostasis that underlies various physiological processes in organisms. The molecular and cellular basis of the aversive salt taste, however, remains elusive. Through a behavioral reverse genetic screening, we discover that feeding suppression by Na+-rich food requires Ionotropic Receptor 76b (Ir76b) in Drosophila labellar gustatory receptor neurons (GRNs). Concentrated sodium solutions with various anions caused feeding suppression dependent on Ir76b. Feeding aversion to caffeine and high concentrations of divalent cations and sorbitol was unimpaired in Ir76b-deficient animals, indicating sensory specificity of Ir76b-dependent Na+ detection and the irrelevance of hyperosmolarity-driven mechanosensation to Ir76b-mediated feeding aversion. Ir76b-dependent Na+-sensing GRNs in both L- and s-bristles are required for repulsion as opposed to the previous report where the L-bristle GRNs direct only low-Na+ attraction. Our work extends the physiological implications of Ir76b from low-Na+ attraction to high-Na+ aversion, prompting further investigation of the physiological mechanisms that modulate two competing components of Na+-evoked gustation coded in heterogeneous Ir76b-positive GRNs.
Collapse
Affiliation(s)
- Min Jung Lee
- Samsung Medical Center, Department of Anatomy and Cell Biology, School of Medicine, Sungkyunkwan University, Suwon 16419,
Korea
- Dong-A ST Research Institute, Yongin 17073,
Korea
| | - Ha Yeon Sung
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419,
Korea
| | - HyunJi Jo
- Samsung Medical Center, Department of Anatomy and Cell Biology, School of Medicine, Sungkyunkwan University, Suwon 16419,
Korea
| | - Hyung-Wook Kim
- College of Life Sciences, Sejong University, Seoul 05006,
Korea
| | - Min Sung Choi
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419,
Korea
| | - Jae Young Kwon
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419,
Korea
| | - KyeongJin Kang
- Samsung Medical Center, Department of Anatomy and Cell Biology, School of Medicine, Sungkyunkwan University, Suwon 16419,
Korea
| |
Collapse
|
38
|
Xu C, Luo J, He L, Montell C, Perrimon N. Oxidative stress induces stem cell proliferation via TRPA1/RyR-mediated Ca 2+ signaling in the Drosophila midgut. eLife 2017; 6. [PMID: 28561738 PMCID: PMC5451214 DOI: 10.7554/elife.22441] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Accepted: 05/23/2017] [Indexed: 12/20/2022] Open
Abstract
Precise regulation of stem cell activity is crucial for tissue homeostasis and necessary to prevent overproliferation. In the Drosophila adult gut, high levels of reactive oxygen species (ROS) has been detected with different types of tissue damage, and oxidative stress has been shown to be both necessary and sufficient to trigger intestinal stem cell (ISC) proliferation. However, the connection between oxidative stress and mitogenic signals remains obscure. In a screen for genes required for ISC proliferation in response to oxidative stress, we identified two regulators of cytosolic Ca2+ levels, transient receptor potential A1 (TRPA1) and ryanodine receptor (RyR). Characterization of TRPA1 and RyR demonstrates that Ca2+ signaling is required for oxidative stress-induced activation of the Ras/MAPK pathway, which in turns drives ISC proliferation. Our findings provide a link between redox regulation and Ca2+ signaling and reveal a novel mechanism by which ISCs detect stress signals.
Collapse
Affiliation(s)
- Chiwei Xu
- Department of Genetics, Harvard Medical School, Boston, United States
| | - Junjie Luo
- Department of Molecular, Cellular and Developmental Biology, University of California Santa Barbara, Santa Barbara, United States.,Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, United States
| | - Li He
- Department of Genetics, Harvard Medical School, Boston, United States
| | - Craig Montell
- Department of Molecular, Cellular and Developmental Biology, University of California Santa Barbara, Santa Barbara, United States.,Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, United States
| | - Norbert Perrimon
- Department of Genetics, Harvard Medical School, Boston, United States.,Howard Hughes Medical Institute, Harvard Medical School, Boston, United States
| |
Collapse
|
39
|
Keita S, Masuzzo A, Royet J, Kurz CL. Drosophila larvae food intake cessation following exposure to Erwinia contaminated media requires odor perception, Trpa1 channel and evf virulence factor. JOURNAL OF INSECT PHYSIOLOGY 2017; 99:25-32. [PMID: 28232220 DOI: 10.1016/j.jinsphys.2017.02.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 01/31/2017] [Accepted: 02/16/2017] [Indexed: 06/06/2023]
Abstract
When exposed to microorganisms, animals use several protective strategies. On one hand, as elegantly exemplified in Drosophila melanogaster, the innate immune system recognizes microbial compounds and triggers an antimicrobial response. On the other hand, behaviors preventing an extensive contact with the microbes and thus reducing the risk of infection have been described. However, these reactions ranging from microbes aversion to intestinal transit increase or food intake decrease have been rarely defined at the molecular level. In this study, we set up an experimental system that allowed us to rapidly identify and quantify food intake decreases in Drosophila larvae exposed to media contaminated with bacteria. Specifically, we report a robust dose-dependent food intake decrease following exposure to the bacteria Erwinia carotovora carotovora strain Ecc15. We demonstrate that this response does not require Imd innate immune pathway, but rather the olfactory neuronal circuitry, the Trpa1 receptor and the evf virulence factor. Finally, we show that Ecc15 induce the same behavior in the invasive pest insect Drosophila suzukii.
Collapse
Affiliation(s)
- Seydou Keita
- Aix-Marseille Université (AMU), Centre National de la Recherche Scientifique (CNRS), UMR 7288, Institut de Biologie du Développement de Marseille (IBDM), 13288 Marseille cedex 9, France
| | - Ambra Masuzzo
- Aix-Marseille Université (AMU), Centre National de la Recherche Scientifique (CNRS), UMR 7288, Institut de Biologie du Développement de Marseille (IBDM), 13288 Marseille cedex 9, France
| | - Julien Royet
- Aix-Marseille Université (AMU), Centre National de la Recherche Scientifique (CNRS), UMR 7288, Institut de Biologie du Développement de Marseille (IBDM), 13288 Marseille cedex 9, France
| | - C Leopold Kurz
- Aix-Marseille Université (AMU), Centre National de la Recherche Scientifique (CNRS), UMR 7288, Institut de Biologie du Développement de Marseille (IBDM), 13288 Marseille cedex 9, France.
| |
Collapse
|
40
|
Champion CJ, Xu J. The impact of metagenomic interplay on the mosquito redox homeostasis. Free Radic Biol Med 2017; 105:79-85. [PMID: 27880869 PMCID: PMC5401789 DOI: 10.1016/j.freeradbiomed.2016.11.031] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 11/02/2016] [Accepted: 11/17/2016] [Indexed: 10/20/2022]
Abstract
Mosquitoes are exposed to oxidative challenges throughout their life cycle. The primary challenge comes from a blood meal. The blood digestion turns the midgut into an oxidative environment, which imposes pressure not only on mosquito fecundity and other physiological traits but also on the microbiota in the midgut. During evolution, mosquitoes have developed numerous oxidative defense mechanisms to maintain redox homeostasis in the midgut. In addition to antioxidants, SOD, catalase, and glutathione system, sufficient supply of the reducing agent, NADPH, is vital for a successful defense against oxidative stress. Increasing evidence indicates that in response to oxidative stress, cells reconfigure metabolic pathways to increase the generation of NADPH through NADP-reducing networks including the pentose phosphate pathway and others. The microbial homeostasis is critical for the functional contributions to various host phenotypes. The symbiotic microbiota is regulated largely by the Duox-ROS pathway in Drosophila. In mosquitoes, Duox-ROS pathway, heme-mediated signaling, antimicrobial peptide production and C-type lectins work in concert to maintain the dynamic microbial community in the midgut. Microbial mechanisms against oxidative stress in this context are not well understood. Emerging evidence that microbial metabolites trigger host oxidative response warrants further study on the metagenomic interplay in an oxidative environment like mosquito gut ecosystem. Besides the classical Drosophila model, hematophagous insects like mosquitoes provide an alternative model system to study redox homeostasis in a symbiotic metagenomic context.
Collapse
Affiliation(s)
- Cody J Champion
- Biology Department, New Mexico State University, PO BOX 30001, MSC 3AF, Las Cruces, NM 88003, United States
| | - Jiannong Xu
- Biology Department, New Mexico State University, PO BOX 30001, MSC 3AF, Las Cruces, NM 88003, United States.
| |
Collapse
|
41
|
Abstract
PURPOSE OF REVIEW Provision of adequate nutrients by the gut is essential for survival and essential behaviors are linked to the proper ingestion and digestion of food. Recently, a new neural connection has been reported between sensory cells of the gut epithelium and the nervous system that mediates signals from the gut to the brain. RECENT FINDINGS This review describes how the gut senses its environment, relays those signals to the brain, and how the brain influences the gut. SUMMARY This gut-brain connection provides a pathway for how the body handles food.
Collapse
Affiliation(s)
- Lihua Ye
- aDepartment of Medicine bDepartment of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | | |
Collapse
|
42
|
Yang HC, Wu YH, Liu HY, Stern A, Chiu DTY. What has passed is prolog: new cellular and physiological roles of G6PD. Free Radic Res 2016; 50:1047-1064. [PMID: 27684214 DOI: 10.1080/10715762.2016.1223296] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
G6PD deficiency has been the most pervasive inherited disorder in the world since having been discovered. G6PD has an antioxidant role by functioning as a major nicotinamide adenine dinucleotide phosphate (NADPH) provider to reduce excessive oxidative stress. NADPH can produce reactive oxygen species (ROS) and reactive nitrogen species (RNS) mediated by NADPH oxidase (NOX) and nitric oxide synthase (NOS), respectively. Hence, G6PD also has a pro-oxidant role. Research in the past has focused on the enhanced susceptibility of G6PD-deficient cells or individuals to oxidative challenge. The cytoregulatory role of G6PD has largely been overlooked. By using a metabolomic approach, it is noted that upon oxidant challenge, G6PD-deficient cells will reprogram the GSH metabolism from regeneration to synthesis with exhaustive energy consumption. Recently, new cellular/physiologic roles of G6PD have been discovered. By using a proteomic approach, it has been found that G6PD plays a regulatory role in xenobiotic metabolism possibly via NOX and the redox-sensitive Nrf2-signaling pathway to modulate the expression of xenobiotic-metabolizing enzymes. Since G6PD is a key regulator responsible for intracellular redox homeostasis, G6PD deficiency can alter redox balance leading to many abnormal cellular effects such as the cellular inflammatory and immune response against viral infection. G6PD may play an important role in embryogenesis as G6PD-knockdown mouse cannot produce offspring and G6PD-deficient C. elegans with defective egg production and hatching. This array of findings indicates that the cellular and physiologic roles of G6PD, other than the classical role as an antioxidant enzyme, deserve further attention.
Collapse
Affiliation(s)
- Hung-Chi Yang
- a Department of Medical Biotechnology and Laboratory Sciences , College of Medicine, Chang Gung University , Taoyuan , Taiwan.,b Healthy Aging Research Center, Chang Gung University , Taoyuan , Taiwan
| | - Yi-Hsuan Wu
- a Department of Medical Biotechnology and Laboratory Sciences , College of Medicine, Chang Gung University , Taoyuan , Taiwan
| | - Hui-Ya Liu
- a Department of Medical Biotechnology and Laboratory Sciences , College of Medicine, Chang Gung University , Taoyuan , Taiwan
| | - Arnold Stern
- c Department of Biochemistry and Molecular Pharmacology , New York University School of Medicine , New York , NY , USA
| | - Daniel Tsun-Yee Chiu
- a Department of Medical Biotechnology and Laboratory Sciences , College of Medicine, Chang Gung University , Taoyuan , Taiwan.,b Healthy Aging Research Center, Chang Gung University , Taoyuan , Taiwan.,d Department of Pediatric Hematology/Oncology , Chang Gung Memorial Hospital , Linkou , Taiwan
| |
Collapse
|
43
|
Du EJ, Ahn TJ, Wen X, Seo DW, Na DL, Kwon JY, Choi M, Kim HW, Cho H, Kang K. Nucleophile sensitivity of Drosophila TRPA1 underlies light-induced feeding deterrence. eLife 2016; 5. [PMID: 27656903 PMCID: PMC5068967 DOI: 10.7554/elife.18425] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 09/21/2016] [Indexed: 01/01/2023] Open
Abstract
Solar irradiation including ultraviolet (UV) light causes tissue damage by generating reactive free radicals that can be electrophilic or nucleophilic due to unpaired electrons. Little is known about how free radicals induced by natural sunlight are rapidly detected and avoided by animals. We discover that Drosophila Transient Receptor Potential Ankyrin 1 (TRPA1), previously known only as an electrophile receptor, sensitively detects photochemically active sunlight through nucleophile sensitivity. Rapid light-dependent feeding deterrence in Drosophila was mediated only by the TRPA1(A) isoform, despite the TRPA1(A) and TRPA1(B) isoforms having similar electrophile sensitivities. Such isoform dependence re-emerges in the detection of structurally varied nucleophilic compounds and nucleophilicity-accompanying hydrogen peroxide (H2O2). Furthermore, these isoform-dependent mechanisms require a common set of TRPA1(A)-specific residues dispensable for electrophile detection. Collectively, TRPA1(A) rapidly responds to natural sunlight intensities through its nucleophile sensitivity as a receptor of photochemically generated radicals, leading to an acute light-induced behavioral shift in Drosophila. DOI:http://dx.doi.org/10.7554/eLife.18425.001 Atoms are made up of a nucleus that contains protons and neutrons, which is orbited by electrons. The electrons orbit within shells that surround the nucleus and each shell can contain a specific number of electrons. A particle with an outer shell that is missing one or more electrons will be unstable and highly reactive. It will attempt to achieve a full outer shell either by sharing electrons with another particle, or by donating or stealing an electron. Particles that steal electrons are said to be “electrophilic” (electron-loving) while those that donate them are “nucleophilic”. Electrophilic and nucleophilic particles can damage DNA and proteins. In species from fruit flies to humans, electrophilic substances such as formaldehyde activate a type of ion channel called TRPA1. These ion channels contribute to pain signaling, and their activation triggers unpleasant and painful sensations that deter animals from getting too close to electrophilic substances. However, it is not known if animals have an equivalent mechanism to help them avoid toxic nucleophilic compounds, like carbon monoxide and cyanide. Du, Ahn, Wen, Seo, Na et al. now show that fruit fly neurons produce two versions of the TRPA1 channel: one that is sensitive to electrophiles, plus a second that is sensitive to nucleophiles in addition to electrophiles. The existence of nucleophile-sensitive TRPA1 helps explain why fruit flies avoid feeding in strong sunlight. Ultraviolet radiation in sunlight triggers the production of reactive forms of oxygen that behave as strong nucleophiles. These reactive oxygen species – which can damage DNA – activate the nucleophile-sensitive TRPA1 and thereby trigger the fly’s avoidance behavior. Human TRPA1 responds only to electrophiles and not to nucleophiles. By targeting the nucleophile-sensitive version of insect TRPA1, it may thus be possible to develop insect repellants that humans do not find aversive. Furthermore, TRPA1s from some insect species are more sensitive to nucleophiles than others, with a mosquitoes’ being more sensitive than the fruit flies’. This means that insect repellants that target nucleophile-sensitive TRPA1 could potentially repel malaria-transmitting mosquitoes without affecting other insect species. DOI:http://dx.doi.org/10.7554/eLife.18425.002
Collapse
Affiliation(s)
- Eun Jo Du
- Samsung Biomedical Research Institute, Seoul, Republic of Korea.,Department of Anatomy and Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Tae Jung Ahn
- Samsung Biomedical Research Institute, Seoul, Republic of Korea.,Department of Anatomy and Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Xianlan Wen
- Samsung Biomedical Research Institute, Seoul, Republic of Korea.,Department of Physiology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Dae-Won Seo
- Samsung Biomedical Research Institute, Seoul, Republic of Korea.,Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.,Neuroscience Center, Samsung Medical Center, Seoul, Republic of Korea
| | - Duk L Na
- Samsung Biomedical Research Institute, Seoul, Republic of Korea.,Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.,Neuroscience Center, Samsung Medical Center, Seoul, Republic of Korea
| | - Jae Young Kwon
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Republic of Korea
| | - Myunghwan Choi
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, Republic of Korea.,Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Republic of Korea
| | - Hyung-Wook Kim
- College of Life Sciences, Sejong University, Seoul, Republic of Korea
| | - Hana Cho
- Samsung Biomedical Research Institute, Seoul, Republic of Korea.,Department of Physiology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - KyeongJin Kang
- Samsung Biomedical Research Institute, Seoul, Republic of Korea.,Department of Anatomy and Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| |
Collapse
|
44
|
Guo Z, Lucchetta E, Rafel N, Ohlstein B. Maintenance of the adult Drosophila intestine: all roads lead to homeostasis. Curr Opin Genet Dev 2016; 40:81-86. [PMID: 27392294 DOI: 10.1016/j.gde.2016.06.009] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 05/20/2016] [Accepted: 06/16/2016] [Indexed: 10/21/2022]
Abstract
Maintenance of tissue homeostasis is critical in tissues with high turnover such as the intestinal epithelium. The intestinal epithelium is under constant cellular assault due to its digestive functions and its function as a barrier to chemical and bacterial insults. The resulting high rate of cellular turnover necessitates highly controlled mechanisms of regeneration to maintain the integrity of the tissue over the lifetime of the organism. Transient increase in stem cell proliferation is a commonly used and elaborate mechanism to ensure fast and efficient repair of the gut. However, tissue repair is not limited to regulating ISC proliferation, as emerging evidence demonstrates that the Drosophila intestine uses multiple strategies to ensure proper tissue homeostasis that may also extend to other tissues.
Collapse
Affiliation(s)
- Zheng Guo
- Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA
| | - Elena Lucchetta
- Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA
| | - Neus Rafel
- Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA
| | - Benjamin Ohlstein
- Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA.
| |
Collapse
|
45
|
Lee JE, Kim Y, Kim KH, Lee DY, Lee Y. Contribution of Drosophila TRPA1 to Metabolism. PLoS One 2016; 11:e0152935. [PMID: 27055172 PMCID: PMC4824436 DOI: 10.1371/journal.pone.0152935] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 03/20/2016] [Indexed: 12/15/2022] Open
Abstract
Transient receptor potential (TRP) cation channels are highly conserved in humans and insects. Some of these channels are expressed in internal organs and their functions remain incompletely understood. By direct knock-in of the GAL4 gene into the trpA1 locus in Drosophila, we identified the expression of this gene in the subesophageal ganglion (SOGs) region. In addition, the neurites present in the dorsal posterior region as well as the drosophila insulin-like peptide 2 (dILP2)-positive neurons send signals to the SOGs. The signal is sent to the crop, which is an enlarged organ of the esophagus and functions as a storage place for food in the digestive system. To systematically investigate the role of TRPA1 in metabolism, we applied non-targeted metabolite profiling analysis together with gas-chromatography/time-of-flight mass spectrometry, with an aim to identify a wide range of primary metabolites. We effectively captured distinctive metabolomic phenotypes and identified specific metabolic dysregulation triggered by TRPA1 mutation based on reconstructed metabolic network analysis. Primarily, the network analysis pinpointed the simultaneous down-regulation of intermediates in the methionine salvation pathway, in contrast to the synchronized up-regulation of a range of free fatty acids. The gene dosage-dependent dynamics of metabolite levels among wild-type, hetero- and homozygous mutants, and their coordinated metabolic modulation under multiple gene settings across five different genotypes confirmed the direct linkages of TRPA1 to metabolism.
Collapse
Affiliation(s)
- Jung-Eun Lee
- Department of Bio and Fermentation Convergence Technology, BK21 PLUS project, Kookmin University, Seoul 02707, Korea
| | - Yunjung Kim
- Department of Bio and Fermentation Convergence Technology, BK21 PLUS project, Kookmin University, Seoul 02707, Korea
| | - Kyoung Heon Kim
- Department of Biotechnology, Graduate School, Korea University, Seoul, Korea
| | - Do Yup Lee
- Department of Bio and Fermentation Convergence Technology, BK21 PLUS project, Kookmin University, Seoul 02707, Korea
- * E-mail: (YL); (DYL)
| | - Youngseok Lee
- Department of Bio and Fermentation Convergence Technology, BK21 PLUS project, Kookmin University, Seoul 02707, Korea
- * E-mail: (YL); (DYL)
| |
Collapse
|