1
|
Tran TTQ, Do TH, Pham TT, Luu PTT, Pham OM, Nguyen UQ, Vuong LD, Nguyen QN, Mai TV, Ho SV, Nguyen TT, Vo LTT. Hypermethylation at 45S rDNA promoter in cancers. PLoS One 2025; 20:e0311085. [PMID: 39775079 PMCID: PMC11706406 DOI: 10.1371/journal.pone.0311085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 09/11/2024] [Indexed: 01/11/2025] Open
Abstract
The ribosomal genes (rDNA genes) encode 47S rRNA which accounts for up to 80% of all cellular RNA. At any given time, no more than 50% of rDNA genes are actively transcribed, and the other half is silent by forming heterochromatin structures through DNA methylation. In cancer cells, upregulation of ribosome biogenesis has been recognized as a hallmark feature, thus, the reduced methylation of rDNA promoter has been thought to support conformational changes of chromatin accessibility and the subsequent increase in rDNA transcription. However, an increase in the heterochromatin state through rDNA hypermethylation can be a protective mechanism teetering on the brink of a threshold where cancer cells rarely successfully proliferate. Hence, clarifying hypo- or hypermethylation of rDNA will unravel its additional cellular functions, including organization of genome architecture and regulation of gene expression, in response to growth signaling, cellular stressors, and carcinogenesis. Using the bisulfite-based quantitative real-time methylation-specific PCR (qMSP) method after ensuring unbiased amplification and complete bisulfite conversion of the minuscule DNA amount of 1 ng, we established that the rDNA promoter was significantly hypermethylated in 107 breast, 65 lung, and 135 colon tumour tissue samples (46.81%, 51.02% and 96.60%, respectively) as compared with their corresponding adjacent normal samples (26.84%, 38.26% and 77.52%, respectively; p < 0.0001). An excessive DNA input of 1 μg resulted in double-stranded rDNA remaining unconverted even after bisulfite conversion, hence the dramatic drop in the single-stranded DNA that strictly required for bisulfite conversion, and leading to an underestimation of rDNA promoter methylation, in other words, a faulty hypomethylation status of the rDNA promoter. Our results are in line with the hypothesis that an increase in rDNA methylation is a natural pathway protecting rDNA repeats that are extremely sensitive to DNA damage in cancer cells.
Collapse
Affiliation(s)
- Trang Thi Quynh Tran
- Faculty of Biology, VNU University of Science, Vietnam National University, Hanoi, Vietnam
- VNU Institute of Microbiology and Biotechnology
| | - Trang Hien Do
- Faculty of Biology, VNU University of Science, Vietnam National University, Hanoi, Vietnam
| | - Tung The Pham
- Faculty of Biology, VNU University of Science, Vietnam National University, Hanoi, Vietnam
| | - Phương Thi Thu Luu
- Faculty of Biology, VNU University of Science, Vietnam National University, Hanoi, Vietnam
| | - Oanh Minh Pham
- Faculty of Biology, VNU University of Science, Vietnam National University, Hanoi, Vietnam
| | | | | | | | | | - Son Van Ho
- Department of Chemistry, 175 Hospital, Ho Chi Minh City, Vietnam
| | - Than Thi Nguyen
- Department of Chemistry, 175 Hospital, Ho Chi Minh City, Vietnam
| | - Lan Thi Thuong Vo
- Faculty of Biology, VNU University of Science, Vietnam National University, Hanoi, Vietnam
- VNU Institute of Microbiology and Biotechnology
| |
Collapse
|
2
|
Nelson JO, Slicko A, Raz AA, Yamashita YM. Insulin signaling regulates R2 retrotransposon expression to orchestrate transgenerational rDNA copy number maintenance. Nat Commun 2025; 16:399. [PMID: 39755735 DOI: 10.1038/s41467-024-55725-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 12/20/2024] [Indexed: 01/06/2025] Open
Abstract
Preserving a large number of essential yet highly unstable ribosomal DNA (rDNA) repeats is critical for the germline to perpetuate the genome through generations. Spontaneous rDNA loss must be countered by rDNA copy number (CN) expansion. Germline rDNA CN expansion is best understood in Drosophila melanogaster, which relies on unequal sister chromatid exchange (USCE) initiated by DNA breaks at rDNA. The rDNA-specific retrotransposon R2 responsible for USCE-inducing DNA breaks is typically expressed only when rDNA CN is low to minimize the danger of DNA breaks; however, the underlying mechanism of R2 regulation remains unclear. Here we identify the insulin receptor (InR) as a major repressor of R2 expression, limiting unnecessary R2 activity. Through single-cell RNA sequencing, we find that male germline stem cells (GSCs), the major cell type that undergoes rDNA CN expansion, have reduced InR expression when rDNA CN is low. Reduced InR activity in turn leads to R2 expression and CN expansion. We further find that dietary manipulation alters R2 expression and rDNA CN expansion activity. This work reveals that the insulin pathway integrates rDNA CN surveying with environmental sensing, revealing a potential mechanism by which diet exerts heritable changes to genomic content.
Collapse
Affiliation(s)
- Jonathan O Nelson
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, USA.
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Cambridge, MA, USA.
| | - Alyssa Slicko
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Howard Hughes Medical Institute, Cambridge, MA, USA
| | - Amelie A Raz
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Howard Hughes Medical Institute, Cambridge, MA, USA
| | - Yukiko M Yamashita
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Cambridge, MA, USA.
- Department of Biology, MIT, Cambridge, MA, USA.
| |
Collapse
|
3
|
Liu J, Li Q, Hu Y, Yu Y, Zheng K, Li D, Qin L, Yu X. The complete telomere-to-telomere sequence of a mouse genome. Science 2024; 386:1141-1146. [PMID: 39636971 DOI: 10.1126/science.adq8191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 10/24/2024] [Indexed: 12/07/2024]
Abstract
The current reference genome of Mus musculus, GRCm39, has major gaps in both euchromatic and heterochromatic regions associated with repetitive sequences. In this work, we have sequenced and assembled the telomere-to-telomere genome of mouse haploid embryonic stem cells. The results reveal more than 7.7% of previously uncovered sequences of the mouse genome, including ribosomal DNA arrays and pericentromeric and subtelomeric regions, as well as an additional 140 genes predicted to be protein-coding. This study helps to address knowledge gaps in the mouse genome.
Collapse
Affiliation(s)
- Junli Liu
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Qilin Li
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Yixuan Hu
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Yi Yu
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Kai Zheng
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Dengfeng Li
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Lexin Qin
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Xiaochun Yu
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| |
Collapse
|
4
|
Qiu GH, Fu M, Zheng X, Huang C. Protection of the genome and the central exome by peripheral non-coding DNA against DNA damage in health, ageing and age-related diseases. Biol Rev Camb Philos Soc 2024. [PMID: 39327815 DOI: 10.1111/brv.13151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 09/15/2024] [Accepted: 09/18/2024] [Indexed: 09/28/2024]
Abstract
DNA in eukaryotic genomes is under constant assault from both exogenous and endogenous sources, leading to DNA damage, which is considered a major molecular driver of ageing. Fortunately, the genome and the central exome are safeguarded against these attacks by abundant peripheral non-coding DNA. Non-coding DNA codes for small non-coding RNAs that inactivate foreign nucleic acids in the cytoplasm and physically blocks these attacks in the nucleus. Damage to non-coding DNA produced during such blockage is removed in the form of extrachromosomal circular DNA (eccDNA) through nucleic pore complexes. Consequently, non-coding DNA serves as a line of defence for the exome against DNA damage. The total amount of non-coding DNA/heterochromatin declines with age, resulting in a decrease in both physical blockage and eccDNA exclusion, and thus an increase in the accumulation of DNA damage in the nucleus during ageing and in age-related diseases. Here, we summarize recent evidence supporting a protective role of non-coding DNA in healthy and pathological states and argue that DNA damage is the proximate cause of ageing and age-related genetic diseases. Strategies aimed at strengthening the protective role of non-coding DNA/heterochromatin could potentially offer better systematic protection for the dynamic genome and the exome against diverse assaults, reduce the burden of DNA damage to the exome, and thus slow ageing, counteract age-related genetic diseases and promote a healthier life for individuals.
Collapse
Affiliation(s)
- Guo-Hua Qiu
- College of Life Sciences, Longyan University, Longyan, 364012, People's Republic of China
- Fujian Provincial Key Laboratory of Preventive Veterinary Medicine and Biotechnology, Engineering Research Center for the Prevention and Control of Animal-Origin Zoonosis, Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Fujian Province Universities, Longyan, People's Republic of China
| | - Mingjun Fu
- College of Life Sciences, Longyan University, Longyan, 364012, People's Republic of China
- Fujian Provincial Key Laboratory of Preventive Veterinary Medicine and Biotechnology, Engineering Research Center for the Prevention and Control of Animal-Origin Zoonosis, Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Fujian Province Universities, Longyan, People's Republic of China
| | - Xintian Zheng
- College of Life Sciences, Longyan University, Longyan, 364012, People's Republic of China
- Fujian Provincial Key Laboratory of Preventive Veterinary Medicine and Biotechnology, Engineering Research Center for the Prevention and Control of Animal-Origin Zoonosis, Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Fujian Province Universities, Longyan, People's Republic of China
| | - Cuiqin Huang
- College of Life Sciences, Longyan University, Longyan, 364012, People's Republic of China
- Fujian Provincial Key Laboratory of Preventive Veterinary Medicine and Biotechnology, Engineering Research Center for the Prevention and Control of Animal-Origin Zoonosis, Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Fujian Province Universities, Longyan, People's Republic of China
| |
Collapse
|
5
|
Potapova T, Kostos P, McKinney S, Borchers M, Haug J, Guarracino A, Solar S, Gogol M, Monfort Anez G, de Lima LG, Wang Y, Hall K, Hoffman S, Garrison E, Phillippy AM, Gerton JL. Epigenetic control and inheritance of rDNA arrays. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.13.612795. [PMID: 39372739 PMCID: PMC11451732 DOI: 10.1101/2024.09.13.612795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Ribosomal RNA (rRNA) genes exist in multiple copies arranged in tandem arrays known as ribosomal DNA (rDNA). The total number of gene copies is variable, and the mechanisms buffering this copy number variation remain unresolved. We surveyed the number, distribution, and activity of rDNA arrays at the level of individual chromosomes across multiple human and primate genomes. Each individual possessed a unique fingerprint of copy number distribution and activity of rDNA arrays. In some cases, entire rDNA arrays were transcriptionally silent. Silent rDNA arrays showed reduced association with the nucleolus and decreased interchromosomal interactions, indicating that the nucleolar organizer function of rDNA depends on transcriptional activity. Methyl-sequencing of flow-sorted chromosomes, combined with long read sequencing, showed epigenetic modification of rDNA promoter and coding region by DNA methylation. Silent arrays were in a closed chromatin state, as indicated by the accessibility profiles derived from Fiber-seq. Removing DNA methylation restored the transcriptional activity of silent arrays. Array activity status remained stable through the iPS cell re-programming. Family trio analysis demonstrated that the inactive rDNA haplotype can be traced to one of the parental genomes, suggesting that the epigenetic state of rDNA arrays may be heritable. We propose that the dosage of rRNA genes is epigenetically regulated by DNA methylation, and these methylation patterns specify nucleolar organizer function and can propagate transgenerationally.
Collapse
Affiliation(s)
- Tamara Potapova
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Paxton Kostos
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Sean McKinney
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | | | - Jeff Haug
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Andrea Guarracino
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Steven Solar
- Genome Informatics Section, Center for Genomics and Data Science Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Madelaine Gogol
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | | | | | - Yan Wang
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Kate Hall
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | | | - Erik Garrison
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Adam M. Phillippy
- Genome Informatics Section, Center for Genomics and Data Science Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jennifer L. Gerton
- Stowers Institute for Medical Research, Kansas City, MO, USA
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
6
|
Rothschild D, Susanto TT, Sui X, Spence JP, Rangan R, Genuth NR, Sinnott-Armstrong N, Wang X, Pritchard JK, Barna M. Diversity of ribosomes at the level of rRNA variation associated with human health and disease. CELL GENOMICS 2024; 4:100629. [PMID: 39111318 PMCID: PMC11480859 DOI: 10.1016/j.xgen.2024.100629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/07/2024] [Accepted: 07/14/2024] [Indexed: 09/14/2024]
Abstract
With hundreds of copies of rDNA, it is unknown whether they possess sequence variations that form different types of ribosomes. Here, we developed an algorithm for long-read variant calling, termed RGA, which revealed that variations in human rDNA loci are predominantly insertion-deletion (indel) variants. We developed full-length rRNA sequencing (RIBO-RT) and in situ sequencing (SWITCH-seq), which showed that translating ribosomes possess variation in rRNA. Over 1,000 variants are lowly expressed. However, tens of variants are abundant and form distinct rRNA subtypes with different structures near indels as revealed by long-read rRNA structure probing coupled to dimethyl sulfate sequencing. rRNA subtypes show differential expression in endoderm/ectoderm-derived tissues, and in cancer, low-abundance rRNA variants can become highly expressed. Together, this study identifies the diversity of ribosomes at the level of rRNA variants, their chromosomal location, and unique structure as well as the association of ribosome variation with tissue-specific biology and cancer.
Collapse
Affiliation(s)
- Daphna Rothschild
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | | | - Xin Sui
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jeffrey P Spence
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Ramya Rangan
- Biophysics Program, Stanford University, Stanford, CA 94305, USA
| | - Naomi R Genuth
- Department of Genetics, Stanford University, Stanford, CA 94305, USA; Department of Biology, Stanford University, Stanford, CA 94305, USA
| | | | - Xiao Wang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jonathan K Pritchard
- Department of Genetics, Stanford University, Stanford, CA 94305, USA; Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Maria Barna
- Department of Genetics, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
7
|
Gál Z, Boukoura S, Oxe KC, Badawi S, Nieto B, Korsholm LM, Geisler SB, Dulina E, Rasmussen AV, Dahl C, Lv W, Xu H, Pan X, Arampatzis S, Stratou DE, Galanos P, Lin L, Guldberg P, Bartek J, Luo Y, Larsen DH. Hyper-recombination in ribosomal DNA is driven by long-range resection-independent RAD51 accumulation. Nat Commun 2024; 15:7797. [PMID: 39242676 PMCID: PMC11379943 DOI: 10.1038/s41467-024-52189-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 08/28/2024] [Indexed: 09/09/2024] Open
Abstract
Ribosomal DNA (rDNA) encodes the ribosomal RNA genes and represents an intrinsically unstable genomic region. However, the underlying mechanisms and implications for genome integrity remain elusive. Here, we use Bloom syndrome (BS), a rare genetic disease characterized by DNA repair defects and hyper-unstable rDNA, as a model to investigate the mechanisms leading to rDNA instability. We find that in Bloom helicase (BLM) proficient cells, the homologous recombination (HR) pathway in rDNA resembles that in nuclear chromatin; it is initiated by resection, replication protein A (RPA) loading and BRCA2-dependent RAD51 filament formation. However, BLM deficiency compromises RPA-loading and BRCA1/2 recruitment to rDNA, but not RAD51 accumulation. RAD51 accumulates at rDNA despite depletion of long-range resection nucleases and rDNA damage results in micronuclei when BLM is absent. In summary, our findings indicate that rDNA is permissive to RAD51 accumulation in the absence of BLM, leading to micronucleation and potentially global genomic instability.
Collapse
Affiliation(s)
- Zita Gál
- Nucleolar Stress and Disease Group, Danish Cancer Institute, 2100, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Blegdamsvej 3B, DK-2200, Copenhagen, Denmark
| | - Stavroula Boukoura
- Nucleolar Stress and Disease Group, Danish Cancer Institute, 2100, Copenhagen, Denmark
| | - Kezia Catharina Oxe
- Nucleolar Stress and Disease Group, Danish Cancer Institute, 2100, Copenhagen, Denmark
| | - Sara Badawi
- Nucleolar Stress and Disease Group, Danish Cancer Institute, 2100, Copenhagen, Denmark
| | - Blanca Nieto
- Nucleolar Stress and Disease Group, Danish Cancer Institute, 2100, Copenhagen, Denmark
| | - Lea Milling Korsholm
- Nucleolar Stress and Disease Group, Danish Cancer Institute, 2100, Copenhagen, Denmark
- Genome Integrity Group, Danish Cancer Institute, 2100, Copenhagen, Denmark
- Center for Genomic Medicine, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | | | - Ekaterina Dulina
- Nucleolar Stress and Disease Group, Danish Cancer Institute, 2100, Copenhagen, Denmark
- Genome Integrity Group, Danish Cancer Institute, 2100, Copenhagen, Denmark
| | | | - Christina Dahl
- Molecular Diagnostics, Danish Cancer Institute, 2100, Copenhagen, Denmark
| | - Wei Lv
- Department of Biomedicine, Aarhus University, Aarhus, 8000, Denmark
| | - Huixin Xu
- Department of Biomedicine, Aarhus University, Aarhus, 8000, Denmark
| | - Xiaoguang Pan
- Department of Biology, University of Copenhagen, Copenhagen N, DK-2200, Denmark
| | | | | | - Panagiotis Galanos
- Genome Integrity Group, Danish Cancer Institute, 2100, Copenhagen, Denmark
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Lin Lin
- Department of Biomedicine, Aarhus University, Aarhus, 8000, Denmark
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, 8200, Denmark
| | - Per Guldberg
- Molecular Diagnostics, Danish Cancer Institute, 2100, Copenhagen, Denmark
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, 5000, Denmark
| | - Jiri Bartek
- Genome Integrity Group, Danish Cancer Institute, 2100, Copenhagen, Denmark
- Karolinska Institutet, Department of Medical Biochemistry and Biophysics, Division of Genome Biology, Science for Life Laboratory, Stockholm, Sweden
| | - Yonglun Luo
- Department of Biomedicine, Aarhus University, Aarhus, 8000, Denmark
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, 8200, Denmark
- Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI-Qingdao, BGI-Shenzhen, Qingdao, 266555, China
| | - Dorthe H Larsen
- Nucleolar Stress and Disease Group, Danish Cancer Institute, 2100, Copenhagen, Denmark.
| |
Collapse
|
8
|
Elguweidi A, Crease T. Copy number and sequence variation in rDNA of Daphnia pulex from natural populations: insights from whole-genome sequencing. G3 (BETHESDA, MD.) 2024; 14:jkae105. [PMID: 38771699 PMCID: PMC11228840 DOI: 10.1093/g3journal/jkae105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 02/17/2024] [Accepted: 05/10/2024] [Indexed: 05/23/2024]
Abstract
Ribosomal DNA (rDNA) has a vital role in ribosome biogenesis as it contains the genes that encode ribosomal RNA (rRNA) separated by intergenic spacers (IGSs). The rRNA genes occur in hundreds to tens of thousands of copies per haploid genome in eukaryotes and are generally highly conserved with low variation within species. Due to the repetitive nature and large size of rDNA arrays, detecting intraindividual variation can be difficult. In this study, we use whole-genome sequences of 169 Daphnia pulex individuals from 10 natural populations to measure the copy number and sequence variation in rDNA. This revealed that variation in rDNA copy number between individuals spans an order of magnitude. We further observed a substantial level of sequence variation within individual genomes. As expected, single-nucleotide polymorphisms occurred in regions of lower functional constraint such as the IGS and expansion segments of the rRNA genes. The presence of strong linkage disequilibrium among variants facilitated identification of haplotypes within each population. Although there was evidence of recombination among haplotypes from different populations, it is insufficient to eliminate linkage disequilibrium within populations. Estimating copy number and haplotype diversity within individuals revealed that the level of intraindividual sequence variation is not strongly correlated with copy number. The observed patterns of variation highlight a complex evolutionary history of rDNA in D. pulex. Future research should explore the functional implications of rDNA copy number and sequence variation on organismal phenotypes.
Collapse
Affiliation(s)
- Abir Elguweidi
- Department of Integrative Biology, University of Guelph, Guelph, ON, N1G2W1, Canada
| | - Teresa Crease
- Department of Integrative Biology, University of Guelph, Guelph, ON, N1G2W1, Canada
| |
Collapse
|
9
|
Kindelay SM, Maggert KA. Insights into ribosomal DNA dominance and magnification through characterization of isogenic deletion alleles. Genetics 2024; 227:iyae063. [PMID: 38797870 DOI: 10.1093/genetics/iyae063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 04/02/2024] [Indexed: 05/29/2024] Open
Abstract
The major loci for the large primary ribosomal RNA (rRNA) genes (35S rRNAs) exist as hundreds to thousands of tandem repeats in all organisms and dozens to hundreds in Drosophila. The highly repetitive nature of the ribosomal DNA (rDNA) makes it intrinsically unstable, and many conditions arise from the reduction in or magnification of copy number, but the conditions under which it does so remain unknown. By targeted DNA damage to the rDNA of the Y chromosome, we created and investigated a series of rDNA alleles. We found that complete loss of rDNA leads to lethality after the completion of embryogenesis, blocking larval molting and metamorphosis. We find that the resident retrotransposons-R1 and R2-are regulated by active rDNA such that reduction in copy number derepresses these elements. Their expression is highest during the early first instar, when loss of rDNA is lethal. Regulation of R1 and R2 may be related to their structural arrangement within the rDNA, as we find they are clustered in the flanks of the nucleolus organizing region (NOR; the cytological appearance of the rDNA). We assessed the complex nucleolar dominance relationship between X- and Y-linked rDNA using a histone H3.3-GFP reporter construct and incorporation at the NOR and found that dominance is controlled by rDNA copy number as at high multiplicity the Y-linked array is dominant, but at low multiplicity the X-linked array becomes derepressed. Finally, we found that multiple conditions that disrupt nucleolar dominance lead to increased rDNA magnification, suggesting that the phenomena of dominance and magnification are related, and a single mechanism may underlie and unify these two longstanding observations in Drosophila.
Collapse
Affiliation(s)
- Selina M Kindelay
- Genetics Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ, 85721, USA
| | - Keith A Maggert
- Genetics Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ, 85721, USA
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ, 85721, USA
| |
Collapse
|
10
|
Law PP, Mikheeva LA, Rodriguez-Algarra F, Asenius F, Gregori M, Seaborne RAE, Yildizoglu S, Miller JRC, Tummala H, Mesnage R, Antoniou MN, Li W, Tan Q, Hillman SL, Rakyan VK, Williams DJ, Holland ML. Ribosomal DNA copy number is associated with body mass in humans and other mammals. Nat Commun 2024; 15:5006. [PMID: 38866738 PMCID: PMC11169392 DOI: 10.1038/s41467-024-49397-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 06/03/2024] [Indexed: 06/14/2024] Open
Abstract
Body mass results from a complex interplay between genetics and environment. Previous studies of the genetic contribution to body mass have excluded repetitive regions due to the technical limitations of platforms used for population scale studies. Here we apply genome-wide approaches, identifying an association between adult body mass and the copy number (CN) of 47S-ribosomal DNA (rDNA). rDNA codes for the 18 S, 5.8 S and 28 S ribosomal RNA (rRNA) components of the ribosome. In mammals, there are hundreds of copies of these genes. Inter-individual variation in the rDNA CN has not previously been associated with a mammalian phenotype. Here, we show that rDNA CN variation associates with post-pubertal growth rate in rats and body mass index in adult humans. rDNA CN is not associated with rRNA transcription rates in adult tissues, suggesting the mechanistic link occurs earlier in development. This aligns with the observation that the association emerges by early adulthood.
Collapse
Affiliation(s)
- Pui Pik Law
- Department of Medical and Molecular Genetics, School of Basic and Medical Biosciences, King's College London, London, UK
- The Blizard Institute, School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Liudmila A Mikheeva
- Department of Medical and Molecular Genetics, School of Basic and Medical Biosciences, King's College London, London, UK
| | | | - Fredrika Asenius
- UCL EGA Institute for Women's Health, University College London, London, UK
| | - Maria Gregori
- UCL EGA Institute for Women's Health, University College London, London, UK
| | - Robert A E Seaborne
- The Blizard Institute, School of Medicine and Dentistry, Queen Mary University of London, London, UK
- Centre for Human and Applied Physiological Studies, King's College London, London, UK
| | - Selin Yildizoglu
- The Blizard Institute, School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - James R C Miller
- Department of Medical and Molecular Genetics, School of Basic and Medical Biosciences, King's College London, London, UK
| | - Hemanth Tummala
- The Blizard Institute, School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Robin Mesnage
- Department of Medical and Molecular Genetics, School of Basic and Medical Biosciences, King's College London, London, UK
| | - Michael N Antoniou
- Department of Medical and Molecular Genetics, School of Basic and Medical Biosciences, King's College London, London, UK
| | - Weilong Li
- Population Research Unit, University of Helsinki, Helsinki, Finland
| | - Qihua Tan
- Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, Copenhagen, Denmark
| | - Sara L Hillman
- UCL EGA Institute for Women's Health, University College London, London, UK
| | - Vardhman K Rakyan
- The Blizard Institute, School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - David J Williams
- UCL EGA Institute for Women's Health, University College London, London, UK
| | - Michelle L Holland
- Department of Medical and Molecular Genetics, School of Basic and Medical Biosciences, King's College London, London, UK.
| |
Collapse
|
11
|
Rodriguez-Algarra F, Evans DM, Rakyan VK. Ribosomal DNA copy number variation associates with hematological profiles and renal function in the UK Biobank. CELL GENOMICS 2024; 4:100562. [PMID: 38749448 PMCID: PMC11228893 DOI: 10.1016/j.xgen.2024.100562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/19/2023] [Accepted: 04/21/2024] [Indexed: 06/15/2024]
Abstract
The phenotypic impact of genetic variation of repetitive features in the human genome is currently understudied. One such feature is the multi-copy 47S ribosomal DNA (rDNA) that codes for rRNA components of the ribosome. Here, we present an analysis of rDNA copy number (CN) variation in the UK Biobank (UKB). From the first release of UKB whole-genome sequencing (WGS) data, a discovery analysis in White British individuals reveals that rDNA CN associates with altered counts of specific blood cell subtypes, such as neutrophils, and with the estimated glomerular filtration rate, a marker of kidney function. Similar trends are observed in other ancestries. A range of analyses argue against reverse causality or common confounder effects, and all core results replicate in the second UKB WGS release. Our work demonstrates that rDNA CN is a genetic influence on trait variance in humans.
Collapse
Affiliation(s)
| | - David M Evans
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia; Frazer Institute, The University of Queensland, Brisbane, QLD 4102, Australia; MRC Integrative Epidemiology Unit, University of Bristol, Bristol BS8 2BN, UK
| | - Vardhman K Rakyan
- The Blizard Institute, School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK.
| |
Collapse
|
12
|
Rothschild D, Susanto TT, Sui X, Spence JP, Rangan R, Genuth NR, Sinnott-Armstrong N, Wang X, Pritchard JK, Barna M. Diversity of ribosomes at the level of rRNA variation associated with human health and disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.01.30.526360. [PMID: 36778251 PMCID: PMC9915487 DOI: 10.1101/2023.01.30.526360] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Ribosomal DNA and RNA (rDNA and rRNA) sequences are usually discarded from sequencing analyses. But with hundreds of copies of rDNA genes it is unknown whether they possess sequence variations that form different types of ribosomes that affect human physiology and disease. Here, we developed an algorithm for variant-calling between paralog genes (termed RGA) and compared rDNA variations found in short- and long-read sequencing data from the 1,000 Genomes Project (1KGP) and Genome In A Bottle (GIAB). We additionally developed a novel protocol for long-read sequencing full-length rRNA (RIBO-RT) from actively translating ribosomes. Our analyses identified hundreds of rDNA variants, most of which, surprisingly, are short insertion-deletions (indels) and dozens of highly abundant rRNA variants that are incorporated into translationally active ribosomes. To visualize variant ribosomes at the single cell level, we developed an in-situ rRNA sequencing method (SWITCH-seq) which revealed that variants are co-expressed within individual cells. Strikingly, by analyzing rDNA, we found that variants assemble into distinct ribosome subtypes. We discovered that these subtypes acquire different rRNA structures by successfully employing dimethyl sulfate (DMS) probing of full length rRNA. With this atlas we investigated rRNA variation changes across human tissues and cancer types. This revealed tissue-specific rRNA subtype expression in endoderm/ectoderm-derived tissues. In cancer, low abundant rRNA variants can become highly expressed, which suggests the presence of cancer-specific ribosomes. Together, this study identifies and comprehensively characterizes the diversity of ribosomes at the level of rRNA variants which is dominated by indel variants, their chromosomal location and unique structure as well as the association of ribosome variation with tissue-specific biology and cancer.
Collapse
|
13
|
Kim JH, Nagaraja R, Ogurtsov AY, Noskov VN, Liskovykh M, Lee HS, Hori Y, Kobayashi T, Hunter K, Schlessinger D, Kouprina N, Shabalina SA, Larionov V. Comparative analysis and classification of highly divergent mouse rDNA units based on their intergenic spacer (IGS) variability. NAR Genom Bioinform 2024; 6:lqae070. [PMID: 38881577 PMCID: PMC11177557 DOI: 10.1093/nargab/lqae070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/20/2024] [Accepted: 06/05/2024] [Indexed: 06/18/2024] Open
Abstract
Ribosomal DNA (rDNA) repeat units are organized into tandem clusters in eukaryotic cells. In mice, these clusters are located on at least eight chromosomes and show extensive variation in the number of repeats between mouse genomes. To analyze intra- and inter-genomic variation of mouse rDNA repeats, we selectively isolated 25 individual rDNA units using Transformation-Associated Recombination (TAR) cloning. Long-read sequencing and subsequent comparative sequence analysis revealed that each full-length unit comprises an intergenic spacer (IGS) and a ∼13.4 kb long transcribed region encoding the three rRNAs, but with substantial variability in rDNA unit size, ranging from ∼35 to ∼46 kb. Within the transcribed regions of rDNA units, we found 209 variants, 70 of which are in external transcribed spacers (ETSs); but the rDNA size differences are driven primarily by IGS size heterogeneity, due to indels containing repetitive elements and some functional signals such as enhancers. Further evolutionary analysis categorized rDNA units into distinct clusters with characteristic IGS lengths; numbers of enhancers; and presence/absence of two common SNPs in promoter regions, one of which is located within promoter (p)RNA and may influence pRNA folding stability. These characteristic features of IGSs also correlated significantly with 5'ETS variant patterns described previously and associated with differential expression of rDNA units. Our results suggest that variant rDNA units are differentially regulated and open a route to investigate the role of rDNA variation on nucleolar formation and possible associations with pathology.
Collapse
Affiliation(s)
- Jung-Hyun Kim
- National Cancer Institute, Developmental Therapeutics Branch, Bethesda, MD, USA
| | - Ramaiah Nagaraja
- National Institute of Aging, Laboratory of Genetics and Genomics, Baltimore, MD, USA
| | - Alexey Y Ogurtsov
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD, USA
| | - Vladimir N Noskov
- National Cancer Institute, Developmental Therapeutics Branch, Bethesda, MD, USA
| | - Mikhail Liskovykh
- National Cancer Institute, Developmental Therapeutics Branch, Bethesda, MD, USA
| | - Hee-Sheung Lee
- National Cancer Institute, Developmental Therapeutics Branch, Bethesda, MD, USA
| | - Yutaro Hori
- The University of Tokyo, Laboratory of Genome Regeneration, Tokyo 113-0032, Japan
| | - Takehiko Kobayashi
- The University of Tokyo, Laboratory of Genome Regeneration, Tokyo 113-0032, Japan
| | - Kent Hunter
- National Cancer Institute, Laboratory of Cancer Biology and Genetics, Bethesda, MD, USA
| | - David Schlessinger
- National Institute of Aging, Laboratory of Genetics and Genomics, Baltimore, MD, USA
| | - Natalay Kouprina
- National Cancer Institute, Developmental Therapeutics Branch, Bethesda, MD, USA
| | - Svetlana A Shabalina
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD, USA
| | - Vladimir Larionov
- National Cancer Institute, Developmental Therapeutics Branch, Bethesda, MD, USA
| |
Collapse
|
14
|
Hwang SP, Denicourt C. The impact of ribosome biogenesis in cancer: from proliferation to metastasis. NAR Cancer 2024; 6:zcae017. [PMID: 38633862 PMCID: PMC11023387 DOI: 10.1093/narcan/zcae017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/23/2024] [Accepted: 03/26/2024] [Indexed: 04/19/2024] Open
Abstract
The dysregulation of ribosome biogenesis is a hallmark of cancer, facilitating the adaptation to altered translational demands essential for various aspects of tumor progression. This review explores the intricate interplay between ribosome biogenesis and cancer development, highlighting dynamic regulation orchestrated by key oncogenic signaling pathways. Recent studies reveal the multifaceted roles of ribosomes, extending beyond protein factories to include regulatory functions in mRNA translation. Dysregulated ribosome biogenesis not only hampers precise control of global protein production and proliferation but also influences processes such as the maintenance of stem cell-like properties and epithelial-mesenchymal transition, contributing to cancer progression. Interference with ribosome biogenesis, notably through RNA Pol I inhibition, elicits a stress response marked by nucleolar integrity loss, and subsequent G1-cell cycle arrest or cell death. These findings suggest that cancer cells may rely on heightened RNA Pol I transcription, rendering ribosomal RNA synthesis a potential therapeutic vulnerability. The review further explores targeting ribosome biogenesis vulnerabilities as a promising strategy to disrupt global ribosome production, presenting therapeutic opportunities for cancer treatment.
Collapse
Affiliation(s)
- Sseu-Pei Hwang
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center, Houston, TX 77030, USA
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Catherine Denicourt
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center, Houston, TX 77030, USA
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| |
Collapse
|
15
|
Zhang W, Song X, Jin Z, Zhang Y, Li S, Jin F, Zheng A. U2AF2-SNORA68 promotes triple-negative breast cancer stemness through the translocation of RPL23 from nucleoplasm to nucleolus and c-Myc expression. Breast Cancer Res 2024; 26:60. [PMID: 38594783 PMCID: PMC11005140 DOI: 10.1186/s13058-024-01817-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 03/26/2024] [Indexed: 04/11/2024] Open
Abstract
BACKGROUND Small nucleolar RNAs (snoRNAs) play key roles in ribosome biosynthesis. However, the mechanism by which snoRNAs regulate cancer stemness remains to be fully elucidated. METHODS SNORA68 expression was evaluated in breast cancer tissues by in situ hybridization and qRT‒PCR. Proliferation, migration, apoptosis and stemness analyses were used to determine the role of SNORA68 in carcinogenesis and stemness maintenance. Mechanistically, RNA pull-down, RNA immunoprecipitation (RIP), cell fractionation and coimmunoprecipitation assays were conducted. RESULTS SNORA68 exhibited high expression in triple-negative breast cancer (TNBC) and was significantly correlated with tumor size (P = 0.048), ki-67 level (P = 0.037), and TNM stage (P = 0.015). The plasma SNORA68 concentration was significantly lower in patients who achieved clinical benefit. The SNORA68-high patients had significantly shorter disease-free survival (DFS) (P = 0.036). Functionally, SNORA68 was found to promote the cell stemness and carcinogenesis of TNBC in vitro and in vivo. Furthermore, elevated SNORA68 expression led to increased nucleolar RPL23 expression and retained RPL23 in the nucleolus by binding U2AF2. RPL23 in the nucleolus subsequently upregulated c-Myc expression. This pathway was validated using a xenograft model. CONCLUSION U2AF2-SNORA68 promotes TNBC stemness by retaining RPL23 in the nucleolus and increasing c-Myc expression, which provides new insight into the regulatory mechanism of stemness.
Collapse
Affiliation(s)
- Wenrong Zhang
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Xinyue Song
- Department of Pharmacology, Liaoning Province Key Laboratory of Molecular Targeted Antitumour Drug Development and Evaluation, China Medical University, Shenyang, Liaoning Province, China
| | - Zining Jin
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Yiqi Zhang
- Department of Breast Surgery, The First Hospital of Jinzhou Medical University, Shenyang, Liaoning Province, China
| | - Shan Li
- Department of General Surgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Feng Jin
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, Liaoning Province, China.
| | - Ang Zheng
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, Liaoning Province, China.
| |
Collapse
|
16
|
Shatskikh AS, Fefelova EA, Klenov MS. Functions of RNAi Pathways in Ribosomal RNA Regulation. Noncoding RNA 2024; 10:19. [PMID: 38668377 PMCID: PMC11054153 DOI: 10.3390/ncrna10020019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/19/2024] [Accepted: 03/27/2024] [Indexed: 04/29/2024] Open
Abstract
Argonaute proteins, guided by small RNAs, play crucial roles in gene regulation and genome protection through RNA interference (RNAi)-related mechanisms. Ribosomal RNAs (rRNAs), encoded by repeated rDNA units, constitute the core of the ribosome being the most abundant cellular transcripts. rDNA clusters also serve as sources of small RNAs, which are loaded into Argonaute proteins and are able to regulate rDNA itself or affect other gene targets. In this review, we consider the impact of small RNA pathways, specifically siRNAs and piRNAs, on rRNA gene regulation. Data from diverse eukaryotic organisms suggest the potential involvement of small RNAs in various molecular processes related to the rDNA transcription and rRNA fate. Endogenous siRNAs are integral to the chromatin-based silencing of rDNA loci in plants and have been shown to repress rDNA transcription in animals. Small RNAs also play a role in maintaining the integrity of rDNA clusters and may function in the cellular response to rDNA damage. Studies on the impact of RNAi and small RNAs on rRNA provide vast opportunities for future exploration.
Collapse
Affiliation(s)
- Aleksei S. Shatskikh
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 26 Vavilov Street, 119334 Moscow, Russia;
| | - Elena A. Fefelova
- Institute of Molecular Genetics, Russian Academy of Sciences, 2 Kurchatov Sq., 123182 Moscow, Russia
| | - Mikhail S. Klenov
- Institute of Molecular Genetics, Russian Academy of Sciences, 2 Kurchatov Sq., 123182 Moscow, Russia
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| |
Collapse
|
17
|
Nelson JO, Slicko A, Raz AA, Yamashita YM. Insulin signaling regulates R2 retrotransposon expression to orchestrate transgenerational rDNA copy number maintenance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.28.582629. [PMID: 38464041 PMCID: PMC10925281 DOI: 10.1101/2024.02.28.582629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Preserving a large number of essential yet highly unstable ribosomal DNA (rDNA) repeats is critical for the germline to perpetuate the genome through generations. Spontaneous rDNA loss must be countered by rDNA copy number (CN) expansion. Germline rDNA CN expansion is best understood in Drosophila melanogaster, which relies on unequal sister chromatid exchange (USCE) initiated by DNA breaks at rDNA. The rDNA-specific retrotransposon R2 responsible for USCE-inducing DNA breaks is typically expressed only when rDNA CN is low to minimize the danger of DNA breaks; however, the underlying mechanism of R2 regulation remains unclear. Here we identify the insulin receptor (InR) as a major repressor of R2 expression, limiting unnecessary R2 activity. Through single-cell RNA sequencing we find that male germline stem cells (GSCs), the major cell type that undergoes rDNA CN expansion, have reduced InR expression when rDNA CN is low. Reduced InR activity in turn leads to R2 expression and CN expansion. We further find that dietary manipulation alters R2 expression and rDNA CN expansion activity. This work reveals that the insulin pathway integrates rDNA CN surveying with environmental sensing, revealing a potential mechanism by which diet exerts heritable changes to genomic content.
Collapse
Affiliation(s)
- Jonathan O Nelson
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY
- Whitehead Institute for Biomedical Research, Cambridge, MA
- Howard Hughes Medical Institute, Cambridge, MA
| | - Alyssa Slicko
- Whitehead Institute for Biomedical Research, Cambridge, MA
- Howard Hughes Medical Institute, Cambridge, MA
| | - Amelie A Raz
- Whitehead Institute for Biomedical Research, Cambridge, MA
- Howard Hughes Medical Institute, Cambridge, MA
| | - Yukiko M Yamashita
- Whitehead Institute for Biomedical Research, Cambridge, MA
- Howard Hughes Medical Institute, Cambridge, MA
- Department of Biology, MIT, Cambridge, MA
| |
Collapse
|
18
|
Gambelli A, Ferrando A, Boncristiani C, Schoeftner S. Regulation and function of R-loops at repetitive elements. Biochimie 2023; 214:141-155. [PMID: 37619810 DOI: 10.1016/j.biochi.2023.08.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/13/2023] [Accepted: 08/19/2023] [Indexed: 08/26/2023]
Abstract
R-loops are atypical, three-stranded nucleic acid structures that contain a stretch of RNA:DNA hybrids and an unpaired, single stranded DNA loop. R-loops are physiological relevant and can act as regulators of gene expression, chromatin structure, DNA damage repair and DNA replication. However, unscheduled and persistent R-loops are mutagenic and can mediate replication-transcription conflicts, leading to DNA damage and genome instability if left unchecked. Detailed transcriptome analysis unveiled that 85% of the human genome, including repetitive regions, hold transcriptional activity. This anticipates that R-loops management plays a central role for the regulation and integrity of genomes. This function is expected to have a particular relevance for repetitive sequences that make up to 75% of the human genome. Here, we review the impact of R-loops on the function and stability of repetitive regions such as centromeres, telomeres, rDNA arrays, transposable elements and triplet repeat expansions and discuss their relevance for associated pathological conditions.
Collapse
Affiliation(s)
- Alice Gambelli
- Dipartimento di Scienze della Vita, Università degli Studi di Trieste, Via E. Weiss 2, 34127, Trieste, Italy
| | - Alessandro Ferrando
- Dipartimento di Scienze della Vita, Università degli Studi di Trieste, Via E. Weiss 2, 34127, Trieste, Italy
| | - Chiara Boncristiani
- Dipartimento di Scienze della Vita, Università degli Studi di Trieste, Via E. Weiss 2, 34127, Trieste, Italy
| | - Stefan Schoeftner
- Dipartimento di Scienze della Vita, Università degli Studi di Trieste, Via E. Weiss 2, 34127, Trieste, Italy.
| |
Collapse
|
19
|
Theophanous A, Christodoulou A, Mattheou C, Sibai DS, Moss T, Santama N. Transcription factor UBF depletion in mouse cells results in downregulation of both downstream and upstream elements of the rRNA transcription network. J Biol Chem 2023; 299:105203. [PMID: 37660911 PMCID: PMC10558777 DOI: 10.1016/j.jbc.2023.105203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 08/20/2023] [Accepted: 08/24/2023] [Indexed: 09/05/2023] Open
Abstract
Transcription/processing of the ribosomal RNA (rRNA) precursor, as part of ribosome biosynthesis, is intensively studied and characterized in eukaryotic cells. Here, we constructed shRNA-based mouse cell lines partially silenced for the Upstream Binding Factor UBF, the master regulator of rRNA transcription and organizer of open rDNA chromatin. Full Ubf silencing in vivo is not viable, and these new tools allow further characterization of rRNA transcription and its coordination with cellular signaling. shUBF cells display cell cycle G1 delay and reduced 47S rRNA precursor and 28S rRNA at baseline and serum-challenged conditions. Growth-related mTOR signaling is downregulated with the fractions of active phospho-S6 Kinase and pEIF4E translation initiation factor reduced, similar to phosphorylated cell cycle regulator retinoblastoma, pRB, positive regulator of UBF availability/rRNA transcription. Additionally, we find transcription-competent pUBF (Ser484) severely restricted and its interacting initiation factor RRN3 reduced and responsive to extracellular cues. Furthermore, fractional UBF occupancy on the rDNA unit is decreased in shUBF, and expression of major factors involved in different aspects of rRNA transcription is severely downregulated by UBF depletion. Finally, we observe reduced RNA Pol1 occupancy over rDNA promoter sequences and identified unexpected regulation of RNA Pol1 expression, relative to serum availability and under UBF silencing, suggesting that regulation of rRNA transcription may not be restricted to modulation of Pol1 promoter binding/elongation rate. Overall, this work reveals that UBF depletion has a critical downstream and upstream impact on the whole network orchestrating rRNA transcription in mammalian cells.
Collapse
Affiliation(s)
- Andria Theophanous
- Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| | | | | | - Dany S Sibai
- Laboratory of Growth and Development, St-Patrick Research Group in Basic Oncology, Cancer Division of the Quebec University Hospital Research Centre, Quebec, Canada; Department of Molecular Biology, Medical Biochemistry and Pathology, Faculty of Medicine, Laval University, Quebec, Canada
| | - Tom Moss
- Laboratory of Growth and Development, St-Patrick Research Group in Basic Oncology, Cancer Division of the Quebec University Hospital Research Centre, Quebec, Canada; Department of Molecular Biology, Medical Biochemistry and Pathology, Faculty of Medicine, Laval University, Quebec, Canada
| | - Niovi Santama
- Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus.
| |
Collapse
|
20
|
Zylstra A, Hadj-Moussa H, Horkai D, Whale AJ, Piguet B, Houseley J. Senescence in yeast is associated with amplified linear fragments of chromosome XII rather than ribosomal DNA circle accumulation. PLoS Biol 2023; 21:e3002250. [PMID: 37643194 PMCID: PMC10464983 DOI: 10.1371/journal.pbio.3002250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 07/12/2023] [Indexed: 08/31/2023] Open
Abstract
The massive accumulation of extrachromosomal ribosomal DNA circles (ERCs) in yeast mother cells has been long cited as the primary driver of replicative ageing. ERCs arise through ribosomal DNA (rDNA) recombination, and a wealth of genetic data connects rDNA instability events giving rise to ERCs with shortened life span and other ageing pathologies. However, we understand little about the molecular effects of ERC accumulation. Here, we studied ageing in the presence and absence of ERCs, and unexpectedly found no evidence of gene expression differences that might indicate stress responses or metabolic feedback caused by ERCs. Neither did we observe any global change in the widespread disruption of gene expression that accompanies yeast ageing, altogether suggesting that ERCs are largely inert. Much of the differential gene expression that accompanies ageing in yeast was actually associated with markers of the senescence entry point (SEP), showing that senescence, rather than age, underlies these changes. Cells passed the SEP irrespective of ERCs, but we found the SEP to be associated with copy number amplification of a region of chromosome XII between the rDNA and the telomere (ChrXIIr) forming linear fragments up to approximately 1.8 Mb size, which arise in aged cells due to rDNA instability but through a different mechanism to ERCs. Therefore, although rDNA copy number increases dramatically with age due to ERC accumulation, our findings implicate ChrXIIr, rather than ERCs, as the primary driver of senescence during budding yeast ageing.
Collapse
Affiliation(s)
- Andre Zylstra
- Epigenetics Programme, Babraham Institute, Cambridge, United Kingdom
| | | | - Dorottya Horkai
- Epigenetics Programme, Babraham Institute, Cambridge, United Kingdom
| | - Alex J. Whale
- Epigenetics Programme, Babraham Institute, Cambridge, United Kingdom
| | - Baptiste Piguet
- Epigenetics Programme, Babraham Institute, Cambridge, United Kingdom
| | - Jonathan Houseley
- Epigenetics Programme, Babraham Institute, Cambridge, United Kingdom
| |
Collapse
|
21
|
Bâcle J, Groizard L, Kumanski S, Moriel-Carretero M. Nuclear envelope-remodeling events as models to assess the potential role of membranes on genome stability. FEBS Lett 2023; 597:1946-1956. [PMID: 37339935 DOI: 10.1002/1873-3468.14688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/31/2023] [Accepted: 05/31/2023] [Indexed: 06/22/2023]
Abstract
The nuclear envelope (NE) encloses the genetic material and functions in chromatin organization and stability. In Saccharomyces cerevisiae, the NE is bound to the ribosomal DNA (rDNA), highly repeated and transcribed, thus prone to genetic instability. While tethering limits instability, it simultaneously triggers notable NE remodeling. We posit here that NE remodeling may contribute to genome integrity maintenance. The NE importance in genome expression, structure, and integrity is well recognized, yet studies mostly focus on peripheral proteins and nuclear pores, not on the membrane itself. We recently characterized a NE invagination drastically obliterating the rDNA, which we propose here as a model to probe if and how membranes play an active role in genome stability preservation.
Collapse
Affiliation(s)
- Janélie Bâcle
- Centre de Recherche en Biologie cellulaire de Montpellier (CRBM), Centre National de la Recherche Scientifique, Université de Montpellier, France
| | - Léa Groizard
- Centre de Recherche en Biologie cellulaire de Montpellier (CRBM), Centre National de la Recherche Scientifique, Université de Montpellier, France
| | - Sylvain Kumanski
- Centre de Recherche en Biologie cellulaire de Montpellier (CRBM), Centre National de la Recherche Scientifique, Université de Montpellier, France
| | - María Moriel-Carretero
- Centre de Recherche en Biologie cellulaire de Montpellier (CRBM), Centre National de la Recherche Scientifique, Université de Montpellier, France
| |
Collapse
|
22
|
Zhao T, Sun D, Long K, Lemos B, Zhang Q, Man J, Zhao M, Zhang Z. N 6-methyladenosine upregulates ribosome biogenesis in environmental carcinogenesis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 881:163428. [PMID: 37061066 DOI: 10.1016/j.scitotenv.2023.163428] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/20/2023] [Accepted: 04/06/2023] [Indexed: 06/01/2023]
Abstract
Many trace metal pollutants in surface water, the atmosphere, and soil are carcinogenic, and ribosome biogenesis plays an important role in the carcinogenicity of heavy metals. However, the contradiction between upregulated ribosome biogenesis and decreased ribosomal DNA copy number in environmental carcinogenesis is not fully understood. Here, from a perspective of the most predominant and abundant RNA epigenetic modification, N6-methyladenosine (m6A), we explored the reason behind this contradiction at the post-transcriptional level using arsenite-induced skin carcinogenesis models both in vitro and in vivo. Based on the m6A microarray assay and a series of experiments, we found for the first time that the elevated m6A in arsenite-induced transformation is mainly enriched in the genes regulating ribosome biogenesis. m6A upregulates ribosome biogenesis post-transcriptionally by stabilizing ribosomal proteins and modulating non-coding RNAs targeting ribosomal RNAs and proteins, leading to arsenite-induced skin carcinogenesis. Using multi-omics analysis of human subjects and experimental validation, we identified an unconventional role of a well-known key proliferative signaling node AKT1 as a vital mediator between m6A and ribosome biogenesis in arsenic carcinogenesis. m6A activates AKT1 and transmits proliferative signals to ribosome biogenesis, exacerbating the upregulation of ribosome biogenesis in arsenite-transformed keratinocytes. Similarly, m6A promotes cell proliferation by upregulating ribosome biogenesis in cell transformation induced by carcinogenic heavy metals (chromium and nickel). Importantly, inhibiting m6A reduces ribosome biogenesis. Targeted inhibition of m6A-upregulated ribosome biogenesis effectively prevents cell transformation induced by trace metals (arsenic, chromium, and nickel). Our results reveal the mechanism of ribosome biogenesis upregulated by m6A in the carcinogenesis of trace metal pollutants. From the perspective of RNA epigenetics, our study improves our understanding of the contradiction between upregulated ribosome biogenesis and decreased ribosomal DNA copy number in the carcinogenesis of environmental carcinogens.
Collapse
Affiliation(s)
- Tianhe Zhao
- Department of Environmental and Occupational Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610000, Sichuan, China
| | - Donglei Sun
- Department of Environmental and Occupational Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610000, Sichuan, China
| | - Keyan Long
- Department of Environmental and Occupational Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610000, Sichuan, China
| | - Bernardo Lemos
- Department of Environmental Health & Molecular and Integrative Physiological Sciences Program, Harvard T.H. Chan School of Public Health, Boston 02108, MA, USA
| | - Qian Zhang
- Department of Environmental and Occupational Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610000, Sichuan, China
| | - Jin Man
- Department of Environmental and Occupational Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610000, Sichuan, China
| | - Manyu Zhao
- Department of Environmental and Occupational Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610000, Sichuan, China
| | - Zunzhen Zhang
- Department of Environmental and Occupational Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610000, Sichuan, China.
| |
Collapse
|
23
|
Morton EA, Hall AN, Cuperus JT, Queitsch C. Substantial rDNA copy number reductions alter timing of development and produce variable tissue-specific phenotypes in C. elegans. Genetics 2023; 224:iyad039. [PMID: 36919976 PMCID: PMC10474940 DOI: 10.1093/genetics/iyad039] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 03/16/2023] Open
Abstract
The genes that encode ribosomal RNAs are present in several hundred copies in most eukaryotes. These vast arrays of repetitive ribosomal DNA (rDNA) have been implicated not just in ribosome biogenesis, but also aging, cancer, genome stability, and global gene expression. rDNA copy number is highly variable among and within species; this variability is thought to associate with traits relevant to human health and disease. Here we investigate the phenotypic consequences of multicellular life at the lower bounds of rDNA copy number. We use the model Caenorhabditis elegans, which has previously been found to complete embryogenesis using only maternally provided ribosomes. We find that individuals with rDNA copy number reduced to ∼5% of wild type are capable of further development with variable penetrance. Such individuals are sterile and exhibit severe morphological defects, particularly in post-embryonically dividing tissues such as germline and vulva. Developmental completion and fertility are supported by an rDNA copy number ∼10% of wild type, with substantially delayed development. Worms with rDNA copy number reduced to ∼33% of wild type display a subtle developmental timing defect that was absent in worms with higher copy numbers. Our results support the hypothesis that rDNA requirements vary across tissues and indicate that the minimum rDNA copy number for fertile adulthood is substantially less than the lowest naturally observed total copy number. The phenotype of individuals with severely reduced rDNA copy number is highly variable in penetrance and presentation, highlighting the need for continued investigation into the biological consequences of rDNA copy number variation.
Collapse
Affiliation(s)
| | - Ashley N Hall
- Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI 53726, USA
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, USA
| | - Josh T Cuperus
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Christine Queitsch
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
24
|
Lopez FB, McKeown PC, Fort A, Brychkova G, Spillane C. The boys are back in town: Rethinking the function of ribosomal DNA repeats in the genomic era. MOLECULAR PLANT 2023; 16:514-516. [PMID: 36680344 DOI: 10.1016/j.molp.2023.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/06/2023] [Accepted: 01/17/2023] [Indexed: 06/17/2023]
Affiliation(s)
- Francesca B Lopez
- Genetics and Biotechnology Laboratory, Plant & AgriBiosciences Research Centre (PABC), Ryan Institute, University of Galway, H91 REW4 Galway, Ireland.
| | - Peter C McKeown
- Genetics and Biotechnology Laboratory, Plant & AgriBiosciences Research Centre (PABC), Ryan Institute, University of Galway, H91 REW4 Galway, Ireland
| | - Antoine Fort
- Genetics and Biotechnology Laboratory, Plant & AgriBiosciences Research Centre (PABC), Ryan Institute, University of Galway, H91 REW4 Galway, Ireland
| | - Galina Brychkova
- Genetics and Biotechnology Laboratory, Plant & AgriBiosciences Research Centre (PABC), Ryan Institute, University of Galway, H91 REW4 Galway, Ireland
| | - Charles Spillane
- Genetics and Biotechnology Laboratory, Plant & AgriBiosciences Research Centre (PABC), Ryan Institute, University of Galway, H91 REW4 Galway, Ireland.
| |
Collapse
|
25
|
Kindelay SM, Maggert KA. Under the magnifying glass: The ups and downs of rDNA copy number. Semin Cell Dev Biol 2023; 136:38-48. [PMID: 35595601 PMCID: PMC9976841 DOI: 10.1016/j.semcdb.2022.05.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/27/2022] [Accepted: 05/09/2022] [Indexed: 11/22/2022]
Abstract
The ribosomal DNA (rDNA) in Drosophila is found as two additive clusters of individual 35 S cistrons. The multiplicity of rDNA is essential to assure proper translational demands, but the nature of the tandem arrays expose them to copy number variation within and between populations. Here, we discuss means by which a cell responds to insufficient rDNA copy number, including a historical view of rDNA magnification whose mechanism was inferred some 35 years ago. Recent work has revealed that multiple conditions may also result in rDNA loss, in response to which rDNA magnification may have evolved. We discuss potential models for the mechanism of magnification, and evaluate possible consequences of rDNA copy number variation.
Collapse
Affiliation(s)
- Selina M Kindelay
- Genetics Graduate Interdisciplinary Program, The University of Arizona, Tucson, AZ 85724, USA
| | - Keith A Maggert
- Genetics Graduate Interdisciplinary Program, The University of Arizona, Tucson, AZ 85724, USA; Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, AZ 85724, USA.
| |
Collapse
|
26
|
Watt KE, Macintosh J, Bernard G, Trainor PA. RNA Polymerases I and III in development and disease. Semin Cell Dev Biol 2023; 136:49-63. [PMID: 35422389 PMCID: PMC9550887 DOI: 10.1016/j.semcdb.2022.03.027] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 12/18/2022]
Abstract
Ribosomes are macromolecular machines that are globally required for the translation of all proteins in all cells. Ribosome biogenesis, which is essential for cell growth, proliferation and survival, commences with transcription of a variety of RNAs by RNA Polymerases I and III. RNA Polymerase I (Pol I) transcribes ribosomal RNA (rRNA), while RNA Polymerase III (Pol III) transcribes 5S ribosomal RNA and transfer RNAs (tRNA) in addition to a wide variety of small non-coding RNAs. Interestingly, despite their global importance, disruptions in Pol I and Pol III function result in tissue-specific developmental disorders, with craniofacial anomalies and leukodystrophy/neurodegenerative disease being among the most prevalent. Furthermore, pathogenic variants in genes encoding subunits shared between Pol I and Pol III give rise to distinct syndromes depending on whether Pol I or Pol III function is disrupted. In this review, we discuss the global roles of Pol I and III transcription, the consequences of disruptions in Pol I and III transcription, disorders arising from pathogenic variants in Pol I and Pol III subunits, and mechanisms underpinning their tissue-specific phenotypes.
Collapse
Affiliation(s)
- Kristin En Watt
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Julia Macintosh
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada; Child Health and Human Development Program, Research Institute of the McGill University Health Center, Montreal, QC, Canada
| | - Geneviève Bernard
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada; Child Health and Human Development Program, Research Institute of the McGill University Health Center, Montreal, QC, Canada; Departments of Pediatrics and Human Genetics, McGill University, Montreal, QC, Canada; Department of Specialized Medicine, Division of Medical Genetics, McGill University Health Center, Montreal, QC, Canada.
| | - Paul A Trainor
- Stowers Institute for Medical Research, Kansas City, MO, USA; Department of Anatomy & Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
27
|
Kwan EX, Alvino GM, Lynch KL, Levan PF, Amemiya HM, Wang XS, Johnson SA, Sanchez JC, Miller MA, Croy M, Lee SB, Naushab M, Bedalov A, Cuperus JT, Brewer BJ, Queitsch C, Raghuraman MK. Ribosomal DNA replication time coordinates completion of genome replication and anaphase in yeast. Cell Rep 2023; 42:112161. [PMID: 36842087 PMCID: PMC10142053 DOI: 10.1016/j.celrep.2023.112161] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 12/19/2022] [Accepted: 02/09/2023] [Indexed: 02/27/2023] Open
Abstract
Timely completion of genome replication is a prerequisite for mitosis, genome integrity, and cell survival. A challenge to this timely completion comes from the need to replicate the hundreds of untranscribed copies of rDNA that organisms maintain in addition to the copies required for ribosome biogenesis. Replication of these rDNA arrays is relegated to late S phase despite their large size, repetitive nature, and essentiality. Here, we show that, in Saccharomyces cerevisiae, reducing the number of rDNA repeats leads to early rDNA replication, which results in delaying replication elsewhere in the genome. Moreover, cells with early-replicating rDNA arrays and delayed genome-wide replication aberrantly release the mitotic phosphatase Cdc14 from the nucleolus and enter anaphase prematurely. We propose that rDNA copy number determines the replication time of the rDNA locus and that the release of Cdc14 upon completion of rDNA replication is a signal for cell cycle progression.
Collapse
Affiliation(s)
- Elizabeth X Kwan
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Gina M Alvino
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Kelsey L Lynch
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Paula F Levan
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Haley M Amemiya
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Xiaobin S Wang
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Sarah A Johnson
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Joseph C Sanchez
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Madison A Miller
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Mackenzie Croy
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Seung-Been Lee
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Maria Naushab
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Antonio Bedalov
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Josh T Cuperus
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Bonita J Brewer
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Christine Queitsch
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA.
| | - M K Raghuraman
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
28
|
Shi S, Luo H, Ji Y, Ouyang H, Wang Z, Wang X, Hu R, Wang L, Wang Y, Xia J, Cheng B, Bao B, Li X, Liao G, Xu B. Repurposing Dihydroartemisinin to Combat Oral Squamous Cell Carcinoma, Associated with Mitochondrial Dysfunction and Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:9595201. [PMID: 37273554 PMCID: PMC10239307 DOI: 10.1155/2023/9595201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/28/2022] [Accepted: 10/06/2022] [Indexed: 08/15/2023]
Abstract
Oral squamous cell carcinoma (OSCC), with aggressive locoregional invasion, has a high rate of early recurrences and poor prognosis. Dihydroartemisinin (DHA), as a derivative of artemisinin, has been found to exert potent antitumor activity. Recent studies reported that DHA suppresses OSCC cell growth and viability through the regulation of reactive oxygen species (ROS) production and mitochondrial calcium uniporter. However, the mechanism underlying the action of DHA on OSCCs remains elusive. In the study, we observed that 159 genes were remarkably misregulated in primary OSCC tumors associated with DHA-inhibited pathways, supporting that OSCCs are susceptible to DHA treatment. Herein, our study showed that DHA exhibited promising effects to suppress OSCC cell growth and survival, and single-cell colony formation. Interestingly, the combination of DHA and cisplatin (CDDP) significantly reduced the toxicity of CDDP treatment alone on human normal oral cells (NOK). Moreover, DHA remarkably impaired mitochondrial structure and function, and triggered DNA damage and ROS generation, and activation of mitophagy. In addition, DHA induced leakage of cytochrome C and apoptosis-inducing factor (AIF) from mitochondria, elevated Bax/cleaved-caspase 3 expression levels and compromised Bcl2 protein expression. In the OSCC tumor-xenograft mice model, DHA remarkably suppressed tumor growth and induced apoptosis of OSCCs in vivo. Intriguingly, a selective mitophagy inhibitor Mdivi-1 could significantly reinforce the anticancer activity of DHA treatment. DHA and Mdivi-1 can synergistically suppress OSCC cell proliferation and survival. These data uncover a previously unappreciated contribution of the mitochondria-associated pathway to the antitumor activity of DHA on OSCCs. Our study shed light on a new aspect of a DHA-based therapeutic strategy to combat OSCC tumors.
Collapse
Affiliation(s)
- Shanwei Shi
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, Guangdong Province, China
- Hospital of Stomatology, Department of Oral and Maxillofacial Surgery, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Huigen Luo
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Yuna Ji
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Huiya Ouyang
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Zheng Wang
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Xinchen Wang
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Renjie Hu
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Lihong Wang
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Yun Wang
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Juan Xia
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Bin Cheng
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Baicheng Bao
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Xin Li
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, Guangdong Province, China
- National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Guiqing Liao
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, Guangdong Province, China
- Hospital of Stomatology, Department of Oral and Maxillofacial Surgery, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Baoshan Xu
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| |
Collapse
|
29
|
Kochavi A, Lovecchio D, Faller WJ, Agami R. Proteome diversification by mRNA translation in cancer. Mol Cell 2023; 83:469-480. [PMID: 36521491 DOI: 10.1016/j.molcel.2022.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 12/15/2022]
Abstract
mRNA translation is a highly conserved and tightly controlled mechanism for protein synthesis and is well known to be altered by oncogenes to promote cancer development. This distorted mRNA translation is accompanied by the vulnerability of cancer to inhibitors of key mRNA translation components. Novel studies also suggest that these alternations could be utilized for immunotherapy. Ribosome heterogeneity and alternative responses to nutrient shortages, which aid cancer growth and spread, are proposed to elicit aberrant protein production but may also result in previously unidentified therapeutic targets, such as the presentation of cancer-specific peptides at the surface of cancer cells (neoepitopes). This review will assess the driving forces in tRNA and ribosome function that underlie proteome diversification due to alterations in mRNA translation in cancer cells.
Collapse
Affiliation(s)
- Adva Kochavi
- Division of Oncogenomics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, the Netherlands; Oncode Institute, the Netherlands
| | - Domenica Lovecchio
- Division of Oncogenomics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, the Netherlands; Oncode Institute, the Netherlands
| | - William James Faller
- Division of Oncogenomics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, the Netherlands
| | - Reuven Agami
- Division of Oncogenomics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, the Netherlands; Oncode Institute, the Netherlands; Erasmus MC, Rotterdam University, Rotterdam, the Netherlands.
| |
Collapse
|
30
|
Mirceta M, Shum N, Schmidt MHM, Pearson CE. Fragile sites, chromosomal lesions, tandem repeats, and disease. Front Genet 2022; 13:985975. [PMID: 36468036 PMCID: PMC9714581 DOI: 10.3389/fgene.2022.985975] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 09/02/2022] [Indexed: 09/16/2023] Open
Abstract
Expanded tandem repeat DNAs are associated with various unusual chromosomal lesions, despiralizations, multi-branched inter-chromosomal associations, and fragile sites. Fragile sites cytogenetically manifest as localized gaps or discontinuities in chromosome structure and are an important genetic, biological, and health-related phenomena. Common fragile sites (∼230), present in most individuals, are induced by aphidicolin and can be associated with cancer; of the 27 molecularly-mapped common sites, none are associated with a particular DNA sequence motif. Rare fragile sites ( ≳ 40 known), ≤ 5% of the population (may be as few as a single individual), can be associated with neurodevelopmental disease. All 10 molecularly-mapped folate-sensitive fragile sites, the largest category of rare fragile sites, are caused by gene-specific CGG/CCG tandem repeat expansions that are aberrantly CpG methylated and include FRAXA, FRAXE, FRAXF, FRA2A, FRA7A, FRA10A, FRA11A, FRA11B, FRA12A, and FRA16A. The minisatellite-associated rare fragile sites, FRA10B, FRA16B, can be induced by AT-rich DNA-ligands or nucleotide analogs. Despiralized lesions and multi-branched inter-chromosomal associations at the heterochromatic satellite repeats of chromosomes 1, 9, 16 are inducible by de-methylating agents like 5-azadeoxycytidine and can spontaneously arise in patients with ICF syndrome (Immunodeficiency Centromeric instability and Facial anomalies) with mutations in genes regulating DNA methylation. ICF individuals have hypomethylated satellites I-III, alpha-satellites, and subtelomeric repeats. Ribosomal repeats and subtelomeric D4Z4 megasatellites/macrosatellites, are associated with chromosome location, fragility, and disease. Telomere repeats can also assume fragile sites. Dietary deficiencies of folate or vitamin B12, or drug insults are associated with megaloblastic and/or pernicious anemia, that display chromosomes with fragile sites. The recent discovery of many new tandem repeat expansion loci, with varied repeat motifs, where motif lengths can range from mono-nucleotides to megabase units, could be the molecular cause of new fragile sites, or other chromosomal lesions. This review focuses on repeat-associated fragility, covering their induction, cytogenetics, epigenetics, cell type specificity, genetic instability (repeat instability, micronuclei, deletions/rearrangements, and sister chromatid exchange), unusual heritability, disease association, and penetrance. Understanding tandem repeat-associated chromosomal fragile sites provides insight to chromosome structure, genome packaging, genetic instability, and disease.
Collapse
Affiliation(s)
- Mila Mirceta
- Program of Genetics and Genome Biology, The Hospital for Sick Children, The Peter Gilgan Centre for Research and Learning, Toronto, ON, Canada
- Program of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Natalie Shum
- Program of Genetics and Genome Biology, The Hospital for Sick Children, The Peter Gilgan Centre for Research and Learning, Toronto, ON, Canada
- Program of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Monika H. M. Schmidt
- Program of Genetics and Genome Biology, The Hospital for Sick Children, The Peter Gilgan Centre for Research and Learning, Toronto, ON, Canada
- Program of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Christopher E. Pearson
- Program of Genetics and Genome Biology, The Hospital for Sick Children, The Peter Gilgan Centre for Research and Learning, Toronto, ON, Canada
- Program of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
31
|
Tsaridou S, Velimezi G, Willenbrock F, Chatzifrangkeskou M, Elsayed W, Panagopoulos A, Karamitros D, Gorgoulis V, Lygerou Z, Roukos V, O'Neill E, Pefani DE. 53BP1-mediated recruitment of RASSF1A to ribosomal DNA breaks promotes local ATM signaling. EMBO Rep 2022; 23:e54483. [PMID: 35758159 PMCID: PMC9346497 DOI: 10.15252/embr.202154483] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 05/30/2022] [Accepted: 06/03/2022] [Indexed: 12/29/2022] Open
Abstract
DNA lesions occur across the genome and constitute a threat to cell viability; however, damage at specific genomic loci has a relatively greater impact on overall genome stability. The ribosomal RNA gene repeats (rDNA) are emerging fragile sites. Recent progress in understanding how the rDNA damage response is organized has highlighted a key role of adaptor proteins. Here, we show that the scaffold tumor suppressor RASSF1A is recruited to rDNA breaks. RASSF1A recruitment to double-strand breaks is mediated by 53BP1 and depends on RASSF1A phosphorylation at Serine 131 by ATM kinase. Employing targeted rDNA damage, we uncover that RASSF1A recruitment promotes local ATM signaling. RASSF1A silencing, a common epigenetic event during malignant transformation, results in persistent breaks, rDNA copy number alterations and decreased cell viability. Overall, we identify a novel role for RASSF1A at rDNA break sites, provide mechanistic insight into how the DNA damage response is organized in a chromatin context, and provide further evidence for how silencing of the RASSF1A tumor suppressor contributes to genome instability.
Collapse
Affiliation(s)
- Stavroula Tsaridou
- Department of Biology, School of Medicine, University of Patras, Patras, Greece
| | - Georgia Velimezi
- Department of Biology, School of Medicine, University of Patras, Patras, Greece.,Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | | | | | | | | | - Dimitris Karamitros
- Department of Physiology, School of Medicine, University of Patras, Patras, Greece
| | - Vassilis Gorgoulis
- Biomedical Research Foundation of the Academy of Athens, Athens, Greece.,Laboratory of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, Athens, Greece.,Faculty of Biology, Medicine and Health, Manchester Academic Health Centre, University of Manchester, Manchester, UK.,Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Zoi Lygerou
- Department of Biology, School of Medicine, University of Patras, Patras, Greece
| | - Vassilis Roukos
- Department of Biology, School of Medicine, University of Patras, Patras, Greece.,Institute of Molecular Biology (IMB), Mainz, Germany
| | - Eric O'Neill
- Department of Oncology, University of Oxford, Oxford, UK
| | | |
Collapse
|
32
|
Sharma D, Denmat SHL, Matzke NJ, Hannan K, Hannan RD, O'Sullivan JM, Ganley ARD. A new method for determining ribosomal DNA copy number shows differences between Saccharomyces cerevisiae populations. Genomics 2022; 114:110430. [PMID: 35830947 DOI: 10.1016/j.ygeno.2022.110430] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/23/2022] [Accepted: 07/04/2022] [Indexed: 11/26/2022]
Abstract
Ribosomal DNA genes (rDNA) encode the major ribosomal RNAs and in eukaryotes typically form tandem repeat arrays. Species have characteristic rDNA copy numbers, but there is substantial intra-species variation in copy number that results from frequent rDNA recombination. Copy number differences can have phenotypic consequences, however difficulties in quantifying copy number mean we lack a comprehensive understanding of how copy number evolves and the consequences. Here we present a genomic sequence read approach to estimate rDNA copy number based on modal coverage to help overcome limitations with existing mean coverage-based approaches. We validated our method using Saccharomyces cerevisiae strains with known rDNA copy numbers. Application of our pipeline to a global sample of S. cerevisiae isolates showed that different populations have different rDNA copy numbers. Our results demonstrate the utility of the modal coverage method, and highlight the high level of rDNA copy number variation within and between populations.
Collapse
Affiliation(s)
- Diksha Sharma
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Sylvie Hermann-Le Denmat
- School of Biological Sciences, University of Auckland, Auckland, New Zealand; Ecole Normale Supérieure, PSL Research University, F-75005 Paris, France
| | - Nicholas J Matzke
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Katherine Hannan
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, ACT 2601, Australia; Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Ross D Hannan
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, ACT 2601, Australia; Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria 3010, Australia; Division of Research, Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria 3010, Australia; Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3168, Australia
| | - Justin M O'Sullivan
- Liggins Institute, University of Auckland, Auckland, New Zealand; Maurice Wilkins Center, University of Auckland, New Zealand; MRC Lifecourse Unit, University of Southampton, United Kingdom; Brain Research New Zealand, The University of Auckland, Auckland, New Zealand
| | - Austen R D Ganley
- School of Biological Sciences, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
33
|
Hall AN, Morton E, Queitsch C. First discovered, long out of sight, finally visible: ribosomal DNA. Trends Genet 2022; 38:587-597. [PMID: 35272860 PMCID: PMC10132741 DOI: 10.1016/j.tig.2022.02.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 10/18/2022]
Abstract
With the advent of long-read sequencing, previously unresolvable genomic elements are being revisited in an effort to generate fully complete reference genomes. One such element is ribosomal DNA (rDNA), the highly conserved genomic region that encodes rRNAs. Genomic structure and content of the rDNA are variable in both prokarya and eukarya, posing interesting questions about the biology of rDNA. Here, we consider the types of variation observed in rDNA - including locus structure and number, copy number, and sequence variation - and their known phenotypic consequences. With recent advances in long-read sequencing technology, incorporating the full rDNA sequence into reference genomes is within reach. This knowledge will have important implications for understanding rDNA biology within the context of cell physiology and whole-organism phenotypes.
Collapse
Affiliation(s)
- Ashley N Hall
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Elizabeth Morton
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Christine Queitsch
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.
| |
Collapse
|
34
|
Fan W, Eklund E, Sherman RM, Liu H, Pitts S, Ford B, Rajeshkumar NV, Laiho M. Widespread genetic heterogeneity of human ribosomal RNA genes. RNA (NEW YORK, N.Y.) 2022; 28:478-492. [PMID: 35110373 PMCID: PMC8925967 DOI: 10.1261/rna.078925.121] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 12/28/2021] [Indexed: 05/28/2023]
Abstract
Polymorphism drives survival under stress and provides adaptability. Genetic polymorphism of ribosomal RNA (rRNA) genes derives from internal repeat variation of this multicopy gene, and from interindividual variation. A considerable amount of rRNA sequence heterogeneity has been proposed but has been challenging to estimate given the scarcity of accurate reference sequences. We identified four rDNA copies on chromosome 21 (GRCh38) with 99% similarity to recently introduced reference sequence KY962518.1. We customized a GATK bioinformatics pipeline using the four rDNA loci, spanning a total 145 kb, for variant calling and used high-coverage whole-genome sequencing (WGS) data from the 1000 Genomes Project to analyze variants in 2504 individuals from 26 populations. We identified a total of 3791 variant positions. The variants positioned nonrandomly on the rRNA gene. Invariant regions included the promoter, early 5' ETS, most of 18S, 5.8S, ITS1, and large areas of the intragenic spacer. A total of 470 variant positions were observed on 28S rRNA. The majority of the 28S rRNA variants were located on highly flexible human-expanded rRNA helical folds ES7L and ES27L, suggesting that these represent positions of diversity and are potentially under continuous evolution. Several variants were validated based on RNA-seq analyses. Population analyses showed remarkable ancestry-linked genetic variance and the presence of both high penetrance and frequent variants in the 5' ETS, ITS2, and 28S regions segregating according to the continental populations. These findings provide a genetic view of rRNA gene array heterogeneity and raise the need to functionally assess how the 28S rRNA variants affect ribosome functions.
Collapse
Affiliation(s)
- Wenjun Fan
- Department of Radiation Oncology and Molecular Radiation Sciences, and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
| | - Eetu Eklund
- Department of Radiation Oncology and Molecular Radiation Sciences, and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
| | - Rachel M Sherman
- Department of Computer Science, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland 21287, USA
| | - Hester Liu
- Department of Radiation Oncology and Molecular Radiation Sciences, and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
| | - Stephanie Pitts
- Department of Radiation Oncology and Molecular Radiation Sciences, and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
| | - Brittany Ford
- Drug Research Program, Faculty of Pharmacy, University of Helsinki, 00014 Helsinki, Finland
| | - N V Rajeshkumar
- Department of Radiation Oncology and Molecular Radiation Sciences, and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
| | - Marikki Laiho
- Department of Radiation Oncology and Molecular Radiation Sciences, and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
| |
Collapse
|
35
|
Abstract
The complete, ungapped sequence of the short arms of human acrocentric chromosomes (SAACs) is still unknown almost 20 years after the near completion of the Human Genome Project. Yet these short arms of Chromosomes 13, 14, 15, 21, and 22 contain the ribosomal DNA (rDNA) genes, which are of paramount importance for human biology. The sequences of SAACs show an extensive variation in the copy number of the various repetitive elements, the full extent of which is currently unknown. In addition, the full spectrum of repeated sequences, their organization, and the low copy number functional elements are also unknown. The Telomere-to-Telomere (T2T) Project using mainly long-read sequence technology has recently completed the assembly of the genome from a hydatidiform mole, CHM13, and has thus established a baseline reference for further studies on the organization, variation, functional annotation, and impact in human disorders of all the previously unknown genomic segments, including the SAACs. The publication of the initial results of the T2T Project will update and improve the reference genome for a better understanding of the evolution and function of the human genome.
Collapse
Affiliation(s)
- Stylianos E Antonarakis
- Department of Genetic Medicine and Development, University of Geneva Medical Faculty, 1211 Geneva, Switzerland
- Foundation Campus Biotech, 1202 Geneva, Switzerland
- Medigenome, Swiss Institute of Genomic Medicine, 1207 Geneva, Switzerland
| |
Collapse
|
36
|
Ding Q, Li R, Ren X, Chan LY, Ho VWS, Xie D, Ye P, Zhao Z. Genomic architecture of 5S rDNA cluster and its variations within and between species. BMC Genomics 2022; 23:238. [PMID: 35346033 PMCID: PMC8961926 DOI: 10.1186/s12864-022-08476-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/16/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Ribosomal DNAs (rDNAs) are arranged in purely tandem repeats, preventing them from being reliably assembled onto chromosomes during generation of genome assembly. The uncertainty of rDNA genomic structure presents a significant barrier for studying their function and evolution. RESULTS Here we generate ultra-long Oxford Nanopore Technologies (ONT) and short NGS reads to delineate the architecture and variation of the 5S rDNA cluster in the different strains of C. elegans and C. briggsae. We classify the individual rDNA's repeating units into 25 types based on the unique sequence variations in each unit of C. elegans (N2). We next perform assembly of the cluster by taking advantage of the long reads that carry these units, which led to an assembly of 5S rDNA cluster consisting of up to 167 consecutive 5S rDNA units in the N2 strain. The ordering and copy number of various rDNA units are consistent with the separation time between strains. Surprisingly, we observed a drastically reduced level of variation in the unit composition in the 5S rDNA cluster in the C. elegans CB4856 and C. briggsae AF16 strains than in the C. elegans N2 strain, suggesting that N2, a widely used reference strain, is likely to be defective in maintaining the 5S rDNA cluster stability compared with other wild isolates of C. elegans or C. briggsae. CONCLUSIONS The results demonstrate that Nanopore DNA sequencing reads are capable of generating assembly of highly repetitive sequences, and rDNA units are highly dynamic both within and between population(s) of the same species in terms of sequence and copy number. The detailed structure and variation of the 5S rDNA units within the rDNA cluster pave the way for functional and evolutionary studies.
Collapse
Affiliation(s)
- Qiutao Ding
- Department of Biology, Hong Kong Baptist University, Hong Kong SAR, China
| | - Runsheng Li
- Department of Biology, Hong Kong Baptist University, Hong Kong SAR, China
- Department of Infectious Diseases and Public Health, City University of Hong Kong, Hong Kong SAR, China
| | - Xiaoliang Ren
- Department of Biology, Hong Kong Baptist University, Hong Kong SAR, China
| | - Lu-Yan Chan
- Department of Biology, Hong Kong Baptist University, Hong Kong SAR, China
| | - Vincy W S Ho
- Department of Biology, Hong Kong Baptist University, Hong Kong SAR, China
| | - Dongying Xie
- Department of Biology, Hong Kong Baptist University, Hong Kong SAR, China
| | - Pohao Ye
- Department of Biology, Hong Kong Baptist University, Hong Kong SAR, China
| | - Zhongying Zhao
- Department of Biology, Hong Kong Baptist University, Hong Kong SAR, China.
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong SAR, China.
| |
Collapse
|
37
|
Global genomic instability caused by reduced expression of DNA polymerase ε in yeast. Proc Natl Acad Sci U S A 2022; 119:e2119588119. [PMID: 35290114 PMCID: PMC8944251 DOI: 10.1073/pnas.2119588119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
SignificanceAlthough most studies of the genetic regulation of genome stability involve an analysis of mutations within the coding sequences of genes required for DNA replication or DNA repair, recent studies in yeast show that reduced levels of wild-type enzymes can also produce a mutator phenotype. By whole-genome sequencing and other methods, we find that reduced levels of the wild-type DNA polymerase ε in yeast greatly increase the rates of mitotic recombination, aneuploidy, and single-base mutations. The observed pattern of genome instability is different from those observed in yeast strains with reduced levels of the other replicative DNA polymerases, Pol α and Pol δ. These observations are relevant to our understanding of cancer and other diseases associated with genetic instability.
Collapse
|
38
|
Chen CL, Li WC, Chuang YC, Liu HC, Huang CH, Lo KY, Chen CY, Chang FM, Chang GA, Lin YL, Yang WD, Su CH, Yeh TM, Wang TF. Sexual Crossing, Chromosome-Level Genome Sequences, and Comparative Genomic Analyses for the Medicinal Mushroom Taiwanofungus Camphoratus (Syn. Antrodia Cinnamomea, Antrodia Camphorata). Microbiol Spectr 2022; 10:e0203221. [PMID: 35196809 PMCID: PMC8865532 DOI: 10.1128/spectrum.02032-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/27/2022] [Indexed: 12/24/2022] Open
Abstract
Taiwanofungus camphoratus mushrooms are a complementary and alternative medicine for hangovers, cancer, hypertension, obesity, diabetes, and inflammation. Though Taiwanofungus camphoratus has attracted considerable biotechnological and pharmacological attention, neither classical genetic nor genomic approaches have been properly established for it. We isolated four sexually competent monokaryons from two T. camphoratus dikaryons used for the commercial cultivation of orange-red (HC1) and milky-white (SN1) mushrooms, respectively. We also sequenced, annotated, and comparatively analyzed high-quality and chromosome-level genome sequences of these four monokaryons. These genomic resources represent a valuable basis for understanding the biology, evolution, and secondary metabolite biosynthesis of this economically important mushrooms. We demonstrate that T. camphoratus has a tetrapolar mating system and that HC1 and SN1 represent two intraspecies isolates displaying karyotypic variation. Compared with several edible mushroom model organisms, T. camphoratus underwent a significant contraction in the gene family and individual gene numbers, most notably for plant, fungal, and bacterial cell-wall-degrading enzymes, explaining why T. camphoratus mushrooms are rare in natural environments, are difficult and time-consuming to artificially cultivate, and are susceptible to fungal and bacterial infections. Our results lay the foundation for an in-depth T. camphoratus study, including precise genetic manipulation, improvements to mushroom fruiting, and synthetic biology applications for producing natural medicinal products. IMPORTANCETaiwanofungus camphoratus (Tc) is a basidiomycete fungus that causes brown heart rot of the aromatic tree Cinnamomum kanehirae. The Tc fruiting bodies have been used to treat hangovers, abdominal pain, diarrhea, hypertension, and other diseases first by aboriginal Taiwanese and later by people in many countries. To establish classical genetic and genomic approaches for this economically important medicinal mushroom, we first isolated and characterized four sexually competent monokaryons from two dikaryons wildly used for commercial production of Tc mushrooms. We applied PacBio single molecule, real-time sequencing technology to determine the near-completed genome sequences of four monokaryons. These telomere-to-telomere and gapless haploid genome sequences reveal all genomic variants needed to be studied and discovered, including centromeres, telomeres, retrotransposons, mating type loci, biosynthetic, and metabolic gene clusters. Substantial interspecies diversities are also discovered between Tc and several other mushroom model organisms, including Agrocybe aegerita, Coprinopsis cinerea, and Schizophyllum commune, and Ganoderma lucidum.
Collapse
Affiliation(s)
- Chia-Ling Chen
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Wan-Chen Li
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Yu-Chien Chuang
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Hou-Cheng Liu
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Chien-Hao Huang
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Ko-Yun Lo
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Chung-Yu Chen
- Shen Nong Fungal Biotechnology Co. Ltd., Taoyuan City, Taiwan
| | - Fang-Mo Chang
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | | | | | | | - Ching-Hua Su
- Department of Microbiology and Immunology, Taipei Medical University, Taipei, Taiwan
| | - Tsung-Ming Yeh
- Shen Nong Fungal Biotechnology Co. Ltd., Taoyuan City, Taiwan
| | - Ting-Fang Wang
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
39
|
The Psychoemotional Stress-Induced Changes in the Abundance of SatIII (1q12) and Telomere Repeats, but Not Ribosomal DNA, in Human Leukocytes. Genes (Basel) 2022; 13:genes13020343. [PMID: 35205387 PMCID: PMC8872136 DOI: 10.3390/genes13020343] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/01/2022] [Accepted: 02/11/2022] [Indexed: 02/04/2023] Open
Abstract
INTRODUCTION. As shown earlier, copy number variations (CNV) in the human satellite III (1q12) fragment (f-SatIII) and the telomere repeat (TR) reflects the cell’s response to oxidative stress. The contents of f-SatIII and TR in schizophrenic (SZ) patients were found to be lower than in healthy controls (HC) in previous studies. The major question of this study was: ‘What are the f-SatIII and TR CNV dynamic changes in human leukocytes, depending on psychoemotional stress?’ MATERIALS AND METHODS. We chose a model of psychoemotional stress experienced by second-year medical students during their exams. Blood samples were taken in stressful conditions (exams) and in a control non-stressful period. Biotinylated probes were used for f-SatIII, rDNA, and TR quantitation in leukocyte DNA by non-radioactive quantitative hybridization in SZ patients (n = 97), HC (n = 97), and medical students (n = 17, n = 42). A flow cytometry analysis was used for the oxidative stress marker (NOX4, 8-oxodG, and γH2AX) detection in the lymphocytes of the three groups. RESULTS. Oxidative stress markers increased significantly in the students’ lymphocytes during psychoemotional stress. The TR and f-SatIII, but not the rDNA, contents significantly changed in the DNA isolated from human blood leukocytes. After a restoration period (post-examinational vacations), the f-SatIII content decreased, and the TR content increased. Changes in the blood cells of students during examinational stress were similar to those in SZ patients during an exacerbation of the disease. CONCLUSIONS. Psychoemotional stress in students during exams triggers a universal mechanism of oxidative stress. The oxidative stress causes significant changes in the f-SatIII and TR contents, while the ribosomal repeat content remains stable. A hypothesis is proposed to explain the quantitative polymorphisms of f-SatIII and TR contents under transient (e.g., students’ exams) or chronic (in SZ patients) stress. The changes in the f-SatIII and TR copy numbers are non-specific events, irrespective of the source of stress. Thus, our findings suggest that the psychoemotional stress, common in SZ patients and healthy students during exams, but not in a schizophrenia-specific event, was responsible for the changes in the repeat contents that we observed earlier in SZ patients.
Collapse
|
40
|
Denisenko O. Epigenetics of Ribosomal RNA Genes. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:S103-S131. [PMID: 35501990 DOI: 10.1134/s0006297922140097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 06/14/2023]
Abstract
This review is focused on biology of genes encoding ribosomal RNA (rRNA) in mammals. rRNA is a structural component of the most abundant cellular molecule, the ribosome. There are many copies of rRNA genes per genome that are under tight transcriptional control by epigenetic mechanisms serving to meet cellular needs in protein synthesis. Curiously, only a fraction of rRNA genes is used even in the fast-growing cells, raising a question why unused copies of these genes have not been lost during evolution. Two plausible explanations are discussed. First, there is evidence that besides their direct function in production of rRNA, ribosomal RNA genes are involved in regulation of many other genes in the nucleus by forming either temporary or persistent complexes with these genes. Second, it seems that rRNA genes also play a role in the maintenance of genome stability, where lower copy number of rRNA genes destabilizes the genome. These "additional" functions of rRNA genes make them recurrent candidate drivers of chronic human diseases and aging. Experimental support for the involvement of these genes in human diseases and potential mechanisms are also discussed.
Collapse
Affiliation(s)
- Oleg Denisenko
- Department of Medicine, University of Washington, Seattle, WA, USA.
| |
Collapse
|
41
|
Cockrell AJ, Gerton JL. Nucleolar Organizer Regions as Transcription-Based Scaffolds of Nucleolar Structure and Function. Results Probl Cell Differ 2022; 70:551-580. [PMID: 36348121 DOI: 10.1007/978-3-031-06573-6_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Eukaryotic genomes maintain multiple copies of ribosomal DNA gene repeats in tandem arrays to provide sufficient ribosomal RNAs to make ribosomes. These DNA repeats are the most highly transcribed regions of the genome, with dedicated transcriptional machinery to manage the enormous task of producing more than 50% of the total RNA in a proliferating cell. The arrays are called nucleolar organizer regions (NORs) and constitute the scaffold of the nucleolar compartment, where ribosome biogenesis occurs. Advances in molecular and cellular biology have brought great insights into how these arrays are transcribed and organized within genomes. Much of their biology is driven by their high transcription level, which has also driven the development of unique methods to understand rDNA gene activity, beginning with classic techniques such as silver staining and Miller spreads. However, the application of modern methodologies such as CRISPR gene editing, super-resolution microscopy, and long-read sequencing has enabled recent advances described herein, with many more discoveries possible soon. This chapter highlights what is known about NOR transcription and organization and the techniques applied historically and currently. Given the potential for NORs to impact organismal health and disease, as highlighted at the end of the chapter, the field must continue to develop and apply innovative analysis to understand genetic, epigenetic, and organizer properties of the ribosomal DNA repeats.
Collapse
Affiliation(s)
- Alexandria J Cockrell
- Stowers Institute for Medical Research, Kansas City, MO, USA
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Jennifer L Gerton
- Stowers Institute for Medical Research, Kansas City, MO, USA.
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
42
|
Kasselimi E, Pefani DE, Taraviras S, Lygerou Z. Ribosomal DNA and the nucleolus at the heart of aging. Trends Biochem Sci 2022; 47:328-341. [DOI: 10.1016/j.tibs.2021.12.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 12/15/2022]
|
43
|
Abstract
In human cells, each rDNA unit consists of the ~13 kb long ribosomal part and ~30 kb long intergenic spacer (IGS). The ribosomal part, transcribed by RNA polymerase I (pol I), includes genes coding for 18S, 5.8S, and 28S RNAs of the ribosomal particles, as well as their four transcribed spacers. Being highly repetitive, intensively transcribed, and abundantly methylated, rDNA is a very fragile site of the genome, with high risk of instability leading to cancer. Multiple small mutations, considerable expansion or contraction of the rDNA locus, and abnormally enhanced pol I transcription are usual symptoms of transformation. Recently it was found that both IGS and the ribosomal part of the locus contain many functional/potentially functional regions producing non-coding RNAs, which participate in the pol I activity regulation, stress reactions, and development of the malignant phenotype. Thus, there are solid reasons to believe that rDNA locus plays crucial role in carcinogenesis. In this review we discuss the data concerning the human rDNA and its closely associated factors as both targets and drivers of the pathways essential for carcinogenesis. We also examine whether variability in the structure of the locus may be blamed for the malignant transformation. Additionally, we consider the prospects of therapy focused on the activity of rDNA.
Collapse
|
44
|
de Lima LG, Howe E, Singh VP, Potapova T, Li H, Xu B, Castle J, Crozier S, Harrison CJ, Clifford SC, Miga KH, Ryan SL, Gerton JL. PCR amplicons identify widespread copy number variation in human centromeric arrays and instability in cancer. CELL GENOMICS 2021; 1:100064. [PMID: 34993501 PMCID: PMC8730464 DOI: 10.1016/j.xgen.2021.100064] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 07/13/2021] [Accepted: 08/24/2021] [Indexed: 12/13/2022]
Abstract
Centromeric α-satellite repeats represent ~6% of the human genome, but their length and repetitive nature make sequencing and analysis of those regions challenging. However, centromeres are essential for the stable propagation of chromosomes, so tools are urgently needed to monitor centromere copy number and how it influences chromosome transmission and genome stability. We developed and benchmarked droplet digital PCR (ddPCR) assays that measure copy number for five human centromeric arrays. We applied them to characterize natural variation in centromeric array size, analyzing normal tissue from 37 individuals from China and 39 individuals from the US and UK. Each chromosome-specific array varies in size up to 10-fold across individuals and up to 50-fold across chromosomes, indicating a unique complement of arrays in each individual. We also used the ddPCR assays to analyze centromere copy number in 76 matched tumor-normal samples across four cancer types, representing the most-comprehensive quantitative analysis of centromeric array stability in cancer to date. In contrast to stable transmission in cultured cells, centromeric arrays show gain and loss events in each of the cancer types, suggesting centromeric α-satellite DNA represents a new category of genome instability in cancer. Our methodology for measuring human centromeric-array copy number will advance research on centromeres and genome integrity in normal and disease states.
Collapse
Affiliation(s)
| | - Edmund Howe
- The Stowers Institute for Medical Research, Kansas City, MO, USA
| | | | - Tamara Potapova
- The Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Hua Li
- The Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Baoshan Xu
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Jemma Castle
- Newcastle University Centre for Cancer, Newcastle upon Tyne, UK
| | - Steve Crozier
- Newcastle University Centre for Cancer, Newcastle upon Tyne, UK
| | | | | | - Karen H. Miga
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Sarra L. Ryan
- Newcastle University Centre for Cancer, Newcastle upon Tyne, UK
| | - Jennifer L. Gerton
- The Stowers Institute for Medical Research, Kansas City, MO, USA
- University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
45
|
Haig D. Concerted evolution of ribosomal DNA: Somatic peace amid germinal strife: Intranuclear and cellular selection maintain the quality of rRNA. Bioessays 2021; 43:e2100179. [PMID: 34704616 DOI: 10.1002/bies.202100179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 10/12/2021] [Indexed: 11/10/2022]
Abstract
Most eukaryotes possess many copies of rDNA. Organismal selection alone cannot maintain rRNA function because the effects of mutations in one rDNA are diluted by the presence of many other rDNAs. rRNA quality is maintained by processes that increase homogeneity of rRNA within, and heterogeneity among, germ cells thereby increasing the effectiveness of cellular selection on ribosomal function. A successful rDNA repeat will possess adaptations for spreading within tandem arrays by intranuclear selection. These adaptations reside in the non-coding regions of rDNA. Single-copy genes are predicted to manage processes of intranuclear and cellular selection in the germline to maintain the quality of rRNA expressed in somatic cells of future generations.
Collapse
Affiliation(s)
- David Haig
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
| |
Collapse
|
46
|
Kang J, Brajanovski N, Chan KT, Xuan J, Pearson RB, Sanij E. Ribosomal proteins and human diseases: molecular mechanisms and targeted therapy. Signal Transduct Target Ther 2021; 6:323. [PMID: 34462428 PMCID: PMC8405630 DOI: 10.1038/s41392-021-00728-8] [Citation(s) in RCA: 163] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 07/12/2021] [Accepted: 07/30/2021] [Indexed: 02/07/2023] Open
Abstract
Ribosome biogenesis and protein synthesis are fundamental rate-limiting steps for cell growth and proliferation. The ribosomal proteins (RPs), comprising the structural parts of the ribosome, are essential for ribosome assembly and function. In addition to their canonical ribosomal functions, multiple RPs have extra-ribosomal functions including activation of p53-dependent or p53-independent pathways in response to stress, resulting in cell cycle arrest and apoptosis. Defects in ribosome biogenesis, translation, and the functions of individual RPs, including mutations in RPs have been linked to a diverse range of human congenital disorders termed ribosomopathies. Ribosomopathies are characterized by tissue-specific phenotypic abnormalities and higher cancer risk later in life. Recent discoveries of somatic mutations in RPs in multiple tumor types reinforce the connections between ribosomal defects and cancer. In this article, we review the most recent advances in understanding the molecular consequences of RP mutations and ribosomal defects in ribosomopathies and cancer. We particularly discuss the molecular basis of the transition from hypo- to hyper-proliferation in ribosomopathies with elevated cancer risk, a paradox termed "Dameshek's riddle." Furthermore, we review the current treatments for ribosomopathies and prospective therapies targeting ribosomal defects. We also highlight recent advances in ribosome stress-based cancer therapeutics. Importantly, insights into the mechanisms of resistance to therapies targeting ribosome biogenesis bring new perspectives into the molecular basis of cancer susceptibility in ribosomopathies and new clinical implications for cancer therapy.
Collapse
Affiliation(s)
- Jian Kang
- grid.1055.10000000403978434Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XSir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC Australia
| | - Natalie Brajanovski
- grid.1055.10000000403978434Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC Australia
| | - Keefe T. Chan
- grid.1055.10000000403978434Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XSir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC Australia
| | - Jiachen Xuan
- grid.1055.10000000403978434Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XSir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC Australia
| | - Richard B. Pearson
- grid.1055.10000000403978434Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XSir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC Australia ,grid.1002.30000 0004 1936 7857Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Biochemistry and Molecular Biology, University of Melbourne, Melbourne, VIC Australia
| | - Elaine Sanij
- grid.1055.10000000403978434Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XSir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Clinical Pathology, University of Melbourne, Melbourne, VIC Australia ,grid.1073.50000 0004 0626 201XSt. Vincent’s Institute of Medical Research, Fitzroy, VIC Australia
| |
Collapse
|
47
|
Lou J, Yu S, Feng L, Guo X, Wang M, Branco AT, Li T, Lemos B. Environmentally induced ribosomal DNA (rDNA) instability in human cells and populations exposed to hexavalent chromium [Cr (VI)]. ENVIRONMENT INTERNATIONAL 2021; 153:106525. [PMID: 33774497 PMCID: PMC8477438 DOI: 10.1016/j.envint.2021.106525] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 03/09/2021] [Accepted: 03/11/2021] [Indexed: 05/12/2023]
Abstract
Hexavalent Chromium [Cr (VI)] is an established toxicant, carcinogen, and a significant source of public health concern. The multicopy ribosomal DNA (rDNA) array is mechanistically linked to aging and cancer, is the most evolutionarily conserved segment of the human genome, and gives origin to nucleolus, a nuclear organelle where ribosomes are assembled. Here we show that exposure to Cr (VI) induces instability in the rDNA, triggering cycles of rapid, specific, and transient amplification and contraction of the array in human cells. The dynamic of environmentally responsive rDNA copy number (CN) amplification and contraction occurs at doses to which millions of individuals are regularly exposed. Finally, analyses of human populations occupationally exposed to Cr (VI) indicate that environmental exposure history and drinking habits but not age shape extensive naturally occurring rDNA copy number variation. Our observations identify a novel pathway of response to hexavalent chromium exposure and raise the prospect that a suite of environmental determinants of rDNA copy number remain to be discovered.
Collapse
Affiliation(s)
- Jianlin Lou
- Program in Molecular and Integrative Physiological Sciences & Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA, USA; School of Public Health, Hangzhou Medical College, Hangzhou, People's Republic of China; Institute of Occupational Diseases, Zhejiang Academy of Medical Sciences, Hangzhou, People's Republic of China
| | - Shoukai Yu
- Program in Molecular and Integrative Physiological Sciences & Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Lingfang Feng
- School of Public Health, Hangzhou Medical College, Hangzhou, People's Republic of China; Institute of Occupational Diseases, Zhejiang Academy of Medical Sciences, Hangzhou, People's Republic of China
| | - Xinnian Guo
- School of Public Health, Hangzhou Medical College, Hangzhou, People's Republic of China; Institute of Occupational Diseases, Zhejiang Academy of Medical Sciences, Hangzhou, People's Republic of China
| | - Meng Wang
- Program in Molecular and Integrative Physiological Sciences & Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Alan T Branco
- Program in Molecular and Integrative Physiological Sciences & Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Tao Li
- School of Public Health, Hangzhou Medical College, Hangzhou, People's Republic of China; Institute of Occupational Diseases, Zhejiang Academy of Medical Sciences, Hangzhou, People's Republic of China
| | - Bernardo Lemos
- Program in Molecular and Integrative Physiological Sciences & Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
48
|
Xuan J, Gitareja K, Brajanovski N, Sanij E. Harnessing the Nucleolar DNA Damage Response in Cancer Therapy. Genes (Basel) 2021; 12:genes12081156. [PMID: 34440328 PMCID: PMC8393943 DOI: 10.3390/genes12081156] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/20/2021] [Accepted: 07/26/2021] [Indexed: 12/19/2022] Open
Abstract
The nucleoli are subdomains of the nucleus that form around actively transcribed ribosomal RNA (rRNA) genes. They serve as the site of rRNA synthesis and processing, and ribosome assembly. There are 400-600 copies of rRNA genes (rDNA) in human cells and their highly repetitive and transcribed nature poses a challenge for DNA repair and replication machineries. It is only in the last 7 years that the DNA damage response and processes of DNA repair at the rDNA repeats have been recognized to be unique and distinct from the classic response to DNA damage in the nucleoplasm. In the last decade, the nucleolus has also emerged as a central hub for coordinating responses to stress via sequestering tumor suppressors, DNA repair and cell cycle factors until they are required for their functional role in the nucleoplasm. In this review, we focus on features of the rDNA repeats that make them highly vulnerable to DNA damage and the mechanisms by which rDNA damage is repaired. We highlight the molecular consequences of rDNA damage including activation of the nucleolar DNA damage response, which is emerging as a unique response that can be exploited in anti-cancer therapy. In this review, we focus on CX-5461, a novel inhibitor of Pol I transcription that induces the nucleolar DNA damage response and is showing increasing promise in clinical investigations.
Collapse
Affiliation(s)
- Jiachen Xuan
- Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; (J.X.); (K.G.); (N.B.)
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Kezia Gitareja
- Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; (J.X.); (K.G.); (N.B.)
| | - Natalie Brajanovski
- Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; (J.X.); (K.G.); (N.B.)
| | - Elaine Sanij
- Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; (J.X.); (K.G.); (N.B.)
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC 3010, Australia
- Department of Clinical Pathology, University of Melbourne, Melbourne, VIC 3010, Australia
- St Vincent’s Institute of Medical Research, Fitzroy, VIC 3065, Australia
- Department of Medicine -St Vincent’s Hospital, University of Melbourne, Melbourne, VIC 3010, Australia
- Correspondence: ; Tel.: +61-3-8559-5279
| |
Collapse
|
49
|
Jernfors T, Danforth J, Kesäniemi J, Lavrinienko A, Tukalenko E, Fajkus J, Dvořáčková M, Mappes T, Watts PC. Expansion of rDNA and pericentromere satellite repeats in the genomes of bank voles Myodes glareolus exposed to environmental radionuclides. Ecol Evol 2021; 11:8754-8767. [PMID: 34257925 PMCID: PMC8258220 DOI: 10.1002/ece3.7684] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 04/27/2021] [Accepted: 05/05/2021] [Indexed: 12/21/2022] Open
Abstract
Altered copy number of certain highly repetitive regions of the genome, such as satellite DNA within heterochromatin and ribosomal RNA loci (rDNA), is hypothesized to help safeguard the genome against damage derived from external stressors. We quantified copy number of the 18S rDNA and a pericentromeric satellite DNA (Msat-160) in bank voles (Myodes glareolus) inhabiting the Chernobyl Exclusion Zone (CEZ), an area that is contaminated by radionuclides and where organisms are exposed to elevated levels of ionizing radiation. We found a significant increase in 18S rDNA and Msat-160 content in the genomes of bank voles from contaminated locations within the CEZ compared with animals from uncontaminated locations. Moreover, 18S rDNA and Msat-160 copy number were positively correlated in the genomes of bank voles from uncontaminated, but not in the genomes of animals inhabiting contaminated, areas. These results show the capacity for local-scale geographic variation in genome architecture and are consistent with the genomic safeguard hypothesis. Disruption of cellular processes related to genomic stability appears to be a hallmark effect in bank voles inhabiting areas contaminated by radionuclides.
Collapse
Affiliation(s)
- Toni Jernfors
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskyläFinland
| | - John Danforth
- Department of Biochemistry & Molecular BiologyRobson DNA Science CentreArnie Charbonneau Cancer InstituteCumming School of MedicineUniversity of CalgaryCalgaryCanada
| | - Jenni Kesäniemi
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskyläFinland
| | - Anton Lavrinienko
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskyläFinland
| | - Eugene Tukalenko
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskyläFinland
- National Research Center for Radiation Medicine of the National Academy of Medical ScienceKyivUkraine
| | - Jiří Fajkus
- Mendel Centre for Plant Genomics and ProteomicsCentral European Institute of Technology (CEITEC)Masaryk UniversityBrnoCzech Republic
- Laboratory of Functional Genomics and ProteomicsNCBRFaculty of ScienceMasaryk UniversityBrnoCzech Republic
- Department of Cell Biology and RadiobiologyInstitute of Biophysics of the Czech Academy of SciencesBrnoCzech Republic
| | - Martina Dvořáčková
- Mendel Centre for Plant Genomics and ProteomicsCentral European Institute of Technology (CEITEC)Masaryk UniversityBrnoCzech Republic
| | - Tapio Mappes
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskyläFinland
| | - Phillip C. Watts
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskyläFinland
| |
Collapse
|
50
|
Augstenová B, Pensabene E, Kratochvíl L, Rovatsos M. Cytogenetic Evidence for Sex Chromosomes and Karyotype Evolution in Anguimorphan Lizards. Cells 2021; 10:cells10071612. [PMID: 34203198 PMCID: PMC8304200 DOI: 10.3390/cells10071612] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 12/27/2022] Open
Abstract
Anguimorphan lizards are a morphologically variable group of squamate reptiles with a wide geographical distribution. In spite of their importance, they have been cytogenetically understudied. Here, we present the results of the cytogenetic examination of 23 species from five anguimorphan families (Anguidae, Helodermatidae, Shinisauridae, Varanidae and Xenosauridae). We applied both conventional (Giemsa staining and C-banding) and molecular cytogenetic methods (fluorescence in situ hybridization with probes for the telomeric motifs and rDNA loci, comparative genome hybridization), intending to describe the karyotypes of previously unstudied species, to uncover the sex determination mode, and to reveal the distribution of variability in cytogenetic characteristics among anguimorphan lizards. We documented that karyotypes are generally quite variable across anguimorphan lineages, with anguids being the most varying. However, the derived chromosome number of 2n = 40 exhibits a notable long-term evolutionary stasis in monitors. Differentiated ZZ/ZW sex chromosomes were documented in monitors and helodermatids, as well as in the anguids Abronia lythrochila, and preliminary also in Celestus warreni and Gerrhonotus liocephalus. Several other anguimorphan species have likely poorly differentiated sex chromosomes, which cannot be detected by the applied cytogenetic methods, although the presence of environmental sex determination cannot be excluded. In addition, we uncovered a rare case of spontaneous triploidy in a fully grown Varanus primordius.
Collapse
|