1
|
Gothwal SK, Refaat AM, Nakata M, Stanlie A, Honjo T, Begum N. BRD2 promotes antibody class switch recombination by facilitating DNA repair in collaboration with NIPBL. Nucleic Acids Res 2024; 52:4422-4439. [PMID: 38567724 PMCID: PMC11077081 DOI: 10.1093/nar/gkae204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 03/01/2024] [Accepted: 03/11/2024] [Indexed: 05/09/2024] Open
Abstract
Efficient repair of DNA double-strand breaks in the Ig heavy chain gene locus is crucial for B-cell antibody class switch recombination (CSR). The regulatory dynamics of the repair pathway direct CSR preferentially through nonhomologous end joining (NHEJ) over alternative end joining (AEJ). Here, we demonstrate that the histone acetyl reader BRD2 suppresses AEJ and aberrant recombination as well as random genomic sequence capture at the CSR junctions. BRD2 deficiency impairs switch (S) region synapse, optimal DNA damage response (DDR), and increases DNA break end resection. Unlike BRD4, a similar bromodomain protein involved in NHEJ and CSR, BRD2 loss does not elevate RPA phosphorylation and R-loop formation in the S region. As BRD2 stabilizes the cohesion loader protein NIPBL in the S regions, the loss of BRD2 or NIPBL shows comparable deregulation of S-S synapsis, DDR, and DNA repair pathway choice during CSR. This finding extends beyond CSR, as NIPBL and BRD4 have been linked to Cornelia de Lange syndrome, a developmental disorder exhibiting defective NHEJ and Ig isotype switching. The interplay between these proteins sheds light on the intricate mechanisms governing DNA repair and immune system functionality.
Collapse
Affiliation(s)
- Santosh K Gothwal
- Department of Immunology and Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
| | - Ahmed M Refaat
- Department of Immunology and Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
- Center for Cancer Immunotherapy and Immunobiology, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
- Zoology Department, Faculty of Science, Minia University, El-Minia 61519, Egypt
| | - Mikiyo Nakata
- Department of Immunology and Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
- Center for Cancer Immunotherapy and Immunobiology, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
| | - Andre Stanlie
- Department of Immunology and Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
| | - Tasuku Honjo
- Department of Immunology and Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
- Center for Cancer Immunotherapy and Immunobiology, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
| | - Nasim A Begum
- Department of Immunology and Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
- Center for Cancer Immunotherapy and Immunobiology, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
| |
Collapse
|
2
|
Yan J, Wu J, Wang Y, Di X, Jiang H, Wen D, Li D, Zhang S. A novel RBBP8(p.E281*) germline mutation is a predisposing mutation in familial hereditary cancer syndrome. J Mol Med (Berl) 2023; 101:1255-1265. [PMID: 37615686 DOI: 10.1007/s00109-023-02354-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/30/2023] [Accepted: 07/29/2023] [Indexed: 08/25/2023]
Abstract
Screening tumor susceptibility genes helps in identifying powerful biomarkers for hereditary cancer monitoring, prevention, and diagnosis, providing opportunities for understanding potential molecular mechanisms and biomarkers for the precise treatment of hereditary cancer syndromes. Whole-exome sequencing of blood and bioinformatics analysis uncovered a novel RBBP8(p.E281*) germline mutation in a family with hereditary cancer syndrome, which was verified by Sanger sequencing. Cell proliferation, colony formation, cell migration, and in vivo tumorigenesis were investigated by CCK8, colony formation, Transwell, and in vivo xenograft assays. Protein localization and interaction were detected by immunofluorescence, nuclear and cytoplasmic protein extraction kits, and Co-IP. A new heterozygous germline mutation of the RBBP8(p.E281*) gene was found to be associated with familial hereditary cancer syndrome. RBBP8-WT was mainly detected in the nucleus and interacts with BRCA1. In contrast, RBBP8(p.E281*) is mainly located in the cytoplasm, with no interaction with BRCA1. RBBP8(p.E281*) variant plays an oncogenic role in the cytoplasm in addition to its loss of function in the nucleus, which promotes breast cancer proliferation, in vivo tumorigenesis, and migration. Compared with the control group, RBBP8(p.E281*) showed elevated cell death in response to cisplatin and olaparib treatment. A novel RBBP8(p.E281*) germline mutation was identified from familial hereditary cancer syndrome. RBBP8(p.E281*) is not able to enter the nucleus or interact with BRCA1 through the lost binding motif, and RBBP8(p.E281*) variant appears to promote tumorigenesis in the cytoplasm in addition to its loss of function in the nucleus. RBBP8(p.E281*) variant may promote tumor susceptibility and serve as a precision medicine biomarker in familial hereditary cancer syndrome. KEY MESSAGES: RBBP8(p.E281*) is a susceptibility gene in this familial hereditary cancer syndrome RBBP8(p.E281*) lost its ability to enter the nucleus and the BRCA1 binding motif A novel RBBP8(p.E281*) germline mutation promotes breast cancer tumorigenesis Patients with RBBP8(p.E281*) germline mutation may benefit from Olaparib, Cisplatin.
Collapse
Affiliation(s)
- Jinhua Yan
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, 410013, China
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, 410013, China
| | - Jinzheng Wu
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, 410013, China
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, 410013, China
| | - Yang Wang
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, 410013, China
| | - Xiaotang Di
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, 410013, China
| | - Hao Jiang
- Department of Biomedical Informatics, School of Life Sciences, Central South University, Changsha, 410013, China
| | - Doudou Wen
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, 410013, China
| | - Duo Li
- Department of Pathology, the Second Xiangya Hospital, Central South University, Changsha, 410013, China.
| | - Shubing Zhang
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, 410013, China.
- Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, 410013, China.
| |
Collapse
|
3
|
Vo-Ho MP, Pham-Thi HD, Nguyen TV. Effect of Helicobacter pylori on non-homologous end joining-mediated repair of proximal DNA double-strand breaks in GCV6 cells. Microb Pathog 2023; 180:106154. [PMID: 37178726 DOI: 10.1016/j.micpath.2023.106154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 05/15/2023]
Abstract
Infection with Helicobacter pylori is the strongest known risk factor for gastric cancer, which is one of the leading causes of cancer-related mortality worldwide. H. pylori can contribute to carcinogenesis by inducing the genomic instability of infected cells through increasing accumulation of DNA double-stranded breaks (DSBs) and deregulating DSB repair systems. However, the mechanism of this phenomenon is still being elucidated. This study aims to investigate the impact of H. pylori on the efficacy of non-homologous end joining (NHEJ)-mediated repair of DSB. In this study, we used a human fibroblast cell line bearing a single copy of an NHEJ-reporter substrate stably inserted into the genome, which provides a quantitative measurement of NHEJ. Our results indicated the potential abilities of H. pylori strains to alter the NHEJ-mediated repair of proximal DSB in infected cells. In addition, we found an association between the alteration in the NHEJ efficiency, and the inflammation responses of infected cells caused by H. pylori.
Collapse
Affiliation(s)
- My-Phuc Vo-Ho
- VNUHCM-University of Science, Department of Genetics, Faculty of Biology and Biotechnology, Ho Chi Minh, Viet Nam
| | - Hong-Dao Pham-Thi
- VNUHCM-University of Science, Department of Genetics, Faculty of Biology and Biotechnology, Ho Chi Minh, Viet Nam
| | - Thuy-Vy Nguyen
- VNUHCM-University of Science, Department of Genetics, Faculty of Biology and Biotechnology, Ho Chi Minh, Viet Nam; VNUHCM-University of Science, Cancer Research Laboratory, Viet Nam.
| |
Collapse
|
4
|
Cisneros-Aguirre M, Ping X, Stark JM. To indel or not to indel: Factors influencing mutagenesis during chromosomal break end joining. DNA Repair (Amst) 2022; 118:103380. [PMID: 35926296 PMCID: PMC10105512 DOI: 10.1016/j.dnarep.2022.103380] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/22/2022] [Accepted: 07/24/2022] [Indexed: 12/16/2022]
Abstract
Chromosomal DNA double-strand breaks (DSBs) are the effective lesion of radiotherapy and other clastogenic cancer therapeutics, and are also the initiating event of many approaches to gene editing. Ligation of the DSBs by end joining (EJ) pathways can restore the broken chromosome, but the repair junctions can have insertion/deletion (indel) mutations. The indel patterns resulting from DSB EJ are likely defined by the initial structure of the DNA ends, how the ends are processed and synapsed prior to ligation, and the factors that mediate the ligation step. In this review, we describe key factors that influence these steps of DSB EJ in mammalian cells, which is significant both for understanding mutagenesis resulting from clastogenic cancer therapeutics, and for developing approaches to manipulating gene editing outcomes.
Collapse
Affiliation(s)
- Metztli Cisneros-Aguirre
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA; Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Xiaoli Ping
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Jeremy M Stark
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA; Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA.
| |
Collapse
|
5
|
Samarasinghe SM, Sundralingam T, Hewage AS, de Silva KSH, Tennekoon KH. Novel gross deletion at the LHX4 gene locus in a child with growth hormone deficiency. Growth Horm IGF Res 2022; 62:101443. [PMID: 34971854 DOI: 10.1016/j.ghir.2021.101443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/17/2021] [Accepted: 12/13/2021] [Indexed: 11/21/2022]
Abstract
OBJECTIVE To identify and characterize a novel deletion at the LHX4 gene locus in a proband with growth hormone deficiency (GHD). METHODS Long range polymerase chain reaction (PCR) amplification was used to confirm the suspected deletion and to identify the rough locations of the end points. Sanger sequencing was carried out to identify the exact end points of the deletion. RESULTS Suspected deletion was confirmed via long range PCR amplification. Sanger sequencing identified the end points of the deletion within three nucleotide repeat sequences ("CTT"). The total length of the deleted segment was 12 127 base pairs and it includes complete exon 5 and exon 6 of the LHX4 gene. Therefore the homeodomain motif coded by exons 4 and 5, might be affected. CONCLUSION We have identified a novel deletion that spans exon 5 and exon 6 of the LHX4 gene that could have occurred via microhomology mediated non-recurrent rearrangement. The deletion characterized does not appear to have been reported before. To our knowledge this novel deletion is the first identified LHX4 variant from Sri Lanka and it explains the phenotype of the proband characterized by growth hormone deficiency, hypoplastic anterior pituitary and subsequent deficiency of thyroid stimulating hormone and adrenocorticotropic hormone (ACTH).
Collapse
Affiliation(s)
- Saumya Madushani Samarasinghe
- Institute of Biochemistry, Molecular Biology and Biotechnology, University of Colombo, 90, Cumaratunga Munidasa Mawatha, Colombo 03, Sri Lanka
| | - Tharmini Sundralingam
- Institute of Biochemistry, Molecular Biology and Biotechnology, University of Colombo, 90, Cumaratunga Munidasa Mawatha, Colombo 03, Sri Lanka
| | - Asanka Sudeshini Hewage
- Institute of Biochemistry, Molecular Biology and Biotechnology, University of Colombo, 90, Cumaratunga Munidasa Mawatha, Colombo 03, Sri Lanka.
| | - K S H de Silva
- Department of Paediatrics, Faculty of Medicine, University of Colombo, 25, Kynsey Road, Colombo 08, Sri Lanka; Lady Ridgeway Hospital, Dr. Danister de Silva Mawatha, Colombo 08, Sri Lanka.
| | - Kamani Hemamala Tennekoon
- Institute of Biochemistry, Molecular Biology and Biotechnology, University of Colombo, 90, Cumaratunga Munidasa Mawatha, Colombo 03, Sri Lanka.
| |
Collapse
|
6
|
So A, Dardillac E, Muhammad A, Chailleux C, Sesma-Sanz L, Ragu S, Le Cam E, Canitrot Y, Masson J, Dupaigne P, Lopez BS, Guirouilh-Barbat J. OUP accepted manuscript. Nucleic Acids Res 2022; 50:2651-2666. [PMID: 35137208 PMCID: PMC8934640 DOI: 10.1093/nar/gkac073] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 01/18/2022] [Accepted: 01/25/2022] [Indexed: 11/23/2022] Open
Abstract
Selection of the appropriate DNA double-strand break (DSB) repair pathway is decisive for genetic stability. It is proposed to act according to two steps: 1-canonical nonhomologous end-joining (C-NHEJ) versus resection that generates single-stranded DNA (ssDNA) stretches; 2-on ssDNA, gene conversion (GC) versus nonconservative single-strand annealing (SSA) or alternative end-joining (A-EJ). Here, we addressed the mechanisms by which RAD51 regulates this second step, preventing nonconservative repair in human cells. Silencing RAD51 or BRCA2 stimulated both SSA and A-EJ, but not C-NHEJ, validating the two-step model. Three different RAD51 dominant-negative forms (DN-RAD51s) repressed GC and stimulated SSA/A-EJ. However, a fourth DN-RAD51 repressed SSA/A-EJ, although it efficiently represses GC. In living cells, the three DN-RAD51s that stimulate SSA/A-EJ failed to load efficiently onto damaged chromatin and inhibited the binding of endogenous RAD51, while the fourth DN-RAD51, which inhibits SSA/A-EJ, efficiently loads on damaged chromatin. Therefore, the binding of RAD51 to DNA, rather than its ability to promote GC, is required for SSA/A-EJ inhibition by RAD51. We showed that RAD51 did not limit resection of endonuclease-induced DSBs, but prevented spontaneous and RAD52-induced annealing of complementary ssDNA in vitro. Therefore, RAD51 controls the selection of the DSB repair pathway, protecting genome integrity from nonconservative DSB repair through ssDNA occupancy, independently of the promotion of CG.
Collapse
Affiliation(s)
- Ayeong So
- Université de Paris, INSERM U1016, UMR 8104 CNRS, Institut Cochin, Equipe Labellisée Ligue Contre le Cancer, France
- CNRS UMR 8200, Gustave-Roussy, Université Paris-Saclay, 114 rue Edouard Vaillant, 94805 Villejuif, France
| | - Elodie Dardillac
- Université de Paris, INSERM U1016, UMR 8104 CNRS, Institut Cochin, Equipe Labellisée Ligue Contre le Cancer, France
- CNRS UMR 8200, Gustave-Roussy, Université Paris-Saclay, 114 rue Edouard Vaillant, 94805 Villejuif, France
| | - Ali Muhammad
- Genome Maintenance and Molecular Microscopy UMR 9019 CNRS, Université Paris-Saclay, Gustave Roussy, F-94805, Villejuif Cedex, France
| | | | - Laura Sesma-Sanz
- Genome Stability Laboratory, CHU de Québec Research Center (Oncology Division), Quebec City, QC, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Quebec City, QC, Canada
| | - Sandrine Ragu
- Université de Paris, INSERM U1016, UMR 8104 CNRS, Institut Cochin, Equipe Labellisée Ligue Contre le Cancer, France
- CNRS UMR 8200, Gustave-Roussy, Université Paris-Saclay, 114 rue Edouard Vaillant, 94805 Villejuif, France
| | - Eric Le Cam
- Genome Maintenance and Molecular Microscopy UMR 9019 CNRS, Université Paris-Saclay, Gustave Roussy, F-94805, Villejuif Cedex, France
| | - Yvan Canitrot
- CBI, CNRS UMR5088, LBCMCP, Toulouse University, Toulouse, France
| | - Jean Yves Masson
- Genome Stability Laboratory, CHU de Québec Research Center (Oncology Division), Quebec City, QC, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Quebec City, QC, Canada
| | - Pauline Dupaigne
- Genome Maintenance and Molecular Microscopy UMR 9019 CNRS, Université Paris-Saclay, Gustave Roussy, F-94805, Villejuif Cedex, France
| | - Bernard S Lopez
- To whom correspondence should be addressed. Tel: +33 1 53 73 27 40;
| | | |
Collapse
|
7
|
Yeap WC, Norkhairunnisa Che Mohd Khan, Norfadzilah Jamalludin, Muad MR, Appleton DR, Harikrishna Kulaveerasingam. An Efficient Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR)/CRISPR-Associated Protein 9 Mutagenesis System for Oil Palm ( Elaeis guineensis). FRONTIERS IN PLANT SCIENCE 2021; 12:773656. [PMID: 34880893 PMCID: PMC8647858 DOI: 10.3389/fpls.2021.773656] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 10/18/2021] [Indexed: 07/27/2023]
Abstract
The clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 (Cas9) system has emerged as a powerful tool for the precise editing of plant genomes for crop improvement. Rapid in vitro methods for the determination of guide RNA (gRNA) cleavage efficiency and an efficient DNA delivery system is essential for gene editing. However, we lack an efficient gene-editing system for palm species. In this study, we described the development of a transient oil palm protoplast assay to rapidly evaluate the cleavage efficiency of CRISPR/Cas9 mutagenesis and the generation of stable transformed oil palms using biolistic particle bombardment in immature embryos. Using the phytoene desaturase (EgPDS) gene, we found cleavage frequency of up to 25.49% in electro-transfected protoplast, which enables the production of transgenic oil palm shoots exhibiting chimeric albino phenotypes as a result of DNA insertions, deletions (InDels), and nucleotide substitutions, with a mutation efficiency of 62.5-83.33%. We further validated the mutagenesis efficiency and specificity of the CRISPR/Cas9 system in oil palm by targeting the brassinosteroid-insensitive 1 (EgBRI1) gene, which resulted in nucleotide substitutions in EgBRI1 with premature necrosis phenotype in oil palm transgenic shoots and stunted phenotype resulting from DNA InDels. Taken together, our results showed that effective and efficient editing of genes using the CRISPR/Cas9 system can be achieved in oil palm by optimizing the selection of efficient gRNA and DNA delivery methods. This newly designed strategy will enable new routes for the genetic improvement in oil palm and related species.
Collapse
Affiliation(s)
- Wan-Chin Yeap
- Sime Darby Plantation Technology Centre Sdn. Bhd., Serdang, Malaysia
| | | | | | | | | | | |
Collapse
|
8
|
Schellenbauer A, Guilly MN, Grall R, Le Bars R, Paget V, Kortulewski T, Sutcu H, Mathé C, Hullo M, Biard D, Leteurtre F, Barroca V, Corre Y, Irbah L, Rass E, Theze B, Bertrand P, Demmers JAA, Guirouilh-Barbat J, Lopez BS, Chevillard S, Delic J. Phospho-Ku70 induced by DNA damage interacts with RNA Pol II and promotes the formation of phospho-53BP1 foci to ensure optimal cNHEJ. Nucleic Acids Res 2021; 49:11728-11745. [PMID: 34718776 PMCID: PMC8599715 DOI: 10.1093/nar/gkab980] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 09/15/2021] [Accepted: 10/26/2021] [Indexed: 11/25/2022] Open
Abstract
Canonical non-homologous end-joining (cNHEJ) is the prominent mammalian DNA double-strand breaks (DSBs) repair pathway operative throughout the cell cycle. Phosphorylation of Ku70 at ser27-ser33 (pKu70) is induced by DNA DSBs and has been shown to regulate cNHEJ activity, but the underlying mechanism remained unknown. Here, we established that following DNA damage induction, Ku70 moves from nucleoli to the sites of damage, and once linked to DNA, it is phosphorylated. Notably, the novel emanating functions of pKu70 are evidenced through the recruitment of RNA Pol II and concomitant formation of phospho-53BP1 foci. Phosphorylation is also a prerequisite for the dynamic release of Ku70 from the repair complex through neddylation-dependent ubiquitylation. Although the non-phosphorylable ala-Ku70 form does not compromise the formation of the NHEJ core complex per se, cells expressing this form displayed constitutive and stress-inducible chromosomal instability. Consistently, upon targeted induction of DSBs by the I-SceI meganuclease into an intrachromosomal reporter substrate, cells expressing pKu70, rather than ala-Ku70, are protected against the joining of distal DNA ends. Collectively, our results underpin the essential role of pKu70 in the orchestration of DNA repair execution in living cells and substantiated the way it paves the maintenance of genome stability.
Collapse
Affiliation(s)
- Amelie Schellenbauer
- Laboratoire de Cancérologie Expérimentale, Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Université Paris-Saclay, DRF, Institut de Biologie François Jacob (IBFJ), IRCM, 18, Av. du Panorama, 92265 Fontenay aux Roses, *Université Paris Descartes, 75006 Paris, France
| | - Marie-Noelle Guilly
- Laboratoire de Cancérologie Expérimentale, Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Université Paris-Saclay, DRF, Institut de Biologie François Jacob (IBFJ), IRCM, 18, Av. du Panorama, 92265 Fontenay aux Roses, *Université Paris Descartes, 75006 Paris, France
| | - Romain Grall
- Laboratoire de Cancérologie Expérimentale, Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Université Paris-Saclay, DRF, Institut de Biologie François Jacob (IBFJ), IRCM, 18, Av. du Panorama, 92265 Fontenay aux Roses, *Université Paris Descartes, 75006 Paris, France
| | - Romain Le Bars
- Light Microscopy Facility, Imagerie-Gif, Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette cedex, France
| | - Vincent Paget
- IRS[N]/PSE-SANTE/SERAMED/LRMed, 31, Av. De la Division Leclerc, 92260 Fontenay aux Roses, France
| | - Thierry Kortulewski
- Laboratoire de Radiopathologie, UMR Stabilité Génétique Cellules Souches et Radiations, Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Université Paris-Saclay, DRF, Institut de Biologie François Jacob (IBFJ), IRCM, UMRE008-U1274, 18 Av. du Panorama, 92265 Fontenay aux Roses, France
| | - Haser Sutcu
- IRS[N]/PSE-SANTE/SERAMED/LRAcc, 31, Av. De la Division Leclerc, 92260 Fontenay aux Roses, France
| | - Cécile Mathé
- Laboratoire de Cancérologie Expérimentale, Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Université Paris-Saclay, DRF, Institut de Biologie François Jacob (IBFJ), IRCM, 18, Av. du Panorama, 92265 Fontenay aux Roses, *Université Paris Descartes, 75006 Paris, France
| | - Marie Hullo
- Laboratoire de Cancérologie Expérimentale, Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Université Paris-Saclay, DRF, Institut de Biologie François Jacob (IBFJ), IRCM, 18, Av. du Panorama, 92265 Fontenay aux Roses, *Université Paris Descartes, 75006 Paris, France
| | - Denis Biard
- Service d'étude des prions et maladies atypiques (SEPIA), DRF, Institut de Biologie François Jacob (IBFJ), IRCM, 18, Av. du Panorama, 92265 Fontenay aux Roses, France
| | - François Leteurtre
- Laboratoire de Cancérologie Expérimentale, Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Université Paris-Saclay, DRF, Institut de Biologie François Jacob (IBFJ), IRCM, 18, Av. du Panorama, 92265 Fontenay aux Roses, *Université Paris Descartes, 75006 Paris, France
| | - Vilma Barroca
- Laboratoire Réparation et Transcription dans les cellules Souches, Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Université Paris-Saclay, DRF, Institut de Biologie François Jacob (IBFJ), IRCM, UMRE008-U1274, 18, Av. du Panorama, 92265 Fontenay aux Roses, France
| | - Youenn Corre
- Laboratoire de Cancérologie Expérimentale, Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Université Paris-Saclay, DRF, Institut de Biologie François Jacob (IBFJ), IRCM, 18, Av. du Panorama, 92265 Fontenay aux Roses, *Université Paris Descartes, 75006 Paris, France
| | - Lamya Irbah
- Plateforme de Microscopie, Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Université Paris-Saclay, DRF, Institut de Biologie François Jacob (IBFJ), IRCM, UMRE008-U12745, 18, Av. du Panorama, 92265 Fontenay aux Roses, France
| | - Emilie Rass
- Laboratoire de Réparation et Vieillissement; Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Université Paris-Saclay, DRF, Institut de Biologie François Jacob (IBFJ), IRCM, UMRE008-U1274, 18, Av. du Panorama, 92265 Fontenay aux Roses, France
| | - Benoit Theze
- Laboratoire de Réparation et Vieillissement; Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Université Paris-Saclay, DRF, Institut de Biologie François Jacob (IBFJ), IRCM, UMRE008-U1274, 18, Av. du Panorama, 92265 Fontenay aux Roses, France
| | - Pascale Bertrand
- Laboratoire de Réparation et Vieillissement; Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Université Paris-Saclay, DRF, Institut de Biologie François Jacob (IBFJ), IRCM, UMRE008-U1274, 18, Av. du Panorama, 92265 Fontenay aux Roses, France
| | - Jeroen A A Demmers
- Proteomics Center, Room Ee-679A | Faculty Building, Erasmus University Medical Center Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| | - Josée Guirouilh-Barbat
- Université de Paris, INSERM U1016, UMR 8104 CNRS, Institut Cochin, Equipe Labellisée Ligue Contre le Cancer, 24 rue du Faubourg St Jacques, 75014 Paris, France
| | - Bernard S Lopez
- Université de Paris, INSERM U1016, UMR 8104 CNRS, Institut Cochin, Equipe Labellisée Ligue Contre le Cancer, 24 rue du Faubourg St Jacques, 75014 Paris, France
| | - Sylvie Chevillard
- Laboratoire de Cancérologie Expérimentale, Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Université Paris-Saclay, DRF, Institut de Biologie François Jacob (IBFJ), IRCM, 18, Av. du Panorama, 92265 Fontenay aux Roses, *Université Paris Descartes, 75006 Paris, France
| | - Jozo Delic
- To whom correspondence should be addressed. Tel: +33 1 4654 7552;
| |
Collapse
|
9
|
The molecular basis and disease relevance of non-homologous DNA end joining. Nat Rev Mol Cell Biol 2020; 21:765-781. [PMID: 33077885 DOI: 10.1038/s41580-020-00297-8] [Citation(s) in RCA: 232] [Impact Index Per Article: 46.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2020] [Indexed: 12/26/2022]
Abstract
Non-homologous DNA end joining (NHEJ) is the predominant repair mechanism of any type of DNA double-strand break (DSB) during most of the cell cycle and is essential for the development of antigen receptors. Defects in NHEJ result in sensitivity to ionizing radiation and loss of lymphocytes. The most critical step of NHEJ is synapsis, or the juxtaposition of the two DNA ends of a DSB, because all subsequent steps rely on it. Recent findings show that, like the end processing step, synapsis can be achieved through several mechanisms. In this Review, we first discuss repair pathway choice between NHEJ and other DSB repair pathways. We then integrate recent insights into the mechanisms of NHEJ synapsis with updates on other steps of NHEJ, such as DNA end processing and ligation. Finally, we discuss NHEJ-related human diseases, including inherited disorders and neoplasia, which arise from rare failures at different NHEJ steps.
Collapse
|
10
|
Carusillo A, Mussolino C. DNA Damage: From Threat to Treatment. Cells 2020; 9:E1665. [PMID: 32664329 PMCID: PMC7408370 DOI: 10.3390/cells9071665] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/07/2020] [Accepted: 07/07/2020] [Indexed: 12/14/2022] Open
Abstract
DNA is the source of genetic information, and preserving its integrity is essential in order to sustain life. The genome is continuously threatened by different types of DNA lesions, such as abasic sites, mismatches, interstrand crosslinks, or single-stranded and double-stranded breaks. As a consequence, cells have evolved specialized DNA damage response (DDR) mechanisms to sustain genome integrity. By orchestrating multilayer signaling cascades specific for the type of lesion that occurred, the DDR ensures that genetic information is preserved overtime. In the last decades, DNA repair mechanisms have been thoroughly investigated to untangle these complex networks of pathways and processes. As a result, key factors have been identified that control and coordinate DDR circuits in time and space. In the first part of this review, we describe the critical processes encompassing DNA damage sensing and resolution. In the second part, we illustrate the consequences of partial or complete failure of the DNA repair machinery. Lastly, we will report examples in which this knowledge has been instrumental to develop novel therapies based on genome editing technologies, such as CRISPR-Cas.
Collapse
Affiliation(s)
- Antonio Carusillo
- Institute for Transfusion Medicine and Gene Therapy, Medical Center—University of Freiburg, 79106 Freiburg, Germany;
- Center for Chronic Immunodeficiency, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Claudio Mussolino
- Institute for Transfusion Medicine and Gene Therapy, Medical Center—University of Freiburg, 79106 Freiburg, Germany;
- Center for Chronic Immunodeficiency, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| |
Collapse
|
11
|
Tsai L, Lopezcolorado F, Bhargava R, Mendez-Dorantes C, Jahanshir E, Stark J. RNF8 has both KU-dependent and independent roles in chromosomal break repair. Nucleic Acids Res 2020; 48:6032-6052. [PMID: 32427332 PMCID: PMC7293022 DOI: 10.1093/nar/gkaa380] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 04/10/2020] [Accepted: 04/30/2020] [Indexed: 12/19/2022] Open
Abstract
Chromosomal double strand breaks (DSBs) can initiate several signaling events, such as ubiquitination, however the precise influence of such signaling on DSB repair outcomes remains poorly understood. With an RNA interference screen, we found that the E3 ubiquitin ligase RNF8 suppresses a deletion rearrangement mediated by canonical non-homologous end joining (C-NHEJ). We also found that RNF8 suppresses EJ without insertion/deletion mutations, which is a hallmark of C-NHEJ. Conversely, RNF8 promotes alternative EJ (ALT-EJ) events involving microhomology that is embedded from the edge of the DSB. These ALT-EJ events likely require limited end resection, whereas RNF8 is not required for single-strand annealing repair involving extensive end resection. Thus, RNF8 appears to specifically facilitate repair events requiring limited end resection, which we find is dependent on the DSB end protection factor KU. However, we also find that RNF8 is important for homology-directed repair (HDR) independently of KU, which appears linked to promoting PALB2 function. Finally, the influence of RNF8 on EJ is distinct from 53BP1 and the ALT-EJ factor, POLQ. We suggest that RNF8 mediates both ALT-EJ and HDR, but via distinct mechanisms, since only the former is dependent on KU.
Collapse
Affiliation(s)
- Linda Jillianne Tsai
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | | | - Ragini Bhargava
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Carlos Mendez-Dorantes
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Eva Jahanshir
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Jeremy M Stark
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| |
Collapse
|
12
|
Scully R, Panday A, Elango R, Willis NA. DNA double-strand break repair-pathway choice in somatic mammalian cells. Nat Rev Mol Cell Biol 2019; 20:698-714. [PMID: 31263220 PMCID: PMC7315405 DOI: 10.1038/s41580-019-0152-0] [Citation(s) in RCA: 861] [Impact Index Per Article: 143.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/23/2019] [Indexed: 11/09/2022]
Abstract
The major pathways of DNA double-strand break (DSB) repair are crucial for maintaining genomic stability. However, if deployed in an inappropriate cellular context, these same repair functions can mediate chromosome rearrangements that underlie various human diseases, ranging from developmental disorders to cancer. The two major mechanisms of DSB repair in mammalian cells are non-homologous end joining (NHEJ) and homologous recombination. In this Review, we consider DSB repair-pathway choice in somatic mammalian cells as a series of 'decision trees', and explore how defective pathway choice can lead to genomic instability. Stalled, collapsed or broken DNA replication forks present a distinctive challenge to the DSB repair system. Emerging evidence suggests that the 'rules' governing repair-pathway choice at stalled replication forks differ from those at replication-independent DSBs.
Collapse
Affiliation(s)
- Ralph Scully
- Department of Medicine, Division of Hematology-Oncology and Cancer Research Institute, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA.
| | - Arvind Panday
- Department of Medicine, Division of Hematology-Oncology and Cancer Research Institute, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Rajula Elango
- Department of Medicine, Division of Hematology-Oncology and Cancer Research Institute, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Nicholas A Willis
- Department of Medicine, Division of Hematology-Oncology and Cancer Research Institute, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
13
|
Owens DDG, Caulder A, Frontera V, Harman JR, Allan AJ, Bucakci A, Greder L, Codner GF, Hublitz P, McHugh PJ, Teboul L, de Bruijn MFTR. Microhomologies are prevalent at Cas9-induced larger deletions. Nucleic Acids Res 2019; 47:7402-7417. [PMID: 31127293 PMCID: PMC6698657 DOI: 10.1093/nar/gkz459] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 05/08/2019] [Accepted: 05/14/2019] [Indexed: 11/18/2022] Open
Abstract
The CRISPR system is widely used in genome editing for biomedical research. Here, using either dual paired Cas9D10A nickases or paired Cas9 nuclease we characterize unintended larger deletions at on-target sites that frequently evade common genotyping practices. We found that unintended larger deletions are prevalent at multiple distinct loci on different chromosomes, in cultured cells and mouse embryos alike. We observed a high frequency of microhomologies at larger deletion breakpoint junctions, suggesting the involvement of microhomology-mediated end joining in their generation. In populations of edited cells, the distribution of larger deletion sizes is dependent on proximity to sgRNAs and cannot be predicted by microhomology sequences alone.
Collapse
Affiliation(s)
- Dominic D G Owens
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Adam Caulder
- The Mary Lyon Centre, MRC Harwell Institute, Didcot, Oxon OX11 0RD, UK
| | - Vincent Frontera
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Joe R Harman
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Alasdair J Allan
- The Mary Lyon Centre, MRC Harwell Institute, Didcot, Oxon OX11 0RD, UK
| | - Akin Bucakci
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Lucas Greder
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Gemma F Codner
- The Mary Lyon Centre, MRC Harwell Institute, Didcot, Oxon OX11 0RD, UK
| | - Philip Hublitz
- WIMM Genome Engineering Facility, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Peter J McHugh
- Department of Oncology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Lydia Teboul
- The Mary Lyon Centre, MRC Harwell Institute, Didcot, Oxon OX11 0RD, UK
| | - Marella F T R de Bruijn
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
| |
Collapse
|
14
|
Marini F, Rawal CC, Liberi G, Pellicioli A. Regulation of DNA Double Strand Breaks Processing: Focus on Barriers. Front Mol Biosci 2019; 6:55. [PMID: 31380392 PMCID: PMC6646425 DOI: 10.3389/fmolb.2019.00055] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 07/01/2019] [Indexed: 12/11/2022] Open
Abstract
In all the eukaryotic cells, nucleolytic processing (resection) of a double strand DNA break (DSB) is a key step to channel the repair of the lesion toward the homologous recombination, at the expenses of the non-homologous end joining (NHEJ). The coordinated action of several nucleases and helicases generates 3′ single strand (ss) DNA, which is covered by RPA and recombination factors. Molecular details of the process have been first dissected in the model organism Saccharomyces cerevisiae. When DSB ends are occupied by KU, a central component of the NHEJ, the Mre11-Rad50-Xrs2 (MRX) nuclease complex (MRN in human), aided by the associated factors Sae2 (CTIP in human), initiates the resection process, inducing a nick close to the DSB ends. Then, starting from the nick, the nucleases Mre11, Exo1, Dna2, in cooperation with Sgs1 helicase (BLM in human), degrade DNA strand in both the directions, creating the 3′ ssDNA filament. Multiple levels of regulation of the break processing ensure faithful DSB repair, preventing chromosome rearrangements, and genome instability. Here we review the DSB resection process and its regulation in the context of chromatin. Particularly, we focus on proteins that limit DSB resection, acting as physical barriers toward nucleases and helicases. Moreover, we also take into consideration recent evidence regarding functional interplay between DSB repair and RNA molecules nearby the break site.
Collapse
Affiliation(s)
- Federica Marini
- Dipartimento di Bioscienze, Università degli studi di Milano, Milan, Italy
| | - Chetan C Rawal
- Dipartimento di Bioscienze, Università degli studi di Milano, Milan, Italy
| | - Giordano Liberi
- Istituto di Genetica Molecolare Luigi Luca Cavalli-Sforza, CNR, Pavia, Italy.,IFOM Foundation, Milan, Italy
| | - Achille Pellicioli
- Dipartimento di Bioscienze, Università degli studi di Milano, Milan, Italy
| |
Collapse
|
15
|
Gioia U, Francia S, Cabrini M, Brambillasca S, Michelini F, Jones-Weinert CW, d'Adda di Fagagna F. Pharmacological boost of DNA damage response and repair by enhanced biogenesis of DNA damage response RNAs. Sci Rep 2019; 9:6460. [PMID: 31015566 PMCID: PMC6478851 DOI: 10.1038/s41598-019-42892-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 04/09/2019] [Indexed: 12/17/2022] Open
Abstract
A novel class of small non-coding RNAs called DNA damage response RNAs (DDRNAs) generated at DNA double-strand breaks (DSBs) in a DROSHA- and DICER-dependent manner has been shown to regulate the DNA damage response (DDR). Similar molecules were also reported to guide DNA repair. Here, we show that DDR activation and DNA repair can be pharmacologically boosted by acting on such non-coding RNAs. Cells treated with enoxacin, a compound previously demonstrated to augment DICER activity, show stronger DDR signalling and faster DNA repair upon exposure to ionizing radiations compared to vehicle-only treated cells. Enoxacin stimulates DDRNA production at chromosomal DSBs and at dysfunctional telomeres, which in turn promotes 53BP1 accumulation at damaged sites, therefore in a miRNA-independent manner. Increased 53BP1 occupancy at DNA lesions induced by enoxacin ultimately suppresses homologous recombination, channelling DNA repair towards faster and more accurate non-homologous end-joining, including in post-mitotic primary neurons. Notably, augmented DNA repair stimulated by enoxacin increases the survival also of cancer cells treated with chemotherapeutic agents.
Collapse
Affiliation(s)
- Ubaldo Gioia
- IFOM - the FIRC Institute of Molecular Oncology, Via Adamello 16, 20139, Milan, Italy
| | - Sofia Francia
- IFOM - the FIRC Institute of Molecular Oncology, Via Adamello 16, 20139, Milan, Italy
- Istituto di Genetica Molecolare, Luigi Luca Cavalli-Sforza - Consiglio Nazionale delle Ricerche, 27100, Pavia, Italy
| | - Matteo Cabrini
- Istituto di Genetica Molecolare, Luigi Luca Cavalli-Sforza - Consiglio Nazionale delle Ricerche, 27100, Pavia, Italy
| | - Silvia Brambillasca
- IFOM - the FIRC Institute of Molecular Oncology, Via Adamello 16, 20139, Milan, Italy
| | - Flavia Michelini
- IFOM - the FIRC Institute of Molecular Oncology, Via Adamello 16, 20139, Milan, Italy
- Human Oncology and Pathogenesis Program (HOPP) - Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Corey W Jones-Weinert
- IFOM - the FIRC Institute of Molecular Oncology, Via Adamello 16, 20139, Milan, Italy
| | - Fabrizio d'Adda di Fagagna
- IFOM - the FIRC Institute of Molecular Oncology, Via Adamello 16, 20139, Milan, Italy.
- Istituto di Genetica Molecolare, Luigi Luca Cavalli-Sforza - Consiglio Nazionale delle Ricerche, 27100, Pavia, Italy.
| |
Collapse
|
16
|
Transition from a meiotic to a somatic-like DNA damage response during the pachytene stage in mouse meiosis. PLoS Genet 2019; 15:e1007439. [PMID: 30668564 PMCID: PMC6358097 DOI: 10.1371/journal.pgen.1007439] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 02/01/2019] [Accepted: 11/28/2018] [Indexed: 11/24/2022] Open
Abstract
Homologous recombination (HR) is the principal mechanism of DNA repair acting during meiosis and is fundamental for the segregation of chromosomes and the increase of genetic diversity. Nevertheless, non-homologous end joining (NHEJ) mechanisms can also act during meiosis, mainly in response to exogenously-induced DNA damage in late stages of first meiotic prophase. In order to better understand the relationship between these two repair pathways, we studied the response to DNA damage during male mouse meiosis after gamma radiation. We clearly discerned two types of responses immediately after treatment. From leptotene to early pachytene, exogenous damage triggered the massive presence of γH2AX throughout the nucleus, which was associated with DNA repair mediated by HR components (DMC1 and RAD51). This early pathway finished with the sequential removal of DMC1 and RAD51 and was no longer inducible at mid pachytene. However, from mid-pachytene to diplotene, γH2AX appeared as large discrete foci. This late repair pattern was mediated initially by NHEJ, involving Ku70 and XRCC4, which were constitutively present, and 53BP1, which appeared at sites of damage soon after irradiation. Nevertheless, 24 hours after irradiation, a HR pathway involving RAD51 but not DMC1 mostly replaced NHEJ. Additionally, we observed the occurrence of synaptonemal complex bridges between bivalents, most likely representing chromosome translocation events that may involve DMC1, RAD51 or 53BP1. Our results reinforce the idea that the early “meiotic” repair pathway that acts by default at the beginning of meiosis is replaced from mid-pachytene onwards by a “somatic-like” repair pattern. This shift might be important to resolve DNA damage (either endogenous or exogenous) that could not be repaired by the early meiotic mechanisms, for instance those in the sex chromosomes, which lack a homologous chromosome to repair with. This transition represents another layer of functional changes that occur in meiotic cells during mid pachytene, in addition to epigenetic reprograming, reactivation of transcription, changes in the gene expression profile and acquisition of competence to proceed to metaphase. DNA repair is critical for both somatic and meiotic cells. During meiosis, hundreds of DNA double strand breaks (DSBs) are introduced endogenously. To repair this damage, meiotic cells use a specialized version of the homologous recombination (HR) pathway that uses specific meiotic recombinases, such as DMC1, to promote repair with the homologous chromosome instead of the sister chromatid. This process is important to ensure chromosome segregation during meiosis and, as a side consequence, increases the genetic diversity of offspring. Nevertheless, under specific circumstances, meiotic cells can use other DNA repair mechanisms such as non-homologous end joining (NHEJ), which is error-prone. We investigated the response of mouse spermatocytes to increased DNA damage caused by gamma radiation, which is commonly used in cancer therapy. We found that the excess of DSBs produced by irradiation is processed by the meiotic HR recombination pathway in spermatocytes at the early stages of first meiotic prophase. However, this response is not inducible from the mid-pachytene stage onwards. From this point on, spermatocytes rely on a response that shares many features with that of somatic cells. In this response, the NHEJ pathway is first used to repair DNA damage but is subsequently replaced by a HR mechanism that does not use DMC1. Instead, it relies only on RAD51, which is known to function in both somatic and meiosis cells and, contrary to DMC1, has a preference for the sister chromatid. This switch from a meiotic to a somatic-like response is accompanied by a conspicuous change in the epigenetic response to DNA damage, reinforcing the idea that a functional transition occurs in meiotic cells during the mid-pachytene stage.
Collapse
|
17
|
Guo T, Feng YL, Xiao JJ, Liu Q, Sun XN, Xiang JF, Kong N, Liu SC, Chen GQ, Wang Y, Dong MM, Cai Z, Lin H, Cai XJ, Xie AY. Harnessing accurate non-homologous end joining for efficient precise deletion in CRISPR/Cas9-mediated genome editing. Genome Biol 2018; 19:170. [PMID: 30340517 PMCID: PMC6195759 DOI: 10.1186/s13059-018-1518-x] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 08/25/2018] [Indexed: 11/25/2022] Open
Abstract
Background Many applications of CRISPR/Cas9-mediated genome editing require Cas9-induced non-homologous end joining (NHEJ), which was thought to be error prone. However, with directly ligatable ends, Cas9-induced DNA double strand breaks may be repaired preferentially by accurate NHEJ. Results In the repair of two adjacent double strand breaks induced by paired Cas9-gRNAs at 71 genome sites, accurate NHEJ accounts for about 50% of NHEJ events. This paired Cas9-gRNA approach underestimates the level of accurate NHEJ due to frequent + 1 templated insertions, which can be avoided by the predefined Watson/Crick orientation of protospacer adjacent motifs (PAMs). The paired Cas9-gRNA strategy also provides a flexible, reporter-less approach for analyzing both accurate and mutagenic NHEJ in cells and in vivo, and it has been validated in cells deficient for XRCC4 and in mouse liver. Due to high frequencies of precise deletions of defined “3n”-, “3n + 1”-, or “3n + 2”-bp length, accurate NHEJ is used to improve the efficiency and homogeneity of gene knockouts and targeted in-frame deletions. Compared to “3n + 1”-bp, “3n + 2”-bp can overcome + 1 templated insertions to increase the frequency of out-of-frame mutations. By applying paired Cas9-gRNAs to edit MDC1 and key 53BP1 domains, we are able to generate predicted, precise deletions for functional analysis. Lastly, a Plk3 inhibitor promotes NHEJ with bias towards accurate NHEJ, providing a chemical approach to improve genome editing requiring precise deletions. Conclusions NHEJ is inherently accurate in repair of Cas9-induced DNA double strand breaks and can be harnessed to improve CRISPR/Cas9 genome editing requiring precise deletion of a defined length. Electronic supplementary material The online version of this article (10.1186/s13059-018-1518-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tao Guo
- Department of General Surgery, Innovation Center for Minimally Invasive Techniques and Devices, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang, 310019, Hangzhou, China.,Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang, 310029, Hangzhou, China
| | - Yi-Li Feng
- Department of General Surgery, Innovation Center for Minimally Invasive Techniques and Devices, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang, 310019, Hangzhou, China.,Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang, 310029, Hangzhou, China
| | - Jing-Jing Xiao
- Department of General Surgery, Innovation Center for Minimally Invasive Techniques and Devices, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang, 310019, Hangzhou, China.,Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang, 310029, Hangzhou, China
| | - Qian Liu
- Department of General Surgery, Innovation Center for Minimally Invasive Techniques and Devices, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang, 310019, Hangzhou, China.,Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang, 310029, Hangzhou, China
| | - Xiu-Na Sun
- Department of General Surgery, Innovation Center for Minimally Invasive Techniques and Devices, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang, 310019, Hangzhou, China.,Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang, 310029, Hangzhou, China
| | - Ji-Feng Xiang
- Department of General Surgery, Innovation Center for Minimally Invasive Techniques and Devices, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang, 310019, Hangzhou, China.,Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang, 310029, Hangzhou, China.,Department of General Surgery, Chongqing General Hospital, Chongqing, 400013, China
| | - Na Kong
- Department of General Surgery, Innovation Center for Minimally Invasive Techniques and Devices, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang, 310019, Hangzhou, China.,Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang, 310029, Hangzhou, China
| | - Si-Cheng Liu
- Department of General Surgery, Innovation Center for Minimally Invasive Techniques and Devices, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang, 310019, Hangzhou, China.,Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang, 310029, Hangzhou, China
| | - Guo-Qiao Chen
- Department of General Surgery, Innovation Center for Minimally Invasive Techniques and Devices, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang, 310019, Hangzhou, China.,Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang, 310029, Hangzhou, China
| | - Yue Wang
- Department of General Surgery, Innovation Center for Minimally Invasive Techniques and Devices, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang, 310019, Hangzhou, China.,Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang, 310029, Hangzhou, China
| | - Meng-Meng Dong
- Multiple Myeloma Treatment Center & Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, 310003, Hangzhou, China
| | - Zhen Cai
- Multiple Myeloma Treatment Center & Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, 310003, Hangzhou, China
| | - Hui Lin
- Department of General Surgery, Innovation Center for Minimally Invasive Techniques and Devices, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang, 310019, Hangzhou, China
| | - Xiu-Jun Cai
- Department of General Surgery, Innovation Center for Minimally Invasive Techniques and Devices, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang, 310019, Hangzhou, China.
| | - An-Yong Xie
- Department of General Surgery, Innovation Center for Minimally Invasive Techniques and Devices, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang, 310019, Hangzhou, China. .,Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang, 310029, Hangzhou, China.
| |
Collapse
|
18
|
Momose T, De Cian A, Shiba K, Inaba K, Giovannangeli C, Concordet JP. High doses of CRISPR/Cas9 ribonucleoprotein efficiently induce gene knockout with low mosaicism in the hydrozoan Clytia hemisphaerica through microhomology-mediated deletion. Sci Rep 2018; 8:11734. [PMID: 30082705 PMCID: PMC6078951 DOI: 10.1038/s41598-018-30188-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 07/24/2018] [Indexed: 12/16/2022] Open
Abstract
Targeted mutagenesis using CRISPR/Cas9 technology has been shown to be a powerful approach to examine gene function in diverse metazoan species. One common drawback is that mixed genotypes, and thus variable phenotypes, arise in the F0 generation because incorrect DNA repair produces different mutations amongst cells of the developing embryo. We report here an effective method for gene knockout (KO) in the hydrozoan Clytia hemisphaerica, by injection into the egg of Cas9/sgRNA ribonucleoprotein complex (RNP). Expected phenotypes were observed in the F0 generation when targeting endogenous GFP genes, which abolished fluorescence in embryos, or CheRfx123 (that codes for a conserved master transcriptional regulator for ciliogenesis) which caused sperm motility defects. When high concentrations of Cas9 RNP were used, the mutations in target genes at F0 polyp or jellyfish stages were not random but consisted predominantly of one or two specific deletions between pairs of short microhomologies flanking the cleavage site. Such microhomology-mediated (MM) deletion is most likely caused by microhomology-mediated end-joining (MMEJ), which may be favoured in early stage embryos. This finding makes it very easy to isolate uniform, largely non-mosaic mutants with predictable genotypes in the F0 generation in Clytia, allowing rapid and reliable phenotype assessment.
Collapse
Affiliation(s)
- Tsuyoshi Momose
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV) 181 Chemin du Lazaret, 06230, Villefranche-sur-Mer, France.
| | - Anne De Cian
- Laboratoire Structure et Instabilité des Génomes, INSERM U1154, CNRS UMR7196, Museum National d'Histoire Naturelle 43 rue Cuvier, 75005, Paris, France
| | - Kogiku Shiba
- Shimoda Marine Research Centre, University of Tsukuba, 5-10-1 Shimoda, Shizuoka, 415-0025, Japan
| | - Kazuo Inaba
- Shimoda Marine Research Centre, University of Tsukuba, 5-10-1 Shimoda, Shizuoka, 415-0025, Japan
| | - Carine Giovannangeli
- Laboratoire Structure et Instabilité des Génomes, INSERM U1154, CNRS UMR7196, Museum National d'Histoire Naturelle 43 rue Cuvier, 75005, Paris, France
| | - Jean-Paul Concordet
- Laboratoire Structure et Instabilité des Génomes, INSERM U1154, CNRS UMR7196, Museum National d'Histoire Naturelle 43 rue Cuvier, 75005, Paris, France
| |
Collapse
|
19
|
Yang S, Xing L, Gu L, Cheng H, Feng Y, Zhang Y. Combination of RIZ1 Overexpression and Radiotherapy Contributes to Apoptosis and DNA Damage of HeLa and SiHa Cervical Cancer Cells. Basic Clin Pharmacol Toxicol 2018; 123:137-146. [PMID: 29575614 DOI: 10.1111/bcpt.13008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 02/07/2018] [Indexed: 12/15/2022]
Abstract
Although radiotherapy has been widely applied to treating cervical cancer in the clinic, its therapeutic efficacy is often restricted to the radioresistance of cancer cells. Retinoblastoma protein-interacting zinc finger gene 1 (RIZ1) has been suggested as a tumour suppressor gene, whereas its role in cervical cancer with or without radiotherapy has been unclear. In this study, two cervical cancer cell lines, HeLa and SiHa cells, stably transfected with RIZ1 overexpression plasmid were subjected to ionizing radiation, and their survival fractions were calculated by assessing their clonogenic abilities. Our results showed that the forced overexpression of RIZ1 significantly reduced the clonogenic survival rates of both HeLa and SiHa cells exposed to ionizing radiation. By analysing the cell apoptotic status, we found that the RIZ1-overexpressed cervical cancer cells under ionizing radiation were more vulnerable to damage, and more γ-H2AX foci were found in these cells. Furthermore, the volumes of tumour xenografts formed by the RIZ1-overexpressed cells in nude mice under ionizing radiation were smaller than those generated by the control cells. There were more morphological changes, apoptosis cells and lower expression of PCNA in RIZ1-overexpressed tumour tissues of mice after exposure to ionizing radiation. Taken together, our study demonstrates that the overexpression of RIZ1 combined with radiotherapy facilitates apoptosis and DNA damage of cervical cancer cells.
Collapse
Affiliation(s)
- Shanshan Yang
- Department of Gynecological Radiotherapy, Harbin Medical University Cancer Hospital, Harbin, China
| | - Linan Xing
- Department of Gynecological Radiotherapy, Harbin Medical University Cancer Hospital, Harbin, China
| | - Lina Gu
- Department of Gynecological Radiotherapy, Harbin Medical University Cancer Hospital, Harbin, China
| | - Haiyan Cheng
- Department of Gynecological Radiotherapy, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yue Feng
- Department of Gynecological Radiotherapy, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yunyan Zhang
- Department of Gynecological Radiotherapy, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
20
|
Gallagher DN, Haber JE. Repair of a Site-Specific DNA Cleavage: Old-School Lessons for Cas9-Mediated Gene Editing. ACS Chem Biol 2018; 13:397-405. [PMID: 29083855 DOI: 10.1021/acschembio.7b00760] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
CRISPR/Cas9-mediated gene editing may involve nonhomologous end-joining to create various insertion/deletions (indels) or may employ homologous recombination to modify precisely the target DNA sequence. Our understanding of these processes has been guided by earlier studies using other site-specific endonucleases, both in model organisms such as budding yeast and in mammalian cells. We briefly review what has been gleaned from such studies using the HO and I-SceI endonucleases and how these findings guide current gene editing strategies.
Collapse
Affiliation(s)
- Danielle N. Gallagher
- Rosenstiel Basic Medical
Sciences Research Center and Department of Biology, Brandeis University, Waltham, Massachusetts 22454-9110, United States
| | - James E. Haber
- Rosenstiel Basic Medical
Sciences Research Center and Department of Biology, Brandeis University, Waltham, Massachusetts 22454-9110, United States
| |
Collapse
|
21
|
Fouquin A, Guirouilh-Barbat J, Lopez B, Hall J, Amor-Guéret M, Pennaneach V. PARP2 controls double-strand break repair pathway choice by limiting 53BP1 accumulation at DNA damage sites and promoting end-resection. Nucleic Acids Res 2017; 45:12325-12339. [PMID: 29036662 PMCID: PMC5716083 DOI: 10.1093/nar/gkx881] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 09/25/2017] [Indexed: 12/15/2022] Open
Abstract
Double strand breaks (DSBs) are one of the most toxic lesions to cells. DSB repair by the canonical non-homologous end-joining (C-EJ) pathway involves minor, if any, processing of the broken DNA-ends, whereas the initiation of DNA resection channels the broken-ends toward DNA repair pathways using various lengths of homology. Mechanisms that control the resection initiation are thus central to the regulation to the choice of DSB repair pathway. Therefore, understanding the mechanisms which regulate the initiation of DNA end-resection is of prime importance. Our findings reveal that poly(ADP-ribose) polymerase 2 (PARP2) is involved in DSBR pathway choice independently of its PAR synthesis activity. We show that PARP2 favors repair by homologous recombination (HR), single strand annealing (SSA) and alternative-end joining (A-EJ) rather than the C-EJ pathway and increases the deletion sizes at A-EJ junctions. We demonstrate that PARP2 specifically limits the accumulation of the resection barrier factor 53BP1 at DNA damage sites, allowing efficient CtIP-dependent DNA end-resection. Collectively, we have identified a new PARP2 function, independent of its PAR synthesis activity, which directs DSBs toward resection-dependent repair pathways.
Collapse
Affiliation(s)
- Alexis Fouquin
- Institut Curie, PSL Research University, UMR 3348, 91405 Orsay, France.,CNRS, UMR3348, Centre Universitaire, Bât. 110, 91405 Orsay, France.,Université Paris Sud, Université Paris-Saclay, UMR 3348, 91405 Orsay, France
| | - Josée Guirouilh-Barbat
- Université Paris Sud, Institut de Cancérologie Gustave Roussy, CNRS UMR8200, 94805 Villejuif, France. Team labeled by la Ligue contre le cancer 'Ligue 2017'
| | - Bernard Lopez
- Université Paris Sud, Institut de Cancérologie Gustave Roussy, CNRS UMR8200, 94805 Villejuif, France. Team labeled by la Ligue contre le cancer 'Ligue 2017'
| | - Janet Hall
- Centre de Recherche en Cancérologie de Lyon, INSERM, CNRS, UMR 1052-5286, 69424 Lyon, France
| | - Mounira Amor-Guéret
- Institut Curie, PSL Research University, UMR 3348, 91405 Orsay, France.,CNRS, UMR3348, Centre Universitaire, Bât. 110, 91405 Orsay, France.,Université Paris Sud, Université Paris-Saclay, UMR 3348, 91405 Orsay, France
| | - Vincent Pennaneach
- Institut Curie, PSL Research University, UMR 3348, 91405 Orsay, France.,CNRS, UMR3348, Centre Universitaire, Bât. 110, 91405 Orsay, France.,Université Paris Sud, Université Paris-Saclay, UMR 3348, 91405 Orsay, France
| |
Collapse
|
22
|
Feng YL, Xiang JF, Liu SC, Guo T, Yan GF, Feng Y, Kong N, Li HD, Huang Y, Lin H, Cai XJ, Xie AY. H2AX facilitates classical non-homologous end joining at the expense of limited nucleotide loss at repair junctions. Nucleic Acids Res 2017; 45:10614-10633. [PMID: 28977657 PMCID: PMC5737864 DOI: 10.1093/nar/gkx715] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 08/04/2017] [Indexed: 12/20/2022] Open
Abstract
Phosphorylated histone H2AX, termed 'γH2AX', mediates the chromatin response to DNA double strand breaks (DSBs) in mammalian cells. H2AX deficiency increases the numbers of unrepaired DSBs and translocations, which are partly associated with defects in non-homologous end joining (NHEJ) and contributing to genomic instability in cancer. However, the role of γH2AX in NHEJ of general DSBs has yet to be clearly defined. Here, we showed that despite little effect on overall NHEJ efficiency, H2AX deficiency causes a surprising bias towards accurate NHEJ and shorter deletions in NHEJ products. By analyzing CRISPR/Cas9-induced NHEJ and by using a new reporter for mutagenic NHEJ, we found that γH2AX, along with its interacting protein MDC1, is required for efficient classical NHEJ (C-NHEJ) but with short deletions and insertions. Epistasis analysis revealed that ataxia telangiectasia mutated (ATM) and the chromatin remodeling complex Tip60/TRRAP/P400 are essential for this H2AX function. Taken together, these data suggest that a subset of DSBs may require γH2AX-mediated short-range nucleosome repositioning around the breaks to facilitate C-NHEJ with loss of a few extra nucleotides at NHEJ junctions. This may prevent outcomes such as non-repair and translocations, which are generally more destabilizing to genomes than short deletions and insertions from local NHEJ.
Collapse
Affiliation(s)
- Yi-Li Feng
- Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang 310019, China.,Institute of Translational Medicine, Zhejiang University, Hangzhou, Zhejiang 310029, China
| | - Ji-Feng Xiang
- Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang 310019, China.,Institute of Translational Medicine, Zhejiang University, Hangzhou, Zhejiang 310029, China
| | - Si-Cheng Liu
- Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang 310019, China.,Institute of Translational Medicine, Zhejiang University, Hangzhou, Zhejiang 310029, China
| | - Tao Guo
- Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang 310019, China.,Institute of Translational Medicine, Zhejiang University, Hangzhou, Zhejiang 310029, China
| | - Guo-Fang Yan
- Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang 310019, China.,Institute of Translational Medicine, Zhejiang University, Hangzhou, Zhejiang 310029, China
| | - Ye Feng
- Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang 310019, China.,Institute of Translational Medicine, Zhejiang University, Hangzhou, Zhejiang 310029, China
| | - Na Kong
- Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang 310019, China.,Institute of Translational Medicine, Zhejiang University, Hangzhou, Zhejiang 310029, China
| | - Hao-Dan Li
- Shurui Tech Ltd, Hangzhou, Zhejiang 310005, China
| | - Yang Huang
- Shurui Tech Ltd, Hangzhou, Zhejiang 310005, China
| | - Hui Lin
- Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang 310019, China
| | - Xiu-Jun Cai
- Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang 310019, China
| | - An-Yong Xie
- Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang 310019, China.,Institute of Translational Medicine, Zhejiang University, Hangzhou, Zhejiang 310029, China
| |
Collapse
|
23
|
A Process of Resection-Dependent Nonhomologous End Joining Involving the Goddess Artemis. Trends Biochem Sci 2017; 42:690-701. [PMID: 28739276 PMCID: PMC5604544 DOI: 10.1016/j.tibs.2017.06.011] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 06/22/2017] [Accepted: 06/29/2017] [Indexed: 01/13/2023]
Abstract
DNA double-strand breaks (DSBs) are a hazardous form of damage that can potentially cause cell death or genomic rearrangements. In mammalian G1- and G2-phase cells, DSBs are repaired with two-component kinetics. In both phases, a fast process uses canonical nonhomologous end joining (c-NHEJ) to repair the majority of DSBs. In G2, slow repair occurs by homologous recombination. The slow repair process in G1 also involves c-NHEJ proteins but additionally requires the nuclease Artemis and DNA end resection. Here, we consider the nature of slow DSB repair in G1 and evaluate factors determining whether DSBs are repaired with fast or slow kinetics. We consider limitations in our current knowledge and present a speculative model for Artemis-dependent c-NHEJ and the environment underlying its usage. A c-NHEJ pathway has been defined involving resection of DSB ends prior to their ligation in G1. Thus, the two main pathways for repairing DSBs in G1 human cells are resection-independent and resection-dependent c-NHEJ. The resection process in G1 uses many of the same factors used for resection during homologous recombination in G2 but orchestrates them in a manner suited to a c-NHEJ process. Since Artemis is the only identified factor involved in the resection process whose loss leads to unrepaired DSBs, we refer to this process as Artemis- and resection-dependent c-NHEJ. Loss of other resection factors prevents the initiation of resection but allows resection-independent c-NHEJ. Artemis- and resection-dependent c-NHEJ makes a major contribution to translocation formation and can lead to previously described microhomology-mediated end joining.
Collapse
|
24
|
So A, Le Guen T, Lopez BS, Guirouilh-Barbat J. Genomic rearrangements induced by unscheduled DNA double strand breaks in somatic mammalian cells. FEBS J 2017; 284:2324-2344. [PMID: 28244221 DOI: 10.1111/febs.14053] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 02/02/2017] [Accepted: 02/24/2017] [Indexed: 12/13/2022]
Abstract
DNA double-strand breaks (DSBs) are highly toxic lesions that can lead to profound genome rearrangements and/or cell death. They routinely occur in genomes due to endogenous or exogenous stresses. Efficient repair systems, canonical non-homologous end-joining and homologous recombination exist in the cell and not only ensure the maintenance of genome integrity but also, via specific programmed DNA double-strand breaks, permit its diversity and plasticity. However, these repair systems need to be tightly controlled because they can also generate genomic rearrangements. Thus, when DSB repair is not properly regulated, genome integrity is no longer guaranteed. In this review, we will focus on non-programmed genome rearrangements generated by DSB repair, in somatic cells. We first discuss genome rearrangements induced by homologous recombination and end-joining. We then discuss recently described rearrangement mechanisms, driven by microhomologies, that do not involve the joining of DNA ends but rather initiate DNA synthesis (microhomology-mediated break-induced replication, fork stalling and template switching and microhomology-mediated template switching). Finally, we discuss chromothripsis, which is the shattering of a localized region of the genome followed by erratic rejoining.
Collapse
Affiliation(s)
- Ayeong So
- CNRS UMR 8200, Institut de Cancérologie Gustave-Roussy, Université Paris-Saclay, Equipe Labellisée Ligue Contre le Cancer, Villejuif, France
| | - Tangui Le Guen
- CNRS UMR 8200, Institut de Cancérologie Gustave-Roussy, Université Paris-Saclay, Equipe Labellisée Ligue Contre le Cancer, Villejuif, France
| | - Bernard S Lopez
- CNRS UMR 8200, Institut de Cancérologie Gustave-Roussy, Université Paris-Saclay, Equipe Labellisée Ligue Contre le Cancer, Villejuif, France
| | - Josée Guirouilh-Barbat
- CNRS UMR 8200, Institut de Cancérologie Gustave-Roussy, Université Paris-Saclay, Equipe Labellisée Ligue Contre le Cancer, Villejuif, France
| |
Collapse
|
25
|
Allam WR, Ashour ME, Waly AA, El-Khamisy S. Role of Protein Linked DNA Breaks in Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1007:41-58. [PMID: 28840551 DOI: 10.1007/978-3-319-60733-7_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Topoisomerases are a group of specialized enzymes that function to maintain DNA topology by introducing transient DNA breaks during transcription and replication. As a result of abortive topoisomerases activity, topoisomerases catalytic intermediates may be trapped on the DNA forming topoisomerase cleavage complexes (Topcc). Topoisomerases trapping on the DNA is the mode of action of several anticancer drugs, it lead to formation of protein linked DAN breaks (PDBs). PDBs are now considered as one of the most dangerous forms of endogenous DNA damage and a major threat to genomic stability. The repair of PDBs involves both the sensing and repair pathways. Unsuccessful repair of PDBs leads to different signs of genomic instabilities such as chromosomal rearrangements and cancer predisposition. In this chapter we will summarize the role of topoisomerases induced PDBs, identification and signaling, repair, role in transcription. We will also discuss the role of PDBs in cancer with a special focus on prostate cancer.
Collapse
Affiliation(s)
- Walaa R Allam
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt.
| | - Mohamed E Ashour
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
| | - Amr A Waly
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
| | - Sherif El-Khamisy
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt. .,Krebs Institute and Sheffield Institute for Nucleic Acids, Department of Molecular Biology and Biotechnology, Firth Court, University of Sheffield, Sheffield, S10 2TN, UK.
| |
Collapse
|