1
|
Ibeh N, Kusuma P, Crenna Darusallam C, Malik SG, Sudoyo H, McCarthy DJ, Gallego Romero I. Profiling genetically driven alternative splicing across the Indonesian archipelago. Am J Hum Genet 2024; 111:2458-2477. [PMID: 39383868 DOI: 10.1016/j.ajhg.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 10/11/2024] Open
Abstract
One of the regulatory mechanisms influencing the functional capacity of genes is alternative splicing (AS). Previous studies exploring the splicing landscape of human tissues have shown that AS has contributed to human biology, especially in disease progression and the immune response. Nonetheless, this phenomenon remains poorly characterized across human populations, and it is unclear how genetic and environmental variation contribute to AS. Here, we examine a set of 115 Indonesian samples from three traditional island populations spanning the genetic ancestry cline that characterizes Island Southeast Asia. We conduct a global AS analysis between islands to ascertain the degree of functionally significant AS events and their consequences. Using an event-based statistical model, we detected over 1,500 significant differential AS events across all comparisons. Additionally, we identify over 6,000 genetic variants associated with changes in splicing (splicing quantitative trait loci [sQTLs]), some of which are driven by Papuan-like genetic ancestry, and only show partial overlap with other publicly available sQTL datasets derived from other populations. Computational predictions of RNA binding activity reveal that a fraction of these sQTLs directly modulate the binding propensity of proteins involved in the splicing regulation of immune genes. Overall, these results contribute toward elucidating the role of genetic variation in shaping gene regulation in one of the most diverse regions in the world.
Collapse
Affiliation(s)
- Neke Ibeh
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia; Melbourne Integrative Genomics, University of Melbourne, Parkville, VIC 3010, Australia; Bioinformatics and Cellular Genomics, St Vincents Institute of Medical Research, Fitzroy, VIC 3065, Australia; Human Genomics and Evolution, St Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
| | - Pradiptajati Kusuma
- Genome Diversity and Disease Laboratory, Mochtar Riady Institute of Nanotechnology, Tangerang 15811, Indonesia
| | - Chelzie Crenna Darusallam
- Genome Diversity and Disease Laboratory, Mochtar Riady Institute of Nanotechnology, Tangerang 15811, Indonesia
| | - Safarina G Malik
- Genome Diversity and Disease Laboratory, Mochtar Riady Institute of Nanotechnology, Tangerang 15811, Indonesia
| | - Herawati Sudoyo
- Genome Diversity and Disease Laboratory, Mochtar Riady Institute of Nanotechnology, Tangerang 15811, Indonesia
| | - Davis J McCarthy
- Melbourne Integrative Genomics, University of Melbourne, Parkville, VIC 3010, Australia; Bioinformatics and Cellular Genomics, St Vincents Institute of Medical Research, Fitzroy, VIC 3065, Australia; School of Mathematics and Statistics, Faculty of Science, University of Melbourne, Parkville, VIC 3010, Australia
| | - Irene Gallego Romero
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia; Melbourne Integrative Genomics, University of Melbourne, Parkville, VIC 3010, Australia; Human Genomics and Evolution, St Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia; Centre for Genomics, Evolution and Medicine, Institute of Genomics, University of Tartu, 51010 Tartu, Estonia.
| |
Collapse
|
2
|
Choi TJ, Malik A, Han SM, Kim CB. Differences in alternative splicing events in the adaptive strategies of two Daphnia galeata genotypes induced by fish kairomones. BMC Genomics 2024; 25:725. [PMID: 39060996 PMCID: PMC11282837 DOI: 10.1186/s12864-024-10643-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND Daphnia galeata is a suitable model organism for investigating predator-induced defense. Genes and pathways exhibiting differential expression between fish kairomone-treated and untreated groups in D. galeata have been identified. However, understanding of the significance of alternative splicing, a crucial process of the regulation of gene expression in eukaryotes, to this mechanism remains limited. This study measured life-history traits and conducted short-read RNA sequencing and long-read isoform sequencing of two Korean D. galeata genotypes (KB1 and KE2) to uncover the genetic mechanism underlying their phenotypic plasticity under predation stress. RESULTS KB1 exhibited strategies to enhance fertility and decrease body length when exposed to fish kairomones, while KE2 deployed an adaptive strategy to increase body length. Full-length transcriptomes from KB1 and KE2 yielded 65,736 and 57,437 transcripts, respectively, of which 32 differentially expressed transcripts (DETs) were shared under predation stress across both genotypes. Prominent DETs common to both genotypes were related to energy metabolism and the immune system. Additionally, differential alternative splicing (DAS) events were detected in both genotypes in response to fish kairomones. DAS genes shared between both genotypes may indicate their significant role in the post-transcriptional stress response to fish predation. Calpain-3, involved in digestion and nutrient absorption, was identified as a DAS gene in both genotypes when exposed to fish kairomones. In addition, the gene encoding thymosin beta, which is related to growth, was found to be a statistically significant DAS only in KB1, while that encoding ultraspiracle protein, also associated with growth, was only identified in KE2. Moreover, transcripts encoding proteins such as EGF-like domain-containing protein, vitellogenin fused with superoxide dismutase, and others were identified overlapping between DAS events and DETs and potentially elucidating their association with the observed phenotypic variation in each genotype. CONCLUSIONS Our findings highlight the crucial role of alternative splicing in modulating transcriptome landscape under predation stress in D. galeata, emphasizing the requirement for integrating gene expression and splicing analyses in evolutionary adaptation studies.
Collapse
Affiliation(s)
- Tae-June Choi
- Department of Biotechnology, Sangmyung University, Seoul, 03016, Korea
| | - Adeel Malik
- Institute of Intelligence Informatics Technology, Sangmyung University, Seoul, 03016, Korea
| | - Seung-Min Han
- Department of Biotechnology, Sangmyung University, Seoul, 03016, Korea
| | - Chang-Bae Kim
- Department of Biotechnology, Sangmyung University, Seoul, 03016, Korea.
| |
Collapse
|
3
|
Boye C, Nirmalan S, Ranjbaran A, Luca F. Genotype × environment interactions in gene regulation and complex traits. Nat Genet 2024; 56:1057-1068. [PMID: 38858456 PMCID: PMC11492161 DOI: 10.1038/s41588-024-01776-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 04/25/2024] [Indexed: 06/12/2024]
Abstract
Genotype × environment interactions (GxE) have long been recognized as a key mechanism underlying human phenotypic variation. Technological developments over the past 15 years have dramatically expanded our appreciation of the role of GxE in both gene regulation and complex traits. The richness and complexity of these datasets also required parallel efforts to develop robust and sensitive statistical and computational approaches. Although our understanding of the genetic architecture of molecular and complex traits has been maturing, a large proportion of complex trait heritability remains unexplained. Furthermore, there are increasing efforts to characterize the effect of environmental exposure on human health. We therefore review GxE in human gene regulation and complex traits, advocating for a comprehensive approach that jointly considers genetic and environmental factors in human health and disease.
Collapse
Affiliation(s)
- Carly Boye
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, US
| | - Shreya Nirmalan
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, US
| | - Ali Ranjbaran
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, US
| | - Francesca Luca
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, US.
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, US.
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy.
| |
Collapse
|
4
|
Calvo-Roitberg E, Carroll CL, Venev SV, Kim G, Mick ST, Dekker J, Fiszbein A, Pai AA. mRNA initiation and termination are spatially coordinated. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.05.574404. [PMID: 38260419 PMCID: PMC10802295 DOI: 10.1101/2024.01.05.574404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
The expression of a precise mRNA transcriptome is crucial for establishing cell identity and function, with dozens of alternative isoforms produced for a single gene sequence. The regulation of mRNA isoform usage occurs by the coordination of co-transcriptional mRNA processing mechanisms across a gene. Decisions involved in mRNA initiation and termination underlie the largest extent of mRNA isoform diversity, but little is known about any relationships between decisions at both ends of mRNA molecules. Here, we systematically profile the joint usage of mRNA transcription start sites (TSSs) and polyadenylation sites (PASs) across tissues and species. Using both short and long read RNA-seq data, we observe that mRNAs preferentially using upstream TSSs also tend to use upstream PASs, and congruently, the usage of downstream sites is similarly paired. This observation suggests that mRNA 5' end choice may directly influence mRNA 3' ends. Our results suggest a novel "Positional Initiation-Termination Axis" (PITA), in which the usage of alternative terminal sites are coupled based on the order in which they appear in the genome. PITA isoforms are more likely to encode alternative protein domains and use conserved sites. PITA is strongly associated with the length of genomic features, such that PITA is enriched in longer genes with more area devoted to regions that regulate alternative 5' or 3' ends. Strikingly, we found that PITA genes are more likely than non-PITA genes to have multiple, overlapping chromatin structural domains related to pairing of ordinally coupled start and end sites. In turn, PITA coupling is also associated with fast RNA Polymerase II (RNAPII) trafficking across these long gene regions. Our findings indicate that a combination of spatial and kinetic mechanisms couple transcription initiation and mRNA 3' end decisions based on ordinal position to define the expression mRNA isoforms.
Collapse
Affiliation(s)
| | | | - Sergey V. Venev
- Department of Systems Biology, University Massachusetts Chan Medical School, Worcester, MA
| | - GyeungYun Kim
- Department of Biology, Boston University, Boston, MA
| | | | - Job Dekker
- Department of Systems Biology, University Massachusetts Chan Medical School, Worcester, MA
- Howard Hughes Medical Institute, Chevy Chase, MD
| | - Ana Fiszbein
- Department of Biology, Boston University, Boston, MA
- Center for Computing & Data Sciences, Boston University, Boston, MA
| | - Athma A. Pai
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA
| |
Collapse
|
5
|
Mann JT, Riley BA, Baker SF. All differential on the splicing front: Host alternative splicing alters the landscape of virus-host conflict. Semin Cell Dev Biol 2023; 146:40-56. [PMID: 36737258 DOI: 10.1016/j.semcdb.2023.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 02/05/2023]
Abstract
Alternative RNA splicing is a co-transcriptional process that richly increases proteome diversity, and is dynamically regulated based on cell species, lineage, and activation state. Virus infection in vertebrate hosts results in rapid host transcriptome-wide changes, and regulation of alternative splicing can direct a combinatorial effect on the host transcriptome. There has been a recent increase in genome-wide studies evaluating host alternative splicing during viral infection, which integrates well with prior knowledge on viral interactions with host splicing proteins. A critical challenge remains in linking how these individual events direct global changes, and whether alternative splicing is an overall favorable pathway for fending off or supporting viral infection. Here, we introduce the process of alternative splicing, discuss how to analyze splice regulation, and detail studies on genome-wide and splice factor changes during viral infection. We seek to highlight where the field can focus on moving forward, and how incorporation of a virus-host co-evolutionary perspective can benefit this burgeoning subject.
Collapse
Affiliation(s)
- Joshua T Mann
- Infectious Disease Program, Lovelace Biomedical Research Institute, Albuquerque, NM, USA
| | - Brent A Riley
- Infectious Disease Program, Lovelace Biomedical Research Institute, Albuquerque, NM, USA
| | - Steven F Baker
- Infectious Disease Program, Lovelace Biomedical Research Institute, Albuquerque, NM, USA.
| |
Collapse
|
6
|
Li W, Shao C, Zhou H, Du H, Chen H, Wan H, He Y. Multi-omics research strategies in ischemic stroke: A multidimensional perspective. Ageing Res Rev 2022; 81:101730. [PMID: 36087702 DOI: 10.1016/j.arr.2022.101730] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 08/23/2022] [Accepted: 09/03/2022] [Indexed: 01/31/2023]
Abstract
Ischemic stroke (IS) is a multifactorial and heterogeneous neurological disorder with high rate of death and long-term impairment. Despite years of studies, there are still no stroke biomarkers for clinical practice, and the molecular mechanisms of stroke remain largely unclear. The high-throughput omics approach provides new avenues for discovering biomarkers of IS and explaining its pathological mechanisms. However, single-omics approaches only provide a limited understanding of the biological pathways of diseases. The integration of multiple omics data means the simultaneous analysis of thousands of genes, RNAs, proteins and metabolites, revealing networks of interactions between multiple molecular levels. Integrated analysis of multi-omics approaches will provide helpful insights into stroke pathogenesis, therapeutic target identification and biomarker discovery. Here, we consider advances in genomics, transcriptomics, proteomics and metabolomics and outline their use in discovering the biomarkers and pathological mechanisms of IS. We then delineate strategies for achieving integration at the multi-omics level and discuss how integrative omics and systems biology can contribute to our understanding and management of IS.
Collapse
Affiliation(s)
- Wentao Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Chongyu Shao
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Huifen Zhou
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Haixia Du
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Haiyang Chen
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Haitong Wan
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Yu He
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| |
Collapse
|
7
|
Kubota N, Suyama M. Mapping of promoter usage QTL using RNA-seq data reveals their contributions to complex traits. PLoS Comput Biol 2022; 18:e1010436. [PMID: 36037215 PMCID: PMC9462676 DOI: 10.1371/journal.pcbi.1010436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 09/09/2022] [Accepted: 07/25/2022] [Indexed: 11/18/2022] Open
Abstract
Genomic variations are associated with gene expression levels, which are called expression quantitative trait loci (eQTL). Most eQTL may affect the total gene expression levels by regulating transcriptional activities of a specific promoter. However, the direct exploration of genomic loci associated with promoter activities using RNA-seq data has been challenging because eQTL analyses treat the total expression levels estimated by summing those of all isoforms transcribed from distinct promoters. Here we propose a new method for identifying genomic loci associated with promoter activities, called promoter usage quantitative trait loci (puQTL), using conventional RNA-seq data. By leveraging public RNA-seq datasets from the lymphoblastoid cell lines of 438 individuals from the GEUVADIS project, we obtained promoter activity estimates and mapped 2,592 puQTL at the 10% FDR level. The results of puQTL mapping enabled us to interpret the manner in which genomic variations regulate gene expression. We found that 310 puQTL genes (16.1%) were not detected by eQTL analysis, suggesting that our pipeline can identify novel variant-gene associations. Furthermore, we identified genomic loci associated with the activity of "hidden" promoters, which the standard eQTL studies have ignored. We found that most puQTL signals were concordant with at least one genome-wide association study (GWAS) signal, enabling novel interpretations of the molecular mechanisms of complex traits. Our results emphasize the importance of the re-analysis of public RNA-seq datasets to obtain novel insights into gene regulation by genomic variations and their contributions to complex traits.
Collapse
Affiliation(s)
- Naoto Kubota
- Division of Bioinformatics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Mikita Suyama
- Division of Bioinformatics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| |
Collapse
|
8
|
Altered genome-wide hippocampal gene expression profiles following early life lead exposure and their potential for reversal by environmental enrichment. Sci Rep 2022; 12:11937. [PMID: 35879375 PMCID: PMC9314447 DOI: 10.1038/s41598-022-15861-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 06/30/2022] [Indexed: 12/02/2022] Open
Abstract
Early life lead (Pb) exposure is detrimental to neurobehavioral development. The quality of the environment can modify negative influences from Pb exposure, impacting the developmental trajectory following Pb exposure. Little is known about the molecular underpinnings in the brain of the interaction between Pb and the quality of the environment. We examined relationships between early life Pb exposure and living in an enriched versus a non-enriched postnatal environment on genome-wide transcription profiles in hippocampus CA1. RNA-seq identified differences in the transcriptome of enriched vs. non-enriched Pb-exposed animals. Most of the gene expression changes associated with Pb exposure were reversed by enrichment. This was also true for changes in upstream regulators, splicing events and long noncoding RNAs. Non-enriched rats also had memory impairments; enriched rats had no deficits. The results demonstrate that an enriched environment has a profound impact on behavior and the Pb-modified CA1 transcriptome. These findings show the potential for interactions between Pb exposure and the environment to result in significant transcriptional changes in the brain and, to the extent that this may occur in Pb-exposed children, could influence neuropsychological/educational outcomes, underscoring the importance for early intervention and environmental enrichment for Pb-exposed children.
Collapse
|
9
|
Tommasi S, Kitapci TH, Blumenfeld H, Besaratinia A. Secondhand smoke affects reproductive functions by altering the mouse testis transcriptome, and leads to select intron retention in Pde1a. ENVIRONMENT INTERNATIONAL 2022; 161:107086. [PMID: 35063792 PMCID: PMC8891074 DOI: 10.1016/j.envint.2022.107086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 12/20/2021] [Accepted: 01/07/2022] [Indexed: 05/13/2023]
Abstract
BACKGROUND Human exposure to secondhand smoke (SHS) is known to result in adverse effects in multiple organ systems. However, the impact of SHS on the male reproductive system, particularly on the regulation of genes and molecular pathways that govern sperm production, maturation, and functions remains largely understudied. OBJECTIVE We investigated the effects of SHS on the testis transcriptome in a validated mouse model. METHODS Adult male mice were exposed to SHS (5 h/day, 5 days/week for 4 months) as compared to controls (clean air-exposed). RNA-seq analysis was performed on the testis of SHS-exposed mice and controls. Variant discovery and plink association analyses were also conducted to detect exposure-related transcript variants in SHS-treated mice. RESULTS Exposure of mice to SHS resulted in the aberrant expression of 131 testicular genes. Whilst approximately two thirds of the differentially expressed genes were protein-coding, the remaining (30.5%) comprised noncoding elements, mostly lncRNAs (19.1%). Variant discovery analysis identified a homozygous frameshift variant that is statistically significantly associated with SHS exposure (P = 7.744e-06) and is generated by retention of a short intron within Pde1a, a key regulator of spermatogenesis. Notably, this SHS-associated intron variant harbors an evolutionarily conserved, premature termination codon (PTC) that disrupts the open reading frame of Pde1a, presumably leading to its degradation via nonsense-mediated decay. DISCUSSION SHS alters the expression of genes involved in molecular pathways that are crucial for normal testis development and function. Preferential targeting of lncRNAs in the testis of SHS-exposed mice is especially significant considering their crucial role in the spatial and temporal modulation of spermatogenesis. Equally important is our discovery of a novel homozygous frameshift variant that is exclusively and significantly associated with SHS-exposure and is likely to represent a safeguard mechanism to regulate transcription of Pde1a and preserve normal testis function during harmful exposure to environmental agents.
Collapse
Affiliation(s)
- Stella Tommasi
- Department of Population and Public Health Sciences, USC Keck School of Medicine, University of Southern California, M/C 9603, Los Angeles, CA 90033, USA.
| | - Tevfik H Kitapci
- Department of Population and Public Health Sciences, USC Keck School of Medicine, University of Southern California, M/C 9603, Los Angeles, CA 90033, USA
| | - Hannah Blumenfeld
- Department of Population and Public Health Sciences, USC Keck School of Medicine, University of Southern California, M/C 9603, Los Angeles, CA 90033, USA
| | - Ahmad Besaratinia
- Department of Population and Public Health Sciences, USC Keck School of Medicine, University of Southern California, M/C 9603, Los Angeles, CA 90033, USA
| |
Collapse
|
10
|
Kolimi N, Pabbathi A, Saikia N, Ding F, Sanabria H, Alper J. Out-of-Equilibrium Biophysical Chemistry: The Case for Multidimensional, Integrated Single-Molecule Approaches. J Phys Chem B 2021; 125:10404-10418. [PMID: 34506140 PMCID: PMC8474109 DOI: 10.1021/acs.jpcb.1c02424] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
![]()
Out-of-equilibrium
processes are ubiquitous across living organisms
and all structural hierarchies of life. At the molecular scale, out-of-equilibrium
processes (for example, enzyme catalysis, gene regulation, and motor
protein functions) cause biological macromolecules to sample an ensemble
of conformations over a wide range of time scales. Quantifying and
conceptualizing the structure–dynamics to function relationship
is challenging because continuously evolving multidimensional energy
landscapes are necessary to describe nonequilibrium biological processes
in biological macromolecules. In this perspective, we explore the
challenges associated with state-of-the-art experimental techniques
to understanding biological macromolecular function. We argue that
it is time to revisit how we probe and model functional out-of-equilibrium
biomolecular dynamics. We suggest that developing integrated single-molecule
multiparametric force–fluorescence instruments and using advanced
molecular dynamics simulations to study out-of-equilibrium biomolecules
will provide a path towards understanding the principles of and mechanisms
behind the structure–dynamics to function paradigm in biological
macromolecules.
Collapse
Affiliation(s)
- Narendar Kolimi
- Department of Physics and Astronomy, Clemson University, Clemson, South Carolina 29634, United States
| | - Ashok Pabbathi
- Department of Physics and Astronomy, Clemson University, Clemson, South Carolina 29634, United States
| | - Nabanita Saikia
- Department of Physics and Astronomy, Clemson University, Clemson, South Carolina 29634, United States
| | - Feng Ding
- Department of Physics and Astronomy, Clemson University, Clemson, South Carolina 29634, United States
| | - Hugo Sanabria
- Department of Physics and Astronomy, Clemson University, Clemson, South Carolina 29634, United States
| | - Joshua Alper
- Department of Physics and Astronomy, Clemson University, Clemson, South Carolina 29634, United States.,Department of Biological Sciences, Clemson University, Clemson, South Carolina 29634, United States
| |
Collapse
|
11
|
Shafer CM, Tseng A, Allard P, McEvoy MM. Strength of Cu-efflux response in E. coli coordinates metal resistance in C. elegans and contributes to the severity of environmental toxicity. J Biol Chem 2021; 297:101060. [PMID: 34375643 PMCID: PMC8424214 DOI: 10.1016/j.jbc.2021.101060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 07/29/2021] [Accepted: 08/05/2021] [Indexed: 11/28/2022] Open
Abstract
Without effective homeostatic systems in place, excess copper (Cu) is universally toxic to organisms. While increased utilization of anthropogenic Cu in the environment has driven the diversification of Cu-resistance systems within enterobacteria, little research has focused on how this change in bacterial architecture impacts host organisms that need to maintain their own Cu homeostasis. Therefore, we utilized a simplified host–microbe system to determine whether the efficiency of one bacterial Cu-resistance system, increasing Cu-efflux capacity via the ubiquitous CusRS two-component system, contributes to the availability and subsequent toxicity of Cu in host Caenorhabditis elegans nematode. We found that a fully functional Cu-efflux system in bacteria increased the severity of Cu toxicity in host nematodes without increasing the C. elegans Cu-body burden. Instead, increased Cu toxicity in the host was associated with reduced expression of a protective metal stress-response gene, numr-1, in the posterior pharynx of nematodes where pharyngeal grinding breaks apart ingested bacteria before passing into the digestive tract. The spatial localization of numr-1 transgene activation and loss of bacterially dependent Cu-resistance in nematodes without an effective numr-1 response support the hypothesis that numr-1 is responsive to the bacterial Cu-efflux capacity. We propose that the bacterial Cu-efflux capacity acts as a robust spatial determinant for a host’s response to chronic Cu stress.
Collapse
Affiliation(s)
- Catherine M Shafer
- Molecular Toxicology Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA
| | - Ashley Tseng
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA
| | - Patrick Allard
- Molecular Toxicology Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA; Institute for Society and Genetics, University of California, Los Angeles, Los Angeles, CA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA.
| | - Megan M McEvoy
- Molecular Toxicology Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA; Institute for Society and Genetics, University of California, Los Angeles, Los Angeles, CA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA; Department of Microbiology, Immunology and Molecular Genetics. University of California, Los Angeles, Los Angeles, CA.
| |
Collapse
|
12
|
Wagner AR, Scott HM, West KO, Vail KJ, Fitzsimons TC, Coleman AK, Carter KE, Watson RO, Patrick KL. Global Transcriptomics Uncovers Distinct Contributions From Splicing Regulatory Proteins to the Macrophage Innate Immune Response. Front Immunol 2021; 12:656885. [PMID: 34305890 PMCID: PMC8299563 DOI: 10.3389/fimmu.2021.656885] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 06/01/2021] [Indexed: 12/12/2022] Open
Abstract
Pathogen sensing via pattern recognition receptors triggers massive reprogramming of macrophage gene expression. While the signaling cascades and transcription factors that activate these responses are well-known, the role of post-transcriptional RNA processing in modulating innate immune gene expression remains understudied. Given their crucial role in regulating pre-mRNA splicing and other RNA processing steps, we hypothesized that members of the SR/hnRNP protein families regulate innate immune gene expression in distinct ways. We analyzed steady state gene expression and alternatively spliced isoform production in ten SR/hnRNP knockdown RAW 264.7 macrophage-like cell lines following infection with the bacterial pathogen Salmonella enterica serovar Typhimurium (Salmonella). We identified thousands of transcripts whose abundance is increased or decreased by SR/hnRNP knockdown in macrophages. Notably, we observed that SR and hnRNP proteins influence expression of different genes in uninfected versus Salmonella-infected macrophages, suggesting functionalization of these proteins upon pathogen sensing. Likewise, we found that knockdown of SR/hnRNPs promoted differential isoform usage (DIU) for thousands of macrophage transcripts and that these alternative splicing changes were distinct in uninfected and Salmonella-infected macrophages. Finally, having observed a surprising degree of similarity between the differentially expressed genes (DEGs) and DIUs in hnRNP K and U knockdown macrophages, we found that hnRNP K and U knockdown macrophages are both more restrictive to Vesicular Stomatitis Virus (VSV), while hnRNP K knockdown macrophages are more permissive to Salmonella Typhimurium. Based on these findings, we conclude that many innate immune genes evolved to rely on one or more SR/hnRNPs to ensure the proper magnitude of their induction, supporting a model wherein pre-mRNA splicing is critical for regulating innate immune gene expression and controlling infection outcomes in macrophages ex vivo.
Collapse
Affiliation(s)
- Allison R Wagner
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M Health, Bryan, TX, United States
| | - Haley M Scott
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M Health, Bryan, TX, United States
| | - Kelsi O West
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M Health, Bryan, TX, United States
| | - Krystal J Vail
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M Health, Bryan, TX, United States.,Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, United States
| | - Timothy C Fitzsimons
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M Health, Bryan, TX, United States
| | - Aja K Coleman
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M Health, Bryan, TX, United States
| | - Kaitlyn E Carter
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M Health, Bryan, TX, United States
| | - Robert O Watson
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M Health, Bryan, TX, United States
| | - Kristin L Patrick
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M Health, Bryan, TX, United States
| |
Collapse
|
13
|
Findley AS, Monziani A, Richards AL, Rhodes K, Ward MC, Kalita CA, Alazizi A, Pazokitoroudi A, Sankararaman S, Wen X, Lanfear DE, Pique-Regi R, Gilad Y, Luca F. Functional dynamic genetic effects on gene regulation are specific to particular cell types and environmental conditions. eLife 2021; 10:e67077. [PMID: 33988505 PMCID: PMC8248987 DOI: 10.7554/elife.67077] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 05/13/2021] [Indexed: 12/14/2022] Open
Abstract
Genetic effects on gene expression and splicing can be modulated by cellular and environmental factors; yet interactions between genotypes, cell type, and treatment have not been comprehensively studied together. We used an induced pluripotent stem cell system to study multiple cell types derived from the same individuals and exposed them to a large panel of treatments. Cellular responses involved different genes and pathways for gene expression and splicing and were highly variable across contexts. For thousands of genes, we identified variable allelic expression across contexts and characterized different types of gene-environment interactions, many of which are associated with complex traits. Promoter functional and evolutionary features distinguished genes with elevated allelic imbalance mean and variance. On average, half of the genes with dynamic regulatory interactions were missed by large eQTL mapping studies, indicating the importance of exploring multiple treatments to reveal previously unrecognized regulatory loci that may be important for disease.
Collapse
Affiliation(s)
- Anthony S Findley
- Center for Molecular Medicine and Genetics, Wayne State UniversityDetroitUnited States
| | - Alan Monziani
- Center for Molecular Medicine and Genetics, Wayne State UniversityDetroitUnited States
| | - Allison L Richards
- Center for Molecular Medicine and Genetics, Wayne State UniversityDetroitUnited States
| | - Katherine Rhodes
- Department of Human Genetics, University of ChicagoChicagoUnited States
| | - Michelle C Ward
- Department of Medicine, University of ChicagoChicagoUnited States
| | - Cynthia A Kalita
- Center for Molecular Medicine and Genetics, Wayne State UniversityDetroitUnited States
| | - Adnan Alazizi
- Center for Molecular Medicine and Genetics, Wayne State UniversityDetroitUnited States
| | | | - Sriram Sankararaman
- Department of Computer Science, UCLALos AngelesUnited States
- Department of Human Genetics, UCLALos AngelesUnited States
- Department of Computational Medicine, UCLALos AngelesUnited States
| | - Xiaoquan Wen
- Department of Biostatistics, University of MichiganAnn ArborUnited States
| | - David E Lanfear
- Center for Individualized and Genomic Medicine Research, Henry Ford HospitalDetroitUnited States
| | - Roger Pique-Regi
- Center for Molecular Medicine and Genetics, Wayne State UniversityDetroitUnited States
- Department of Obstetrics and Gynecology, Wayne State UniversityDetroitUnited States
| | - Yoav Gilad
- Department of Human Genetics, University of ChicagoChicagoUnited States
- Department of Medicine, University of ChicagoChicagoUnited States
| | - Francesca Luca
- Center for Molecular Medicine and Genetics, Wayne State UniversityDetroitUnited States
- Department of Obstetrics and Gynecology, Wayne State UniversityDetroitUnited States
| |
Collapse
|
14
|
Havranek KE, White LA, Bisom TC, Lanchy JM, Lodmell JS. The Atypical Kinase RIOK3 Limits RVFV Propagation and Is Regulated by Alternative Splicing. Viruses 2021; 13:v13030367. [PMID: 33652597 PMCID: PMC7996929 DOI: 10.3390/v13030367] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 02/16/2021] [Accepted: 02/22/2021] [Indexed: 12/17/2022] Open
Abstract
In recent years, transcriptome profiling studies have identified changes in host splicing patterns caused by viral invasion, yet the functional consequences of the vast majority of these splicing events remain uncharacterized. We recently showed that the host splicing landscape changes during Rift Valley fever virus MP-12 strain (RVFV MP-12) infection of mammalian cells. Of particular interest, we observed that the host mRNA for Rio Kinase 3 (RIOK3) was alternatively spliced during infection. This kinase has been shown to be involved in pattern recognition receptor (PRR) signaling mediated by RIG-I like receptors to produce type-I interferon. Here, we characterize RIOK3 as an important component of the interferon signaling pathway during RVFV infection and demonstrate that RIOK3 mRNA expression is skewed shortly after infection to produce alternatively spliced variants that encode premature termination codons. This splicing event plays a critical role in regulation of the antiviral response. Interestingly, infection with other RNA viruses and transfection with nucleic acid-based RIG-I agonists also stimulated RIOK3 alternative splicing. Finally, we show that specifically stimulating alternative splicing of the RIOK3 transcript using a morpholino oligonucleotide reduced interferon expression. Collectively, these results indicate that RIOK3 is an important component of the mammalian interferon signaling cascade and its splicing is a potent regulatory mechanism capable of fine-tuning the host interferon response.
Collapse
Affiliation(s)
- Katherine E. Havranek
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA; (K.E.H.); (L.A.W.); (J.-M.L.)
| | - Luke Adam White
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA; (K.E.H.); (L.A.W.); (J.-M.L.)
| | - Thomas C. Bisom
- Department of Chemistry and Biochemistry, University of Montana, Missoula, MT 59812, USA;
| | - Jean-Marc Lanchy
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA; (K.E.H.); (L.A.W.); (J.-M.L.)
| | - J. Stephen Lodmell
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA; (K.E.H.); (L.A.W.); (J.-M.L.)
- Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, MT 59812, USA
- Correspondence:
| |
Collapse
|
15
|
Cordellier M, Wojewodzic MW, Wessels M, Kuster C, von Elert E. Next-generation sequencing of DNA from resting eggs: signatures of eutrophication in a lake's sediment. ZOOLOGY 2021; 145:125895. [PMID: 33561655 DOI: 10.1016/j.zool.2021.125895] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 01/15/2021] [Accepted: 01/16/2021] [Indexed: 01/25/2023]
Abstract
Hatching resting stages of ecologically important organisms such as Daphnia from lake sediments, referred to as resurrection ecology, is a powerful approach to assess changes in alleles and traits over time. However, the utility of the approach is constrained by a few obstacles, including low and/or biased hatching among genotypes. Here, we eliminated such bottlenecks by investigating DNA sequences isolated directly (i.e. without hatching) from resting eggs found in the sediments of Lake Constance spanning pre-, peri-, and post-eutrophication. While we expected genome-wide changes, we specifically expected changes in alleles related to pathways involved in mitigating effects of cyanobacterial toxins. We used pairwise FST-analyses to identify transcripts that showed strongest divergence among the four different populations and a clustering analysis to identify correlations between allele frequency shifts and changes in abiotic and biotic lake parameters. In a cluster that correlated with the increased abundance of cyanobacteria in Lake Constance we find genes that have been reported earlier to be differentially expressed in response to the cyanobacterial toxin microcystin and to microcystin-free cyanobacteria. We further reveal the enrichment of gene ontology terms that have been shown to be involved in microcystin-related responses in other organisms but not yet in Daphnia and as such are candidate loci for adaptation of natural Daphnia populations to increased cyanobacterial abundances. In conclusion this approach of investigating DNA extracted from Daphnia resting stages allowed to determine frequency changes of loci in a natural population over time.
Collapse
Affiliation(s)
- Mathilde Cordellier
- Universität Hamburg, Biozentrum Grindel, Martin-Luther-King Platz 3, 20146, Hamburg, Germany.
| | - Marcin W Wojewodzic
- Cancer Registry of Norway (Kreftregisteret), Institute of Population-Based Cancer Research, Etiology Group, NO-0304, Oslo, Norway; School of Biosciences, University of Birmingham, B15 2TT, United Kingdom.
| | - Martin Wessels
- Institute for Lake Research at the Agency for Environment Baden-Württemberg, 88085, Langenargen, Germany.
| | - Christian Kuster
- Aquatic Chemical Ecology, Institute of Zoology, University of Koeln, Biocenter, Zuelpicher Strasse 47 B, 50858, Koeln, Germany.
| | - Eric von Elert
- Aquatic Chemical Ecology, Institute of Zoology, University of Koeln, Biocenter, Zuelpicher Strasse 47 B, 50858, Koeln, Germany.
| |
Collapse
|
16
|
Ding J, Li C, Cheng Y, Du Z, Wang Q, Tang Z, Song C, Xia Q, Bai W, Lin L, Liu W, Xu L, Li E, Wu B. Alterations of RNA splicing patterns in esophagus squamous cell carcinoma. Cell Biosci 2021; 11:36. [PMID: 33563334 PMCID: PMC7871539 DOI: 10.1186/s13578-021-00546-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 01/29/2021] [Indexed: 02/05/2023] Open
Abstract
Alternative splicing (AS) is an important biological process for regulating the expression of various isoforms from a single gene and thus to promote proteome diversity. In this study, RNA-seq data from 15 pairs of matched esophageal squamous cell carcinoma (ESCC) and normal tissue samples as well as two cell lines were analyzed. AS events with significant differences were identified between ESCC and matched normal tissues, which were re-annotated to find protein coding genes or non-coding RNAs. A total of 45,439 AS events were found. Of these, 6019 (13.25%) significant differentially AS events were identified. Exon skipping (SE) events occupied the largest proportion of abnormal splicing events. Fifteen differential splicing events with the same trends of ΔΨ values in ESCC tissues, as well in the two cell lines were found. Four pathways and 20 biological processes related to pro-metastasis cell junction and migration were significantly enriched for the differentially spliced genes. The upregulated splicing factor SF3B4, which regulates 92 gene splicing events, could be a potential prognostic factor of ESCC. Differentially spliced genes, including HNRNPC, VCL, ZNF207, KIAA1217, TPM1 and CALD1 are shown with a sashimi plot. These results suggest that cell junction- and migration-related biological processes are influenced by AS abnormalities, and aberrant splicing events can be affected by splicing factor expression changes. The involved splicing factor SF3B4 was found to be a survival-related gene in ESCC and is presumed to regulate AS in multiple cancers. In summary, we identified significant differentially expressed AS events which may be related to the development of ESCC.
Collapse
Affiliation(s)
- Jiyu Ding
- Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, 515041, China
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, 515041, China
| | - Chunquan Li
- School of Medical Informatics, Harbin Medical University, Daqing Campus, Daqing, 163319, China
| | - Yinwei Cheng
- Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, 515041, China
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, 515041, China
| | - Zepeng Du
- Department of Pathology, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-sen University, Shantou, 515041, China
| | - Qiuyu Wang
- School of Medical Informatics, Harbin Medical University, Daqing Campus, Daqing, 163319, China
| | - Zhidong Tang
- School of Medical Informatics, Harbin Medical University, Daqing Campus, Daqing, 163319, China
| | - Chao Song
- School of Medical Informatics, Harbin Medical University, Daqing Campus, Daqing, 163319, China
| | - Qiaoxi Xia
- Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, 515041, China
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, 515041, China
| | - Wenjing Bai
- Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, 515041, China
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, 515041, China
| | - Ling Lin
- Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, 515041, China
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, 515041, China
| | - Wei Liu
- Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, 515041, China
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, 515041, China
| | - Liyan Xu
- Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, 515041, China
- Institute of Oncologic Pathology, Shantou University Medical College, Shantou, 515041, China
| | - Enmin Li
- Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, 515041, China.
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, 515041, China.
| | - Bingli Wu
- Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, 515041, China.
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, 515041, China.
| |
Collapse
|
17
|
Suresh S, Crease TJ, Cristescu ME, Chain FJJ. Alternative splicing is highly variable among Daphnia pulex lineages in response to acute copper exposure. BMC Genomics 2020; 21:433. [PMID: 32586292 PMCID: PMC7318467 DOI: 10.1186/s12864-020-06831-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 06/15/2020] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Despite being one of the primary mechanisms of gene expression regulation in eukaryotes, alternative splicing is often overlooked in ecotoxicogenomic studies. The process of alternative splicing facilitates the production of multiple mRNA isoforms from a single gene thereby greatly increasing the diversity of the transcriptome and proteome. This process can be important in enabling the organism to cope with stressful conditions. Accurate identification of splice sites using RNA sequencing requires alignment to independent exonic positions within the genome, presenting bioinformatic challenges, particularly when using short read data. Although technological advances allow for the detection of splicing patterns on a genome-wide scale, very little is known about the extent of intraspecies variation in splicing patterns, particularly in response to environmental stressors. In this study, we used RNA-sequencing to study the molecular responses to acute copper exposure in three lineages of Daphnia pulex by focusing on the contribution of alternative splicing in addition to gene expression responses. RESULTS By comparing the overall gene expression and splicing patterns among all 15 copper-exposed samples and 6 controls, we identified 588 differentially expressed (DE) genes and 16 differentially spliced (DS) genes. Most of the DS genes (13) were not found to be DE, suggesting unique transcriptional regulation in response to copper that went unnoticed with conventional DE analysis. To understand the influence of genetic background on gene expression and alternative splicing responses to Cu, each of the three lineages was analyzed separately. In contrast to the overall analysis, each lineage had a higher proportion of unique DS genes than DE genes suggesting that genetic background has a larger influence on DS than on DE. Gene Ontology analysis revealed that some pathways involved in stress response were jointly regulated by DS and DE genes while others were regulated by only transcription or only splicing. CONCLUSIONS Our findings suggest an important role for alternative splicing in shaping transcriptome diversity in response to metal exposure in Daphnia, highlighting the importance of integrating splicing analyses with gene expression surveys to characterize molecular pathways in evolutionary and environmental studies.
Collapse
Affiliation(s)
- Sneha Suresh
- Department of Biological Sciences, University of Massachusetts Lowell, Lowell, MA, 01854, USA
- Present address: The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Pok Fu Lam, Hong Kong SAR
| | - Teresa J Crease
- Department of Integrative Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Melania E Cristescu
- Department of Biology, McGill University, 1205 Docteur Penfield, Montreal, QC, H3A 1B1, Canada
| | - Frédéric J J Chain
- Department of Biological Sciences, University of Massachusetts Lowell, Lowell, MA, 01854, USA.
| |
Collapse
|
18
|
Ludhiadch A, Vasudeva K, Munshi A. Establishing molecular signatures of stroke focusing on omic approaches: a narrative review. Int J Neurosci 2020; 130:1250-1266. [PMID: 32075476 DOI: 10.1080/00207454.2020.1732964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Stroke or 'brain attack' is considered to be the major cause of mortality and morbidity worldwide after myocardial infraction. Inspite of the years of research and clinical practice, the pathogenesis of stroke still remains incompletely understood. Omics approaches not only enable the description of a huge number of molecular platforms but also have a potential to recognize new factors associated with various complex disorders including stroke. The most significant development among all other omics technologies over the recent years has been seen by genomics which is a powerful tool for exploring the genetic architecture of stroke. Genomics has decisively established itself in stroke research and by now wealth of data has been generated providing new insights into the physiology and pathophysiology of stroke. However, the efficacy of genomic data is restricted to risk prediction only. Omics approaches not only enable the description of a huge number of molecular platforms but also have a potential to recognize new factors associated with various complex disorders including stroke. The data generated by omics technologies enables clinicians to provide detailed insight into the makeup of stroke in individual patients, which will further help in developing diagnostic procedures to direct therapies. Present review has been compiled with an aim to understand the potential of integrated omics approach to help in characterization of mechanisms leading to stroke, to predict the patient risk of getting stroke by analyzing signature biomarkers and to develop targeted therapeutic strategies.
Collapse
Affiliation(s)
- Abhilash Ludhiadch
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, Punjab
| | - Kanika Vasudeva
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, Punjab
| | - Anjana Munshi
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, Punjab
| |
Collapse
|
19
|
Rotival M, Quach H, Quintana-Murci L. Defining the genetic and evolutionary architecture of alternative splicing in response to infection. Nat Commun 2019; 10:1671. [PMID: 30975994 PMCID: PMC6459842 DOI: 10.1038/s41467-019-09689-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 03/21/2019] [Indexed: 12/17/2022] Open
Abstract
Host and environmental factors contribute to variation in human immune responses, yet the genetic and evolutionary drivers of alternative splicing in response to infection remain largely uncharacterised. Leveraging 970 RNA-sequencing profiles of resting and stimulated monocytes from 200 individuals of African- and European-descent, we show that immune activation elicits a marked remodelling of the isoform repertoire, while increasing the levels of erroneous splicing. We identify 1,464 loci associated with variation in isoform usage (sQTLs), 9% of them being stimulation-specific, which are enriched in disease-related loci. Furthermore, we detect a longstanding increased plasticity of immune gene splicing, and show that positive selection and Neanderthal introgression have both contributed to diversify the splicing landscape of human populations. Together, these findings suggest that differential isoform usage has been an important substrate of innovation in the long-term evolution of immune responses and a more recent vehicle of population local adaptation. Genetic ancestry might influence immunological response to infection at different regulatory levels. Here, the authors use RNA-Seq to investigate the variability of alternative splicing patterns in resting and stimulated monocytes of African- and European-descent.
Collapse
Affiliation(s)
- Maxime Rotival
- Human Evolutionary Genetics Unit, Institut Pasteur, CNRS UMR2000, 25-28 rue Dr Roux, Paris, 75015, France.
| | - Hélène Quach
- Human Evolutionary Genetics Unit, Institut Pasteur, CNRS UMR2000, 25-28 rue Dr Roux, Paris, 75015, France
| | - Lluis Quintana-Murci
- Human Evolutionary Genetics Unit, Institut Pasteur, CNRS UMR2000, 25-28 rue Dr Roux, Paris, 75015, France.
| |
Collapse
|
20
|
Alasoo K, Rodrigues J, Danesh J, Freitag DF, Paul DS, Gaffney DJ. Genetic effects on promoter usage are highly context-specific and contribute to complex traits. eLife 2019; 8:e41673. [PMID: 30618377 PMCID: PMC6349408 DOI: 10.7554/elife.41673] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 01/08/2019] [Indexed: 12/12/2022] Open
Abstract
Genetic variants regulating RNA splicing and transcript usage have been implicated in both common and rare diseases. Although transcript usage quantitative trait loci (tuQTLs) have been mapped across multiple cell types and contexts, it is challenging to distinguish between the main molecular mechanisms controlling transcript usage: promoter choice, splicing and 3' end choice. Here, we analysed RNA-seq data from human macrophages exposed to three inflammatory and one metabolic stimulus. In addition to conventional gene-level and transcript-level analyses, we also directly quantified promoter usage, splicing and 3' end usage. We found that promoters, splicing and 3' ends were predominantly controlled by independent genetic variants enriched in distinct genomic features. Promoter usage QTLs were also 50% more likely to be context-specific than other tuQTLs and constituted 25% of the transcript-level colocalisations with complex traits. Thus, promoter usage might be an underappreciated molecular mechanism mediating complex trait associations in a context-specific manner.
Collapse
Affiliation(s)
- Kaur Alasoo
- Institute of Computer ScienceUniversity of TartuTartuEstonia
- Wellcome Sanger Institute, Wellcome Genome CampusHinxtonUnited Kingdom
| | - Julia Rodrigues
- Wellcome Sanger Institute, Wellcome Genome CampusHinxtonUnited Kingdom
| | - John Danesh
- Wellcome Sanger Institute, Wellcome Genome CampusHinxtonUnited Kingdom
- BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary CareUniversity of CambridgeCambridgeUnited Kingdom
- British Heart Foundation Centre of Excellence, Division of Cardiovascular MedicineAddenbrooke’s HospitalCambridgeUnited Kingdom
- National Institute for Health Research Blood and Transplant Unit (NIHR BTRU) in Donor Health and Genomics, Department of Public Health and Primary CareUniversity of CambridgeCambridgeUnited Kingdom
| | - Daniel F Freitag
- Wellcome Sanger Institute, Wellcome Genome CampusHinxtonUnited Kingdom
- British Heart Foundation Centre of Excellence, Division of Cardiovascular MedicineAddenbrooke’s HospitalCambridgeUnited Kingdom
| | - Dirk S Paul
- Wellcome Sanger Institute, Wellcome Genome CampusHinxtonUnited Kingdom
- British Heart Foundation Centre of Excellence, Division of Cardiovascular MedicineAddenbrooke’s HospitalCambridgeUnited Kingdom
| | - Daniel J Gaffney
- Wellcome Sanger Institute, Wellcome Genome CampusHinxtonUnited Kingdom
| |
Collapse
|
21
|
Guo S, Lu H. Novel mechanisms of regulation of the expression and transcriptional activity of hepatocyte nuclear factor 4α. J Cell Biochem 2019; 120:519-532. [PMID: 30191603 PMCID: PMC7745837 DOI: 10.1002/jcb.27407] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 07/10/2018] [Indexed: 12/13/2022]
Abstract
Hepatocyte nuclear factor 4α (HNF4α) is a master regulator of development and function of digestive tissues. The HNF4A gene uses two separate promoters P1 and P2, with P1 products predominant in adult liver, whereas P2 products prevalent in fetal liver, pancreas, and liver/colon cancer. To date, the mechanisms for the regulation of HNF4A and the dynamic switch of P1-HNF4α and P2-HNF4α during ontogenesis and carcinogenesis are still obscure. Our study validated the previously reported self-stimulation of P1-HNF4α but invalidated the reported synergism between HNF4α and HNF1α. HNF4A-AS1, a long noncoding RNA, is localized between the P2 and P1 promoters of HNF4A. We identified critical roles of P1-HNF4α in regulating the expression of HNF4A-AS1 and its mouse ortholog Hnf4a-os. Paired box 6 (PAX6), a master regulator of pancreas development overexpressed in colon cancer, cooperated with HNF1α to induce P2-HNF4α but antagonized HNF4α in HNF4A-AS1 expression. Thus, PAX6 may be important in determining ontogenic and carcinogenic changes of P2-HNF4α and HNF4A-AS1 in the pancreas and intestine. We also interrogated transactivation activities on multiple gene targets by multiple known and novel HNF4α mutants identified in patients with maturity onset diabetes of the young 1 (MODY1) and liver cancer. Particularly, HNF4α-D78A and HNF4α-G79S, two mutants found in liver cancer with mutations in DNA-binding domain, displayed highly gene-specific transactivation activities. Interestingly, HNF4α-Q277X, a MODY1 truncation mutant, antagonized the transactivation activities of HNF1α and farnesoid X receptor, key regulators of insulin secretion. Taken together, our study provides novel mechanistic insights regarding the transcriptional regulation and transactivation activity of HNF4α in digestive tissues.
Collapse
Affiliation(s)
- Shangdong Guo
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, NY 13210, U.S
| | - Hong Lu
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, NY 13210, U.S
| |
Collapse
|
22
|
Pai AA, Luca F. Environmental influences on RNA processing: Biochemical, molecular and genetic regulators of cellular response. WILEY INTERDISCIPLINARY REVIEWS. RNA 2019; 10:e1503. [PMID: 30216698 PMCID: PMC6294667 DOI: 10.1002/wrna.1503] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 07/19/2018] [Accepted: 08/01/2018] [Indexed: 12/16/2022]
Abstract
RNA processing has emerged as a key mechanistic step in the regulation of the cellular response to environmental perturbation. Recent work has uncovered extensive remodeling of transcriptome composition upon environmental perturbation and linked the impacts of this molecular plasticity to health and disease outcomes. These isoform changes and their underlying mechanisms are varied-involving alternative sites of transcription initiation, alternative splicing, and alternative cleavage at the 3' end of the mRNA. The mechanisms and consequences of differential RNA processing have been characterized across a range of common environmental insults, including chemical stimuli, immune stimuli, heat stress, and cancer pathogenesis. In each case, there are perturbation-specific contributions of local (cis) regulatory elements or global (trans) factors and downstream consequences. Overall, it is clear that choices in isoform usage involve a balance between the usage of specific genetic elements (i.e., splice sites, polyadenylation sites) and the timing at which certain decisions are made (i.e., transcription elongation rate). Fine-tuned cellular responses to environmental perturbation are often dependent on the genetic makeup of the cell. Genetic analyses of interindividual variation in splicing have identified genetic effects on splicing that contribute to variation in complex traits. Finally, the increase in the number of tissue types and environmental conditions analyzed for RNA processing is paralleled by the need to develop appropriate analytical tools. The combination of large datasets, novel methods and conditions explored promises to provide a much greater understanding of the role of RNA processing response in human phenotypic variation. This article is categorized under: RNA Processing > RNA Editing and Modification RNA Evolution and Genomics > Computational Analyses of RNA RNA Processing > Splicing Mechanisms RNA Processing > Splicing Regulation/Alternative Splicing.
Collapse
Affiliation(s)
- Athma A Pai
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Francesca Luca
- Center for Molecular Medicine and Genetics, and Department of Obstetrics and Gynecology, Wayne State University, Detroit, Michigan
| |
Collapse
|
23
|
Ashraf U, Benoit-Pilven C, Lacroix V, Navratil V, Naffakh N. Advances in Analyzing Virus-Induced Alterations of Host Cell Splicing. Trends Microbiol 2018; 27:268-281. [PMID: 30577974 DOI: 10.1016/j.tim.2018.11.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 10/19/2018] [Accepted: 11/09/2018] [Indexed: 12/14/2022]
Abstract
Alteration of host cell splicing is a common feature of many viral infections which is underappreciated because of the complexity and technical difficulty of studying alternative splicing (AS) regulation. Recent advances in RNA sequencing technologies revealed that up to several hundreds of host genes can show altered mRNA splicing upon viral infection. The observed changes in AS events can be either a direct consequence of viral manipulation of the host splicing machinery or result indirectly from the virus-induced innate immune response or cellular damage. Analysis at a higher resolution with single-cell RNAseq, and at a higher scale with the integration of multiple omics data sets in a systems biology perspective, will be needed to further comprehend this complex facet of virus-host interactions.
Collapse
Affiliation(s)
- Usama Ashraf
- Institut Pasteur, Unité de Génétique Moléculaire des Virus à ARN, Département de Virologie, F-75015 Paris, France; CNRS UMR3569, F-75015 Paris, France; Université Paris Diderot, Sorbonne Paris Cité EA302, F-75015 Paris, France
| | - Clara Benoit-Pilven
- INSERM U1028; CNRS UMR5292, Lyon Neuroscience Research Center, Genetic of Neuro-development Anomalies Team, F-69000 Lyon, France; Université Claude Bernard Lyon 1, CNRS UMR5558, Laboratoire de Biométrie et Biologie Evolutive, F-69622 Villeurbanne, France; EPI ERABLE, INRIA Grenoble Rhône-Alpes, F-38330 Montbonnot Saint-Martin, France
| | - Vincent Lacroix
- Université Claude Bernard Lyon 1, CNRS UMR5558, Laboratoire de Biométrie et Biologie Evolutive, F-69622 Villeurbanne, France; EPI ERABLE, INRIA Grenoble Rhône-Alpes, F-38330 Montbonnot Saint-Martin, France
| | - Vincent Navratil
- PRABI, Rhône Alpes Bioinformatics Center, UCBL, Université Claude Bernard Lyon 1, F-69000 Lyon, France; European Virus Bioinformatics Center, Leutragraben 1, D-07743 Jena, Germany
| | - Nadia Naffakh
- Institut Pasteur, Unité de Génétique Moléculaire des Virus à ARN, Département de Virologie, F-75015 Paris, France; CNRS UMR3569, F-75015 Paris, France; Université Paris Diderot, Sorbonne Paris Cité EA302, F-75015 Paris, France.
| |
Collapse
|
24
|
Alternative mRNA Splicing in the Pathogenesis of Obesity. Int J Mol Sci 2018; 19:ijms19020632. [PMID: 29473878 PMCID: PMC5855854 DOI: 10.3390/ijms19020632] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 02/21/2018] [Accepted: 02/21/2018] [Indexed: 12/22/2022] Open
Abstract
Alternative mRNA splicing is an important mechanism in expansion of proteome diversity by production of multiple protein isoforms. However, emerging evidence indicates that only a limited number of annotated protein isoforms by alternative splicing are detected, and the coding sequence of alternative splice variants usually is only slightly different from that of the canonical sequence. Nevertheless, mis-splicing is associated with a large array of human diseases. Previous reviews mainly focused on hereditary and somatic mutations in cis-acting RNA sequence elements and trans-acting splicing factors. The importance of environmental perturbations contributed to mis-splicing is not assessed. As significant changes in exon skipping and splicing factors expression levels are observed with diet-induced obesity, this review focuses on several well-known alternatively spliced metabolic factors and discusses recent advances in the regulation of the expressions of splice variants under the pathophysiological conditions of obesity. The potential of targeting the alternative mRNA mis-splicing for obesity-associated diseases therapies will also be discussed.
Collapse
|