1
|
Wright RCT, Wood AJ, Bottery MJ, Muddiman KJ, Paterson S, Harrison E, Brockhurst MA, Hall JPJ. A chromosomal mutation is superior to a plasmid-encoded mutation for plasmid fitness cost compensation. PLoS Biol 2024; 22:e3002926. [PMID: 39621811 PMCID: PMC11637435 DOI: 10.1371/journal.pbio.3002926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 12/12/2024] [Accepted: 11/05/2024] [Indexed: 12/14/2024] Open
Abstract
Plasmids are important vectors of horizontal gene transfer in microbial communities but can impose a burden on the bacteria that carry them. Such plasmid fitness costs are thought to arise principally from conflicts between chromosomal- and plasmid-encoded molecular machineries, and thus can be ameliorated by compensatory mutations (CMs) that reduce or resolve the underlying causes. CMs can arise on plasmids (i.e., plaCM) or on chromosomes (i.e., chrCM), with contrasting predicted effects upon plasmid success and subsequent gene transfer because plaCM can also reduce fitness costs in plasmid recipients, whereas chrCM can potentially ameliorate multiple distinct plasmids. Here, we develop theory and a novel experimental system to directly compare the ecological effects of plaCM and chrCM that arose during evolution experiments between Pseudomonas fluorescens SBW25 and its sympatric mercury resistance megaplasmid pQBR57. We show that while plaCM was predicted to succeed under a broader range of parameters in mathematical models, chrCM dominated in our experiments, including conditions with numerous recipients, due to a more efficacious mechanism of compensation, and advantages arising from transmission of costly plasmids to competitors (plasmid "weaponisation"). We show analytically the presence of a mixed Rock-Paper-Scissors (RPS) regime for CMs, driven by trade-offs with horizontal transmission, that offers one possible explanation for the observed failure of plaCM to dominate even in competition against an uncompensated plasmid. Our results reveal broader implications of plasmid-bacterial evolution for plasmid ecology, demonstrating the importance of specific compensatory mutations for resistance gene spread. One consequence of the superiority of chrCM over plaCM is the likely emergence in microbial communities of compensated bacteria that can act as "hubs" for plasmid accumulation and dissemination.
Collapse
Affiliation(s)
- Rosanna C. T. Wright
- Division of Evolution, Infection and Genomic Sciences, University of Manchester, Manchester, United Kingdom
| | - A. Jamie Wood
- Department of Biology, University of York, York, United Kingdom
- Department of Mathematics, University of York, York, United Kingdom
| | - Michael J. Bottery
- Division of Evolution, Infection and Genomic Sciences, University of Manchester, Manchester, United Kingdom
| | - Katie J. Muddiman
- Division of Evolution, Infection and Genomic Sciences, University of Manchester, Manchester, United Kingdom
| | - Steve Paterson
- Department of Evolution, Ecology and Behaviour, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Ellie Harrison
- School of Biosciences, University of Sheffield, Sheffield, United Kingdom
| | - Michael A. Brockhurst
- Division of Evolution, Infection and Genomic Sciences, University of Manchester, Manchester, United Kingdom
| | - James P. J. Hall
- Department of Evolution, Ecology and Behaviour, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
2
|
Sun WJ, Zhang QN, Li LL, Qu MX, Zan XY, Cui FJ, Zhou Q, Wang DM, Sun L. The Functional Characterization of the 6-Phosphogluconate Dehydratase Operon in 2-Ketogluconic Acid Industrial Producing Strain Pseudomonas plecoglossicida JUIM01. Foods 2024; 13:3444. [PMID: 39517228 PMCID: PMC11544825 DOI: 10.3390/foods13213444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/20/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024] Open
Abstract
Genus Pseudomonas bacteria mainly consume glucose through the Entner-Doudoroff (ED) route due to a lack of a functional Embden-Meyerhof-Parnas (EMP) pathway. In the present study, a 6-phosphogluconate dehydratase (edd) operon in the ED route was well investigated to find its structural characteristics and roles in the regulation of glucose consumption and 2-ketogluconic acid (2KGA) metabolism in the industrial 2KGA-producer P. plecoglossicida JUIM01. The edd operon contained four structural genes of edd, glk, gltR, and gtrS, encoding 6-PG dehydratase Edd, glucokinase Glk, response regulatory factor GltR, and histidine kinase GtrS, respectively. A promoter region was observed in the 5'-upstream of the edd gene, with a transcriptional start site located 129 bp upstream of the edd gene and in a pseudo-palindromic sequence of 5'-TTGTN7ACAA-3' specifically binding to the transcription factor HexR. The knockout of the edd gene showed a remarkably negative effect on cell growth and re-growth using 2KGA as a substrate, beneficial to 2KGA production, with an increase of 8%. The deletion of glk had no significant effect on the cell growth or glucose metabolism, while showing an adverse impact on the 2KGA production, with a decrease of 5%. The outputs of the present study would provide a theoretical basis for 2KGA-producer improvement with metabolic engineering strategies and the development and optimization of P. plecoglossicida as the chassis cells.
Collapse
Affiliation(s)
- Wen-Jing Sun
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (W.-J.S.); (Q.-N.Z.)
- Jiangxi Provincial Engineering and Technology Center for Food Additives Bio-Production, Shangrao 334221, China
| | - Qian-Nan Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (W.-J.S.); (Q.-N.Z.)
| | - Lu-Lu Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (W.-J.S.); (Q.-N.Z.)
| | - Meng-Xin Qu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (W.-J.S.); (Q.-N.Z.)
| | - Xin-Yi Zan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (W.-J.S.); (Q.-N.Z.)
| | - Feng-Jie Cui
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (W.-J.S.); (Q.-N.Z.)
- Jiangxi Provincial Engineering and Technology Center for Food Additives Bio-Production, Shangrao 334221, China
| | - Qiang Zhou
- Jiangxi Provincial Engineering and Technology Center for Food Additives Bio-Production, Shangrao 334221, China
| | - Da-Ming Wang
- Key Laboratory of Elemene Class Anti-Cancer Medicines, School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
| | - Lei Sun
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (W.-J.S.); (Q.-N.Z.)
| |
Collapse
|
3
|
Zhu Y, Mou X, Song Y, Zhang Q, Sun B, Liu H, Tang H, Bao R. Molecular mechanism of the one-component regulator RccR on bacterial metabolism and virulence. Nucleic Acids Res 2024; 52:3433-3449. [PMID: 38477394 PMCID: PMC11014249 DOI: 10.1093/nar/gkae171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 02/22/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
The regulation of carbon metabolism and virulence is critical for the rapid adaptation of pathogenic bacteria to host conditions. In Pseudomonas aeruginosa, RccR is a transcriptional regulator of genes involved in primary carbon metabolism and is associated with bacterial resistance and virulence, although the exact mechanism is unclear. Our study demonstrates that PaRccR is a direct repressor of the transcriptional regulator genes mvaU and algU. Biochemical and structural analyses reveal that PaRccR can switch its DNA recognition mode through conformational changes triggered by KDPG binding or release. Mutagenesis and functional analysis underscore the significance of allosteric communication between the SIS domain and the DBD domain. Our findings suggest that, despite its overall structural similarity to other bacterial RpiR-type regulators, RccR displays a more complex regulatory element binding mode induced by ligands and a unique regulatory mechanism.
Collapse
Affiliation(s)
- Yibo Zhu
- Center of Infectious Diseases, Division of Infectious Diseases in State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xingyu Mou
- Center of Infectious Diseases, Division of Infectious Diseases in State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yingjie Song
- College of Life Science, Sichuan Normal University, Chengdu, China
| | - Qianqian Zhang
- Centre for Artificial Intelligence Driven Drug Discovery, Faculty of Applied Sciences, Macao Polytechnic University, Macao 999078, China
| | - Bo Sun
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| | - Huanxiang Liu
- Centre for Artificial Intelligence Driven Drug Discovery, Faculty of Applied Sciences, Macao Polytechnic University, Macao 999078, China
| | - Hong Tang
- Center of Infectious Diseases, Division of Infectious Diseases in State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Rui Bao
- Center of Infectious Diseases, Division of Infectious Diseases in State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
4
|
Pacheco-Moreno A, Bollmann-Giolai A, Chandra G, Brett P, Davies J, Thornton O, Poole P, Ramachandran V, Brown JKM, Nicholson P, Ridout C, DeVos S, Malone JG. The genotype of barley cultivars influences multiple aspects of their associated microbiota via differential root exudate secretion. PLoS Biol 2024; 22:e3002232. [PMID: 38662644 PMCID: PMC11045101 DOI: 10.1371/journal.pbio.3002232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 03/19/2024] [Indexed: 04/28/2024] Open
Abstract
Plant-associated microbes play vital roles in promoting plant growth and health, with plants secreting root exudates into the rhizosphere to attract beneficial microbes. Exudate composition defines the nature of microbial recruitment, with different plant species attracting distinct microbiota to enable optimal adaptation to the soil environment. To more closely examine the relationship between plant genotype and microbial recruitment, we analysed the rhizosphere microbiomes of landrace (Chevallier) and modern (NFC Tipple) barley (Hordeum vulgare) cultivars. Distinct differences were observed between the plant-associated microbiomes of the 2 cultivars, with the plant-growth promoting rhizobacterial genus Pseudomonas substantially more abundant in the Tipple rhizosphere. Striking differences were also observed between the phenotypes of recruited Pseudomonas populations, alongside distinct genotypic clustering by cultivar. Cultivar-driven Pseudomonas selection was driven by root exudate composition, with the greater abundance of hexose sugars secreted from Tipple roots attracting microbes better adapted to growth on these metabolites and vice versa. Cultivar-driven selection also operates at the molecular level, with both gene expression and the abundance of ecologically relevant loci differing between Tipple and Chevallier Pseudomonas isolates. Finally, cultivar-driven selection is important for plant health, with both cultivars showing a distinct preference for microbes selected by their genetic siblings in rhizosphere transplantation assays.
Collapse
Affiliation(s)
- Alba Pacheco-Moreno
- John Innes Centre, Norwich Research Park, Colney Lane, Norwich, United Kingdom
| | | | - Govind Chandra
- John Innes Centre, Norwich Research Park, Colney Lane, Norwich, United Kingdom
| | - Paul Brett
- John Innes Centre, Norwich Research Park, Colney Lane, Norwich, United Kingdom
| | - Jack Davies
- John Innes Centre, Norwich Research Park, Colney Lane, Norwich, United Kingdom
| | - Owen Thornton
- John Innes Centre, Norwich Research Park, Colney Lane, Norwich, United Kingdom
| | - Philip Poole
- Department of Biology, University of Oxford, South Parks Road, Oxford, United Kingdom
| | - Vinoy Ramachandran
- Department of Biology, University of Oxford, South Parks Road, Oxford, United Kingdom
| | - James K. M. Brown
- John Innes Centre, Norwich Research Park, Colney Lane, Norwich, United Kingdom
| | - Paul Nicholson
- John Innes Centre, Norwich Research Park, Colney Lane, Norwich, United Kingdom
| | - Chris Ridout
- John Innes Centre, Norwich Research Park, Colney Lane, Norwich, United Kingdom
- New Heritage Barley, Norwich Research Park, Norwich, United Kingdom
| | - Sarah DeVos
- John Innes Centre, Norwich Research Park, Colney Lane, Norwich, United Kingdom
- New Heritage Barley, Norwich Research Park, Norwich, United Kingdom
| | - Jacob G. Malone
- John Innes Centre, Norwich Research Park, Colney Lane, Norwich, United Kingdom
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| |
Collapse
|
5
|
Wang Y, Wang Z, Chen W, Ren ZH, Gao H, Dai J, Luo GZ, Wu Z, Ji Q. A KDPG sensor RccR governs Pseudomonas aeruginosa carbon metabolism and aminoglycoside antibiotic tolerance. Nucleic Acids Res 2024; 52:967-976. [PMID: 38096062 PMCID: PMC10810197 DOI: 10.1093/nar/gkad1201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/17/2023] [Accepted: 12/05/2023] [Indexed: 01/26/2024] Open
Abstract
Pseudomonas aeruginosa harbors sophisticated transcription factor (TF) networks to coordinately regulate cellular metabolic states for rapidly adapting to changing environments. The extraordinary capacity in fine-tuning the metabolic states enables its success in tolerance to antibiotics and evading host immune defenses. However, the linkage among transcriptional regulation, metabolic states and antibiotic tolerance in P. aeruginosa remains largely unclear. By screening the P. aeruginosa TF mutant library constructed by CRISPR/Cas12k-guided transposase, we identify that rccR (PA5438) is a major genetic determinant in aminoglycoside antibiotic tolerance, the deletion of which substantially enhances bacterial tolerance. We further reveal the inhibitory roles of RccR in pyruvate metabolism (aceE/F) and glyoxylate shunt pathway (aceA and glcB), and overexpression of aceA or glcB enhances bacterial tolerance. Moreover, we identify that 2-keto-3-deoxy-6-phosphogluconate (KDPG) is a signal molecule that directly binds to RccR. Structural analysis of the RccR/KDPG complex reveals the detailed interactions. Substitution of the key residue R152, K270 or R277 with alanine abolishes KDPG sensing by RccR and impairs bacterial growth with glycerol or glucose as the sole carbon source. Collectively, our study unveils the connection between aminoglycoside antibiotic tolerance and RccR-mediated central carbon metabolism regulation in P. aeruginosa, and elucidates the KDPG-sensing mechanism by RccR.
Collapse
Affiliation(s)
- Yujue Wang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Zhipeng Wang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Weizhong Chen
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Ze-Hui Ren
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, Guangdong, China
| | - Hui Gao
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Jiani Dai
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Guan-Zheng Luo
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, Guangdong, China
| | - Zhaowei Wu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Quanjiang Ji
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Shanghai Clinical Research and Trial Center, Shanghai 201210, China
| |
Collapse
|
6
|
Díaz-Pérez AL, Díaz-Pérez C, Gaona-García RY, Hernández-Santoyo A, Lázaro-Mixteco PE, Reyes-De La Cruz H, Campos-García J. Study of peripheral domains in structure-function of isocitrate lyase (ICL) from Pseudomonas aeruginosa. World J Microbiol Biotechnol 2023; 39:339. [PMID: 37821748 DOI: 10.1007/s11274-023-03768-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 09/15/2023] [Indexed: 10/13/2023]
Abstract
The capacity of Pseudomonas aeruginosa to assimilate nutrients is essential for niche colonization and contributes to its pathogenicity. Isocitrate lyase (ICL), the first enzyme of the glyoxylate cycle, redirects isocitrate from the tricarboxylic acid cycle to render glyoxylate and succinate. P. aeruginosa ICL (PaICL) is regarded as a virulence factor due to its role in carbon assimilation during infection. The AceA/ICL protein family shares the catalytic domain I, triosephosphate isomerase barrel (TIM-barrel). The carboxyl terminus of domain I is essential for Escherichia coli ICL (EcICL) of subfamily 1. PaICL, which belongs to subfamily 3, has domain II inserted at the periphery of domain I, which is believed to participate in enzyme oligomerization. In addition, PaICL has the α13-loop-α14 (extended motif), which protrudes from the enzyme core, being of unknown function. This study investigates the role of domain II, the extended motif, and the carboxyl-terminus (C-ICL) and amino-terminus (N-ICL) regions in the function of the PaICL enzyme, also as their involvement in the virulence of P. aeruginosa PAO1. Deletion of domain II and the extended motif results in enzyme inactivation and structural instability of the enzyme. The His6-tag fusion at the C-ICL protein produced a less efficient enzyme than fusion at the N-ICL, but without affecting the acetate assimilation or virulence. The PaICL homotetrameric structure of the enzyme was more stable in the N-His6-ICL than in the C-His6-ICL, suggesting that the C-terminus is critical for the ICL quaternary conformation. The ICL-mutant A39 complemented with the recombinant proteins N-His6-ICL or C-His6-ICL were more virulent than the WT PAO1 strain. The findings indicate that the domain II and the extended motif are essential for the ICL structure/function, and the C-terminus is involved in its quaternary structure conformation, confirming that in P. aeruginosa, the ICL is essential for acetate assimilation and virulence.
Collapse
Affiliation(s)
- Alma Laura Díaz-Pérez
- Lab. de Biotecnología Microbiana, Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edif. U-3, Ciudad Universitaria, 58030, Morelia, Mich., Mexico
| | - César Díaz-Pérez
- Facultad de Agrobiologia, Campus Celaya-Salvatierra, Universiad de Guanajuato, Guanajuato, Gto., Mexico
| | - Roxana Yughadi Gaona-García
- Lab. de Biotecnología Microbiana, Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edif. U-3, Ciudad Universitaria, 58030, Morelia, Mich., Mexico
| | - Alejandra Hernández-Santoyo
- Departamento de Química de Biomacromoléculas, Instituto de Química, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Pedro E Lázaro-Mixteco
- Facultad de Ingeniería Química, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mich., Mexico
| | - Homero Reyes-De La Cruz
- Lab. de Biotecnología Microbiana, Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edif. U-3, Ciudad Universitaria, 58030, Morelia, Mich., Mexico
| | - Jesús Campos-García
- Lab. de Biotecnología Microbiana, Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edif. U-3, Ciudad Universitaria, 58030, Morelia, Mich., Mexico.
| |
Collapse
|
7
|
Thompson CMA, Hall JPJ, Chandra G, Martins C, Saalbach G, Panturat S, Bird SM, Ford S, Little RH, Piazza A, Harrison E, Jackson RW, Brockhurst MA, Malone JG. Plasmids manipulate bacterial behaviour through translational regulatory crosstalk. PLoS Biol 2023; 21:e3001988. [PMID: 36787297 PMCID: PMC9928087 DOI: 10.1371/journal.pbio.3001988] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 01/04/2023] [Indexed: 02/15/2023] Open
Abstract
Beyond their role in horizontal gene transfer, conjugative plasmids commonly encode homologues of bacterial regulators. Known plasmid regulator homologues have highly targeted effects upon the transcription of specific bacterial traits. Here, we characterise a plasmid translational regulator, RsmQ, capable of taking global regulatory control in Pseudomonas fluorescens and causing a behavioural switch from motile to sessile lifestyle. RsmQ acts as a global regulator, controlling the host proteome through direct interaction with host mRNAs and interference with the host's translational regulatory network. This mRNA interference leads to large-scale proteomic changes in metabolic genes, key regulators, and genes involved in chemotaxis, thus controlling bacterial metabolism and motility. Moreover, comparative analyses found RsmQ to be encoded on a large number of divergent plasmids isolated from multiple bacterial host taxa, suggesting the widespread importance of RsmQ for manipulating bacterial behaviour across clinical, environmental, and agricultural niches. RsmQ is a widespread plasmid global translational regulator primarily evolved for host chromosomal control to manipulate bacterial behaviour and lifestyle.
Collapse
Affiliation(s)
- Catriona M. A. Thompson
- Department of Molecular Microbiology, John Innes Centre, Colney Lane, Norwich, United Kingdom
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, Norfolk, United Kingdom
| | - James P. J. Hall
- Department of Evolution, Ecology and Behaviour Institute of Infection, Veterinary and Ecological Sciences University of Liverpool, Crown Street, Liverpool, United Kingdom
| | - Govind Chandra
- Department of Molecular Microbiology, John Innes Centre, Colney Lane, Norwich, United Kingdom
| | - Carlo Martins
- Department of Molecular Microbiology, John Innes Centre, Colney Lane, Norwich, United Kingdom
| | - Gerhard Saalbach
- Department of Molecular Microbiology, John Innes Centre, Colney Lane, Norwich, United Kingdom
| | - Supakan Panturat
- Department of Molecular Microbiology, John Innes Centre, Colney Lane, Norwich, United Kingdom
| | - Susannah M. Bird
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
| | - Samuel Ford
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
| | - Richard H. Little
- Department of Molecular Microbiology, John Innes Centre, Colney Lane, Norwich, United Kingdom
| | - Ainelen Piazza
- Department of Molecular Microbiology, John Innes Centre, Colney Lane, Norwich, United Kingdom
| | - Ellie Harrison
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
| | - Robert W. Jackson
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Michael A. Brockhurst
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
- Division of Evolution and Genomic Sciences, School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| | - Jacob G. Malone
- Department of Molecular Microbiology, John Innes Centre, Colney Lane, Norwich, United Kingdom
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, Norfolk, United Kingdom
| |
Collapse
|
8
|
Metabolic Mechanism and Physiological Role of Glycerol 3-Phosphate in Pseudomonas aeruginosa PAO1. mBio 2022; 13:e0262422. [PMID: 36218368 PMCID: PMC9765544 DOI: 10.1128/mbio.02624-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas aeruginosa is an important opportunistic pathogen that is lethal to cystic fibrosis (CF) patients. Glycerol generated during the degradation of phosphatidylcholine, the major lung surfactant in CF patients, could be utilized by P. aeruginosa. Previous studies have indicated that metabolism of glycerol by this bacterium contributes to its adaptation to and persistence in the CF lung environment. Here, we investigated the metabolic mechanisms of glycerol and its important metabolic intermediate glycerol 3-phosphate (G3P) in P. aeruginosa PAO1. We found that G3P homeostasis plays an important role in the growth and virulence factor production of P. aeruginosa PAO1. The G3P accumulation caused by the mutation of G3P dehydrogenase (GlpD) and exogenous glycerol led to impaired growth and reductions in pyocyanin synthesis, motilities, tolerance to oxidative stress, and resistance to kanamycin. Transcriptomic analysis indicates that the growth retardation caused by G3P stress is associated with reduced glycolysis and adenosine triphosphate (ATP) generation. Furthermore, two haloacid dehalogenase-like phosphatases (PA0562 and PA3172) that play roles in the dephosphorylation of G3P in strain PAO1 were identified, and their enzymatic properties were characterized. Our findings reveal the importance of G3P homeostasis and indicate that GlpD, the key enzyme for G3P catabolism, is a potential therapeutic target for the prevention and treatment of infections by this pathogen. IMPORTANCE In view of the intrinsic resistance of Pseudomonas aeruginosa to antibiotics and its potential to acquire resistance to current antibiotics, there is an urgent need to develop novel therapeutic options for the treatment of infections caused by this bacterium. Bacterial metabolic pathways have recently become a focus of interest as potential targets for the development of new antibiotics. In this study, we describe the mechanism of glycerol utilization in P. aeruginosa PAO1, which is an available carbon source in the lung environment. Our results reveal that the homeostasis of glycerol 3-phosphate (G3P), a pivotal intermediate in glycerol catabolism, is important for the growth and virulence factor production of P. aeruginosa PAO1. The mutation of G3P dehydrogenase (GlpD) and the addition of glycerol were found to reduce the tolerance of P. aeruginosa PAO1 to oxidative stress and to kanamycin. The findings highlight the importance of G3P homeostasis and suggest that GlpD is a potential drug target for the treatment of P. aeruginosa infections.
Collapse
|
9
|
Yang P, Liu W, Chen Y, Gong AD. Engineering the glyoxylate cycle for chemical bioproduction. Front Bioeng Biotechnol 2022; 10:1066651. [PMID: 36532595 PMCID: PMC9755347 DOI: 10.3389/fbioe.2022.1066651] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/17/2022] [Indexed: 07/24/2023] Open
Abstract
With growing concerns about environmental issues and sustainable economy, bioproduction of chemicals utilizing microbial cell factories provides an eco-friendly alternative to current petro-based processes. Creating high-performance strains (with high titer, yield, and productivity) through metabolic engineering strategies is critical for cost-competitive production. Commonly, it is inevitable to fine-tuning or rewire the endogenous or heterologous pathways in such processes. As an important pathway involved in the synthesis of many kinds of chemicals, the potential of the glyoxylate cycle in metabolic engineering has been studied extensively these years. Here, we review the metabolic regulation of the glyoxylate cycle and summarize recent achievements in microbial production of chemicals through tuning of the glyoxylate cycle, with a focus on studies implemented in model microorganisms. Also, future prospects for bioproduction of glyoxylate cycle-related chemicals are discussed.
Collapse
|
10
|
Mutyala S, Kim JR. Recent advances and challenges in the bioconversion of acetate to value-added chemicals. BIORESOURCE TECHNOLOGY 2022; 364:128064. [PMID: 36195215 DOI: 10.1016/j.biortech.2022.128064] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Acetate is a major byproduct of the bioconversion of the greenhouse gas carbon dioxide, pretreatment of lignocellulose biomass, and microbial fermentation. The utilization and valorization of acetate have been emphasized in transforming waste to clean energy and value-added platform chemicals, contributing to the development of a closed carbon loop toward a low-carbon circular bio-economy. Acetate has been used to produce several platform chemicals, including succinate, 3-hydroxypropionate, and itaconic acid, highlighting the potential of acetate to synthesize many biochemicals and biofuels. On the other hand, the yields and titers have not reached the theoretical maximum. Recently, recombinant strain development and pathway regulation have been suggested to overcome this limitation. This review provides insights into the important constraints limiting the yields and titers of the biochemical and metabolic pathways of bacteria capable of metabolizing acetate for acetate bioconversion. The current developments in recombinant strain engineering are also discussed.
Collapse
Affiliation(s)
- Sakuntala Mutyala
- School of Chemical Engineering, Pusan National University, 63 Busandeahak-ro, Geumjeong-Gu, Busan 46241, Republic of Korea
| | - Jung Rae Kim
- School of Chemical Engineering, Pusan National University, 63 Busandeahak-ro, Geumjeong-Gu, Busan 46241, Republic of Korea.
| |
Collapse
|
11
|
Microbial degradation of polyethylene terephthalate: a systematic review. SN APPLIED SCIENCES 2022. [DOI: 10.1007/s42452-022-05143-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
AbstractPlastic pollution levels have increased rapidly in recent years, due to the accumulation of plastic waste, including polyethylene terephthalate (PET). Both high production and the lack of efficient methods for disposal and recycling affect diverse aquatic and terrestrial ecosystems owing to the high accumulation rates of plastics. Traditional chemical and physical degradation techniques have caused adverse effects on the environment; hence, the use of microorganisms for plastic degradation has gained importance recently. This systematic review was conducted for evaluating the reported findings about PET degradation by wild and genetically modified microorganisms to make them available for future work and to contribute to the eventual implementation of an alternative, an effective, and environmentally friendly method for the management of plastic waste such as PET. Both wild and genetically modified microorganisms with the metabolic potential to degrade this polymer were identified, in addition to the enzymes and genes used for genetic modification. The most prevalent wild-type PET-degrading microorganisms were bacteria (56.3%, 36 genera), followed by fungi (32.4%, 30 genera), microalgae (1.4%; 1 genus, namely Spirulina sp.), and invertebrate associated microbiota (2.8%). Among fungi and bacteria, the most prevalent genera were Aspergillus sp. and Bacillus sp., respectively. About genetically modified microorganisms, 50 strains of Escherichia coli, most of them expressing PETase enzyme, have been used. We emphasize the pressing need for implementing biological techniques for PET waste management on a commercial scale, using consortia of microorganisms. We present this work in five sections: an Introduction that highlights the importance of PET biodegradation as an effective and sustainable alternative, a section on Materials and methods that summarizes how the search for articles and manuscripts in different databases was done, and another Results section where we present the works found on the subject, a final part of Discussion and analysis of the literature found and finally we present a Conclusion and prospects.
Collapse
|
12
|
Bachhar A, Jablonsky J. Entner-Doudoroff pathway in Synechocystis PCC 6803: Proposed regulatory roles and enzyme multifunctionalities. Front Microbiol 2022; 13:967545. [PMID: 36051759 PMCID: PMC9424857 DOI: 10.3389/fmicb.2022.967545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
The Entner-Doudoroff pathway (ED-P) was established in 2016 as the fourth glycolytic pathway in Synechocystis sp. PCC 6803. ED-P consists of two reactions, the first catalyzed by 6-phosphogluconate dehydratase (EDD), the second by keto3-deoxygluconate-6-phosphate aldolase/4-hydroxy-2-oxoglutarate aldolase (EDA). ED-P was previously concluded to be a widespread (∼92%) pathway among cyanobacteria, but current bioinformatic analysis estimated the occurrence of ED-P to be either scarce (∼1%) or uncommon (∼47%), depending if dihydroxy-acid dehydratase (ilvD) also functions as EDD (currently assumed). Thus, the biochemical characterization of ilvD is a task pending to resolve this uncertainty. Next, we have provided new insights into several single and double glycolytic mutants based on kinetic model of central carbon metabolism of Synechocystis. The model predicted that silencing 6-phosphogluconate dehydrogenase (gnd) could be coupled with ∼90% down-regulation of G6P-dehydrogenase, also limiting the metabolic flux via ED-P. Furthermore, our metabolic flux estimation implied that growth impairment linked to silenced EDA under mixotrophic conditions is not caused by diminished carbon flux via ED-P but rather by a missing mechanism related to the role of EDA in metabolism. We proposed two possible, mutually non-exclusive explanations: (i) Δeda leads to disrupted carbon catabolite repression, regulated by 2-keto3-deoxygluconate-6-phosphate (ED-P intermediate), and (ii) EDA catalyzes the interconversion between glyoxylate and 4-hydroxy-2-oxoglutarate + pyruvate in the proximity of TCA cycle, possibly effecting the levels of 2-oxoglutarate under Δeda. We have also proposed a new pathway from EDA toward proline, which could explain the proline accumulation under Δeda. In addition, the presented in silico method provides an alternative to 13C metabolic flux analysis for marginal metabolic pathways around/below the threshold of ultrasensitive LC-MS. Finally, our in silico analysis provided alternative explanations for the role of ED-P in Synechocystis while identifying some severe uncertainties.
Collapse
|
13
|
Pacheco-Moreno A, Stefanato FL, Ford JJ, Trippel C, Uszkoreit S, Ferrafiat L, Grenga L, Dickens R, Kelly N, Kingdon AD, Ambrosetti L, Nepogodiev SA, Findlay KC, Cheema J, Trick M, Chandra G, Tomalin G, Malone JG, Truman AW. Pan-genome analysis identifies intersecting roles for Pseudomonas specialized metabolites in potato pathogen inhibition. eLife 2021; 10:71900. [PMID: 34792466 PMCID: PMC8719888 DOI: 10.7554/elife.71900] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 11/16/2021] [Indexed: 11/29/2022] Open
Abstract
Agricultural soil harbors a diverse microbiome that can form beneficial relationships with plants, including the inhibition of plant pathogens. Pseudomonas spp. are one of the most abundant bacterial genera in the soil and rhizosphere and play important roles in promoting plant health. However, the genetic determinants of this beneficial activity are only partially understood. Here, we genetically and phenotypically characterize the Pseudomonas fluorescens population in a commercial potato field, where we identify strong correlations between specialized metabolite biosynthesis and antagonism of the potato pathogens Streptomyces scabies and Phytophthora infestans. Genetic and chemical analyses identified hydrogen cyanide and cyclic lipopeptides as key specialized metabolites associated with S. scabies inhibition, which was supported by in planta biocontrol experiments. We show that a single potato field contains a hugely diverse and dynamic population of Pseudomonas bacteria, whose capacity to produce specialized metabolites is shaped both by plant colonization and defined environmental inputs. Potato scab and blight are two major diseases which can cause heavy crop losses. They are caused, respectively, by the bacterium Streptomyces scabies and an oomycete (a fungus-like organism) known as Phytophthora infestans. Fighting these disease-causing microorganisms can involve crop management techniques – for example, ensuring that a field is well irrigated helps to keep S. scabies at bay. Harnessing biological control agents can also offer ways to control disease while respecting the environment. Biocontrol bacteria, such as Pseudomonas, can produce compounds that keep S. scabies and P. infestans in check. However, the identity of these molecules and how irrigation can influence Pseudomonas population remains unknown. To examine these questions, Pacheco-Moreno et al. sampled and isolated hundreds of Pseudomonas strains from a commercial potato field, closely examining the genomes of 69 of these. Comparing the genetic information of strains based on whether they could control the growth of S. scabies revealed that compounds known as cyclic lipopeptides are key to controlling the growth of S. scabies and P. infestans. Whether the field was irrigated also had a large impact on the strains forming the Pseudomonas population. Working out how Pseudomonas bacteria block disease could speed up the search for biological control agents. The approach developed by Pacheco-Moreno et al. could help to predict which strains might be most effective based on their genetic features. Similar experiments could also work for other combinations of plants and diseases.
Collapse
Affiliation(s)
- Alba Pacheco-Moreno
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | | | - Jonathan J Ford
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | - Christine Trippel
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | - Simon Uszkoreit
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | - Laura Ferrafiat
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | - Lucia Grenga
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | - Ruth Dickens
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | - Nathan Kelly
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | - Alexander Dh Kingdon
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | - Liana Ambrosetti
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | - Sergey A Nepogodiev
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich, United Kingdom
| | - Kim C Findlay
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, United Kingdom
| | - Jitender Cheema
- Department of Computational and Systems Biology, John Innes Centre, Norwich, United Kingdom
| | - Martin Trick
- Computational and Systems Biology, John Innes Centre, Norwich, United Kingdom
| | - Govind Chandra
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | | | - Jacob G Malone
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | - Andrew W Truman
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| |
Collapse
|
14
|
Sathesh-Prabu C, Tiwari R, Kim D, Lee SK. Inducible and tunable gene expression systems for Pseudomonas putida KT2440. Sci Rep 2021; 11:18079. [PMID: 34508142 PMCID: PMC8433446 DOI: 10.1038/s41598-021-97550-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/23/2021] [Indexed: 12/23/2022] Open
Abstract
Inducible and tunable expression systems are essential for the microbial production of biochemicals. Five different carbon source- and substrate-inducible promoter systems were developed and further evaluated in Pseudomonas putida KT2440 by analyzing the expression of green fluorescent protein (GFP) as a reporter protein. These systems can be induced by low-cost compounds such as glucose, 3-hydroxypropionic acid (3HP), levulinic acid (LA), and xylose. 3HP-inducible HpdR/PhpdH was also efficiently induced by LA. LvaR/PlvaA and XutR/PxutA systems were induced even at low concentrations of LA (0.1 mM) and xylose (0.5 mM), respectively. Glucose-inducible HexR/Pzwf1 showed weak GFP expression. These inducer agents can be used as potent starting materials for both cell growth and the production of a wide range of biochemicals. The efficiency of the reported systems was comparable to that of conventional chemical-inducible systems. Hence, the newly investigated promoter systems are highly useful for the expression of target genes in the widely used synthetic biology chassis P. putida KT2440 for industrial and medical applications.
Collapse
Affiliation(s)
- Chandran Sathesh-Prabu
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Rameshwar Tiwari
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Doyun Kim
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Sung Kuk Lee
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea. .,Department of Energy Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.
| |
Collapse
|
15
|
El-Mansi M, Phue JN, Shiloach J. Expression of the ace operon in Escherichia coli is triggered in response to growth rate-dependent flux-signal of ATP. FEMS Microbiol Lett 2021; 368:6070649. [PMID: 33417680 DOI: 10.1093/femsle/fnaa221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 12/31/2020] [Indexed: 01/06/2023] Open
Abstract
The signal that triggers the expression of the ace operon and, in turn, the transition of central metabolism's architecture from acetogenic to gluconeogenic in Escherichia coli remains elusive despite extensive research both in vivo and in vitro. Here, with the aid of flux analysis together with measurements of the enzymic activity of isocitrate lyase (ICL) and its aceA-messenger ribonucleuc acid (mRNA) transcripts, we provide credible evidence suggesting that the expression of the ace operon in E. coli is triggered in response to growth rate-dependent threshold flux-signal of adenosine triphosphate (ATP). Flux analysis revealed that the shortfall in ATP supply observed as the growth rate ($\mu $) diminishes from µmax to ≤ 0.43h-1 ($ \pm 0.02;n4)\ $is partially redressed by up-regulating flux through succinyl CoA synthetase. Unlike glycerol and glucose, pyruvate cannot feed directly into the two glycolytic ATP-generating reactions catalyzed by phosphoglycerokinase and pyruvate kinase. On the other hand, glycerol, which upon its conversion to D-glyceraldehyde, feeds into the phosphorylation and dephosphorylation parts of glycolysis including the substrate-level phosphorylation-ATP generating reactions, thus preventing ATP flux from dropping to the critical threshold signal required to trigger the acetate-diauxic switch until glycerol is fully consumed. The mRNA transcriptional patterns of key gluconeogenic enzymes, namely, ackA, acetate kinase; pta, phosphotransacetylase; acs, acetyl CoA synthetase and aceA, ICL, suggest that the pyruvate phenotype is better equipped than the glycerol phenotype for the switch from acetogenic to gluconeogenic metabolism.
Collapse
Affiliation(s)
- Mansi El-Mansi
- Bio-Ed, Scotland UK, 17/7 Watson Crescent, Edinburgh EGH11 1HA, Scotland, UK.,University of Africa, Toru-Orua, Department of Biotechnology, Faculty of Science, Sagbama L.G.A. Bayelsa State, Nigeria
| | - Je-Nie Phue
- Biotechnology Lab, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Building 14A, Room 173, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Joseph Shiloach
- Biotechnology Lab, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Building 14A, Room 173, 9000 Rockville Pike, Bethesda, MD 20892, USA
| |
Collapse
|
16
|
Hwang W, Yong JH, Min KB, Lee KM, Pascoe B, Sheppard SK, Yoon SS. Genome-wide association study of signature genetic alterations among pseudomonas aeruginosa cystic fibrosis isolates. PLoS Pathog 2021; 17:e1009681. [PMID: 34161396 PMCID: PMC8274868 DOI: 10.1371/journal.ppat.1009681] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 07/12/2021] [Accepted: 05/31/2021] [Indexed: 12/18/2022] Open
Abstract
Pseudomonas aeruginosa (PA) is an opportunistic pathogen that causes diverse human infections including chronic airway infection in patients with cystic fibrosis (CF). Comparing the genomes of CF and non-CF PA isolates has great potential to identify the genetic basis of pathogenicity. To gain a deeper understanding of PA adaptation in CF airways, we performed a genome-wide association study (GWAS) on 1,001 PA genomes. Genetic variations identified among CF isolates were categorized into (i) alterations in protein-coding regions, either large- or small-scale, and (ii) polymorphic variation in intergenic regions. We introduced each CF-associated genetic alteration into the genome of PAO1, a prototype PA strain, and validated the outcomes experimentally. Loci readily mutated among CF isolates included genes encoding a probable sulfatase, a probable TonB-dependent receptor (PA2332~PA2336), L-cystine transporter (YecS, PA0313), and a probable transcriptional regulator (PA5438). A promoter region of a heme/hemoglobin uptake outer membrane receptor (PhuR, PA4710) was also different between the CF and non-CF isolate groups. Our analysis highlights ways in which the PA genome evolves to survive and persist within the context of chronic CF infection.
Collapse
Affiliation(s)
- Wontae Hwang
- Department of Microbiology and Immunology, Seoul, Republic of Korea
- Brain Korea 21 PLUS Project for Medical Sciences, Seoul, Republic of Korea
| | - Ji Hyun Yong
- Department of Microbiology and Immunology, Seoul, Republic of Korea
- Brain Korea 21 PLUS Project for Medical Sciences, Seoul, Republic of Korea
| | - Kyung Bae Min
- Department of Microbiology and Immunology, Seoul, Republic of Korea
- Brain Korea 21 PLUS Project for Medical Sciences, Seoul, Republic of Korea
| | - Kang-Mu Lee
- Department of Microbiology and Immunology, Seoul, Republic of Korea
- Brain Korea 21 PLUS Project for Medical Sciences, Seoul, Republic of Korea
| | - Ben Pascoe
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, United Kingdom
| | - Samuel K Sheppard
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, United Kingdom
| | - Sang Sun Yoon
- Department of Microbiology and Immunology, Seoul, Republic of Korea
- Brain Korea 21 PLUS Project for Medical Sciences, Seoul, Republic of Korea
- Institute for Immunology and Immunological Diseases, Seoul, Republic of Korea
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
17
|
Cofactor Specificity of Glucose-6-Phosphate Dehydrogenase Isozymes in Pseudomonas putida Reveals a General Principle Underlying Glycolytic Strategies in Bacteria. mSystems 2021; 6:6/2/e00014-21. [PMID: 33727391 PMCID: PMC8546961 DOI: 10.1128/msystems.00014-21] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Glucose-6-phosphate dehydrogenase (G6PDH) is widely distributed in nature and catalyzes the first committing step in the oxidative branch of the pentose phosphate (PP) pathway, feeding either the reductive PP or the Entner-Doudoroff pathway. Besides its role in central carbon metabolism, this dehydrogenase provides reduced cofactors, thereby affecting redox balance. Although G6PDH is typically considered to display specificity toward NADP+, some variants accept NAD+ similarly or even preferentially. Furthermore, the number of G6PDH isozymes encoded in bacterial genomes varies from none to more than four orthologues. On this background, we systematically analyzed the interplay of the three G6PDH isoforms of the soil bacterium Pseudomonas putida KT2440 from genomic, genetic, and biochemical perspectives. P. putida represents an ideal model to tackle this endeavor, as its genome harbors gene orthologues for most dehydrogenases in central carbon metabolism. We show that the three G6PDHs of strain KT2440 have different cofactor specificities and that the isoforms encoded by zwfA and zwfB carry most of the activity, acting as metabolic “gatekeepers” for carbon sources that enter at different nodes of the biochemical network. Moreover, we demonstrate how multiplication of G6PDH isoforms is a widespread strategy in bacteria, correlating with the presence of an incomplete Embden-Meyerhof-Parnas pathway. The abundance of G6PDH isoforms in these species goes hand in hand with low NADP+ affinity, at least in one isozyme. We propose that gene duplication and relaxation in cofactor specificity is an evolutionary strategy toward balancing the relative production of NADPH and NADH. IMPORTANCE Protein families have likely arisen during evolution by gene duplication and divergence followed by neofunctionalization. While this phenomenon is well documented for catabolic activities (typical of environmental bacteria that colonize highly polluted niches), the coexistence of multiple isozymes in central carbon catabolism remains relatively unexplored. We have adopted the metabolically versatile soil bacterium Pseudomonas putida KT2440 as a model to interrogate the physiological and evolutionary significance of coexisting glucose-6-phosphate dehydrogenase (G6PDH) isozymes. Our results show that each of the three G6PDHs in this bacterium display distinct biochemical properties, especially at the level of cofactor preference, impacting bacterial physiology in a carbon source-dependent fashion. Furthermore, the presence of multiple G6PDHs differing in NAD+ or NADP+ specificity in bacterial species strongly correlates with their predominant metabolic lifestyle. Our findings support the notion that multiplication of genes encoding cofactor-dependent dehydrogenases is a general evolutionary strategy toward achieving redox balance according to the growth conditions.
Collapse
|
18
|
Wang H, Wang Y, Humphris S, Nie W, Zhang P, Wright F, Campbell E, Hu B, Fan J, Toth I. Pectobacterium atrosepticum KDPG aldolase, Eda, participates in the Entner-Doudoroff pathway and independently inhibits expression of virulence determinants. MOLECULAR PLANT PATHOLOGY 2021; 22:271-283. [PMID: 33301200 PMCID: PMC7814964 DOI: 10.1111/mpp.13025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/04/2020] [Accepted: 11/04/2020] [Indexed: 05/22/2023]
Abstract
Pectobacterium carotovorum has an incomplete Entner-Doudoroff (ED) pathway, including enzyme 2-keto-3-deoxy-6-phosphogluconate aldolase (Eda) but lacking phosphogluconate dehydratase (Edd), while P. atrosepticum (Pba) has a complete pathway. To understand the role of the ED pathway in Pectobacterium infection, mutants of these two key enzymes, Δeda and Δedd, were constructed in Pba SCRI1039. Δeda exhibited significant decreased virulence on potato tubers and colonization in planta and was greatly attenuated in pectinase activity and the ability to use pectin breakdown products, including polygalacturonic acid (PGA) and galacturonic acid. These reduced phenotypes were restored following complementation with an external vector expressing eda. Quantitative reverse transcription PCR analysis revealed that expression of the pectinase genes pelA, pelC, pehN, pelW, and pmeB in Δeda cultured in pyruvate, with or without PGA, was significantly reduced compared to the wild type, while genes for virulence regulators (kdgR, hexR, hexA, and rsmA) remained unchanged. However, Δedd showed similar phenotypes to the wild type. To our knowledge, this is the first demonstration that disruption of eda has a feedback effect on inhibiting pectin degradation and that Eda is involved in building the arsenal of pectinases needed during infection by Pectobacterium.
Collapse
Affiliation(s)
- Huan Wang
- Department of Plant PathologyNanjing Agricultural UniversityNanjingChina
- Cell and Molecular ScienceJames Hutton InstituteDundeeUK
- Institute of Agricultural Science of Taihu Lake DistrictSuzhouChina
| | - Yujie Wang
- Department of Plant PathologyNanjing Agricultural UniversityNanjingChina
| | - Sonia Humphris
- Cell and Molecular ScienceJames Hutton InstituteDundeeUK
| | - Weihua Nie
- Department of Plant PathologyNanjing Agricultural UniversityNanjingChina
| | - Pengfei Zhang
- Department of Plant PathologyNanjing Agricultural UniversityNanjingChina
| | - Frank Wright
- Bioinformatics and StatisticsJames Hutton InstituteDundeeUK
| | - Emma Campbell
- Cell and Molecular ScienceJames Hutton InstituteDundeeUK
| | - Baishi Hu
- Department of Plant PathologyNanjing Agricultural UniversityNanjingChina
| | - Jiaqin Fan
- Department of Plant PathologyNanjing Agricultural UniversityNanjingChina
| | - Ian Toth
- Cell and Molecular ScienceJames Hutton InstituteDundeeUK
| |
Collapse
|
19
|
Stevenson CEM, Lawson DM. Analysis of Protein-DNA Interactions Using Surface Plasmon Resonance and a ReDCaT Chip. Methods Mol Biol 2021; 2263:369-379. [PMID: 33877608 DOI: 10.1007/978-1-0716-1197-5_17] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The recognition of specific DNA sequences by proteins is crucial to fundamental biological processes such as DNA replication, transcription, and gene regulation. The technique of surface plasmon resonance (SPR) is ideally suited for the measurement of these interactions because it is quantitative, simple to implement, reproducible, can be automated, and requires very little sample. This typically involves the direct capture of biotinylated DNA to a streptavidin (SA) chip before flowing over the protein of interest and monitoring the interaction. However, once the DNA has been immobilized on the chip, it cannot be removed without damaging the chip surface. Moreover, if the protein-DNA interaction is strong, then it may not be possible to remove the protein from the DNA without damaging the chip surface. Given that the chips are costly, this will limit the number of samples that can be tested. Therefore, we have developed a Reusable DNA Capture Technology, or ReDCaT chip, that enables a single streptavidin chip to be used multiple times making the technique simple, quick, and cost effective. The general steps to prepare the ReDCaT chip, run a simple binding experiment, and analysis of data will be described in detail. Some additional applications will also be introduced.
Collapse
Affiliation(s)
- Clare E M Stevenson
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, UK.
| | - David M Lawson
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, UK
| |
Collapse
|
20
|
Zboralski A, Filion M. Genetic factors involved in rhizosphere colonization by phytobeneficial Pseudomonas spp. Comput Struct Biotechnol J 2020; 18:3539-3554. [PMID: 33304453 PMCID: PMC7711191 DOI: 10.1016/j.csbj.2020.11.025] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/10/2020] [Accepted: 11/12/2020] [Indexed: 12/13/2022] Open
Abstract
Plant growth-promoting rhizobacteria (PGPR) actively colonize the soil portion under the influence of plant roots, called the rhizosphere. Many plant-beneficial Pseudomonas spp. have been characterized as PGPR. They are ubiquitous rod-shaped motile Gram-negative bacteria displaying a high metabolic versatility. Their capacity to protect plants from pathogens and improve plant growth closely depends on their rhizosphere colonization abilities. Various molecular and cellular mechanisms are involved in this complex process, such as chemotaxis, biofilm formation, secondary metabolites biosynthesis, metabolic versatility, and evasion of plant immunity. The burst in Pseudomonas spp. genome sequencing in recent years has been crucial to better understand how they colonize the rhizosphere. In this review, we discuss the recent advances regarding these mechanisms and the underlying bacterial genetic factors required for successful rhizosphere colonization.
Collapse
Affiliation(s)
- Antoine Zboralski
- Department of Biology, Université de Moncton, Moncton, NB E1A 3E9, Canada
| | - Martin Filion
- Research and Development Centre, Agriculture and Agri-Food Canada, Saint-Jean-sur-Richelieu, QC J3B 3E6, Canada
| |
Collapse
|
21
|
Malousi A, Andreou AZ, Kouidou S. In silico structural analysis of sequences containing 5-hydroxymethylcytosine reveals its potential as binding regulator for development, ageing and cancer-related transcription factors. Epigenetics 2020; 16:503-518. [PMID: 32752914 DOI: 10.1080/15592294.2020.1805693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The presence of 5-hydroxymethyl cytosine in DNA has been previously associated with ageing. Using in silico analysis of normal liver samples we presently observed that in 5-hydroxymethyl cytosine sequences, DNA methylation is dependent on the co-presence of G-quadruplexes and palindromes. This association exhibits discrete patterns depending on G-quadruplex and palindrome densities. DNase-Seq data show that 5-hydroxymethyl cytosine sequences are common among liver nucleosomes (p < 2.2x10-16) and threefold more frequent than nucleosome sequences. Nucleosomes lacking palindromes and potential G-quadruplexes are rare in vivo (1%) and nucleosome occupancy potential decreases with increasing G-quadruplexes. Palindrome distribution is similar to that previously reported in nucleosomes. In low and mixed complexity sequences 5-hydroxymethyl cytosine is frequently located next to three elements: G-quadruplexes or imperfect G-quadruplexes with CpGs, or unstable hairpin loops (TCCCAY6TGGGA) mostly located in antisense strands or finally A-/T-rich segments near these motifs. The high frequencies and selective distribution of pentamer sequences (including TCCCA, TGGGA) probably indicate the positive contribution of 5-hydroxymethyl cytosine to stabilize the formation of structures unstable in the absence of this cytosine modification. Common motifs identified in all total 5-hydroxymethyl cytosine-containing sequences exhibit high homology to recognition sites of several transcription factor families: homeobox, factors involved in growth, mortality/ageing, cancer, neuronal function, vision, and reproduction. We conclude that cytosine hydroxymethylation could play a role in the recognition of sequences with G-quadruplexes/palindromes by forming epigenetically regulated DNA 'springs' and governing expansions or compressions recognized by different transcription factors or stabilizing nucleosomes. The balance of these epigenetic elements is lost in hepatocellular carcinoma.
Collapse
Affiliation(s)
- Andigoni Malousi
- Lab. of Biological Chemistry, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Sofia Kouidou
- Lab. of Biological Chemistry, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
22
|
Sathesh-Prabu C, Kim D, Lee SK. Metabolic engineering of Escherichia coli for 2,3-butanediol production from cellulosic biomass by using glucose-inducible gene expression system. BIORESOURCE TECHNOLOGY 2020; 309:123361. [PMID: 32305846 DOI: 10.1016/j.biortech.2020.123361] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/06/2020] [Accepted: 04/08/2020] [Indexed: 05/12/2023]
Abstract
A glucose-inducible gene expression system has been developed using HexR-Pzwf1 of Pseudomonas putida to induce the metabolic pathways. Since the system is controlled by an Entner-Doudoroff pathway (EDP) intermediate, the EDP of Escherichia coli was activated by deleting pfkA and gntR genes. Growth experiment with green fluorescent protein as a reporter indicated that the induction of this system was tightly controlled over a wide range of glucose in E. coli without adding any inducer. 2,3-butanediol (BDO) synthetic pathway genes were expressed by this system in the pfkA-gntR-deleted strain. The resultant engineered strain harbouring this system efficiently produced BDO with a 71% increased titer than the control strain. The strain was also able to produce BDO from a mixture of glucose and xylose which is comparable to glucose alone. Further, the strain produced 11 g/L of BDO at a yield of 0.48 g/g from the hydrolysate of empty palm fruit bunches. This system can also be applied in many other bio-production processes from lignocellulosic biomass.
Collapse
Affiliation(s)
- Chandran Sathesh-Prabu
- Department of Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Donghyuk Kim
- Department of Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea; Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Sung Kuk Lee
- Department of Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea; Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.
| |
Collapse
|
23
|
Grenga L, Little RH, Chandra G, Woodcock SD, Saalbach G, Morris RJ, Malone JG. Control of mRNA translation by dynamic ribosome modification. PLoS Genet 2020; 16:e1008837. [PMID: 32584816 PMCID: PMC7343187 DOI: 10.1371/journal.pgen.1008837] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/08/2020] [Accepted: 05/07/2020] [Indexed: 01/28/2023] Open
Abstract
Control of mRNA translation is a crucial regulatory mechanism used by bacteria to respond to their environment. In the soil bacterium Pseudomonas fluorescens, RimK modifies the C-terminus of ribosomal protein RpsF to influence important aspects of rhizosphere colonisation through proteome remodelling. In this study, we show that RimK activity is itself under complex, multifactorial control by the co-transcribed phosphodiesterase trigger enzyme (RimA) and a polyglutamate-specific protease (RimB). Furthermore, biochemical experimentation and mathematical modelling reveal a role for the nucleotide second messenger cyclic-di-GMP in coordinating these activities. Active ribosome regulation by RimK occurs by two main routes: indirectly, through changes in the abundance of the global translational regulator Hfq and directly, with translation of surface attachment factors, amino acid transporters and key secreted molecules linked specifically to RpsF modification. Our findings show that post-translational ribosomal modification functions as a rapid-response mechanism that tunes global gene translation in response to environmental signals.
Collapse
Affiliation(s)
- Lucia Grenga
- Molecular Microbiology, John Innes Centre, Norwich, Norfolk, United Kingdom
- School of Biological Sciences, University of East Anglia, Norwich, Norfolk, United Kingdom
| | | | - Govind Chandra
- Molecular Microbiology, John Innes Centre, Norwich, Norfolk, United Kingdom
| | | | - Gerhard Saalbach
- Molecular Microbiology, John Innes Centre, Norwich, Norfolk, United Kingdom
| | - Richard James Morris
- Computational and Systems Biology, John Innes Centre, Norwich, Norfolk, United Kingdom
| | - Jacob George Malone
- Molecular Microbiology, John Innes Centre, Norwich, Norfolk, United Kingdom
- School of Biological Sciences, University of East Anglia, Norwich, Norfolk, United Kingdom
- * E-mail:
| |
Collapse
|
24
|
Fan J, Ma L, Zhao C, Yan J, Che S, Zhou Z, Wang H, Yang L, Hu B. Transcriptome of Pectobacterium carotovorum subsp. carotovorum PccS1 infected in calla plants in vivo highlights a spatiotemporal expression pattern of genes related to virulence, adaptation, and host response. MOLECULAR PLANT PATHOLOGY 2020; 21:871-891. [PMID: 32267092 PMCID: PMC7214478 DOI: 10.1111/mpp.12936] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 02/14/2020] [Accepted: 02/29/2020] [Indexed: 06/11/2023]
Abstract
Bacterial pathogens from the genus Pectobacterium cause soft rot in various plants, and result in important economic losses worldwide. We understand much about how these pathogens digest their hosts and protect themselves against plant defences, as well as some regulatory networks in these processes. However, the spatiotemporal expression of genome-wide infection of Pectobacterium remains unclear, although researchers analysed this in some phytopathogens. In the present work, comparing the transcriptome profiles from cellular infection with growth in minimal and rich media, RNA-Seq analyses revealed that the differentially expressed genes (log2 -fold ratio ≥ 1.0) in the cells of Pectobacterium carotovorum subsp. carotovorum PccS1 recovered at a series of time points after inoculation in the host in vivo covered approximately 50% of genes in the genome. Based on the dynamic expression changes in infection, the significantly differentially expressed genes (log2 -fold ratio ≥ 2.0) were classified into five types, and the main expression pattern of the genes for carbohydrate metabolism underlying the processes of infection was identified. The results are helpful to our understanding of the inducement of host plant and environmental adaption of Pectobacterium. In addition, our results demonstrate that maceration caused by PccS1 is due to the depression of callose deposition in the plant for resistance by the pathogenesis-related genes and the superlytic ability of pectinolytic enzymes produced in PccS1, rather than the promotion of plant cell death elicited by the T3SS of bacteria as described in previous work.
Collapse
Affiliation(s)
- Jiaqin Fan
- Laboratory of BacteriologyDepartment of Plant PathologyNanjing Agricultural UniversityNanjingChina
| | - Lin Ma
- Laboratory of BacteriologyDepartment of Plant PathologyNanjing Agricultural UniversityNanjingChina
| | - Chendi Zhao
- Laboratory of BacteriologyDepartment of Plant PathologyNanjing Agricultural UniversityNanjingChina
| | - Jingyuan Yan
- Laboratory of BacteriologyDepartment of Plant PathologyNanjing Agricultural UniversityNanjingChina
| | - Shu Che
- Laboratory of BacteriologyDepartment of Plant PathologyNanjing Agricultural UniversityNanjingChina
| | - Zhaowei Zhou
- Laboratory of BacteriologyDepartment of Plant PathologyNanjing Agricultural UniversityNanjingChina
| | - Huan Wang
- Laboratory of BacteriologyDepartment of Plant PathologyNanjing Agricultural UniversityNanjingChina
| | - Liuke Yang
- Laboratory of BacteriologyDepartment of Plant PathologyNanjing Agricultural UniversityNanjingChina
| | - Baishi Hu
- Laboratory of BacteriologyDepartment of Plant PathologyNanjing Agricultural UniversityNanjingChina
| |
Collapse
|
25
|
Dolan SK, Pereira G, Silva-Rocha R, Welch M. Transcriptional regulation of central carbon metabolism in Pseudomonas aeruginosa. Microb Biotechnol 2019; 13:285-289. [PMID: 31187593 PMCID: PMC6922535 DOI: 10.1111/1751-7915.13423] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/19/2019] [Accepted: 04/20/2019] [Indexed: 01/20/2023] Open
Abstract
Microbes such as Pseudomonas aeruginosa are often challenged by rapidly changing nutritional environments. In order to adapt to these shifts in nutrient availability, bacteria exert tight transcriptional control over the enzymes of central metabolism. This transcriptional control is orchestrated by a series of transcriptional repressors and activators. Although a number of these transcription factors have been identified, many others remain uncharacterized. Here, we present a simple pipeline to uncover and validate the targets of uncharacterized transcriptional regulators in P. aeruginosa. We use this approach to identify and confirm that an orthologue of the Pseudomonas fluorescens transcriptional regulator (RccR) binds to the upstream region of isocitrate lyase (aceA) in P. aeruginosa, thereby repressing flux through the glyoxylate shunt during growth on non‐C2 carbon sources.
Collapse
Affiliation(s)
- Stephen K Dolan
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Greicy Pereira
- Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Rafael Silva-Rocha
- Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Martin Welch
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| |
Collapse
|
26
|
Little RH, Woodcock SD, Campilongo R, Fung RKY, Heal R, Humphries L, Pacheco-Moreno A, Paulusch S, Stigliano E, Vikeli E, Ward D, Malone JG. Differential Regulation of Genes for Cyclic-di-GMP Metabolism Orchestrates Adaptive Changes During Rhizosphere Colonization by Pseudomonas fluorescens. Front Microbiol 2019; 10:1089. [PMID: 31156596 PMCID: PMC6531821 DOI: 10.3389/fmicb.2019.01089] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 04/30/2019] [Indexed: 12/02/2022] Open
Abstract
Bacteria belonging to the Pseudomonas genus are highly successful colonizers of the plant rhizosphere. The ability of different Pseudomonas species to live either commensal lifestyles or to act as agents of plant-growth promotion or disease is reflected in a large, highly flexible accessory genome. Nevertheless, adaptation to the plant environment involves a commonality of phenotypic outputs such as changes to motility, coupled with synthesis of nutrient uptake systems, stress-response molecules and adherence factors including exopolysaccharides. Cyclic-di-GMP (cdG) is a highly important second messenger involved in the integration of environmental signals with appropriate adaptive responses and is known to play a central role in mediating effective rhizosphere colonization. In this study, we examined the transcription of multiple, reportedly plant-upregulated cdG metabolism genes during colonization of the wheat rhizosphere by the plant-growth-promoting strain P. fluorescens SBW25. While transcription of the tested genes generally increased in the rhizosphere environment, we additionally observed a tightly orchestrated response to environmental cues, with a distinct transcriptional pattern seen for each gene throughout the colonization process. Extensive phenotypical analysis of deletion and overexpression strains was then conducted and used to propose cellular functions for individual cdG signaling genes. Finally, in-depth genetic analysis of an important rhizosphere colonization regulator revealed a link between cdG control of growth, motility and stress response, and the carbon sources available in the rhizosphere.
Collapse
Affiliation(s)
- Richard H Little
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | - Stuart D Woodcock
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | - Rosaria Campilongo
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | - Rowena K Y Fung
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | - Robert Heal
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | - Libby Humphries
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | - Alba Pacheco-Moreno
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | | | - Egidio Stigliano
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | - Eleni Vikeli
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | - Danny Ward
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | - Jacob G Malone
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom.,School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| |
Collapse
|
27
|
Woodcock SD, Malone JG. Exploitation of the gall: adaption of Agrobacterium to the host metabolome. THE NEW PHYTOLOGIST 2019; 222:8-10. [PMID: 30815944 DOI: 10.1111/nph.15638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Affiliation(s)
| | - Jacob George Malone
- Department of Molecular Microbiology, John Innes Centre, Norwich, NR4 7UH, UK
- School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
| |
Collapse
|
28
|
Shapiro JA, Kaplan AR, Wuest WM. From General to Specific: Can Pseudomonas Primary Metabolism Be Exploited for Narrow-Spectrum Antibiotics? Chembiochem 2018; 20:34-39. [PMID: 30088315 DOI: 10.1002/cbic.201800383] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Indexed: 12/16/2022]
Abstract
The spread of antimicrobial resistance is a major threat to human health, and patients requiring prolonged antibiotic exposure are in desperate need of new therapeutic strategies. It has been hypothesized that tailoring our antibiotics to inhibit molecular targets specific to pathogens might stem the spread of resistance. A prime candidate for such a strategy is Pseudomonas aeruginosa, which can be found in the lungs of nearly all adult cystic fibrosis patients and, due to chronic exposure to antibiotics, has a high rate of multidrug-resistant strains. Although much research has been done on P. aeruginosa virulence factors as narrow-spectrum targets, less attention has been paid to primary carbon metabolism being leveraged for pathogen-specific mechanisms. However, early studies show that primary metabolic pathways, although shared amongst all organisms, contain intricacies specific to Pseudomonas species that have potential for antibiotic exploitation. Here we lay out some of this work in the hopes that it inspires researchers to continue developing a knowledge base for future antibiotic discovery to build upon and include a case study of a Pseudomonas primary metabolic pathway that has been targeted by small molecules in a species-specific manner.
Collapse
Affiliation(s)
- Justin A Shapiro
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, GA, 30322, USA
| | - Anna R Kaplan
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, GA, 30322, USA
| | - William M Wuest
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, GA, 30322, USA
| |
Collapse
|
29
|
Abstract
2017 marks the 60th anniversary of Krebs’ seminal paper on the glyoxylate shunt (and coincidentally, also the 80th anniversary of his discovery of the citric acid cycle). Sixty years on, we have witnessed substantial developments in our understanding of how flux is partitioned between the glyoxylate shunt and the oxidative decarboxylation steps of the citric acid cycle. The last decade has shown us that the beautifully elegant textbook mechanism that regulates carbon flux through the shunt in E. coli is an oversimplification of the situation in many other bacteria. The aim of this review is to assess how this new knowledge is impacting our understanding of flux control at the TCA cycle/glyoxylate shunt branch point in a wider range of genera, and to summarize recent findings implicating a role for the glyoxylate shunt in cellular functions other than metabolism.
Collapse
Affiliation(s)
- Stephen K. Dolan
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom;,
| | - Martin Welch
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom;,
| |
Collapse
|
30
|
PhoPR Positively Regulates whiB3 Expression in Response to Low pH in Pathogenic Mycobacteria. J Bacteriol 2018; 200:JB.00766-17. [PMID: 29378889 DOI: 10.1128/jb.00766-17] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 01/22/2018] [Indexed: 01/18/2023] Open
Abstract
During infection, Mycobacterium tuberculosis colonizes macrophages or necrotic granulomas, in which low pH is one of the major challenges. The PhoPR two-component regulatory system and the cytosolic redox sensor WhiB3 both play important roles in the response to low pH by M. tuberculosis However, whether close association exists between PhoPR and WhiB3 remains unclear. In this study, the positive regulation of whiB3 by PhoPR in mycobacteria was characterized. We observed that the expression patterns of the whiB3 gene under acidic conditions are different among mycobacterial species, suggesting that the regulation of whiB3 differs among mycobacteria. A sequence analysis of the whiB3 promoters (whiB3p) from M. tuberculosis and two closely related species, namely, M. marinum and M. smegmatis, showed that the whiB3p regions from M. tuberculosis and M. marinum contain a new type of PhoP box that is absent in the M. smegmatiswhiB3p Direct binding of PhoP to whiB3p from M. tuberculosis and M. marinum but not that from M. smegmatis was validated by in vitro protein-DNA binding assays. The direct activation of whiB3 by PhoPR under acidic conditions was further verified by reverse transcription-quantitative PCR (qRT-PCR) analysis in M. marinum Moreover, mutating the residues important for the phosphorylation pathway of PhoPR in M. marinum abolished the activation of whiB3 expression by PhoPR under acidic conditions, suggesting that low pH triggers the phosphorylation of PhoPR, which in turn activates the transcription of whiB3 Since the PhoP box was only identified in whiB3p of pathogenic mycobacteria, we suggest that the PhoPR-whiB3 regulatory pathway may have evolved to facilitate mycobacterial infection.IMPORTANCE The low pH in macrophages is an important barrier for infection by microbes. The PhoPR two-component regulatory system is required for the response to low pH and plays a role in redox homeostasis in Mycobacterium tuberculosis WhiB3, a cytosolic redox-sensing transcriptional regulator, is also involved in these processes. However, there is no direct evidence to demonstrate the regulation of WhiB3 by PhoPR. In this study, we found that PhoPR directly activates whiB3 expression in response to low pH. An atypical PhoP box in the whiB3 promoters has been identified and is only found in pathogenic mycobacteria, which suggests that the PhoPR-whiB3 regulatory pathway may facilitate mycobacterial infection. This study provides novel information for further characterization of the PhoPR regulon.
Collapse
|