1
|
Xu H, Lin S, Zhou Z, Li D, Zhang X, Yu M, Zhao R, Wang Y, Qian J, Li X, Li B, Wei C, Chen K, Yoshimura T, Wang JM, Huang J. New genetic and epigenetic insights into the chemokine system: the latest discoveries aiding progression toward precision medicine. Cell Mol Immunol 2023; 20:739-776. [PMID: 37198402 PMCID: PMC10189238 DOI: 10.1038/s41423-023-01032-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 04/14/2023] [Indexed: 05/19/2023] Open
Abstract
Over the past thirty years, the importance of chemokines and their seven-transmembrane G protein-coupled receptors (GPCRs) has been increasingly recognized. Chemokine interactions with receptors trigger signaling pathway activity to form a network fundamental to diverse immune processes, including host homeostasis and responses to disease. Genetic and nongenetic regulation of both the expression and structure of chemokines and receptors conveys chemokine functional heterogeneity. Imbalances and defects in the system contribute to the pathogenesis of a variety of diseases, including cancer, immune and inflammatory diseases, and metabolic and neurological disorders, which render the system a focus of studies aiming to discover therapies and important biomarkers. The integrated view of chemokine biology underpinning divergence and plasticity has provided insights into immune dysfunction in disease states, including, among others, coronavirus disease 2019 (COVID-19). In this review, by reporting the latest advances in chemokine biology and results from analyses of a plethora of sequencing-based datasets, we outline recent advances in the understanding of the genetic variations and nongenetic heterogeneity of chemokines and receptors and provide an updated view of their contribution to the pathophysiological network, focusing on chemokine-mediated inflammation and cancer. Clarification of the molecular basis of dynamic chemokine-receptor interactions will help advance the understanding of chemokine biology to achieve precision medicine application in the clinic.
Collapse
Affiliation(s)
- Hanli Xu
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, 3 ShangyuanCun, Haidian District, 100044, Beijing, P.R. China
| | - Shuye Lin
- Cancer Research Center, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, 101149, Beijing, China
| | - Ziyun Zhou
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, 3 ShangyuanCun, Haidian District, 100044, Beijing, P.R. China
| | - Duoduo Li
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, 3 ShangyuanCun, Haidian District, 100044, Beijing, P.R. China
| | - Xiting Zhang
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, 3 ShangyuanCun, Haidian District, 100044, Beijing, P.R. China
| | - Muhan Yu
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, 3 ShangyuanCun, Haidian District, 100044, Beijing, P.R. China
| | - Ruoyi Zhao
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, 3 ShangyuanCun, Haidian District, 100044, Beijing, P.R. China
| | - Yiheng Wang
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, 3 ShangyuanCun, Haidian District, 100044, Beijing, P.R. China
| | - Junru Qian
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, 3 ShangyuanCun, Haidian District, 100044, Beijing, P.R. China
| | - Xinyi Li
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, 3 ShangyuanCun, Haidian District, 100044, Beijing, P.R. China
| | - Bohan Li
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, 3 ShangyuanCun, Haidian District, 100044, Beijing, P.R. China
| | - Chuhan Wei
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, 3 ShangyuanCun, Haidian District, 100044, Beijing, P.R. China
| | - Keqiang Chen
- Laboratory of Cancer Innovation, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, 21702, USA
| | - Teizo Yoshimura
- Laboratory of Cancer Innovation, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, 21702, USA
| | - Ji Ming Wang
- Laboratory of Cancer Innovation, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, 21702, USA
| | - Jiaqiang Huang
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, 3 ShangyuanCun, Haidian District, 100044, Beijing, P.R. China.
- Cancer Research Center, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, 101149, Beijing, China.
- Laboratory of Cancer Innovation, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, 21702, USA.
| |
Collapse
|
2
|
Stein CM. Genetic epidemiology of resistance to M. tuberculosis Infection: importance of study design and recent findings. Genes Immun 2023; 24:117-123. [PMID: 37085579 PMCID: PMC10121418 DOI: 10.1038/s41435-023-00204-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 04/03/2023] [Accepted: 04/14/2023] [Indexed: 04/23/2023]
Abstract
Resistance to M. tuberculosis, often referred to as "RSTR" in the literature, is being increasingly studied because of its potential relevance as a clinical outcome in vaccine studies. This review starts by addressing the importance of epidemiological characterization of this phenotype, and ongoing challenges in that characterization. Then, this review summarizes the extant genetic and genomic studies of this phenotype, including heritability studies, candidate gene studies, and genome-wide association studies, as well as whole transcriptome studies. Findings from recent studies that used longitudinal characterization of the RSTR phenotype are compared to those using a cross-sectional definition, and the challenges of using tuberculin skin test and interferon-gamma release assay are discussed. Finally, future directions are proposed. Since this is a rapidly evolving area of public health significance, this review will help frame future research questions and study designs.
Collapse
Affiliation(s)
- Catherine M Stein
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA.
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
3
|
Tervi A, Junna N, Broberg M, Jones SE, Strausz S, Kreivi HR, Heckman CA, Ollila HM. Large registry-based analysis of genetic predisposition to tuberculosis identifies genetic risk factors at HLA. Hum Mol Genet 2023; 32:161-171. [PMID: 36018815 PMCID: PMC9838093 DOI: 10.1093/hmg/ddac212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 07/27/2022] [Accepted: 08/23/2022] [Indexed: 01/19/2023] Open
Abstract
Tuberculosis is a significant public health concern resulting in the death of over 1 million individuals each year worldwide. While treatment options and vaccines exist, a substantial number of infections still remain untreated or are caused by treatment resistant strains. Therefore, it is important to identify mechanisms that contribute to risk and prognosis of tuberculosis as this may provide tools to understand disease mechanisms and provide novel treatment options for those with severe infection. Our goal was to identify genetic risk factors that contribute to the risk of tuberculosis and to understand biological mechanisms and causality behind the risk of tuberculosis. A total of 1895 individuals in the FinnGen study had International Classification of Diseases-based tuberculosis diagnosis. Genome-wide association study analysis identified genetic variants with statistically significant association with tuberculosis at the human leukocyte antigen (HLA) region (P < 5e-8). Fine mapping of the HLA association provided evidence for one protective haplotype tagged by HLA DQB1*05:01 (P = 1.82E-06, OR = 0.81 [CI 95% 0.74-0.88]), and predisposing alleles tagged by HLA DRB1*13:02 (P = 0.00011, OR = 1.35 [CI 95% 1.16-1.57]). Furthermore, genetic correlation analysis showed association with earlier reported risk factors including smoking (P < 0.05). Mendelian randomization supported smoking as a risk factor for tuberculosis (inverse-variance weighted P < 0.05, OR = 1.83 [CI 95% 1.15-2.93]) with no significant evidence of pleiotropy. Our findings indicate that specific HLA alleles associate with the risk of tuberculosis. In addition, lifestyle risk factors such as smoking contribute to the risk of developing tuberculosis.
Collapse
Affiliation(s)
- Anniina Tervi
- Institute for Molecular Medicine Finland, FIMM, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Nella Junna
- Institute for Molecular Medicine Finland, FIMM, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Martin Broberg
- Institute for Molecular Medicine Finland, FIMM, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Samuel E Jones
- Institute for Molecular Medicine Finland, FIMM, HiLIFE, University of Helsinki, Helsinki, Finland
| | | | - Satu Strausz
- Institute for Molecular Medicine Finland, FIMM, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Hanna-Riikka Kreivi
- Department of Pulmonology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Caroline A Heckman
- Institute for Molecular Medicine Finland, FIMM, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Hanna M Ollila
- Institute for Molecular Medicine Finland, FIMM, HiLIFE, University of Helsinki, Helsinki, Finland.,Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.,Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
| |
Collapse
|
4
|
Th2 Cytokines (Interleukin-5 and -9) Polymorphism Affects the Response to Anti-TNF Treatment in Polish Patients with Ankylosing Spondylitis. Int J Mol Sci 2022; 23:ijms232113177. [PMID: 36361964 PMCID: PMC9657232 DOI: 10.3390/ijms232113177] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/19/2022] [Accepted: 10/26/2022] [Indexed: 11/17/2022] Open
Abstract
Ankylosing spondylitis (AS) is an inflammatory disease that belongs to the spondyloarthritis family. IL-5 and IL-9 belong to the group of Th2 cytokines of anti-inflammatory nature. Polymorphisms in their coding genes have been so far associated with various inflammatory diseases, but there are no reports regarding their involvement in AS pathogenesis to date. The purpose of the study was to investigate relationships between IL5 and IL9 genetic variants with AS susceptibility, clinical parameters as well as response to therapy with TNF inhibitors. In total 170 patients receiving anti-TNF therapy and 218 healthy controls were enrolled in the study. The genotyping of IL5 rs2069812 (A > G) and IL9 rs2069885 (G > A) single nucleotide polymorphisms was performed using the Real-Time PCR method based on LightSNiP kits assays. The present study demonstrated significant relationships between IL5 rs2069812 and IL9 rs2069885 polymorphisms and response to anti-TNF therapy. Presence of the IL5 rs2069812 A allele in patients positively correlated with better response to treatment (p = 0.022). With regard to IL9 rs2069885, patients carrying the A allele displayed better outcomes in anti-TNF therapy (p = 0.046). In addition, IL5 rs2069812 A and IL9 rs2069885 A alleles were associated with lower CRP and VAS values. The obtained results may indicate a significant role for IL-5 and IL-9 in the course of AS and response to anti-TNF therapy.
Collapse
|
5
|
Shah JA, Warr AJ, Graustein AD, Saha A, Dunstan SJ, Thuong NTT, Thwaites GE, Caws M, Thai PVK, Bang ND, Chau TTH, Khor CC, Li Z, Hibberd M, Chang X, Nguyen FK, Hernandez CA, Jones MA, Sassetti CM, Fitzgerald KA, Musvosvi M, Gela A, Hanekom WA, Hatherill M, Scriba TJ, Hawn TR. REL and BHLHE40 Variants Are Associated with IL-12 and IL-10 Responses and Tuberculosis Risk. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:1352-1361. [PMID: 35217585 PMCID: PMC8917052 DOI: 10.4049/jimmunol.2100671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 01/03/2022] [Indexed: 11/19/2022]
Abstract
The major human genes regulating Mycobacterium tuberculosis-induced immune responses and tuberculosis (TB) susceptibility are poorly understood. Although IL-12 and IL-10 are critical for TB pathogenesis, the genetic factors that regulate their expression in humans are unknown. CNBP, REL, and BHLHE40 are master regulators of IL-12 and IL-10 signaling. We hypothesized that common variants in CNBP, REL, and BHLHE40 were associated with IL-12 and IL-10 production from dendritic cells, and that these variants also influence adaptive immune responses to bacillus Calmette-Guérin (BCG) vaccination and TB susceptibility. We characterized the association between common variants in CNBP, REL, and BHLHE40, innate immune responses in dendritic cells and monocyte-derived macrophages, BCG-specific T cell responses, and susceptibility to pediatric and adult TB in human populations. BHLHE40 single-nucleotide polymorphism (SNP) rs4496464 was associated with increased BHLHE40 expression in monocyte-derived macrophages and increased IL-10 from peripheral blood dendritic cells and monocyte-derived macrophages after LPS and TB whole-cell lysate stimulation. SNP BHLHE40 rs11130215, in linkage disequilibrium with rs4496464, was associated with increased BCG-specific IL-2+CD4+ T cell responses and decreased risk for pediatric TB in South Africa. SNPs REL rs842634 and rs842618 were associated with increased IL-12 production from dendritic cells, and SNP REL rs842618 was associated with increased risk for TB meningitis. In summary, we found that genetic variations in REL and BHLHE40 are associated with IL-12 and IL-10 cytokine responses and TB clinical outcomes. Common human genetic regulation of well-defined intermediate cellular traits provides insights into mechanisms of TB pathogenesis.
Collapse
Affiliation(s)
- Javeed A Shah
- University of Washington, Seattle, WA;
- VA Puget Sound Health Care System, Seattle, WA
| | | | - Andrew D Graustein
- University of Washington, Seattle, WA
- VA Puget Sound Health Care System, Seattle, WA
| | | | | | - Nguyen T T Thuong
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Guy E Thwaites
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Maxine Caws
- Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | | | | | | | | | - Zheng Li
- Genome Institute of Singapore, A-STAR, Singapore
| | - Martin Hibberd
- London School of Tropical Medicine and Hygiene, London, United Kingdom
| | - Xuling Chang
- University of Melbourne, Melbourne, Victoria, Australia
| | | | | | | | | | | | | | - Anele Gela
- South African Tuberculosis Vaccine Initiative, Cape Town, South Africa
| | - Willem A Hanekom
- South African Tuberculosis Vaccine Initiative, Cape Town, South Africa
| | - Mark Hatherill
- South African Tuberculosis Vaccine Initiative, Cape Town, South Africa
| | - Thomas J Scriba
- South African Tuberculosis Vaccine Initiative, Cape Town, South Africa
| | | |
Collapse
|
6
|
McHenry ML, Benchek P, Malone L, Nsereko M, Mayanja-Kizza H, Boom WH, Williams SM, Hawn TR, Stein CM. Resistance to TST/IGRA conversion in Uganda: Heritability and Genome-Wide Association Study. EBioMedicine 2021; 74:103727. [PMID: 34871961 PMCID: PMC8652006 DOI: 10.1016/j.ebiom.2021.103727] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 11/17/2021] [Accepted: 11/17/2021] [Indexed: 11/09/2022] Open
Abstract
Background Pulmonary tuberculosis (TB) is one of the most deadly pathogens on earth. However, the majority of people have resistance to active disease. Further, some individuals, termed resisters (RSTRs), do not develop traditional latent tuberculosis (LTBI). The RSTR phenotype is important for understanding pathogenesis and preventing TB. The host genetic underpinnings of RSTR are largely understudied. Methods In a cohort of 908 Ugandan subjects with genome-wide data on single nucleotide polymorphisms, we assessed the heritability of the RSTR phenotype and other TB phenotypes using restricted maximum likelihood estimation (REML). We then used a subset of 263 RSTR and LTBI subjects with high quality phenotyping and long-term follow-up to identify DNA variants genome-wide associated with the RSTR phenotype relative to LTBI subjects in a case-control GWAS design and annotated and enriched these variants to better understand their role in TB pathogenesis. Results The heritability of the TB outcomes was very high, at 55% for TB vs. LTBI and 50.4% for RSTR vs. LTBI among HIV- subjects, controlling for age and sex. We identified 27 loci associated with the RSTR phenotype (P<5e-05) and our annotation and enrichment analyses suggest an important regulatory role for many of them. Interpretation The heritability results show that the genetic contribution to variation in TB outcomes is very high and our GWAS results highlight variants that may play an important role in resistance to infection as well as TB pathogenesis as a whole.
Collapse
Affiliation(s)
- Michael L McHenry
- Department of Population & Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Penelope Benchek
- Department of Population & Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - LaShaunda Malone
- Department of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Mary Nsereko
- Department of Medicine, School of Medicine, Makerere University, Kampala, Uganda
| | | | - W Henry Boom
- Department of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Scott M Williams
- Department of Population & Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Thomas R Hawn
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Catherine M Stein
- Department of Population & Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA; Department of Medicine, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
7
|
Asiimwe IG, Kiiza D, Walimbwa S, Sekaggya CW. Genetic factors associated with tuberculosis-related clinical outcomes in HIV-infected Black African patients: a systematic review and meta-analysis. Pharmacogenomics 2021; 22:997-1017. [PMID: 34605246 DOI: 10.2217/pgs-2021-0096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: To evaluate the genetic factors influencing tuberculosis (TB) clinical outcomes in HIV-infected Black African patients. Materials & methods: We systematically searched and identified eligible publications from >550 databases indexed through February 2021. Results: Eighteen studies were included in the qualitative synthesis. Only two cohorts from one study were included in quantitative synthesis of which the low expression MIF-794 CATT5,6 (5/5 + 5/6 + 6/6) genotypes were not associated with TB infectivity in HIV-infected patients (OR: 1.31, 95% CI: 0.46-3.79). Other TB clinical outcomes observed in HIV/TB co-infected patients included: drug-induced liver injury, peripheral neuropathy, mortality, lung function and TB cure. Conclusion: This review finds inconclusive evidence that genetic factors are associated with TB clinical outcomes among HIV-infected patients in sub-Saharan Africa.
Collapse
Affiliation(s)
- Innocent Gerald Asiimwe
- Department of Pharmacology & Therapeutics, Institute of Systems, Molecular & Integrative Biology (ISMIB), University of Liverpool, UK
| | - Daniel Kiiza
- Department of Pharmacology & Therapeutics, Institute of Systems, Molecular & Integrative Biology (ISMIB), University of Liverpool, UK.,Infectious Diseases Institute, Makerere University College of Health Sciences, Kampala, Uganda
| | - Stephen Walimbwa
- Infectious Diseases Institute, Makerere University College of Health Sciences, Kampala, Uganda
| | | |
Collapse
|
8
|
Stein CM, Benchek P, Bartlett J, Igo RP, Sobota RS, Chervenak K, Mayanja-Kizza H, von Reyn CF, Lahey T, Bush WS, Boom WH, Scott WK, Marsit C, Sirugo G, Williams SM. Methylome-wide Analysis Reveals Epigenetic Marks Associated With Resistance to Tuberculosis in Human Immunodeficiency Virus-Infected Individuals From East Africa. J Infect Dis 2021; 224:695-704. [PMID: 33400784 DOI: 10.1093/infdis/jiaa785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 01/04/2021] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Tuberculosis (TB) is the most deadly infectious disease globally and is highly prevalent in the developing world. For individuals infected with both Mycobacterium tuberculosis (Mtb) and human immunodeficiency virus (HIV), the risk of active TB is 10% or more annually. Previously, we identified in a genome-wide association study (GWAS) a region on chromosome 5 associated with resistance to TB, which included epigenetic marks that could influence gene regulation. We hypothesized that HIV-infected individuals exposed to Mtb who remain disease free carry epigenetic changes that strongly protect them from active TB. METHODS We conducted a methylome-wide study in HIV-infected, TB-exposed cohorts from Uganda and Tanzania and integrated data from our GWAS. RESULTS We identified 3 regions of interest that included markers that were differentially methylated between TB cases and controls with latent TB infection: chromosome 1 (RNF220, P = 4 × 10-5), chromosome 2 (between COPS8 and COL6A3, P = 2.7 × 10-5), and chromosome 5 (CEP72, P = 1.3 × 10-5). These methylation results co-localized with associated single-nucleotide polymorphisms (SNPs), methylation QTLs, and methylation × SNP interaction effects. These markers were in regions with regulatory markers for cells involved in TB immunity and/or lung. CONCLUSIONS Epigenetic regulation is a potential biologic factor underlying resistance to TB in immunocompromised individuals that can act in conjunction with genetic variants.
Collapse
Affiliation(s)
- Catherine M Stein
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, Ohio, USA.,Division of Infectious Disease and HIV Medicine, Department of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Penelope Benchek
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - Jacquelaine Bartlett
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - Robert P Igo
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - Rafal S Sobota
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Keith Chervenak
- Division of Infectious Disease and HIV Medicine, Department of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Harriet Mayanja-Kizza
- Department of Medicine and Mulago Hospital, School of Medicine, Makerere University, Kampala, Uganda
| | - C Fordham von Reyn
- Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, USA
| | - Timothy Lahey
- Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, USA
| | - William S Bush
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - W Henry Boom
- Division of Infectious Disease and HIV Medicine, Department of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - William K Scott
- John P. Hussman Institute for Human Genomics, University of Miami, Miami, Florida, USA
| | - Carmen Marsit
- Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Giorgio Sirugo
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Scott M Williams
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, Ohio, USA.,Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
9
|
Thorball CW, Fellay J, Borghesi A. Immunological lessons from genome-wide association studies of infections. Curr Opin Immunol 2021; 72:87-93. [PMID: 33878603 DOI: 10.1016/j.coi.2021.03.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/24/2021] [Accepted: 03/27/2021] [Indexed: 02/06/2023]
Abstract
Over the past few years, genome-wide association studies (GWAS) have been increasingly applied to identify host genetic factors influencing clinical and laboratory traits related to immunity and infection, and to understand the interplay between the host and the microbial genomes. By screening large cohorts of individuals suffering from various infectious diseases, GWAS explored resistance against infection, natural history of the disease, development of life-threatening clinical signs, and innate and adaptive immune responses. These efforts provided fundamental insight on the role of major genes in the interindividual variability in the response to infection and on the mechanisms of the immune response against human pathogens both at the individual and population levels.
Collapse
Affiliation(s)
- Christian W Thorball
- Precision Medicine Unit, Lausanne University Hospital (CHUV), University of Lausanne, Lausanne, Switzerland
| | - Jacques Fellay
- Precision Medicine Unit, Lausanne University Hospital (CHUV), University of Lausanne, Lausanne, Switzerland; School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland; Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Alessandro Borghesi
- School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland; Neonatal Intensive Care Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.
| |
Collapse
|
10
|
Genome-wide association study of resistance to Mycobacterium tuberculosis infection identifies a locus at 10q26.2 in three distinct populations. PLoS Genet 2021; 17:e1009392. [PMID: 33661925 PMCID: PMC7963100 DOI: 10.1371/journal.pgen.1009392] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 03/16/2021] [Accepted: 02/02/2021] [Indexed: 12/19/2022] Open
Abstract
The natural history of tuberculosis (TB) is characterized by a large inter-individual outcome variability after exposure to Mycobacterium tuberculosis. Specifically, some highly exposed individuals remain resistant to M. tuberculosis infection, as inferred by tuberculin skin test (TST) or interferon-gamma release assays (IGRAs). We performed a genome-wide association study of resistance to M. tuberculosis infection in an endemic region of Southern Vietnam. We enrolled household contacts (HHC) of pulmonary TB cases and compared subjects who were negative for both TST and IGRA (n = 185) with infected individuals (n = 353) who were either positive for both TST and IGRA or had a diagnosis of TB. We found a genome-wide significant locus on chromosome 10q26.2 with a cluster of variants associated with strong protection against M. tuberculosis infection (OR = 0.42, 95%CI 0.35–0.49, P = 3.71×10−8, for the genotyped variant rs17155120). The locus was replicated in a French multi-ethnic HHC cohort and a familial admixed cohort from a hyper-endemic area of South Africa, with an overall OR for rs17155120 estimated at 0.50 (95%CI 0.45–0.55, P = 1.26×10−9). The variants are located in intronic regions and upstream of C10orf90, a tumor suppressor gene which encodes an ubiquitin ligase activating the transcription factor p53. In silico analysis showed that the protective alleles were associated with a decreased expression in monocytes of the nearby gene ADAM12 which could lead to an enhanced response of Th17 lymphocytes. Our results reveal a novel locus controlling resistance to M. tuberculosis infection across different populations. There is strong epidemiological evidence that a proportion of highly exposed individuals remain resistant to M. tuberculosis infection, as shown by a negative result for Tuberculin Skin Test (TST) or IFN-γ Release Assays (IGRAs). We performed a genome-wide association study between resistant and infected individuals, which were carefully selected employing a household contact design to maximize exposure by infectious index patients. We employed stringently defined concordant results for both TST and IGRA assays to avoid misclassifications. We discovered a locus at 10q26.2 associated with resistance to M. tuberculosis infection in a Vietnamese discovery cohort. This locus could be replicated in two independent cohorts from different epidemiological settings and of diverse ancestries enrolled in France and South Africa.
Collapse
|
11
|
Alimohamed MZ, Mwakilili AD, Mbwanji K, Manji ZK, Kaywang F, Mwaikono KS, Adolf I, Makani J, Hamel B, Masimirembwa C, Ishengoma DS, Nkya S. Inauguration of the Tanzania Society of Human Genetics: Biomedical Research in Tanzania with Emphasis on Human Genetics and Genomics. Am J Trop Med Hyg 2020; 104:474-477. [PMID: 33350369 DOI: 10.4269/ajtmh.20-0861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 11/16/2020] [Indexed: 11/07/2022] Open
Abstract
Human genetics research and applications are rapidly growing areas in health innovations and services. African populations are reported to be highly diverse and carry the greatest number of variants per genome. Exploring these variants is key to realize the genomic medicine initiative. However, African populations are grossly underrepresented in various genomic databases, which has alerted scientists to address this issue with urgency. In Tanzania, human genetics research and services are conducted in different institutions on both communicable and noncommunicable diseases. However, there is poor coordination of the research activities, often leading to limited application of the research findings and poor utilization of available resources. In addition, contributions from Tanzanian human genetics research and services are not fully communicated to the government, national, and international communities. To address this scientific gap, the Tanzania Society of Human Genetics (TSHG) has been formed to bring together all stakeholders of human genetics activities in Tanzania and to formally bring Tanzania as a member to the African Society of Human Genetics. This article describes the inauguration event of the TSHG, which took place in November 2019. It provides a justification for its establishment and discusses presentations from invited speakers who took part in the inauguration of the TSHG.
Collapse
Affiliation(s)
- Mohamed Zahir Alimohamed
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Department of Haematology and Blood Transfusion, Muhimbili University of Health and Allied Sciences, Dar-es-Salaam, Tanzania.,Sickle Cell Program, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Aneth David Mwakilili
- Plant Protection Department, Swedish University of Agricultural Sciences, Alnarp, Sweden.,Department of Molecular Biology and Biotechnology, University of Dar es Salaam, Dar es Salaam, Tanzania
| | | | - Zainab Karim Manji
- Department of Clinical Nursing, School of Nursing, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Frida Kaywang
- Sickle Cell Program, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Kilaza Samson Mwaikono
- Department of Science and Laboratory Technology, Dar es Salaam Institute of Technology, Dar es Salaam, Tanzania
| | - Ismael Adolf
- Mbeya College of Health and Allied Sciences, University of Dar es Salaam, Mbeya, Tanzania
| | - Julie Makani
- Sickle Cell Program, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania.,Department of Haematology and Blood Transfusion, Muhimbili University of Health and Allied Sciences, Dar-es-Salaam, Tanzania
| | - Ben Hamel
- Kilimanjaro Christian Medical University College, Moshi, Tanzania.,Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Collen Masimirembwa
- African Institute of Biomedical Science and Technology, Wilkins Hospital, Harare, Zimbabwe
| | - Deus Simon Ishengoma
- Harvard T. H. Chan School of Public Health, Harvard University, Boston, Massachusetts.,Faculty of Pharmaceutical Sciences, Monash University, Melbourne, Australia.,National Institute for Medical Research, Dar es Salaam, Tanzania
| | - Siana Nkya
- Dar es Salaam University College of Education, UDSM, Dar es Salaam, Tanzania.,Sickle Cell Program, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania.,Department of Haematology and Blood Transfusion, Muhimbili University of Health and Allied Sciences, Dar-es-Salaam, Tanzania
| |
Collapse
|
12
|
Host genetics and infectious disease: new tools, insights and translational opportunities. Nat Rev Genet 2020; 22:137-153. [PMID: 33277640 PMCID: PMC7716795 DOI: 10.1038/s41576-020-00297-6] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2020] [Indexed: 12/22/2022]
Abstract
Understanding how human genetics influence infectious disease susceptibility offers the opportunity for new insights into pathogenesis, potential drug targets, risk stratification, response to therapy and vaccination. As new infectious diseases continue to emerge, together with growing levels of antimicrobial resistance and an increasing awareness of substantial differences between populations in genetic associations, the need for such work is expanding. In this Review, we illustrate how our understanding of the host–pathogen relationship is advancing through holistic approaches, describing current strategies to investigate the role of host genetic variation in established and emerging infections, including COVID-19, the need for wider application to diverse global populations mirroring the burden of disease, the impact of pathogen and vector genetic diversity and a broad array of immune and inflammation phenotypes that can be mapped as traits in health and disease. Insights from study of inborn errors of immunity and multi-omics profiling together with developments in analytical methods are further advancing our knowledge of this important area. Infectious diseases are an ever-present global threat. In this Review, Kwok, Mentzer and Knight discuss our latest understanding of how human genetics influence susceptibility to disease. Furthermore, they discuss emerging progress in the interplay between host and pathogen genetics, molecular responses to infection and vaccination, and opportunities to bring these aspects together for rapid responses to emerging diseases such as COVID-19.
Collapse
|
13
|
Tamargo-Gómez I, Fernández ÁF, Mariño G. Pathogenic Single Nucleotide Polymorphisms on Autophagy-Related Genes. Int J Mol Sci 2020; 21:ijms21218196. [PMID: 33147747 PMCID: PMC7672651 DOI: 10.3390/ijms21218196] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/28/2020] [Accepted: 10/30/2020] [Indexed: 02/06/2023] Open
Abstract
In recent years, the study of single nucleotide polymorphisms (SNPs) has gained increasing importance in biomedical research, as they can either be at the molecular origin of a determined disorder or directly affect the efficiency of a given treatment. In this regard, sequence variations in genes involved in pro-survival cellular pathways are commonly associated with pathologies, as the alteration of these routes compromises cellular homeostasis. This is the case of autophagy, an evolutionarily conserved pathway that counteracts extracellular and intracellular stressors by mediating the turnover of cytosolic components through lysosomal degradation. Accordingly, autophagy dysregulation has been extensively described in a wide range of human pathologies, including cancer, neurodegeneration, or inflammatory alterations. Thus, it is not surprising that pathogenic gene variants in genes encoding crucial effectors of the autophagosome/lysosome axis are increasingly being identified. In this review, we present a comprehensive list of clinically relevant SNPs in autophagy-related genes, highlighting the scope and relevance of autophagy alterations in human disease.
Collapse
Affiliation(s)
- Isaac Tamargo-Gómez
- Instituto de Investigación Sanitaria del Principado de Asturias, 33011 Oviedo, Spain;
- Departamento de Biología Funcional, Universidad de Oviedo, 33011 Oviedo, Spain
| | - Álvaro F. Fernández
- Instituto de Investigación Sanitaria del Principado de Asturias, 33011 Oviedo, Spain;
- Departamento de Biología Funcional, Universidad de Oviedo, 33011 Oviedo, Spain
- Correspondence: (Á.F.F.); (G.M.); Tel.: +34-985652416 (G.M.)
| | - Guillermo Mariño
- Instituto de Investigación Sanitaria del Principado de Asturias, 33011 Oviedo, Spain;
- Departamento de Biología Funcional, Universidad de Oviedo, 33011 Oviedo, Spain
- Correspondence: (Á.F.F.); (G.M.); Tel.: +34-985652416 (G.M.)
| |
Collapse
|
14
|
Kroon EE, Kinnear CJ, Orlova M, Fischinger S, Shin S, Boolay S, Walzl G, Jacobs A, Wilkinson RJ, Alter G, Schurr E, Hoal EG, Möller M. An observational study identifying highly tuberculosis-exposed, HIV-1-positive but persistently TB, tuberculin and IGRA negative persons with M. tuberculosis specific antibodies in Cape Town, South Africa. EBioMedicine 2020; 61:103053. [PMID: 33038764 PMCID: PMC7648124 DOI: 10.1016/j.ebiom.2020.103053] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/18/2020] [Accepted: 09/21/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Mycobacterium tuberculosis (Mtb) infection is inferred from positive results of T-cell immune conversion assays measuring Mtb-specific interferon gamma production or tuberculin skin test (TST) reactivity. Certain exposed individuals do not display T-cell immune conversion in these assays and do not develop TB. Here we report a hitherto unknown form of this phenotype: HIV-1-positive persistently TB, tuberculin and IGRA negative (HITTIN). METHODS A community-based case-control design was used to systematically screen and identify adults living with HIV (HIV+), aged 35-60 years, who met stringent study criteria, and then longitudinally followed up for repeat IGRA and TST testing. Participants had no history of TB despite living in TB hyper-endemic environments in Cape Town, South Africa with a provincial incidence of 681/100,000. Mtb-specific antibodies were measured using ELISA and Luminex. FINDINGS We identified 48/286 (17%) individuals who tested persistently negative for Mtb-specific T-cell immunoreactivity (three negative Quantiferon results and one TST = 0mm) over 206±154 days on average. Of these, 97·2% had documented CD4 counts<200 prior to antiretroviral therapy (ART). They had received ART for 7·0±3·0 years with a latest CD4 count of 505·8±191·4 cells/mm3. All HITTIN sent for further antibody testing (n=38) displayed Mtb-specific antibody titres. INTERPRETATION Immune reconstituted HIV+ persons can be persistently non-immunoreactive to TST and interferon-γ T-cell responses to Mtb, yet develop species-specific antibody responses. Exposure is evidenced by Mtb-specific antibody titres. Our identification of HIV+ individuals displaying a persisting lack of response to TST and IGRA T-cell immune conversion paves the way for future studies to investigate this phenotype in the context of HIV-infection that so far have received only scant attention.
Collapse
Affiliation(s)
- Elouise E Kroon
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research; South African Medical Research Council Centre for Tuberculosis Research; Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Craig J Kinnear
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research; South African Medical Research Council Centre for Tuberculosis Research; Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Marianna Orlova
- Program in Infectious Diseases and Immunity in Global Health, The Research Institute of the McGill University Health Centre, 1001 boul Décarie, Site Glen Block E, Room EM3.3210, Montréal, QC H4A3J1, Canada; McGill International TB Centre, McGill University, Montréal, QC, Canada; Departments of Medicine and Human Genetics, McGill University, Montréal, QC, Canada
| | - Stephanie Fischinger
- Ragon Institute of MGH, MIT and Harvard, Boston, MA, USA; University of Duisburg-Essen, Institute for HIV research, Essen, Germany
| | - Sally Shin
- Ragon Institute of MGH, MIT and Harvard, Boston, MA, USA
| | - Sihaam Boolay
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research; South African Medical Research Council Centre for Tuberculosis Research; Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Gerhard Walzl
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research; South African Medical Research Council Centre for Tuberculosis Research; Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Ashley Jacobs
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory 7925, South Africa
| | - Robert J Wilkinson
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory 7925, South Africa; Department of Infectious Diseases, Imperial College London, W12 ONN, United Kingdom; The Francis Crick Institute, London, NW1 1AT, United Kingdom
| | - Galit Alter
- Ragon Institute of MGH, MIT and Harvard, Boston, MA, USA
| | - Erwin Schurr
- Program in Infectious Diseases and Immunity in Global Health, The Research Institute of the McGill University Health Centre, 1001 boul Décarie, Site Glen Block E, Room EM3.3210, Montréal, QC H4A3J1, Canada; McGill International TB Centre, McGill University, Montréal, QC, Canada; Departments of Medicine and Human Genetics, McGill University, Montréal, QC, Canada
| | - Eileen G Hoal
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research; South African Medical Research Council Centre for Tuberculosis Research; Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Marlo Möller
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research; South African Medical Research Council Centre for Tuberculosis Research; Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa.
| |
Collapse
|
15
|
Stein CM, Nsereko M, Malone LL, Okware B, Kisingo H, Nalukwago S, Chervenak K, Mayanja-Kizza H, Hawn TR, Boom WH. Long-term Stability of Resistance to Latent Mycobacterium tuberculosis Infection in Highly Exposed Tuberculosis Household Contacts in Kampala, Uganda. Clin Infect Dis 2019; 68:1705-1712. [PMID: 30165605 PMCID: PMC6495009 DOI: 10.1093/cid/ciy751] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 08/24/2018] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Resistance to latent Mycobacterium tuberculosis (M.tb) infection, identified by persistently negative tuberculin skin tests (TST) and interferon-gamma release assays (IGRA), after close contact with pulmonary tuberculosis (TB) patients has not been extensively characterized. Stability of this "resistance" beyond 2 years from exposure is unknown. METHODS 407 of 657 eligible human immunodeficiency virus (HIV)-negative adults from a TB household contact study with persistently negative TST (PTST-) or with stable latent M.tb infection (LTBI) were retraced 9.5 years (standard deviation = 3.2) later. Asymptomatic retraced contacts underwent 3 IGRAs and follow-up TST, and their M.tb infection status classified as definite/possible/probable. RESULTS Among PTST- with a definite classification, 82.7% were concordantly TST-/ quantiferon-TB Gold- (QFT-), and 16.3% converted to TST+/QFT+ LTBI. Among original LTBI contacts, 83.6% remained LTBI, and 3.9% reverted their TST and were QFT-. Although TST and QFT concordance was high (κ = 0.78), 1.0% of PTST and 12.5% of original LTBI contacts could not be classified due to discordant TST and QFT results. Epidemiological variables did not differ between retraced PTST- and LTBI contacts. CONCLUSION Resistance to LTBI, defined by repeatedly negative TST and IGRA, in adults who have had close contact with pulmonary TB patients living in TB-endemic areas, is a stable outcome of M.tb exposure. Repeated longitudinal measurements with 2 different immune assays and extended follow-up provide enhanced discriminatory power to identify this resister phenotype and avoid misclassification. Resisters may use immune mechanisms to control aerosolized M.tb that differ from those used by persons who develop "classic" LTBI.
Collapse
Affiliation(s)
- Catherine M Stein
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio
- Tuberculosis Research Unit, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Mary Nsereko
- Uganda-CWRU Research Collaboration, Makerere University and Mulago Hospital, Kampala, Uganda
| | - LaShaunda L Malone
- Tuberculosis Research Unit, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Brenda Okware
- Uganda-CWRU Research Collaboration, Makerere University and Mulago Hospital, Kampala, Uganda
| | - Hussein Kisingo
- Uganda-CWRU Research Collaboration, Makerere University and Mulago Hospital, Kampala, Uganda
| | - Sophie Nalukwago
- Uganda-CWRU Research Collaboration, Makerere University and Mulago Hospital, Kampala, Uganda
| | - Keith Chervenak
- Tuberculosis Research Unit, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Harriet Mayanja-Kizza
- Department of Medicine, School of Medicine, Makerere University and Mulago Hospital, Kampala, Uganda
| | - Thomas R Hawn
- Department of Medicine, University of Washington, Seattle
| | - W Henry Boom
- Tuberculosis Research Unit, Case Western Reserve University School of Medicine, Cleveland, Ohio
| |
Collapse
|
16
|
Peters JS, Andrews JR, Hatherill M, Hermans S, Martinez L, Schurr E, van der Heijden Y, Wood R, Rustomjee R, Kana BD. Advances in the understanding of Mycobacterium tuberculosis transmission in HIV-endemic settings. THE LANCET. INFECTIOUS DISEASES 2019; 19:e65-e76. [PMID: 30554995 PMCID: PMC6401310 DOI: 10.1016/s1473-3099(18)30477-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 07/18/2018] [Accepted: 07/19/2018] [Indexed: 12/28/2022]
Abstract
Tuberculosis claims more human lives than any other infectious disease. This alarming epidemic has fuelled the development of novel antimicrobials and diagnostics. However, public health interventions that interrupt transmission have been slow to emerge, particularly in HIV-endemic settings. Transmission of tuberculosis is complex, involving various environmental, bacteriological, and host factors, among which concomitant HIV infection is important. Preventing person-to-person spread is central to halting the epidemic and, consequently, tuberculosis transmission is now being studied with renewed interest. In this Series paper, we review recent advances in the understanding of tuberculosis transmission, from the view of source-case infectiousness, inherent susceptibility of exposed individuals, appending tools for predicting risk of disease progression, the biophysical nature of the contagion, and the environments in which transmission occurs and is sustained in populations. We focus specifically on how HIV infection affects these features with a view to describing novel transmission blocking strategies in HIV-endemic settings.
Collapse
Affiliation(s)
- Julian S Peters
- Department of Science and Technology/National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand and the National Health Laboratory Service, Johannesburg, South Africa
| | - Jason R Andrews
- Division of Infectious Diseases and Geographic Medicine, School of Medicine, Stanford University, Stanford, CA, USA
| | - Mark Hatherill
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease & Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Sabine Hermans
- Desmond Tutu HIV Centre, Institute of Infectious Disease & Molecular Medicine, University of Cape Town, Cape Town, South Africa; Department of Global Health, Amsterdam Institute for Global Health and Development, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Leonardo Martinez
- Division of Infectious Diseases and Geographic Medicine, School of Medicine, Stanford University, Stanford, CA, USA
| | - Erwin Schurr
- Research Institute of the McGill University Health Centre, Montréal, QC, Canada
| | - Yuri van der Heijden
- Vanderbilt Tuberculosis Center and Division of Infectious Diseases, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Robin Wood
- Desmond Tutu HIV Centre, Institute of Infectious Disease & Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Roxana Rustomjee
- Tuberculosis Clinical Research Branch, Therapeutic Research Program, Division of AIDS National Institute of Allergy and Infectious Diseases, National Institutes of Health, North Bethesda, MD, USA
| | - Bavesh D Kana
- Department of Science and Technology/National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand and the National Health Laboratory Service, Johannesburg, South Africa; South African Medical Research Council HIV-TB Pathogenesis and Treatment Research Unit, Centre for the AIDS Programme of Research in South Africa, Durban, South Africa.
| |
Collapse
|
17
|
Kroon EE, Coussens AK, Kinnear C, Orlova M, Möller M, Seeger A, Wilkinson RJ, Hoal EG, Schurr E. Neutrophils: Innate Effectors of TB Resistance? Front Immunol 2018; 9:2637. [PMID: 30487797 PMCID: PMC6246713 DOI: 10.3389/fimmu.2018.02637] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 10/26/2018] [Indexed: 12/19/2022] Open
Abstract
Certain individuals are able to resist Mycobacterium tuberculosis infection despite persistent and intense exposure. These persons do not exhibit adaptive immune priming as measured by tuberculin skin test (TST) and interferon-γ (IFN-γ) release assay (IGRA) responses, nor do they develop active tuberculosis (TB). Genetic investigation of individuals who are able to resist M. tuberculosis infection shows there are likely a combination of genetic variants that contribute to the phenotype. The contribution of the innate immune system and the exact cells involved in this phenotype remain incompletely elucidated. Neutrophils are prominent candidates for possible involvement as primers for microbial clearance. Significant variability is observed in neutrophil gene expression and DNA methylation. Furthermore, inter-individual variability is seen between the mycobactericidal capacities of donor neutrophils. Clearance of M. tuberculosis infection is favored by the mycobactericidal activity of neutrophils, apoptosis, effective clearance of cells by macrophages, and resolution of inflammation. In this review we will discuss the different mechanisms neutrophils utilize to clear M. tuberculosis infection. We discuss the duality between neutrophils' ability to clear infection and how increasing numbers of neutrophils contribute to active TB severity and mortality. Further investigation into the potential role of neutrophils in innate immune-mediated M. tuberculosis infection resistance is warranted since it may reveal clinically important activities for prevention as well as vaccine and treatment development.
Collapse
Affiliation(s)
- Elouise E Kroon
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Anna K Coussens
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa.,Infection and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Division of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC, Australia
| | - Craig Kinnear
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Marianna Orlova
- Program in Infectious Diseases and Immunity in Global Health, The Research Institute of the McGill University Health Centre, Montreal, QC, Canada.,McGill International TB Centre, McGill University, Montreal, QC, Canada.,Departments of Medicine and Human Genetics, McGill University, Montreal, QC, Canada
| | - Marlo Möller
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Allison Seeger
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Robert J Wilkinson
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa.,Department of Medicine, Imperial College London, London, United Kingdom.,The Francis Crick Institute, London, United Kingdom
| | - Eileen G Hoal
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Erwin Schurr
- Program in Infectious Diseases and Immunity in Global Health, The Research Institute of the McGill University Health Centre, Montreal, QC, Canada.,McGill International TB Centre, McGill University, Montreal, QC, Canada.,Departments of Medicine and Human Genetics, McGill University, Montreal, QC, Canada
| |
Collapse
|
18
|
Möller M, Kinnear CJ, Orlova M, Kroon EE, van Helden PD, Schurr E, Hoal EG. Genetic Resistance to Mycobacterium tuberculosis Infection and Disease. Front Immunol 2018; 9:2219. [PMID: 30319657 PMCID: PMC6170664 DOI: 10.3389/fimmu.2018.02219] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 09/07/2018] [Indexed: 12/11/2022] Open
Abstract
Natural history studies of tuberculosis (TB) have revealed a spectrum of clinical outcomes after exposure to Mycobacterium tuberculosis, the cause of TB. Not all individuals exposed to the bacterium will become diseased and depending on the infection pressure, many will remain infection-free. Intriguingly, complete resistance to infection is observed in some individuals (termed resisters) after intense, continuing M. tuberculosis exposure. After successful infection, the majority of individuals will develop latent TB infection (LTBI). This infection state is currently (and perhaps imperfectly) defined by the presence of a positive tuberculin skin test (TST) and/or interferon gamma release assay (IGRA), but no detectable clinical disease symptoms. The majority of healthy individuals with LTBI are resistant to clinical TB, indicating that infection is remarkably well-contained in these non-progressors. The remaining 5-15% of LTBI positive individuals will progress to active TB. Epidemiological investigations have indicated that the host genetic component contributes to these infection and disease phenotypes, influencing both susceptibility and resistance. Elucidating these genetic correlates is therefore a priority as it may translate to new interventions to prevent, diagnose or treat TB. The most successful approaches in resistance/susceptibility investigation have focused on specific infection and disease phenotypes and the resister phenotype may hold the key to the discovery of actionable genetic variants in TB infection and disease. This review will not only discuss lessons from epidemiological studies, but will also focus on the contribution of epidemiology and functional genetics to human genetic resistance to M. tuberculosis infection and disease.
Collapse
Affiliation(s)
- Marlo Möller
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Craig J. Kinnear
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Marianna Orlova
- Program in Infectious Diseases and Immunity in Global Health, The Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- McGill International TB Centre, McGill University, Montreal, QC, Canada
- Departments of Medicine and Human Genetics, McGill University, Montreal, QC, Canada
| | - Elouise E. Kroon
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Paul D. van Helden
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Erwin Schurr
- Program in Infectious Diseases and Immunity in Global Health, The Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- McGill International TB Centre, McGill University, Montreal, QC, Canada
- Departments of Medicine and Human Genetics, McGill University, Montreal, QC, Canada
| | - Eileen G. Hoal
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
19
|
Simmons JD, Stein CM, Seshadri C, Campo M, Alter G, Fortune S, Schurr E, Wallis RS, Churchyard G, Mayanja-Kizza H, Boom WH, Hawn TR. Immunological mechanisms of human resistance to persistent Mycobacterium tuberculosis infection. Nat Rev Immunol 2018; 18:575-589. [PMID: 29895826 PMCID: PMC6278832 DOI: 10.1038/s41577-018-0025-3] [Citation(s) in RCA: 203] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Mycobacterium tuberculosis is a leading cause of mortality worldwide and establishes a long-lived latent infection in a substantial proportion of the human population. Multiple lines of evidence suggest that some individuals are resistant to latent M. tuberculosis infection despite long-term and intense exposure, and we term these individuals 'resisters'. In this Review, we discuss the epidemiological and genetic data that support the existence of resisters and propose criteria to optimally define and characterize the resister phenotype. We review recent insights into the immune mechanisms of M. tuberculosis clearance, including responses mediated by macrophages, T cells and B cells. Understanding the cellular mechanisms that underlie resistance to M. tuberculosis infection may reveal immune correlates of protection that could be utilized for improved diagnostics, vaccine development and novel host-directed therapeutic strategies.
Collapse
Affiliation(s)
- Jason D Simmons
- Department of Medicine, University of Washington, Seattle, WA, USA.
| | - Catherine M Stein
- Department of Population & Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
- Department of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Chetan Seshadri
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Monica Campo
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Galit Alter
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Sarah Fortune
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA, USA
| | - Erwin Schurr
- Program in Infectious Diseases and Immunity in Global Health, Research Institute of the McGill University Health Centre, Montreal, Québec, Canada
| | - Robert S Wallis
- Department of Medicine, Case Western Reserve University, Cleveland, OH, USA
- The Aurum Institute, Parktown, South Africa
| | | | | | - W Henry Boom
- Department of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Thomas R Hawn
- Department of Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
20
|
Fine-mapping analysis of a chromosome 2 region linked to resistance to Mycobacterium tuberculosis infection in Uganda reveals potential regulatory variants. Genes Immun 2018; 20:473-483. [PMID: 30100616 PMCID: PMC6374218 DOI: 10.1038/s41435-018-0040-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 05/31/2018] [Accepted: 06/06/2018] [Indexed: 12/17/2022]
Abstract
Tuberculosis (TB) is a major public health burden worldwide, and more effective treatment is sorely needed. Consequently, uncovering causes of resistance to Mycobacterium tuberculosis (Mtb) infection is of special importance for vaccine design. Resistance to Mtb infection can be defined by a persistently negative tuberculin skin test (PTST-) despite living in close and sustained exposure to an active TB case. While susceptibility to Mtb is, in part, genetically determined, relatively little work has been done to uncover genetic factors underlying resistance to Mtb infection. We examined a region on chromosome 2q previously implicated in our genomewide linkage scan by a targeted, high-density association scan for genetic variants enhancing PTST- in two independent Ugandan TB household cohorts (n = 747 and 471). We found association with SNPs in neighboring genes ZEB2 and GTDC1 (peak meta p = 1.9 × 10-5) supported by both samples. Bioinformatic analysis suggests these variants may affect PTST- by regulating the histone deacetylase (HDAC) pathway, supporting previous results from transcriptomic analyses. An apparent protective effect of PTST- against body-mass wasting suggests a link between resistance to Mtb infection and healthy body composition. Our results provide insight into how humans may escape latent Mtb infection despite heavy exposure.
Collapse
|
21
|
Meermeier EW, Lewinsohn DM. Early clearance versus control: what is the meaning of a negative tuberculin skin test or interferon-gamma release assay following exposure to Mycobacterium tuberculosis? F1000Res 2018; 7. [PMID: 29904578 PMCID: PMC5974584 DOI: 10.12688/f1000research.13224.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/22/2018] [Indexed: 01/01/2023] Open
Abstract
The elimination of tuberculosis (TB) cannot reasonably be achieved by treatment of individual cases and will require an improved vaccine or immunotherapy. A challenge in developing an improved TB vaccine has been the lack of understanding what is needed to generate sterilizing immunity against
Mycobacterium tuberculosis (Mtb) infection. Several epidemiological observations support the hypothesis that humans can eradicate Mtb following exposure. This has been termed early clearance and is defined as elimination of Mtb infection prior to the development of an adaptive immune response, as measured by a tuberculin skin test or interferon-gamma release assay. Here, we examine research into the likelihood of and possible mechanisms responsible for early clearance in household contacts of patients with active TB. We explore both innate and adaptive immune responses in the lung. Enhanced understanding of these mechanisms could be harnessed for the development of a preventative vaccine or immunotherapy.
Collapse
Affiliation(s)
- Erin W Meermeier
- Pulmonary and Critical Care Medicine, Department of Medicine, Oregon Health and Science University, Portland, USA
| | - David M Lewinsohn
- Pulmonary and Critical Care Medicine, Department of Medicine, Oregon Health and Science University, Portland, USA.,Department of Medicine, VA Portland Health Care System, Portland, OR, USA
| |
Collapse
|
22
|
Stein CM, Sausville L, Wejse C, Sobota RS, Zetola NM, Hill PC, Boom WH, Scott WK, Sirugo G, Williams SM. Genomics of human pulmonary tuberculosis: from genes to pathways. CURRENT GENETIC MEDICINE REPORTS 2017; 5:149-166. [PMID: 29805915 DOI: 10.1007/s40142-017-0130-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Purpose of review Tuberculosis (TB), caused by Mycobacterium tuberculosis (MTB), remains a major public health threat globally. Several lines of evidence support a role for host genetic factors in resistance/susceptibility to TB disease and MTB infection. However, results across candidate gene and genome-wide association studies (GWAS) are largely inconsistent, so a cohesive genetic model underlying TB risk has not emerged. Recent Findings Despite the difficulties in identifying consistent genetic associations, genetic studies of TB and MTB infection have revealed a few well-documented loci. These well validated genes are presented in this review, but there remains a large gap in how these genes translate into better understanding of TB. To address this, we present a pathway based extension of standard association analyses, seeding the results with the best validated genes from candidate gene and GWAS studies. Summary Several pathways were significantly enriched using pathway analyses that may help to explain population patterns of TB risk. In conclusion, we advocate for novel approaches to the study of host genetic analysis of TB that extend traditional association approaches.
Collapse
Affiliation(s)
- Catherine M Stein
- Department of Population and Quantitative Health Sciences, Cleveland, OH.,Tuberculosis Research Unit, Case Western Reserve University, Cleveland, OH
| | - Lindsay Sausville
- Department of Population and Quantitative Health Sciences, Cleveland, OH
| | - Christian Wejse
- Dept of Infectious Diseases/Center for Global Health, Aarhus University, Aarhus, Denmark
| | - Rafal S Sobota
- The Ken and Ruth Davee Department of Neurology, Northwestern University, Chicago, IL
| | - Nicola M Zetola
- Division of Infectious Diseases, University of Pennsylvania, Philadelphia, PA 19104, USA.,Botswana-UPenn Partnership, Gaborone, Botswana.,Department of Medicine, University of Botswana, Gaborone, Botswana
| | - Philip C Hill
- Centre for International Health, University of Otago, Dunedin, New Zealand
| | - W Henry Boom
- Tuberculosis Research Unit, Case Western Reserve University, Cleveland, OH
| | - William K Scott
- Department of Human Genetics and Genomics, University of Miami School of Medicine, Miami, FL
| | - Giorgio Sirugo
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Scott M Williams
- Department of Population and Quantitative Health Sciences, Cleveland, OH
| |
Collapse
|