1
|
Calarco JA, Taylor SR, Miller DM. Detecting gene expression in Caenorhabditis elegans. Genetics 2025; 229:1-108. [PMID: 39693264 DOI: 10.1093/genetics/iyae167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 09/30/2024] [Indexed: 12/20/2024] Open
Abstract
Reliable methods for detecting and analyzing gene expression are necessary tools for understanding development and investigating biological responses to genetic and environmental perturbation. With its fully sequenced genome, invariant cell lineage, transparent body, wiring diagram, detailed anatomy, and wide array of genetic tools, Caenorhabditis elegans is an exceptionally useful model organism for linking gene expression to cellular phenotypes. The development of new techniques in recent years has greatly expanded our ability to detect gene expression at high resolution. Here, we provide an overview of gene expression methods for C. elegans, including techniques for detecting transcripts and proteins in situ, bulk RNA sequencing of whole worms and specific tissues and cells, single-cell RNA sequencing, and high-throughput proteomics. We discuss important considerations for choosing among these techniques and provide an overview of publicly available online resources for gene expression data.
Collapse
Affiliation(s)
- John A Calarco
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada, M5S 3G5
| | - Seth R Taylor
- Department of Cell Biology and Physiology, Brigham Young University, Provo, UT 84602, USA
| | - David M Miller
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37240, USA
- Neuroscience Program, Vanderbilt University, Nashville, TN 37240, USA
| |
Collapse
|
2
|
Ogawa T, Isik M, Wu Z, Kurmi K, Meng J, Cho S, Lee G, Fernandez-Cardenas LP, Mizunuma M, Blenis J, Haigis MC, Blackwell TK. Nutrient control of growth and metabolism through mTORC1 regulation of mRNA splicing. Mol Cell 2024; 84:4558-4575.e8. [PMID: 39571580 DOI: 10.1016/j.molcel.2024.10.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/30/2024] [Accepted: 10/28/2024] [Indexed: 12/08/2024]
Abstract
Cellular growth and organismal development are remarkably complex processes that require the nutrient-responsive kinase mechanistic target of rapamycin complex 1 (mTORC1). Anticipating that important mTORC1 functions remained to be identified, we employed genetic and bioinformatic screening in C. elegans to uncover mechanisms of mTORC1 action. Here, we show that during larval growth, nutrients induce an extensive reprogramming of gene expression and alternative mRNA splicing by acting through mTORC1. mTORC1 regulates mRNA splicing and the production of protein-coding mRNA isoforms largely independently of its target p70 S6 kinase (S6K) by increasing the activity of the serine/arginine-rich (SR) protein RSP-6 (SRSF3/7) and other splicing factors. mTORC1-mediated mRNA splicing regulation is critical for growth; mediates nutrient control of mechanisms that include energy, nucleotide, amino acid, and other metabolic pathways; and may be conserved in humans. Although mTORC1 inhibition delays aging, mTORC1-induced mRNA splicing promotes longevity, suggesting that when mTORC1 is inhibited, enhancement of this splicing might provide additional anti-aging benefits.
Collapse
Affiliation(s)
- Takafumi Ogawa
- Research Division, Joslin Diabetes Center, Boston, MA 02215, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Unit of Biotechnology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan; Hiroshima Research Center for Healthy Aging (HiHA), Hiroshima University, Higashi-Hiroshima, Japan
| | - Meltem Isik
- Research Division, Joslin Diabetes Center, Boston, MA 02215, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Ziyun Wu
- Research Division, Joslin Diabetes Center, Boston, MA 02215, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Kiran Kurmi
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Ludwig Center, Harvard Medical School, Boston, MA 02115, USA
| | - Jin Meng
- Research Division, Joslin Diabetes Center, Boston, MA 02215, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Sungyun Cho
- Meyer Cancer Center and Department of Pharmacology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Gina Lee
- Meyer Cancer Center and Department of Pharmacology, Weill Cornell Medicine, New York, NY 10021, USA; Department of Microbiology and Molecular Genetics, Chao Family Comprehensive Cancer Center, School of Medicine, University of California Irvine, Irvine, CA 92617, USA
| | - L Paulette Fernandez-Cardenas
- Research Division, Joslin Diabetes Center, Boston, MA 02215, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Masaki Mizunuma
- Unit of Biotechnology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan; Hiroshima Research Center for Healthy Aging (HiHA), Hiroshima University, Higashi-Hiroshima, Japan
| | - John Blenis
- Meyer Cancer Center and Department of Pharmacology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Marcia C Haigis
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Ludwig Center, Harvard Medical School, Boston, MA 02115, USA
| | - T Keith Blackwell
- Research Division, Joslin Diabetes Center, Boston, MA 02215, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA.
| |
Collapse
|
3
|
Liang X, Calovich-Benne C, Norris A. Sensory neuron transcriptomes reveal complex neuron-specific function and regulation of mec-2/Stomatin splicing. Nucleic Acids Res 2021; 50:2401-2416. [PMID: 34875684 PMCID: PMC8934639 DOI: 10.1093/nar/gkab1134] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/30/2021] [Accepted: 11/09/2021] [Indexed: 12/16/2022] Open
Abstract
The function and identity of a cell is shaped by transcription factors controlling transcriptional networks, and further shaped by RNA binding proteins controlling post-transcriptional networks. To overcome limitations inherent to analysis of sparse single-cell post-transcriptional data, we leverage the invariant Caenorhabditis elegans cell lineage, isolating thousands of identical neuron types from thousands of isogenic individuals. The resulting deep transcriptomes facilitate splicing network analysis due to increased sequencing depth and uniformity. We focus on mechanosensory touch-neuron splicing regulated by MEC-8/RBPMS. We identify a small MEC-8-regulated network, where MEC-8 establishes touch-neuron isoforms differing from default isoforms found in other cells. MEC-8 establishes the canonical long mec-2/Stomatin isoform in touch neurons, but surprisingly the non-canonical short isoform predominates in other neurons, including olfactory neurons, and mec-2 is required for olfaction. Forced endogenous isoform-specific expression reveals that the short isoform functions in olfaction but not mechanosensation. The long isoform is functional in both processes. Remarkably, restoring the long isoform completely rescues mec-8 mutant mechanosensation, indicating a single MEC-8 touch-neuron target is phenotypically relevant. Within the long isoform we identify a cassette exon further diversifying mec-2 into long/extra-long isoforms. Neither is sufficient for mechanosensation. Both are simultaneously required, likely functioning as heteromers to mediate mechanosensation.
Collapse
Affiliation(s)
- Xiaoyu Liang
- Southern Methodist University, Dallas, TX 75275, USA
| | | | - Adam Norris
- Southern Methodist University, Dallas, TX 75275, USA
| |
Collapse
|
4
|
Cao D. An autoregulation loop in fust-1 for circular RNA regulation in Caenorhabditis elegans. Genetics 2021; 219:iyab145. [PMID: 34740247 PMCID: PMC8570788 DOI: 10.1093/genetics/iyab145] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/24/2021] [Indexed: 01/22/2023] Open
Abstract
Many circular RNAs (circRNAs) are differentially expressed in different tissues or cell types, suggestive of specific factors that regulate their biogenesis. Here, taking advantage of available mutation strains of RNA-binding proteins (RBPs) in Caenorhabditis elegans, I performed a screening of circRNA regulation in 13 conserved RBPs. Among them, loss of FUST-1, the homolog of Fused in Sarcoma (FUS), caused downregulation of multiple circRNAs. By rescue experiments, I confirmed FUST-1 as a circRNA regulator. Through RNA sequencing using circRNA-enriched samples, circRNAs targets regulated by FUST-1 were identified globally, with hundreds of them significantly altered. Furthermore, I showed that FUST-1 regulates circRNA formation with only small to little effect on the cognate linear mRNAs. When recognizing circRNA pre-mRNAs, FUST-1 can affect both exon-skipping and circRNA in the same genes. Moreover, I identified an autoregulation loop in fust-1, where FUST-1, isoform a (FUST-1A) promotes the skipping of exon 5 of its own pre-mRNA, which produces FUST-1, isoform b (FUST-1B) with different N-terminal sequences. FUST-1A is the functional isoform in circRNA regulation. Although FUST-1B has the same functional domains as FUST-1A, it cannot regulate either exon-skipping or circRNA formation. This study provided an in vivo investigation of circRNA regulation, which will be helpful to understand the mechanisms that govern circRNA formation.
Collapse
Affiliation(s)
- Dong Cao
- Information Processing Biology Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan
| |
Collapse
|
5
|
Shao L, Xue R, Lu X, Liao J, Shao X, Fan X. Identify differential genes and cell subclusters from time-series scRNA-seq data using scTITANS. Comput Struct Biotechnol J 2021; 19:4132-4141. [PMID: 34527187 PMCID: PMC8342909 DOI: 10.1016/j.csbj.2021.07.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 07/20/2021] [Accepted: 07/23/2021] [Indexed: 12/20/2022] Open
Abstract
Time-series single-cell RNA sequencing (scRNA-seq) provides a breakthrough in modern biology by enabling researchers to profile and study the dynamics of genes and cells based on samples obtained from multiple time points at an individual cell resolution. However, cell asynchrony and an additional dimension of multiple time points raises challenges in the effective use of time-series scRNA-seq data for identifying genes and cell subclusters that vary over time. However, no effective tools are available. Here, we propose scTITANS (https://github.com/ZJUFanLab/scTITANS), a method that takes full advantage of individual cells from all time points at the same time by correcting cell asynchrony using pseudotime from trajectory inference analysis. By introducing a time-dependent covariate based on time-series analysis method, scTITANS performed well in identifying differentially expressed genes and cell subclusters from time-series scRNA-seq data based on several example datasets. Compared to current attempts, scTITANS is more accurate, quantitative, and capable of dealing with heterogeneity among cells and making full use of the timing information hidden in biological processes. When extended to broader research areas, scTITANS will bring new breakthroughs in studies with time-series single cell RNA sequencing data.
Collapse
Affiliation(s)
- Li Shao
- Hangzhou Normal University, Institute of Translational Medicine, Institute of Hepatology and Metabolic Diseases, The Affiliated Hospital of Hangzhou Normal University, Hangzhou 311121, Zhejiang, China.,Medicine Lab, Alibaba-Zhejiang University Joint Research Center for Future Digital Health, Hangzhou 310018, China
| | - Rui Xue
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiaoyan Lu
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jie Liao
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xin Shao
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiaohui Fan
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.,Medicine Lab, Alibaba-Zhejiang University Joint Research Center for Future Digital Health, Hangzhou 310018, China.,Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310058, China
| |
Collapse
|
6
|
Choudhary B, Marx O, Norris AD. Spliceosomal component PRP-40 is a central regulator of microexon splicing. Cell Rep 2021; 36:109464. [PMID: 34348142 PMCID: PMC8378409 DOI: 10.1016/j.celrep.2021.109464] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 05/31/2021] [Accepted: 07/08/2021] [Indexed: 02/07/2023] Open
Abstract
Microexons (≤27 nt) play critical roles in nervous system development and function but create unique challenges for the splicing machinery. The mechanisms of microexon regulation are therefore of great interest. We performed a genetic screen for alternative splicing regulators in the C. elegans nervous system and identify PRP-40, a core component of the U1 snRNP. RNA-seq reveals that PRP-40 is required for inclusion of alternatively spliced, but not constitutively spliced, exons. PRP-40 is particularly required for inclusion of neuronal microexons, and our data indicate that PRP-40 is a central regulator of microexon splicing. Microexons can be relieved from PRP-40 dependence by artificially increasing exon size or reducing flanking intron size, indicating that PRP-40 is specifically required for microexons surrounded by conventionally sized introns. Knockdown of the orthologous PRPF40A in mouse neuroblastoma cells causes widespread dysregulation of microexons but not conventionally sized exons. PRP-40 regulation of neuronal microexons is therefore a widely conserved phenomenon.
Collapse
Affiliation(s)
- Bikash Choudhary
- Biological Sciences, Southern Methodist University, Dallas, TX 75275, USA
| | - Olivia Marx
- Biological Sciences, Southern Methodist University, Dallas, TX 75275, USA
| | - Adam D Norris
- Biological Sciences, Southern Methodist University, Dallas, TX 75275, USA.
| |
Collapse
|
7
|
Martín G, Márquez Y, Mantica F, Duque P, Irimia M. Alternative splicing landscapes in Arabidopsis thaliana across tissues and stress conditions highlight major functional differences with animals. Genome Biol 2021; 22:35. [PMID: 33446251 PMCID: PMC7807721 DOI: 10.1186/s13059-020-02258-y] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 12/22/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Alternative splicing (AS) is a widespread regulatory mechanism in multicellular organisms. Numerous transcriptomic and single-gene studies in plants have investigated AS in response to specific conditions, especially environmental stress, unveiling substantial amounts of intron retention that modulate gene expression. However, a comprehensive study contrasting stress-response and tissue-specific AS patterns and directly comparing them with those of animal models is still missing. RESULTS We generate a massive resource for Arabidopsis thaliana, PastDB, comprising AS and gene expression quantifications across tissues, development and environmental conditions, including abiotic and biotic stresses. Harmonized analysis of these datasets reveals that A. thaliana shows high levels of AS, similar to fruitflies, and that, compared to animals, disproportionately uses AS for stress responses. We identify core sets of genes regulated specifically by either AS or transcription upon stresses or among tissues, a regulatory specialization that is tightly mirrored by the genomic features of these genes. Unexpectedly, non-intron retention events, including exon skipping, are overrepresented across regulated AS sets in A. thaliana, being also largely involved in modulating gene expression through NMD and uORF inclusion. CONCLUSIONS Non-intron retention events have likely been functionally underrated in plants. AS constitutes a distinct regulatory layer controlling gene expression upon internal and external stimuli whose target genes and master regulators are hardwired at the genomic level to specifically undergo post-transcriptional regulation. Given the higher relevance of AS in the response to different stresses when compared to animals, this molecular hardwiring is likely required for a proper environmental response in A. thaliana.
Collapse
Affiliation(s)
- Guiomar Martín
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6, 2780-156, Oeiras, Portugal.
| | - Yamile Márquez
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Dr. Aiguader, 88, Barcelona, 08003, Spain
| | - Federica Mantica
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Dr. Aiguader, 88, Barcelona, 08003, Spain
| | - Paula Duque
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6, 2780-156, Oeiras, Portugal
| | - Manuel Irimia
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Dr. Aiguader, 88, Barcelona, 08003, Spain. .,Universitat Pompeu Fabra, Dr. Aiguader, 88, Barcelona, 08003, Spain. .,ICREA, Passeig de Lluís Companys, 23, 08010, Barcelona, Spain.
| |
Collapse
|
8
|
Arribere JA, Kuroyanagi H, Hundley HA. mRNA Editing, Processing and Quality Control in Caenorhabditis elegans. Genetics 2020; 215:531-568. [PMID: 32632025 PMCID: PMC7337075 DOI: 10.1534/genetics.119.301807] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 05/03/2020] [Indexed: 02/06/2023] Open
Abstract
While DNA serves as the blueprint of life, the distinct functions of each cell are determined by the dynamic expression of genes from the static genome. The amount and specific sequences of RNAs expressed in a given cell involves a number of regulated processes including RNA synthesis (transcription), processing, splicing, modification, polyadenylation, stability, translation, and degradation. As errors during mRNA production can create gene products that are deleterious to the organism, quality control mechanisms exist to survey and remove errors in mRNA expression and processing. Here, we will provide an overview of mRNA processing and quality control mechanisms that occur in Caenorhabditis elegans, with a focus on those that occur on protein-coding genes after transcription initiation. In addition, we will describe the genetic and technical approaches that have allowed studies in C. elegans to reveal important mechanistic insight into these processes.
Collapse
Affiliation(s)
| | - Hidehito Kuroyanagi
- Laboratory of Gene Expression, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 113-8510, Japan, and
| | - Heather A Hundley
- Medical Sciences Program, Indiana University School of Medicine-Bloomington, Indiana 47405
| |
Collapse
|
9
|
Cid-Samper F, Gelabert-Baldrich M, Lang B, Lorenzo-Gotor N, Ponti RD, Severijnen LAWFM, Bolognesi B, Gelpi E, Hukema RK, Botta-Orfila T, Tartaglia GG. An Integrative Study of Protein-RNA Condensates Identifies Scaffolding RNAs and Reveals Players in Fragile X-Associated Tremor/Ataxia Syndrome. Cell Rep 2019; 25:3422-3434.e7. [PMID: 30566867 PMCID: PMC6315285 DOI: 10.1016/j.celrep.2018.11.076] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 09/26/2018] [Accepted: 11/19/2018] [Indexed: 12/21/2022] Open
Abstract
Recent evidence indicates that specific RNAs promote the formation of ribonucleoprotein condensates by acting as scaffolds for RNA-binding proteins (RBPs). We systematically investigated RNA-RBP interaction networks to understand ribonucleoprotein assembly. We found that highly contacted RNAs are structured, have long UTRs, and contain nucleotide repeat expansions. Among the RNAs with such properties, we identified the FMR1 3' UTR that harbors CGG expansions implicated in fragile X-associated tremor/ataxia syndrome (FXTAS). We studied FMR1 binding partners in silico and in vitro and prioritized the splicing regulator TRA2A for further characterization. In a FXTAS cellular model, we validated the TRA2A-FMR1 interaction and investigated implications of its sequestration at both transcriptomic and post-transcriptomic levels. We found that TRA2A co-aggregates with FMR1 in a FXTAS mouse model and in post-mortem human samples. Our integrative study identifies key components of ribonucleoprotein aggregates, providing links to neurodegenerative disease and allowing the discovery of therapeutic targets.
Collapse
Affiliation(s)
- Fernando Cid-Samper
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Mariona Gelabert-Baldrich
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Benjamin Lang
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Nieves Lorenzo-Gotor
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Riccardo Delli Ponti
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain
| | | | - Benedetta Bolognesi
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Ellen Gelpi
- Neurological Tissue Biobank of the Hospital Clinic and Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Carrer del Rosselló, 149, 08036, Barcelona, Spain; Institute of Neurology, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Renate K Hukema
- Department of Clinical Genetics, Erasmus MC, 3000 CA Rotterdam, the Netherlands
| | - Teresa Botta-Orfila
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain.
| | - Gian Gaetano Tartaglia
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain; Department of Biology 'Charles Darwin', Sapienza University of Rome, P.le A. Moro 5, Rome 00185, Italy; Institució Catalana de Recerca i Estudis Avançats (ICREA), 23 Passeig Lluís Companys, 08010 Barcelona, Spain.
| |
Collapse
|