1
|
Menezes A, Peixoto M, Silva M, Costa-Bartuli E, Oliveira CL, Walter-Nuno AB, Kistenmacker NDC, Pereira J, Ramos I, Paiva-Silva GO, Atella GC, Zancan P, Sola-Penna M, Gomes FM. Western diet consumption by host vertebrate promotes altered gene expression on Aedes aegypti reducing its lifespan and increasing fertility following blood feeding. Parasit Vectors 2024; 17:12. [PMID: 38184590 PMCID: PMC10770904 DOI: 10.1186/s13071-023-06095-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/12/2023] [Indexed: 01/08/2024] Open
Abstract
BACKGROUND The high prevalence of metabolic syndrome in low- and middle-income countries is linked to an increase in Western diet consumption, characterized by a high intake of processed foods, which impacts the levels of blood sugar and lipids, hormones, and cytokines. Hematophagous insect vectors, such as the yellow fever mosquito Aedes aegypti, rely on blood meals for reproduction and development and are therefore exposed to the components of blood plasma. However, the impact of the alteration of blood composition due to malnutrition and metabolic conditions on mosquito biology remains understudied. METHODS In this study, we investigated the impact of whole-blood alterations resulting from a Western-type diet on the biology of Ae. aegypti. We kept C57Bl6/J mice on a high-fat, high-sucrose (HFHS) diet for 20 weeks and followed biological parameters, including plasma insulin and lipid levels, insulin tolerance, and weight gain, to validate the development of metabolic syndrome. We further allowed Ae. aegypti mosquitoes to feed on mice and tracked how altered host blood composition modulated parameters of vector capacity. RESULTS Our findings identified that HFHS-fed mice resulted in reduced mosquito longevity and increased fecundity upon mosquito feeding, which correlated with alteration in the gene expression profile of nutrient sensing and physiological and metabolic markers as studied up to several days after blood ingestion. CONCLUSIONS Our study provides new insights into the overall effect of alterations of blood components on mosquito biology and its implications for the transmission of infectious diseases in conditions where the frequency of Western diet-induced metabolic syndromes is becoming more frequent. These findings highlight the importance of addressing metabolic health to further understand the spread of mosquito-borne illnesses in endemic areas.
Collapse
Affiliation(s)
- Alexandre Menezes
- Laboratório de Ultraestrutura Celular Hertha Meyer, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marilia Peixoto
- Laboratório de Ultraestrutura Celular Hertha Meyer, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Melissa Silva
- Laboratório de Ultraestrutura Celular Hertha Meyer, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Emylle Costa-Bartuli
- The Metabolizsm' Group, Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Cinara Lima Oliveira
- Laboratório de Bioquímica de Lipídeos e Lipoproteínas, Instituto de Bioquímica Médica Leopoldo De Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana Beatriz Walter-Nuno
- Laboratório de Bioquímica e Biologia Molecular de Artrópodes Hematófagos, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
| | - Nathan da Cruz Kistenmacker
- Laboratório de Ultraestrutura Celular Hertha Meyer, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jessica Pereira
- Laboratorio de Ovogênese Molecular de Insetos Vetores, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Isabela Ramos
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
- Laboratorio de Ovogênese Molecular de Insetos Vetores, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gabriela O Paiva-Silva
- Laboratório de Bioquímica e Biologia Molecular de Artrópodes Hematófagos, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratorio de Ovogênese Molecular de Insetos Vetores, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Geórgia C Atella
- Laboratório de Bioquímica de Lipídeos e Lipoproteínas, Instituto de Bioquímica Médica Leopoldo De Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratorio de Ovogênese Molecular de Insetos Vetores, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Patricia Zancan
- The Metabolizsm' Group, Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mauro Sola-Penna
- The Metabolizsm' Group, Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fabio M Gomes
- Laboratório de Ultraestrutura Celular Hertha Meyer, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
- Laboratorio de Ovogênese Molecular de Insetos Vetores, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
2
|
Acebal MC, Dalgaard LT, Jørgensen TS, Hansen BW. Embryogenesis of a calanoid copepod analyzed by transcriptomics. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2023; 45:101054. [PMID: 36565589 DOI: 10.1016/j.cbd.2022.101054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/22/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022]
Abstract
The calanoid copepod Acartia tonsa (Dana) has attracted interest because of its use as a copepod model organism as well as its potential economic role as live fish larval feed. While the adult genome and transcriptome of A. tonsa has been investigated, no studies have been performed investigating the genome-wide transcriptional changes during the normal subitaneous embryogenesis. Thus, the aim of the current study was to investigate said transcriptional changes throughout A. tonsa embryonic development. RNA extraction and de novo transcriptome assembly for the subitaneous embryogenesis of the copepod was conducted. The assembly includes for the first-time samples describing quiescent development and overall helps establishing a framework for future studies on the molecular biology of our species of interest. Among the findings reported, sequences annotated to well-known developmental genes, were identified. At the same time are described the molecular changes and gene expression levels throughout the entire 42 h the embryonic development lasts. In conclusion, here we present the most complete genome-wide transcriptional map of early copepod embryonic development to date, enabling further use of A. tonsa as a model organism for crustacean development. Keywords: enrichment of pathways; subitaneous embryogenesis, comparative genomics; transcriptome assembly; invertebrate genomics.
Collapse
Affiliation(s)
- Miguel Cifuentes Acebal
- Department of Science and Environment, Roskilde University, Universitetsvej 1, DK-4000 Roskilde, Denmark
| | - Louise Torp Dalgaard
- Department of Science and Environment, Roskilde University, Universitetsvej 1, DK-4000 Roskilde, Denmark
| | - Tue Sparholt Jørgensen
- Department of Science and Environment, Roskilde University, Universitetsvej 1, DK-4000 Roskilde, Denmark; Department of Environmental Science - Environmental Microbiology and Biotechnology, Aarhus University, Frederiksborgvej 399, DK-4000 Roskilde, Denmark; The Novo Nordisk Foundation Center for Biosustainability (DTU Biosustain) at the Technical University of Denmark, Building 220, Kemitorvet, DK-2800 Kgs. Lyngby, Denmark(1)
| | - Benni Winding Hansen
- Department of Science and Environment, Roskilde University, Universitetsvej 1, DK-4000 Roskilde, Denmark.
| |
Collapse
|
3
|
Nandy N, Roy JK. Rab11 negatively regulates wingless preventing JNK-mediated apoptosis in Drosophila epithelium during embryonic dorsal closure. Cell Tissue Res 2023; 391:485-504. [PMID: 36705747 DOI: 10.1007/s00441-023-03740-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 01/12/2023] [Indexed: 01/28/2023]
Abstract
Rab11, a small Ras like GTPase marking the recycling endosomes, plays instrumental roles in Drosophila embryonic epithelial morphogenesis where an array of reports testify its importance in the maintenance of cyto-architectural as well as functional attributes of the concerned cells. Proper Rab11 functions ensure a precise regulation of developmentally active cell signaling pathways which in turn promote the expression of morphogens and other physico-chemical cues which finally forge an embryo out of a single layer of cells. Earlier reports have established that Rab11 functions are vital for fly embryonic development where amorphic mutants such as EP3017 homozygotes show a fair degree of epithelial defects along with incomplete dorsal closure. Here, we present a detailed account of the effects of Rab11 loss of function in the dorso-lateral epithelium which resulted in severe dorsal closure defects along with an elevated JNK-Dpp expression. We further observed that the dorso-lateral epithelial cells undergo epithelial to mesenchymal transition as well as apoptosis in Rab11 mutants with elevated expression levels of MMP1 and Caspase-3, where Caspase-3 contributes to the Rab11 knockout phenotype contrary to the knockdown mutants or hypomorphs. Interestingly, the elevated expressions of the core JNK-Dpp signaling could be rescued with a simultaneous knockdown of wingless in the Rab11 knockout mutants suggesting a genetic interaction of Rab11 with the Wingless pathway during dorsal closure, an ideal model of epithelial wound healing.
Collapse
Affiliation(s)
- Nabarun Nandy
- Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, 221005, India
| | - Jagat Kumar Roy
- Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
4
|
Tatapudy S, Peralta J, Nystul T. Distinct roles of Bendless in regulating FSC niche competition and daughter cell differentiation. Development 2021; 148:dev199630. [PMID: 35020878 PMCID: PMC8645206 DOI: 10.1242/dev.199630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 10/13/2021] [Indexed: 04/05/2024]
Abstract
A major goal in the study of adult stem cells is to understand how cell fates are specified at the proper time and place to facilitate tissue homeostasis. Here, we found that an E2 ubiquitin ligase, Bendless (Ben), has multiple roles in the Drosophila ovarian epithelial follicle stem cell (FSC) lineage. First, Ben is part of the JNK signaling pathway, and we found that it, as well as other JNK pathway genes, are essential for differentiation of FSC daughter cells. Our data suggest that JNK signaling promotes differentiation by suppressing the activation of the EGFR effector, ERK. Also, we found that loss of ben, but not the JNK kinase hemipterous, resulted in an upregulation of hedgehog signaling, increased proliferation and increased niche competition. Lastly, we demonstrate that the hypercompetition phenotype caused by loss of ben is suppressed by decreasing the rate of proliferation or knockdown of the hedgehog pathway effector, Smoothened (Smo). Taken together, our findings reveal a new layer of regulation in which a single gene influences cell signaling at multiple stages of differentiation in the early FSC lineage.
Collapse
Affiliation(s)
| | | | - Todd Nystul
- Department of Anatomy and Department of OB/Gyn-RS, University of California, San Francisco, Center for Reproductive Sciences, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, 513 Parnassus Avenue, San Francisco, CA, 94143, USA
| |
Collapse
|
5
|
Kunar R, Roy JK. The mRNA decapping protein 2 (DCP2) is a major regulator of developmental events in Drosophila-insights from expression paradigms. Cell Tissue Res 2021; 386:261-280. [PMID: 34536141 DOI: 10.1007/s00441-021-03503-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 07/01/2021] [Indexed: 02/07/2023]
Abstract
The Drosophila genome codes for two decapping proteins, DCP1 and DCP2, out of which DCP2 is the active decapping enzyme. The present endeavour explores the endogenous promoter firing, transcript and protein expression of DCP2 in Drosophila wherein, besides a ubiquitous expression across development, we identify an active expression paradigm during dorsal closure and a plausible moonlighting expression in the Corazonin neurons of the larval brain. We also demonstrate that the ablation of DCP2 leads to embryonic lethality and defects in vital morphogenetic processes whereas a knockdown of DCP2 in the Corazonin neurons reduces the sensitivity to ethanol in adults, thereby ascribing novel regulatory roles to DCP2. Our findings unravel novel putative roles for DCP2 and identify it as a candidate for studies on the regulated interplay of essential molecules during early development in Drosophila, nay the living world.
Collapse
Affiliation(s)
- Rohit Kunar
- Cytogenetics Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Uttar Pradesh, Varanasi, 221005, India
| | - Jagat Kumar Roy
- Cytogenetics Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Uttar Pradesh, Varanasi, 221005, India.
| |
Collapse
|
6
|
The Serine Protease Homolog, Scarface, Is Sensitive to Nutrient Availability and Modulates the Development of the Drosophila Blood-Brain Barrier. J Neurosci 2021; 41:6430-6448. [PMID: 34210781 PMCID: PMC8318086 DOI: 10.1523/jneurosci.0452-20.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 02/08/2021] [Accepted: 03/14/2021] [Indexed: 01/21/2023] Open
Abstract
The adaptable transcriptional response to changes in food availability not only ensures animal survival but also lets embryonic development progress. Interestingly, the CNS is preferentially protected from periods of malnutrition, a phenomenon known as “brain sparing.” However, the mechanisms that mediate this response remain poorly understood. To get a better understanding of this, we used Drosophila melanogaster as a model, analyzing the transcriptional response of neural stem cells (neuroblasts) and glia of the blood–brain barrier (BBB) from larvae of both sexes during nutrient restriction using targeted DamID. We found differentially expressed genes in both neuroblasts and glia of the BBB, although the effect of nutrient deficiency was primarily observed in the BBB. We characterized the function of a nutritional sensitive gene expressed in the BBB, the serine protease homolog, scarface (scaf). Scaf is expressed in subperineurial glia in the BBB in response to nutrition. Tissue-specific knockdown of scaf increases subperineurial glia endoreplication and proliferation of perineurial glia in the blood–brain barrier. Furthermore, neuroblast proliferation is diminished on scaf knockdown in subperineurial glia. Interestingly, reexpression of Scaf in subperineurial glia is able to enhance neuroblast proliferation and brain growth of animals in starvation. Finally, we show that loss of scaf in the blood–brain barrier increases sensitivity to drugs in adulthood, suggesting a physiological impairment. We propose that Scaf integrates the nutrient status to modulate the balance between neurogenesis and growth of the BBB, preserving the proper equilibrium between the size of the barrier and the brain. SIGNIFICANCE STATEMENT The Drosophila BBB separates the CNS from the open circulatory system. The BBB glia are not only acting as a physical segregation of tissues but participate in the regulation of the metabolism and neurogenesis during development. Here we analyze the transcriptional response of the BBB glia to nutrient deprivation during larval development, a condition in which protective mechanisms are switched on in the brain. Our findings show that the gene scarface reduces growth in the BBB while promoting the proliferation of neural stem, assuring the balanced growth of the larval brain. Thus, Scarface would link animal nutrition with brain development, coordinating neurogenesis with the growth of the BBB.
Collapse
|
7
|
ZnT7 RNAi favors Raf GOFscrib -/--induced tumor growth and invasion in Drosophila through JNK signaling pathway. Oncogene 2021; 40:2217-2229. [PMID: 33649534 DOI: 10.1038/s41388-021-01703-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 01/31/2021] [Accepted: 02/05/2021] [Indexed: 01/31/2023]
Abstract
The disruption of zinc homeostasis has been identified in patients suffering from various cancers, but a causative relationship has not yet been established. Drosophila melanogaster has become a powerful model to study cancer biology. Here using a Drosophila model of malignant tumor RafGOFscrib-/-, we observed that the tumor growth, invasion and migration were enhanced by silencing dZnT7, a zinc transporter localized on the Golgi apparatus. Further study indicated that the zinc deficiency in Golgi of dZnT7 RNAi resulted in ER stress which could activate the c-Jun-N-terminal Kinase (JNK) signaling and this process is mediated by Atg9. Lastly, we demonstrated that the exacerbation of dZnT7 RNAi on tumor was promoted by JNK signaling-dependent cell autonomous and non-autonomous autophagy. These findings suggest that zinc homeostasis in secretory compartments may provide a new therapeutic target for tumor treatment.
Collapse
|
8
|
Nakamura M, Verboon JM, Allen TE, Abreu-Blanco MT, Liu R, Dominguez ANM, Delrow JJ, Parkhurst SM. Autocrine insulin pathway signaling regulates actin dynamics in cell wound repair. PLoS Genet 2020; 16:e1009186. [PMID: 33306674 PMCID: PMC7758051 DOI: 10.1371/journal.pgen.1009186] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 12/23/2020] [Accepted: 10/09/2020] [Indexed: 01/13/2023] Open
Abstract
Cells are exposed to frequent mechanical and/or chemical stressors that can compromise the integrity of the plasma membrane and underlying cortical cytoskeleton. The molecular mechanisms driving the immediate repair response launched to restore the cell cortex and circumvent cell death are largely unknown. Using microarrays and drug-inhibition studies to assess gene expression, we find that initiation of cell wound repair in the Drosophila model is dependent on translation, whereas transcription is required for subsequent steps. We identified 253 genes whose expression is up-regulated (80) or down-regulated (173) in response to laser wounding. A subset of these genes were validated using RNAi knockdowns and exhibit aberrant actomyosin ring assembly and/or actin remodeling defects. Strikingly, we find that the canonical insulin signaling pathway controls actin dynamics through the actin regulators Girdin and Chickadee (profilin), and its disruption leads to abnormal wound repair. Our results provide new insight for understanding how cell wound repair proceeds in healthy individuals and those with diseases involving wound healing deficiencies.
Collapse
Affiliation(s)
- Mitsutoshi Nakamura
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
| | - Jeffrey M. Verboon
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
| | - Tessa E. Allen
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
| | - Maria Teresa Abreu-Blanco
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
| | - Raymond Liu
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
| | - Andrew N. M. Dominguez
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
| | - Jeffrey J. Delrow
- Genomics Shared Resource, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
| | - Susan M. Parkhurst
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
| |
Collapse
|
9
|
Nandy N, Roy JK. Rab11 is essential for lgl mediated JNK-Dpp signaling in dorsal closure and epithelial morphogenesis in Drosophila. Dev Biol 2020; 464:188-201. [PMID: 32562757 DOI: 10.1016/j.ydbio.2020.06.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 06/11/2020] [Accepted: 06/11/2020] [Indexed: 11/30/2022]
Abstract
Dorsal closure during Drosophila embryogenesis provides a robust genetic platform to study the basic cellular mechanisms that govern epithelial wound healing and morphogenesis. As dorsal closure proceeds, the lateral epithelial tissue (LE) adjacent to the dorsal opening advance contra-laterally, with a simultaneous retraction of the amnioserosa. The process involves a fair degree of coordinated cell shape changes in the dorsal most epithelial (DME) cells as well as a few penultimate rows of lateral epithelial (LE) cells (collectively referred here as Dorsolateral Epithelial (DLE) cells), lining the periphery of the amnioserosa, which in due course of time extend contra-laterally and ultimately fuse over the dorsal hole, giving rise to a dorsal epithelial continuum. The JNK-Dpp signaling in the dorsolateral epidermis, plays an instrumental role in guiding their fate during this process. A large array of genes have been reported to be involved in the regulation of this core signaling pathway, yet the mechanisms by which they do so is hitherto unclear, which forms the objective of our present study. Here we show a probable mechanism via which lgl, a conserved tumour suppressor gene, regulates the JNK-Dpp pathway during dorsal closure and epithelial morphogenesis. A conditional/targeted knock-down of lgl in the dorsolateral epithelium of embryos results in failure of dorsal closure. Interestingly, we also observed a similar phenotype in a Rab11 knockdown condition. Our experiment suggests Rab11 to be interacting with lgl as they seem to synergize in order to regulate the core JNK-Dpp signaling pathway during dorsal closure and also during adult thorax closure process.
Collapse
Affiliation(s)
- Nabarun Nandy
- Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, 221005, India
| | - Jagat Kumar Roy
- Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
10
|
Li P, Huang P, Li X, Yin D, Ma Z, Wang H, Song H. Tankyrase Mediates K63-Linked Ubiquitination of JNK to Confer Stress Tolerance and Influence Lifespan in Drosophila. Cell Rep 2019; 25:437-448. [PMID: 30304683 DOI: 10.1016/j.celrep.2018.09.036] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 07/18/2018] [Accepted: 09/12/2018] [Indexed: 01/25/2023] Open
Abstract
Tankyrase (Tnks) transfers poly(ADP-ribose) on substrates. Whereas studies have highlighted the pivotal roles of Tnks in cancer, cherubism, systemic sclerosis, and viral infection, the requirement for Tnks under physiological contexts remains unclear. Here, we report that the loss of Tnks or its muscle-specific knockdown impairs lifespan, stress tolerance, and energy homeostasis in adult Drosophila. We find that Tnks is a positive regulator in the JNK signaling pathway, and modest alterations in the activity of JNK signaling can strengthen or suppress the Tnks mutant phenotypes. We further identify JNK as a direct substrate of Tnks. Although Tnks-dependent poly-ADP-ribosylation is tightly coupled to proteolysis in the proteasome, we demonstrate that Tnks initiates degradation-independent ubiquitination on two lysine residues of JNK to promote its kinase activity and in vivo functions. Our study uncovers a type of posttranslational modification of Tnks substrates and provides insights into Tnks-mediated physiological roles.
Collapse
Affiliation(s)
- Ping Li
- Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ping Huang
- Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiaojiao Li
- Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Dingzi Yin
- Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zhiwei Ma
- Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Hui Wang
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Haiyun Song
- Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
11
|
Affiliation(s)
- Xingjun Wang
- Institute of Intervention Vessel, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Diseases Research, School of Life Science and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China.
- Department of Neuroscience, Scripps Research Institute, Florida 130 Scripps Way Jupiter, Florida, 33458, USA.
| | - Xirui Huang
- Institute of Intervention Vessel, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Diseases Research, School of Life Science and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Chenxi Wu
- College of Chinese Medicine, North China University of Science and Technology, 21 Bohai Road, Tangshan, 063210, China
| | - Lei Xue
- Institute of Intervention Vessel, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Diseases Research, School of Life Science and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China.
| |
Collapse
|