1
|
Letko A, Quignon P, Quilleré M, Husson JC, de Citres CD, Donner J, Dréano S, Plassais J, André C. A RETREG1 variant is associated with hereditary sensory and autonomic neuropathy with acral self-mutilation in purebred German Spitz. Anim Genet 2024; 55:810-819. [PMID: 39377488 DOI: 10.1111/age.13482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/05/2024] [Accepted: 09/22/2024] [Indexed: 10/09/2024]
Abstract
Hereditary sensory and autonomic neuropathies (HSAN) represent a group of genetic diseases affecting the peripheral nervous system. In humans, at least 16 loci have been associated with the disorder but do not explain the disease origin of all patients. In dogs, similar conditions have been documented for decades in various breeds with a severe impact on life quality and are often referred to as acral mutilation syndrome (AMS). Causal variants in three genes have been identified to date, suggesting larger genetic heterogeneity in the dog population. Our aim was to explain the genetic etiology of an early-onset HSAN/AMS in a purebred German Spitz. The affected dog showed progressive loss of pain sensation in the distal extremities, which led to intense licking, biting, and self-mutilation of digits and paw pads. Whole-genome sequencing identified a single candidate causal variant on chromosome 4 in the RETREG1 gene (c.656C>T, p.Pro219Leu). This missense variant was previously recognized as deleterious in a mixed breed dog family with similar clinical signs. Haplotype analyses and targeted genotyping revealed a likely German Spitz ancestry of these mixed breed dogs. Further screening of an extensive cohort of ~900 000 dogs of various breeds hinted at the variant allele origin in the German Spitz breed. Disruption of RETREG1 inhibits endoplasmic reticulum turnover and leads to neuron degeneration. Our findings provide evidence that this variant underlies the recessive form of HSAN/AMS in the German Spitz and support the use of whole-genome sequencing-based veterinary precision medicine for early diagnosis and prevention via a genetic test.
Collapse
Affiliation(s)
- Anna Letko
- Institut de Génétique et Développement de Rennes (IGDR) - UMR6290, CNRS, Université de Rennes, Rennes, France
| | - Pascale Quignon
- Institut de Génétique et Développement de Rennes (IGDR) - UMR6290, CNRS, Université de Rennes, Rennes, France
| | - Maéva Quilleré
- Institut de Génétique et Développement de Rennes (IGDR) - UMR6290, CNRS, Université de Rennes, Rennes, France
| | | | | | - Jonas Donner
- Wisdom Panel, Mars Petcare Science & Diagnostics, Helsinki, Finland
| | - Stéphane Dréano
- Institut de Génétique et Développement de Rennes (IGDR) - UMR6290, CNRS, Université de Rennes, Rennes, France
| | - Jocelyn Plassais
- Institut de Génétique et Développement de Rennes (IGDR) - UMR6290, CNRS, Université de Rennes, Rennes, France
| | - Catherine André
- Institut de Génétique et Développement de Rennes (IGDR) - UMR6290, CNRS, Université de Rennes, Rennes, France
| |
Collapse
|
2
|
Kwok JC, Sato Y, Niggel JK, Ozdogan E, Murgiano L, Miyadera K. Delayed-onset cord1 progressive retinal atrophy in English Springer Spaniels genetically affected with the RPGRIP1 variant. Vet Ophthalmol 2024. [PMID: 39428496 DOI: 10.1111/vop.13290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 09/11/2024] [Accepted: 10/01/2024] [Indexed: 10/22/2024]
Abstract
OBJECTIVE Cone-rod dystrophy (cord1) is a form of progressive retinal atrophy. It is linked to an RPGRIP1 genetic variant which is the third most common canine disease variant thus far. While the variant affects various breeds, it is highly prevalent in English Springer Spaniels (ESSs). Yet its clinical and pathological implications remain equivocal. Herein, we study the retinal phenotype in ESSs genetically affected with the RPGRIP1 variant. ANIMAL STUDIED Over 4 years, 494 ESSs (123 affected) were enrolled. PROCEDURE(S) Owner-perceived vision was collected via a questionnaire. Ophthalmic examination included fundus photography. In selected ESSs, retinal function and structure were assessed using electroretinography (ERG, 148 dogs) and optical coherence tomography (OCT, 4 dogs). RESULTS Ophthalmoscopic changes included peripheral hypo-reflective lesions often with distinct borders progressing centripetally culminating in generalized retinal atrophy. Cross-sectional study revealed declining photopic ERG amplitudes with age in the affected group but not in controls. OCT indicated progressive photoreceptor loss. Despite ophthalmoscopic, ERG, or OCT abnormalities, most affected dogs were not visually impaired per their owners. In a fraction of afflicted ESSs, vision/globe-threatening complications were documented including cataracts, lens luxation, and glaucoma. CONCLUSIONS In ESSs, the RPGRIP1 variant is associated with insidious pathology with delayed-onset visual defects. The subtle phenotype without apparent visual deficit until the final years of life, if at all, may have caused underdiagnosis of cord1. Still, DNA testing remains informative, and ERG and OCT indicate progressive pathology. Peripheral fundus examination and photopic ERG are particularly useful for early detection and monitoring of cord1.
Collapse
Affiliation(s)
- Jennifer C Kwok
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Yu Sato
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jessica K Niggel
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Emma Ozdogan
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Leonardo Murgiano
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Keiko Miyadera
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
3
|
Bryson GT, O’Neill DG, Brand CL, Belshaw Z, Packer RMA. The doodle dilemma: How the physical health of 'Designer-crossbreed' Cockapoo, Labradoodle and Cavapoo dogs' compares to their purebred progenitor breeds. PLoS One 2024; 19:e0306350. [PMID: 39196904 PMCID: PMC11355567 DOI: 10.1371/journal.pone.0306350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/14/2024] [Indexed: 08/30/2024] Open
Abstract
Booming UK ownership of designer-crossbreed dogs resulting from intentional crossing of distinct purebred breeds is often motivated by perceived enhanced health, despite limited evidence supporting a strong 'hybrid vigour' effect in dogs. Improved evidence on the relative health of designer-crossbreed dogs could support prospective owners to make better acquisition decisions when choosing their new dog. This study used a cross-sectional survey of UK owners of three common designer-crossbreeds (Cavapoo, Cockapoo, and Labradoodle) and their progenitor breeds (Cavalier King Charles Spaniel, Cocker Spaniel, Labrador Retriever, and Poodle) to collect owner-reported health disorder information. The authors hypothesised that designer-crossbred breeds have lower odds of common disorders compared to their progenitor breeds. Multivariable analysis accounted for confounding between breeds: dog age, sex, neuter status, and owner age and gender. The odds for the 57 most common disorders were compared across the three designer-crossbreeds with each of their two progenitor breeds (342 comparisons). Valid responses were received for 9,402 dogs. The odds did not differ statistically significantly between the designer-crossbreeds and their relevant progenitor breeds in 86.6% (n = 296) of health comparisons. Designer-crossbreeds had higher odds for 7.0% (n = 24) of disorders studied, and lower odds for 6.4% (n = 22). These findings suggest limited differences in overall health status between the three designer-crossbreeds and their purebred progenitors, challenging widespread beliefs in positive hybrid vigour effects for health in this emerging designer-crossbreed demographic. Equally, the current study did not suggest that designer-crossbreeds have poorer health as has also been purported. Therefore, owners could more appropriately base acquisition decisions between designer-crossbreeds and their purebred progenitors on other factors important to canine welfare such as breeding conditions, temperament, conformation and health of parents.
Collapse
Affiliation(s)
- Gina T. Bryson
- Department of Clinical Science and Services, Royal Veterinary College, Hertfordshire, United Kingdom
| | - Dan G. O’Neill
- Department of Pathobiology and Population Sciences, The Royal Veterinary College, Hertfordshire, United Kingdom
| | - Claire L. Brand
- Department of Clinical Science and Services, Royal Veterinary College, Hertfordshire, United Kingdom
| | - Zoe Belshaw
- EviVet Evidence-Based Veterinary Consultancy, Nottingham, United Kingdom
| | - Rowena M. A. Packer
- Department of Clinical Science and Services, Royal Veterinary College, Hertfordshire, United Kingdom
| |
Collapse
|
4
|
Emming C, Hadjiafxentis M, Liesegang A, Gampe L. [First detection of the SLC2A9:p.C188F gene defect in a German Hunting Terrier with ammonium urate urolithiasis]. TIERARZTLICHE PRAXIS. AUSGABE K, KLEINTIERE/HEIMTIERE 2024; 52:232-237. [PMID: 39173651 DOI: 10.1055/a-2364-2603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
A 1,5-year-old intact male German Hunting Terrier was initially presented 2018 with hematuria. An abdominal ultrasound revealed multiple hyperechogenic structures in the urinary bladder. A urinalysis indicated severe crystalluria (ammonium urate or xanthine). Following cystotomy and urinary calculus analysis, ammonium urate urolithiasis was diagnosed in 2019. The patient was tested homozygous at the SLC2A9:p.C188F variant, which results in severe hyperuricemia and hyperuricosuria. This case report presents the first incidence of the SLC2A9:p.C188F gene variant being detected in a German Hunting Terrier. Veterinary practitioners are encouraged to consider the possibility of this gene defect presenting in breeds beyond the Dalmatian.
Collapse
Affiliation(s)
- Christin Emming
- Stiftung Tierärztliche Hochschule Hannover - Klinik für Kleintiere, Hannover, Deutschland
| | | | - Annette Liesegang
- Institut für Tierernährung und Diätetik, Vetsuisse Fakultät, UZH, Zürich, Schweiz
| | - Lukas Gampe
- AniCura Ludwigsburg Oßweil GmbH, Ludwigsburg, Deutschland
| |
Collapse
|
5
|
Buckley RM, Ostrander EA. Large-scale genomic analysis of the domestic dog informs biological discovery. Genome Res 2024; 34:811-821. [PMID: 38955465 PMCID: PMC11293549 DOI: 10.1101/gr.278569.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Recent advances in genomics, coupled with a unique population structure and remarkable levels of variation, have propelled the domestic dog to new levels as a system for understanding fundamental principles in mammalian biology. Central to this advance are more than 350 recognized breeds, each a closed population that has undergone selection for unique features. Genetic variation in the domestic dog is particularly well characterized compared with other domestic mammals, with almost 3000 high-coverage genomes publicly available. Importantly, as the number of sequenced genomes increases, new avenues for analysis are becoming available. Herein, we discuss recent discoveries in canine genomics regarding behavior, morphology, and disease susceptibility. We explore the limitations of current data sets for variant interpretation, tradeoffs between sequencing strategies, and the burgeoning role of long-read genomes for capturing structural variants. In addition, we consider how large-scale collections of whole-genome sequence data drive rare variant discovery and assess the geographic distribution of canine diversity, which identifies Asia as a major source of missing variation. Finally, we review recent comparative genomic analyses that will facilitate annotation of the noncoding genome in dogs.
Collapse
Affiliation(s)
- Reuben M Buckley
- National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Elaine A Ostrander
- National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
6
|
Janjić F, Spariosu K, Radaković M, Francuski Andrić J, Beletić A, Kovačević Filipović M. Age, sex and breed effect on laboratory parameters in natural Babesia canis infection. Vet Parasitol 2024; 329:110197. [PMID: 38735268 DOI: 10.1016/j.vetpar.2024.110197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/07/2024] [Accepted: 05/07/2024] [Indexed: 05/14/2024]
Abstract
We tested the hypothesis that age, breed, and sex are related to hematology, biochemistry, acute phase proteins (APPs), seroreactivity and level of parasitemia in dogs with an acute phase response (APR) due to Babesia canis infection. The study enrolled 61 privately owned dogs that naturally acquired B. canis infection. Groups were formed according to the age: young dogs less than one year, and adult dogs more than one year old. Moreover, the group of males was compared to females and purebred to mixed breed dogs. Seroreactivity was tested with immunofluorescence antibody test, level of parasitemia with real-time polymerase chain reaction (real-time PCR), hematology, and biochemistry with automatic analyzers, serum amyloid A with enzyme-linked immunosorbent assay, fibrinogen with heat precipitation and ceruloplasmin and paraoxonase-1 with manual spectrophotometric methods. For protein separation agarose gel electrophoresis was used. The main changes in the whole population of B. canis-infected dogs were fever, pancytopenia, and change in APPs level. One-third of young, and 96% of adult dogs were seropositive (P < 0.001). The level of parasitemia was higher in the young dogs (P < 0.001). Erythroid lineage parameters (P < 0.01), and leukocytes (P < 0.05) were lower in the young, when compared to the adult dogs. Young dogs had lower total globulins (P < 0.001), β- and γ-globulins (P < 0.001), and higher α-globulins (P = 0.022) than adult dogs. Young dogs had higher concentrations of phosphate (P = 0.003) and cholesterol (P < 0.001) and lower amylase (P = 0.014) and lipase activity (P = 0.020) than adult ones. Male dogs had lower neutrophil count than females (P = 0.035), and purebred dogs had more band neutrophils than mixed breed dogs (P = 0.004). In conclusion, dogs with natural Babesia canis infection at a young age have more severe anemia and APR including leukopenia than adults. Male and purebred dogs might also have more severe APR than females and mix-breeds, as they have more pronounced changes related to the myeloid lineage.
Collapse
Affiliation(s)
- Filip Janjić
- Institute for the Application of Nuclear Energy, University of Belgrade, Banatska 31b, Zemun 11080, Serbia
| | - Kristina Spariosu
- Faculty of Veterinary Medicine, University of Belgrade, Bulevar oslobođenja 18, Belgrade 11000, Serbia
| | - Milena Radaković
- Faculty of Veterinary Medicine, University of Belgrade, Bulevar oslobođenja 18, Belgrade 11000, Serbia
| | - Jelena Francuski Andrić
- Faculty of Veterinary Medicine, University of Belgrade, Bulevar oslobođenja 18, Belgrade 11000, Serbia
| | - Anđelo Beletić
- Genos Ltd., Glycoscience Research Laboratory, Borongajska cesta 83H, Zagreb, Croatia
| | | |
Collapse
|
7
|
Barsotti G, Abramo F, Nuti M, Novelli A, Puccinelli C, Cecchi F. Multiple congenital ocular anomalies in three related litters of Jack Russell Terrier puppies. Vet Ophthalmol 2024. [PMID: 38700994 DOI: 10.1111/vop.13221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 03/08/2024] [Accepted: 04/05/2024] [Indexed: 05/05/2024]
Abstract
OBJECTIVE To describe multiple congenital ocular anomalies in three litters of Jack Russell Terrier puppies. ANIMALS STUDIED Seven purebred Jack Russell Terrier puppies from three related litters and their four parents. PROCEDURES Medical records of the puppies and their parents were evaluated. All dogs underwent a complete ophthalmic examination, followed by bilateral ocular ultrasonography in two of the puppies with complete corneal opacity. One eye from an affected puppy was subjected to histopathology. A complete database of pedigrees was built, and individual inbreeding was evaluated. RESULTS The most commonly diagnosed ocular anomalies in the puppies were: various anomalies of the fundus (12/14 eyes); microphthalmia (10/14 eyes); sclerocornea (8/14 eyes); and persistent pupillary membranes (7/14 eyes). Six out of seven puppies had at least two ocular abnormalities, and only one puppy was normal. Four out of seven puppies had sclerocornea, a particular corneal opacity to date described only in Spanish Podenco dogs. No ocular abnormalities were found in the parents examined (4/4). Analysis of the pedigrees showed that all the puppies and two parents were inbred, and the individual values of the inbreeding puppies were greater than 6.25% in two litters. CONCLUSIONS Inbreeding with closely related Jack Russell Terriers may result in severe congenital eye abnormalities in puppies.
Collapse
Affiliation(s)
- G Barsotti
- Department of Veterinary Sciences, University of Pisa, Pisa, Italy
| | - F Abramo
- Department of Veterinary Sciences, University of Pisa, Pisa, Italy
| | - M Nuti
- Department of Veterinary Sciences, University of Pisa, Pisa, Italy
| | - A Novelli
- San Concordio Veterinary Hospital, Lucca, Italy
| | - C Puccinelli
- Department of Veterinary Sciences, University of Pisa, Pisa, Italy
| | - F Cecchi
- Department of Veterinary Sciences, University of Pisa, Pisa, Italy
| |
Collapse
|
8
|
Turcsán B, Kubinyi E. Differential behavioral aging trajectories according to body size, expected lifespan, and head shape in dogs. GeroScience 2024; 46:1731-1754. [PMID: 37740140 PMCID: PMC10828231 DOI: 10.1007/s11357-023-00945-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 09/12/2023] [Indexed: 09/24/2023] Open
Abstract
The twofold life expectancy difference between dog breeds predicts differential behavioral and cognitive aging patterns between short- and long-lived dogs. To investigate this prediction, we conducted a cross-sectional analysis using survey data from over 15,000 dogs. We examined the effect of expected lifespan and three related factors (body size, head shape, and purebred status) on the age trajectory of various behavioral characteristics and the prevalence of canine cognitive dysfunction (CCD). Our findings reveal that, although age-related decline in most behavioral characteristics began around 10.5 years of age, the proportion of dogs considered "old" by their owners began to increase uniformly around 6 years of age. From the investigated factors, only body size had a systematic, although not gradual, impact on the aging trajectories of all behavioral characteristics. Dogs weighing over 30 kg exhibited an earlier onset of decline by 2-3 years and a slower rate of decline compared to smaller dogs, probably as a byproduct of their faster age-related physical decline. Larger sized dogs also showed a lower prevalence of CCD risk in their oldest age group, whereas smaller-sized dogs, dolichocephalic breeds, and purebreds had a higher CCD risk prevalence. The identification of differential behavioral and cognitive aging trajectories across dog groups, and the observed associations between body size and the onset, rate, and degree of cognitive decline in dogs have significant translational implications for human aging research, providing valuable insights into the interplay between morphology, physiological ageing, and cognitive decline, and unravelling the trade-off between longevity and relative healthspan.
Collapse
Affiliation(s)
- Borbála Turcsán
- MTA-ELTE Lendület "Momentum" Companion Animal Research Group, Department of Ethology, Eötvös Loránd University, Budapest, Hungary.
- Senior Family Dog Project, Department of Ethology, Eötvös Loránd University, Budapest, Hungary.
| | - Enikő Kubinyi
- MTA-ELTE Lendület "Momentum" Companion Animal Research Group, Department of Ethology, Eötvös Loránd University, Budapest, Hungary
- Senior Family Dog Project, Department of Ethology, Eötvös Loránd University, Budapest, Hungary
- ELTE NAP Canine Brain Research Group, Budapest, Hungary
| |
Collapse
|
9
|
Honkanen L, Loechel R, Davison S, Donner J, Anderson H. Canine coat color E locus updates: Identification of a new MC1R variant causing 'sable' coat color in English Cocker Spaniels and a proposed update to the E locus dominance hierarchy. Anim Genet 2024; 55:291-295. [PMID: 38282569 DOI: 10.1111/age.13398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/21/2023] [Accepted: 01/11/2024] [Indexed: 01/30/2024]
Abstract
The coat color phenotype 'sable' occurs in the English Cocker Spaniel dog breed. It closely resembles other canine color patterns known as domino/grizzle/pied (eA allele) and grizzle/domino (eG allele) determined by variants in the melanocortin 1 receptor gene (MC1R; 'extension' or E locus), a key multi-allele regulator of coat color. We examined genetic variation in MC1R, and found one new non-synonymous variant, c.250G>A (p.(Asp84Asn)), consistently associated with the English Cocker Spaniel 'sable' phenotype. We propose calling this newly identified allele eH and further show that the eA , eH and eG (previously known as EG ) alleles associate with similar phenotypes in dogs impacting genotypes regulated by beta-defensin 103 gene (CBD103; K locus) and agouti signaling protein gene (ASIP; A locus) in the absence of the EM and E alleles. This suggests that all three alleles are putative reduced-function variants of the MC1R gene. We propose the revised and updated E locus dominance hierarchy to be EM > E > eA /eH /eG > e1-3 .
Collapse
Affiliation(s)
- Leena Honkanen
- Wisdom Panel, Mars Petcare Science & Diagnostics, Helsinki, Finland
| | | | - Stephen Davison
- Wisdom Panel, Mars Petcare Science & Diagnostics, Leicestershire, UK
| | - Jonas Donner
- Wisdom Panel, Mars Petcare Science & Diagnostics, Helsinki, Finland
| | - Heidi Anderson
- Wisdom Panel, Mars Petcare Science & Diagnostics, Helsinki, Finland
| |
Collapse
|
10
|
Morel E, Malineau L, Venet C, Gaillard V, Péron F. Prioritization of Appearance over Health and Temperament Is Detrimental to the Welfare of Purebred Dogs and Cats. Animals (Basel) 2024; 14:1003. [PMID: 38612242 PMCID: PMC11011023 DOI: 10.3390/ani14071003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024] Open
Abstract
Fashions in the appearance of purebred dogs and cats are encouraged by celebrity culture, social media, and online impulse buying. The popularity of characteristics perceived as cute, quirky, and anthropomorphic has driven increasingly exaggerated breed features appealing to aesthetics rather than health. 'Hypertypes' of some breeds have emerged that take a breed's distinctive appearance to extremes beyond the intended interpretation of breed standards. This has severe, direct and indirect health and welfare consequences. Extreme conformations are associated with chronic health conditions including brachycephalic obstructive airway disorder, ocular, dental, skin, and musculoskeletal disorders. Puppy and kitten farms and illegal traders that meet the demand for hypertypes are associated with poor husbandry that neglects the physical, behavioral, and mental health of parents and offspring. A multidimensional approach involving collaboration between breeders, geneticists, owners, veterinarians, kennel clubs, cat fanciers' associations, animal charities, the academic and research communities, commercial enterprises, and governments is needed to safeguard breeds and tackle these challenges. There are many ongoing initiatives by national kennel clubs and global partnerships to educate pet owners and support responsible pet ownership and sustainable breeding. The resounding message is that health, temperament, and well-being must be prioritized over appearance.
Collapse
Affiliation(s)
| | | | | | - Virginie Gaillard
- Royal Canin, 30470 Aimargues, France; (E.M.); (L.M.); (C.V.); (F.P.)
| | | |
Collapse
|
11
|
McMillan KM, Bielby J, Williams CL, Upjohn MM, Casey RA, Christley RM. Longevity of companion dog breeds: those at risk from early death. Sci Rep 2024; 14:531. [PMID: 38302530 PMCID: PMC10834484 DOI: 10.1038/s41598-023-50458-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/20/2023] [Indexed: 02/03/2024] Open
Abstract
The companion dog is one of the most phenotypically diverse species. Variability between breeds extends not only to morphology and aspects of behaviour, but also to longevity. Despite this fact, little research has been devoted to assessing variation in life expectancy between breeds or evaluating the potential for phylogenetic characterisation of longevity. Using a dataset of 584,734 unique dogs located within the UK, including 284,734 deceased, we present variation in longevity estimates within the following: parental lineage (purebred = 1 breed, crossbred ≥ 2 breeds), breed (n = 155), body size (large, medium, small), sex (male, female) and cephalic index (brachycephalic, mesocephalic, dolichocephalic). Survival estimates were then partitioned amongst phylogenetic clades: providing evidence that canine evolutionary history (via domestication and associated artificial selection) is associated with breed lifespan. This information provides evidence to inform discussions regarding pedigree health, whilst helping current/prospective owners, breeders, policy makers, funding bodies and welfare organisations improve decision making regarding canine welfare.
Collapse
Affiliation(s)
| | - Jon Bielby
- Liverpool John Moores University, Liverpool, UK
| | | | | | | | | |
Collapse
|
12
|
Ninausz N, Fehér P, Csányi E, Heltai M, Szabó L, Barta E, Kemenszky P, Sándor G, Jánoska F, Horváth M, Kusza S, Frank K, Varga L, Stéger V. White and other fur colourations and hybridization in golden jackals (Canis aureus) in the Carpathian basin. Sci Rep 2023; 13:21969. [PMID: 38082037 PMCID: PMC10713657 DOI: 10.1038/s41598-023-49265-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 12/06/2023] [Indexed: 12/18/2023] Open
Abstract
The golden jackal (Canis aureus) is a reoccurring species in the centre of the Carpathian basin, in Hungary. In total, 31 golden jackal tissue samples were collected, from 8 white-coated, 2 black-coated and one mottled animal across Hungary. Sequences and fragment length polymorphisms were studied for white colour (MC1R), and for black coat colouration (CBD103). In each white animal, the most widespread mutation causing white fur colour in dogs in homozygous form was detected. Three animals were found to carry the mutation in heterozygous form. The two black golden jackals were heterozygous for the 3 bp deletion in CBD103 that mutation for black coat colouration in dogs, and one of them also carried the mutation causing white fur. None of the white animals showed signs of hybridization, but both the black and the mottled coloured individuals were found to be hybrids based on genetic testing. Kinship was found three times, twice between white animals, and once between a white animal and an agouti animal carrying the mutation of white coat. Our results confirm the findings that golden jackal-dog hybrids may occur without human intervention, and the detected mutation causing white fur colour in golden jackals could possibly be due to an early hybridization event.
Collapse
Affiliation(s)
- Nóra Ninausz
- Department of Genetics and Genomics, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| | - Péter Fehér
- Department of Genetics and Genomics, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| | - Erika Csányi
- Faculty of Forestry, University of Sopron, Sopron, Hungary
| | - Miklós Heltai
- Department of Wildlife Biology and Management, Institute of Wildlife Management and Nature Conservation, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| | - László Szabó
- Department of Wildlife Biology and Management, Institute of Wildlife Management and Nature Conservation, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| | - Endre Barta
- Department of Genetics and Genomics, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| | | | - Gyula Sándor
- Faculty of Forestry, University of Sopron, Sopron, Hungary
| | - Ferenc Jánoska
- Faculty of Forestry, University of Sopron, Sopron, Hungary
| | | | - Szilvia Kusza
- Centre for Agricultural Genomics and Biotechnology, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Debrecen, Hungary
| | | | - László Varga
- Department of Genetics and Genomics, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| | - Viktor Stéger
- Department of Genetics and Genomics, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary.
| |
Collapse
|
13
|
Clark JA, Anderson H, Donner J, Pearce-Kelling S, Ekenstedt KJ. Global Frequency Analyses of Canine Progressive Rod-Cone Degeneration-Progressive Retinal Atrophy and Collie Eye Anomaly Using Commercial Genetic Testing Data. Genes (Basel) 2023; 14:2093. [PMID: 38003037 PMCID: PMC10671078 DOI: 10.3390/genes14112093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/07/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
Hundreds of genetic variants associated with canine traits and disorders have been identified, with commercial tests offered. However, the geographic distributions and changes in allele and genotype frequencies over prolonged, continuous periods of time are lacking. This study utilized a large set of genotypes from dogs tested for the progressive rod-cone degeneration-progressive retinal atrophy (prcd-PRA) G>A missense PRCD variant (n = 86,667) and the collie eye anomaly (CEA)-associated NHEJ1 deletion (n = 33,834) provided by the commercial genetic testing company (Optigen/Wisdom Panel, Mars Petcare Science & Diagnostics). These data were analyzed using the chi-square goodness-of-fit test, time-trend graphical analysis, and regression modeling in order to evaluate how test results changed over time. The results span fifteen years, representing 82 countries and 67 breeds/breed mixes. Both diseases exhibited significant differences in genotype frequencies (p = 2.7 × 10-152 for prcd-PRA and 0.023 for CEA) with opposing graphical trends. Regression modeling showed time progression to significantly affect the odds of a dog being homozygous or heterozygous for either disease, as do variables including breed and breed popularity. This study shows that genetic testing informed breeding decisions to produce fewer affected dogs. However, the presence of dogs homozygous for the disease variant, especially for prcd-PRA, was still observed fourteen years after test availability, potentially due to crosses of unknown carriers. This suggests that genetic testing of dog populations should continue.
Collapse
Affiliation(s)
- Jessica A. Clark
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA;
| | - Heidi Anderson
- Wisdom Panel, Mars Petcare Science & Diagnostics, 00581 Helsinki, Finland; (H.A.); (J.D.)
| | - Jonas Donner
- Wisdom Panel, Mars Petcare Science & Diagnostics, 00581 Helsinki, Finland; (H.A.); (J.D.)
| | | | - Kari J. Ekenstedt
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA;
| |
Collapse
|
14
|
Diehl KA, Asif SK, Mowat F. Ophthalmic Disease and Screening in Breeding Dogs. Vet Clin North Am Small Anim Pract 2023; 53:965-983. [PMID: 37246013 PMCID: PMC10527272 DOI: 10.1016/j.cvsm.2023.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
This article describes the history and infrastructure associated with canine breed-related eye screening and certification by Diplomates of the American College of Veterinary Ophthalmologists. Some of the common or otherwise particularly problematic specific inherited ophthalmic conditions are discussed.
Collapse
Affiliation(s)
- Kathryn A Diehl
- Department of Small Animal Medicine and Surgery, University of Georgia College of Veterinary Medicine, 2200 College Station Road, Athens, GA 30602, USA.
| | - Sonia Kuhn Asif
- Blue Pearl Veterinary Eye Care, 3783 Pine Lane, Bessemer, AL 35022, USA
| | - Freya Mowat
- Department of Surgical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, 1300 University Avenue, Madison, WI 53704, USA; Department of Ophthalmology and Visual Sciences, School of Medicine and Public Health, 1300 University Avenue, Madison, WI 53704, USA
| |
Collapse
|
15
|
Alexander JE, Filler S, Bergman PJ, Bowring CE, Carvell-Miller L, Fulcher B, Haydock R, Lightfoot T, Logan DW, McKee TS, Mills T, Morrison J, Watson P, Woodruff C. The MARS PETCARE BIOBANK protocol: establishing a longitudinal study of health and disease in dogs and cats. BMC Vet Res 2023; 19:125. [PMID: 37592253 PMCID: PMC10433631 DOI: 10.1186/s12917-023-03691-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 08/09/2023] [Indexed: 08/19/2023] Open
Abstract
BACKGROUND The veterinary care of cats and dogs is increasingly embracing innovations first applied to human health, including an increased emphasis on preventative care and precision medicine. Large scale human population biobanks have advanced research in these areas; however, few have been established in veterinary medicine. The MARS PETCARE BIOBANK™ (MPB) is a prospective study that aims to build a longitudinal bank of biological samples, with paired medical and lifestyle data, from 20,000 initially healthy cats and dogs (10,000 / species), recruited through veterinary hospitals over a ten-year period. Here, we describe the MPB protocol and discuss its potential as a platform to increase understanding of why and how diseases develop and how to advance personalised veterinary healthcare. METHODS At regular intervals, extensive diet, health and lifestyle information, electronic medical records, clinicopathology and activity data are collected, genotypes, whole genome sequences and faecal metagenomes analysed, and blood, plasma, serum, and faecal samples stored for future research. DISCUSSION Proposed areas for research include the early detection and progression of age-related disease, risk factors for common conditions, the influence of the microbiome on health and disease and, through genome wide association studies, the identification of candidate loci for disease associated genetic variants. Genomic data will be open access and research proposals for access to data and samples will be considered. Over the coming years, the MPB will provide the longitudinal data and systematically collected biological samples required to generate important insights into companion animal health, identifying biomarkers of disease, supporting earlier identification of risk, and enabling individually tailored interventions to manage disease.
Collapse
Affiliation(s)
- Janet E Alexander
- Waltham Petcare Science Institute, Waltham On the Wolds, Leicestershire, UK.
| | - Serina Filler
- Waltham Petcare Science Institute, Waltham On the Wolds, Leicestershire, UK
| | - Philip J Bergman
- VCA Clinical Studies, 12401 West Olympic Blvd, Los Angeles, CA, USA
| | - Claire E Bowring
- Waltham Petcare Science Institute, Waltham On the Wolds, Leicestershire, UK
| | | | | | - Richard Haydock
- Waltham Petcare Science Institute, Waltham On the Wolds, Leicestershire, UK
| | | | - Darren W Logan
- Waltham Petcare Science Institute, Waltham On the Wolds, Leicestershire, UK
| | - Talon S McKee
- VCA Clinical Studies, 12401 West Olympic Blvd, Los Angeles, CA, USA
| | - Tracy Mills
- VCA Clinical Studies, 12401 West Olympic Blvd, Los Angeles, CA, USA
| | - JoAnn Morrison
- Banfield Pet Hospital, 18101 SE 6Th Way, Vancouver, WA, USA
| | - Phillip Watson
- Waltham Petcare Science Institute, Waltham On the Wolds, Leicestershire, UK
| | - Colby Woodruff
- Antech Diagnostics, 17620 Mount Herrmann St, Fountain Valley, CA, USA
| |
Collapse
|
16
|
Boeykens F, Bhatti SFM, Peelman L, Broeckx BJG. VariantscanR: an R-package as a clinical tool for variant filtering of known phenotype-associated variants in domestic animals. BMC Bioinformatics 2023; 24:305. [PMID: 37528412 PMCID: PMC10394849 DOI: 10.1186/s12859-023-05426-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 07/20/2023] [Indexed: 08/03/2023] Open
Abstract
BACKGROUND Since the introduction of next-generation sequencing (NGS) techniques, whole-exome sequencing (WES) and whole-genome sequencing (WGS) have not only revolutionized research, but also diagnostics. The gradual switch from single gene testing to WES and WGS required a different set of skills, given the amount and type of data generated, while the demand for standardization remained. However, most of the tools currently available are solely applicable for human analysis because they require access to specific databases and/or simply do not support other species. Additionally, a complicating factor in clinical genetics in animals is that genetic diversity is often dangerously low due to the breeding history. Combined, there is a clear need for an easy-to-use, flexible tool that allows standardized data processing and preferably, monitoring of genetic diversity as well. To fill these gaps, we developed the R-package variantscanR that allows an easy and straightforward identification and prioritization of known phenotype-associated variants identified in dogs and other domestic animals. RESULTS The R-package variantscanR enables the filtering of variant call format (VCF) files for the presence of known phenotype-associated variants and allows for the estimation of genetic diversity using multi-sample VCF files. Next to this, additional functions are available for the quality control and processing of user-defined input files to make the workflow as easy and straightforward as possible. This user-friendly approach enables the standardisation of complex data analysis in clinical settings. CONCLUSION We developed an R-package for the identification of known phenotype-associated variants and calculation of genetic diversity.
Collapse
Affiliation(s)
- Fréderique Boeykens
- Laboratory of Animal Genetics, Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Heidestraat 19, 9820, Merelbeke, Belgium.
| | - Sofie F M Bhatti
- Small Animal Department, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Luc Peelman
- Laboratory of Animal Genetics, Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Heidestraat 19, 9820, Merelbeke, Belgium
| | - Bart J G Broeckx
- Laboratory of Animal Genetics, Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Heidestraat 19, 9820, Merelbeke, Belgium.
| |
Collapse
|
17
|
Gouveia D, Correia J, Cardoso A, Carvalho C, Oliveira AC, Almeida A, Gamboa Ó, Ribeiro L, Branquinho M, Sousa A, Lopes B, Sousa P, Moreira A, Coelho A, Rêma A, Alvites R, Ferreira A, Maurício AC, Martins Â. Intensive neurorehabilitation and allogeneic stem cells transplantation in canine degenerative myelopathy. Front Vet Sci 2023; 10:1192744. [PMID: 37520009 PMCID: PMC10374290 DOI: 10.3389/fvets.2023.1192744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 06/12/2023] [Indexed: 08/01/2023] Open
Abstract
Introduction Degenerative myelopathy (DM) is a neurodegenerative spinal cord disease with upper motor neurons, with progressive and chronic clinical signs, similar to amyotrophic lateral sclerosis (ALS). DM has a complex etiology mainly associated with SOD1 gene mutation and its toxic role, with no specific treatment. Daily intensive rehabilitation showed survival time near 8 months but most animals are euthanized 6-12 months after clinical signs onset. Methods This prospective controlled blinded cohort clinical study aims to evaluate the neural regeneration response ability of DM dogs subjected to an intensive neurorehabilitation protocol with mesenchymal stem cells (MSCs) transplantation. In total, 13 non-ambulatory (OFS 6 or 8) dogs with homozygous genotype DM/DM and diagnosed by exclusion were included. All were allocated to the intensive neurorehabilitation with MSCs protocol (INSCP) group (n = 8) or to the ambulatory rehabilitation protocol (ARP) group (n = 5), which differ in regard to training intensity, modalities frequency, and MSCs transplantation. The INSCP group was hospitalized for 1 month (T0 to T1), followed by MSCs transplantation (T1) and a second month (T2), whereas the ARP group was under ambulatory treatment for the same 2 months. Results Survival mean time of total population was 375 days, with 438 days for the INSCP group and 274 for the ARP group, with a marked difference on the Kaplan-Meier survival analysis. When comparing the literature's results, there was also a clear difference in the one-sample t-test (p = 0.013) with an increase in time of approximately 70%. OFS classifications between groups at each time point were significantly different (p = 0.008) by the one-way ANOVA and the independent sample t-test. Discussion This INSCP showed to be safe, feasible, and a possibility for a long progression of DM dogs with quality of life and functional improvement. This study should be continued.
Collapse
Affiliation(s)
- Débora Gouveia
- Arrábida Veterinary Hospital, Arrábida Animal Rehabilitation Center, Setubal, Portugal
- Superior School of Health, Protection and Animal Welfare, Polytechnic Institute of Lusophony, Lisboa, Portugal
- Faculty of Veterinary Medicine, Lusófona University, Lisboa, Portugal
| | - Jéssica Correia
- Arrábida Veterinary Hospital, Arrábida Animal Rehabilitation Center, Setubal, Portugal
- Faculty of Veterinary Medicine, Lusófona University, Lisboa, Portugal
| | - Ana Cardoso
- Arrábida Veterinary Hospital, Arrábida Animal Rehabilitation Center, Setubal, Portugal
- Superior School of Health, Protection and Animal Welfare, Polytechnic Institute of Lusophony, Lisboa, Portugal
| | - Carla Carvalho
- Arrábida Veterinary Hospital, Arrábida Animal Rehabilitation Center, Setubal, Portugal
| | - Ana Catarina Oliveira
- Arrábida Veterinary Hospital, Arrábida Animal Rehabilitation Center, Setubal, Portugal
- Superior School of Health, Protection and Animal Welfare, Polytechnic Institute of Lusophony, Lisboa, Portugal
| | - António Almeida
- Faculty of Veterinary Medicine, University of Lisbon, Lisboa, Portugal
| | - Óscar Gamboa
- Faculty of Veterinary Medicine, University of Lisbon, Lisboa, Portugal
| | - Lénio Ribeiro
- Faculty of Veterinary Medicine, Lusófona University, Lisboa, Portugal
| | - Mariana Branquinho
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salaza, Universidade do Porto, Porto, Portugal
- Centro de Estudos de Ciência Animal, Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto, Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), Lisboa, Portugal
| | - Ana Sousa
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salaza, Universidade do Porto, Porto, Portugal
- Centro de Estudos de Ciência Animal, Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto, Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), Lisboa, Portugal
| | - Bruna Lopes
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salaza, Universidade do Porto, Porto, Portugal
- Centro de Estudos de Ciência Animal, Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto, Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), Lisboa, Portugal
| | - Patrícia Sousa
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salaza, Universidade do Porto, Porto, Portugal
- Centro de Estudos de Ciência Animal, Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto, Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), Lisboa, Portugal
| | - Alícia Moreira
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salaza, Universidade do Porto, Porto, Portugal
- Centro de Estudos de Ciência Animal, Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto, Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), Lisboa, Portugal
| | - André Coelho
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salaza, Universidade do Porto, Porto, Portugal
- Centro de Estudos de Ciência Animal, Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto, Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), Lisboa, Portugal
| | - Alexandra Rêma
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salaza, Universidade do Porto, Porto, Portugal
- Centro de Estudos de Ciência Animal, Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto, Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), Lisboa, Portugal
| | - Rui Alvites
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salaza, Universidade do Porto, Porto, Portugal
- Centro de Estudos de Ciência Animal, Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto, Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), Lisboa, Portugal
- Instituto Universitário de Ciências da Saúde (IUCS), Cooperativa de Ensino Superior Politécnico e Universitário (CESPU), Gandra, Portugal
| | - António Ferreira
- Faculty of Veterinary Medicine, University of Lisbon, Lisboa, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), Lisboa, Portugal
- CIISA - Centro Interdisciplinar-Investigáo em Saúde Animal, Faculdade de Medicina Veterinária, Av. Universi dade Técnica de Lisboa, Lisboa, Portugal
| | - Ana Colette Maurício
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salaza, Universidade do Porto, Porto, Portugal
- Centro de Estudos de Ciência Animal, Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto, Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), Lisboa, Portugal
| | - Ângela Martins
- Arrábida Veterinary Hospital, Arrábida Animal Rehabilitation Center, Setubal, Portugal
- Superior School of Health, Protection and Animal Welfare, Polytechnic Institute of Lusophony, Lisboa, Portugal
- Faculty of Veterinary Medicine, Lusófona University, Lisboa, Portugal
| |
Collapse
|
18
|
Broeckx BJG. Incorporating Genetic Testing into a Breeding Program. Vet Clin North Am Small Anim Pract 2023:S0195-5616(23)00064-5. [PMID: 37221103 DOI: 10.1016/j.cvsm.2023.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Genetic tests are powerful tools that enable (1) a focus on genetic diversity as mating outcomes can be predicted and thus optimized to minimize or even avoid exclusion and (2) working toward breeding goals by improving a phenotype.
Collapse
Affiliation(s)
- Bart J G Broeckx
- Department of Veterinary and Biosciences, Laboratory of Animal Genetics, Faculty of Veterinary Medicine, Ghent University, Heidestraat 19, Merelbeke 9820, Belgium.
| |
Collapse
|
19
|
Kraus C, Snyder-Mackler N, Promislow DEL. How size and genetic diversity shape lifespan across breeds of purebred dogs. GeroScience 2023; 45:627-643. [PMID: 36066765 PMCID: PMC9886701 DOI: 10.1007/s11357-022-00653-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 08/27/2022] [Indexed: 02/03/2023] Open
Abstract
While the lifespan advantage of small body size and mixed breed status has been documented repeatedly, evidence for an effect of genetic diversity across dog breeds is equivocal. We hypothesized that this might be due to a strong right-censoring bias in available breed-specific lifespan estimates where early-dying dogs from birth cohorts that have not died off completely at the time of data collection are sampled disproportionately, especially in breeds with rapidly growing populations. We took advantage of data on owner reported lifespan and cause of death from a large public database to quantify the effect of size and genetic diversity (heterozygosity) on mortality patterns across 118 breeds based on more than 40,000 dogs. After documenting and removing the right-censoring bias from the breed-specific lifespan estimates by including only completed birth cohorts in our analyses, we show that small size and genetic diversity are both linked to a significant increase in mean lifespan across breeds. To better understand the proximate mechanisms underlying these patterns, we then investigated two major mortality causes in dogs - the cumulative pathophysiologies of old age and cancer. Old age lifespan, as well as the percentage of old age mortality, decreased with increasing body size and increased with increasing genetic diversity. The lifespan of dogs dying of cancer followed the same patterns, but while large size significantly increased proportional cancer mortality, we could not detect a significant signal for lowered cancer mortality with increasing diversity. Our findings suggest that outcross programs will be beneficial for breed health and longevity. They also emphasize the need for high-quality mortality data for veterinary epidemiology as well as for developing the dog as a translational model for human geroscience.
Collapse
Affiliation(s)
| | - Noah Snyder-Mackler
- School of Life Sciences, Center for Evolution and Medicine, School for Human Evolution and Social Change, Arizona State University, Tempe, AZ USA
| | - Daniel E. L. Promislow
- Department of Laboratory Medicine & Pathology, University of Washington School of Medicine, Seattle, WA 98195 USA
- Department of Biology, University of Washington, Seattle, WA 98195 USA
| |
Collapse
|
20
|
Arizmendi A, Rudd Garces G, Crespi JA, Olivera LH, Barrientos LS, Peral García P, Giovambattista G. Analysis of Doberman Pinscher and Toy Poodle samples with targeted next-generation sequencing. Gene 2023; 853:147069. [PMID: 36427679 DOI: 10.1016/j.gene.2022.147069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 11/04/2022] [Accepted: 11/18/2022] [Indexed: 11/25/2022]
Abstract
Next-generation sequencing (NGS) technologies have enabled the identification of many causal variants of genetic disorders, the development of parentage tests and the analysis of multiple traits in domestic animals. In this study, we evaluated the performance of a Canine Targeted Genotyping-by-Sequencing (GBS) custom panel (Thermo Fisher Scientific, Waltham, Ma, USA) in a cohort of 95 dog DNA samples, comprising 76 Doberman Pinschers and 19 Toy Poodles from Argentina. The used panel included 383 targets (228 parentage SNVs, 137 genetic disorder markers and 18 trait markers). While paternity analysis showed correct duo (97.4%; LOD > 2.98E+13) and trio (100%; LOD > 2.20E+15) parentage assignment, the panel resulted still insufficient for excluding close relatives in inbred populations. In this sense, close relatives were wrongly assigned as parents in 12.6% of duos and 0.3% of trios. We detected 17 polymorphic markers (genetic disorders, n = 4; hair type, n = 3; coat color, n = 10) and estimated their allele frequencies in the studied breeds. The accuracy of targeted GBS results were evaluated for three markers that were associated with Progressive rod-cone degeneration, von Willebrand disease type 1 and dilated cardiomyopathy by pyrosequencing and Sanger sequencing genotyping, showing 94-100% concordance among assays. The targeted GBS custom panel resulted cost-effective strategy to study the prevalence of genetic disorders and traits in a large number of samples and to analyze genetic interactions between previously reported variants. Once assays based on AgriSeq technology were standardized, their uses are a good strategy for large-scale routine genetic evaluation of animal populations.
Collapse
Affiliation(s)
- A Arizmendi
- IGEVET - Instituto de Genética Veterinaria "Ing. Fernando N. Dulout" (UNLP-CONICET LA PLATA), Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, Calle 60 y 118 S/N, 1900 La Plata, Buenos Aires, Argentina; Servicio de Cardiología, Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, Calle 60 y 118 S/N, 1900 La Plata, Buenos Aires, Argentina
| | - G Rudd Garces
- IGEVET - Instituto de Genética Veterinaria "Ing. Fernando N. Dulout" (UNLP-CONICET LA PLATA), Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, Calle 60 y 118 S/N, 1900 La Plata, Buenos Aires, Argentina
| | - J A Crespi
- IGEVET - Instituto de Genética Veterinaria "Ing. Fernando N. Dulout" (UNLP-CONICET LA PLATA), Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, Calle 60 y 118 S/N, 1900 La Plata, Buenos Aires, Argentina
| | - L H Olivera
- IGEVET - Instituto de Genética Veterinaria "Ing. Fernando N. Dulout" (UNLP-CONICET LA PLATA), Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, Calle 60 y 118 S/N, 1900 La Plata, Buenos Aires, Argentina
| | - L S Barrientos
- IGEVET - Instituto de Genética Veterinaria "Ing. Fernando N. Dulout" (UNLP-CONICET LA PLATA), Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, Calle 60 y 118 S/N, 1900 La Plata, Buenos Aires, Argentina
| | - P Peral García
- IGEVET - Instituto de Genética Veterinaria "Ing. Fernando N. Dulout" (UNLP-CONICET LA PLATA), Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, Calle 60 y 118 S/N, 1900 La Plata, Buenos Aires, Argentina
| | - G Giovambattista
- IGEVET - Instituto de Genética Veterinaria "Ing. Fernando N. Dulout" (UNLP-CONICET LA PLATA), Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, Calle 60 y 118 S/N, 1900 La Plata, Buenos Aires, Argentina.
| |
Collapse
|
21
|
Donner J, Freyer J, Davison S, Anderson H, Blades M, Honkanen L, Inman L, Brookhart-Knox CA, Louviere A, Forman OP, Chodroff Foran R. Genetic prevalence and clinical relevance of canine Mendelian disease variants in over one million dogs. PLoS Genet 2023; 19:e1010651. [PMID: 36848397 PMCID: PMC9997962 DOI: 10.1371/journal.pgen.1010651] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 03/09/2023] [Accepted: 02/02/2023] [Indexed: 03/01/2023] Open
Abstract
Hundreds of genetic variants implicated in Mendelian disease have been characterized in dogs and commercial screening is being offered for most of them worldwide. There is typically limited information available regarding the broader population frequency of variants and uncertainty regarding their functional and clinical impact in ancestry backgrounds beyond the discovery breed. Genetic panel screening of disease-associated variants, commercially offered directly to the consumer or via a veterinary clinician, provides an opportunity to establish large-scale cohorts with phenotype data available to address open questions related to variant prevalence and relevance. We screened the largest canine cohort examined in a single study to date (1,054,293 representative dogs from our existing cohort of 3.5 million; a total of 811,628 mixed breed dogs and 242,665 purebreds from more than 150 countries) to examine the prevalence and distribution of a total of 250 genetic disease-associated variants in the general population. Electronic medical records from veterinary clinics were available for 43.5% of the genotyped dogs, enabling the clinical impact of variants to be investigated. We provide detailed frequencies for all tested variants across breeds and find that 57% of dogs carry at least one copy of a studied Mendelian disease-associated variant. Focusing on a subset of variants, we provide evidence of full penetrance for 10 variants, and plausible evidence for clinical significance of 22 variants, on diverse breed backgrounds. Specifically, we report that inherited hypocatalasia is a notable oral health condition, confirm that factor VII deficiency presents as subclinical bleeding propensity and verify two genetic causes of reduced leg length. We further assess genome-wide heterozygosity levels in over 100 breeds, and show that a reduction in genome-wide heterozygosity is associated with an increased Mendelian disease variant load. The accumulated knowledge represents a resource to guide discussions on genetic test relevance by breed.
Collapse
Affiliation(s)
- Jonas Donner
- Wisdom Panel Research Team, Wisdom Panel, Kinship, Helsinki, Finland
| | - Jamie Freyer
- Wisdom Panel Research Team, Wisdom Panel, Kinship, Portland, Oregon, United States of America
| | - Stephen Davison
- Wisdom Panel Research Team, Wisdom Panel, Kinship, Leicestershire, United Kingdom
| | - Heidi Anderson
- Wisdom Panel Research Team, Wisdom Panel, Kinship, Helsinki, Finland
| | - Matthew Blades
- Wisdom Panel Research Team, Wisdom Panel, Kinship, Leicestershire, United Kingdom
| | - Leena Honkanen
- Wisdom Panel Research Team, Wisdom Panel, Kinship, Helsinki, Finland
| | - Laura Inman
- Wisdom Panel Research Team, Wisdom Panel, Kinship, Portland, Oregon, United States of America
| | - Casey A. Brookhart-Knox
- Wisdom Panel Research Team, Wisdom Panel, Kinship, Portland, Oregon, United States of America
| | - Annette Louviere
- Wisdom Panel Research Team, Wisdom Panel, Kinship, Portland, Oregon, United States of America
| | - Oliver P. Forman
- Wisdom Panel Research Team, Wisdom Panel, Kinship, Leicestershire, United Kingdom
| | - Rebecca Chodroff Foran
- Wisdom Panel Research Team, Wisdom Panel, Kinship, Portland, Oregon, United States of America
| |
Collapse
|
22
|
One Health: Animal Models of Heritable Human Bleeding Diseases. Animals (Basel) 2022; 13:ani13010087. [PMID: 36611696 PMCID: PMC9818017 DOI: 10.3390/ani13010087] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/21/2022] [Accepted: 12/25/2022] [Indexed: 12/28/2022] Open
Abstract
Animal models of human and animal diseases have long been used as the lynchpin of experimental and clinical research. With the discovery and implementation of novel molecular and nano-technologies, cellular research now has advanced to assessing signal transduction pathways, gene editing, and gene therapies. The contribution of heritable animal models to human and animal health as related to hemostasis is reviewed and updated with the advent of gene editing, recombinant and gene therapies.
Collapse
|
23
|
O'Neill DG, Khoo JSP, Brodbelt DC, Church DB, Pegram C, Geddes RF. Frequency, breed predispositions and other demographic risk factors for diagnosis of hypothyroidism in dogs under primary veterinary care in the UK. Canine Genet Epidemiol 2022; 9:11. [PMID: 36217196 PMCID: PMC9552398 DOI: 10.1186/s40575-022-00123-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 09/22/2022] [Indexed: 11/15/2022] Open
Abstract
Background Hypothyroidism is a commonly diagnosed endocrinopathy in dogs. This study aimed to investigate the frequency and risk factors for diagnosis of hypothyroidism in UK primary-care practice. Dogs diagnosed with hypothyroidism were identified by searching electronic patient records of primary-care practices participating in VetCompass. A cohort study design estimated one-year (2016) period prevalence and incidence risk for hypothyroidism. Multivariable binary logistic regression models were used to evaluate associations between demographic risk factors and hypothyroidism. Results From 905,553 dogs, 2,105 dogs were recorded with diagnosed hypothyroidism in 2016; 359 incident and 1,746 pre-existing, giving an annual prevalence of 0.23% (95% CI 0.22–0.24) and annual incidence risk of 0.04% (95% CI 0.04–0.04). Multivariable logistic regression identified 24 predisposed and nine protected breeds. Standard Doberman pinscher (odds ratio [OR] = 17.02, 95% CI 12.8–22.64), Tibetan terrier (11.25, 95% CI 8.27–15.32) and boxer (10.44, 95% CI 8.66–12.58) breeds showed high predisposition. Pug (OR 0.29, 95% CI 0.09–0.89), Yorkshire terrier (OR 0.38, 95% CI 0.24–0.59), Shih-tzu (OR 0.38, 95% CI 0.23–0.64) and Jack Russell terrier (OR 0.40, 95% CI 0.29–0.54) were the most protected breeds. Overall, being a purebred dog, being insured, having bodyweight above the breed-sex mean, increasing age, being neutered and rising adult bodyweight also showed increased odds being a dog living with a diagnosis of hypothyroidism. Conclusions Several strong breed predispositions for diagnosis of hypothyroidism were identified that can assist with disorder prioritisation in ongoing efforts to improve breed health. Other risk factors were also identified that can assist veterinary surgeons during clinical work-up of suspected cases. Identification of novel evidence for protected breeds provides useful information for research into genetic mechanisms.
Collapse
Affiliation(s)
- Dan G O'Neill
- Pathobiology and Population Sciences, The Royal Veterinary College, North Mymms, Hawkshead Lane, Hatfield, AL9 7TA, Herts, UK.
| | - Janine Su Pheng Khoo
- Pathobiology and Population Sciences, The Royal Veterinary College, North Mymms, Hawkshead Lane, Hatfield, AL9 7TA, Herts, UK
| | - Dave C Brodbelt
- Pathobiology and Population Sciences, The Royal Veterinary College, North Mymms, Hawkshead Lane, Hatfield, AL9 7TA, Herts, UK
| | - David B Church
- Clinical Science and Services, The Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, AL9 7TA, Herts, UK
| | - Camilla Pegram
- Pathobiology and Population Sciences, The Royal Veterinary College, North Mymms, Hawkshead Lane, Hatfield, AL9 7TA, Herts, UK
| | - Rebecca F Geddes
- Clinical Science and Services, The Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, AL9 7TA, Herts, UK
| |
Collapse
|
24
|
Yoneji W, Yoshizaki K, Hirata A, Yoneji K, Sakai H. Clinical and Pathological Diagnosis of Hereditary Gastrointestinal Polyposis in Jack Russell Terriers. Vet Sci 2022; 9:vetsci9100551. [PMID: 36288164 PMCID: PMC9612179 DOI: 10.3390/vetsci9100551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/26/2022] [Accepted: 10/03/2022] [Indexed: 11/06/2022] Open
Abstract
Simple Summary In dogs, hundreds of hereditary diseases are currently known, representing a major health problem in small animal clinical practice. Hereditary gastrointestinal (GI) polyposis in Jack Russell Terriers (JRTs) is a hereditary disease recently discovered in Japan. This is an autosomal dominant disease caused by a germline variant in the adenomatous polyposis coli (APC) gene. Dogs with hereditary GI polyposis develop solitary and multiple tumors predominantly in the stomach and/or colorectum but have a much better prognosis than sporadic cases of GI tumors. Since the discovery of this disease, the number of newly diagnosed cases in Japan has increased, allowing the update of the disease’s clinical and pathological features. In the present study, some patients exhibited more severe condition than previously reported, including cases harboring tumors in the small intestine besides the stomach and colorectum. In addition, the rare cases died from systemic metastasis of GI tumors. Our study would facilitate the accurate diagnosis of hereditary GI polyposis in JRTs and raise global awareness of this novel hereditary disease. Abstract Hereditary GI polyposis in JRTs is a novel hereditary disease characterized by the development of solitary and multiple polypoid tumors, predominantly in the stomach and/or colorectum. Our recent study indicated that JRTs with GI neoplastic polyps harbor an identical germline variant in the APC gene, c.[462_463delinsTT], in a heterozygous state. Unlike sporadic cases, dogs afflicted with hereditary GI polyposis can be expected to have a prolonged survival time, as hereditary tumors are noninvasive. Since the discovery of this disease, the number of newly diagnosed cases in Japan has increased, allowing us to update the clinical and pathological features and provide a large number of diagnostic images. The present clinical case series study employing various diagnostic imaging techniques revealed that some of the cases harbored tumors in the small intestine in addition to the stomach and colorectum. Moreover, although rare, hereditary GI cancers can progress to the advanced stage and develop systemic metastasis, similar to sporadic GI tumors. These findings indicate that there is a wider range of variation in disease severity than was initially recognized. Our results can contribute to the accurate diagnosis of hereditary GI polyposis in clinical practice, pathological examinations, and future research.
Collapse
Affiliation(s)
- Wakana Yoneji
- Laboratory of Veterinary Pathology, Joint Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, Gifu 501-1193, Japan
- Nara Animal Referral Clinic, Nara 631-0061, Japan
| | - Kyoko Yoshizaki
- Laboratory of Veterinary Pathology, Joint Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, Gifu 501-1193, Japan
| | - Akihiro Hirata
- Laboratory of Veterinary Pathology, Joint Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, Gifu 501-1193, Japan
- Correspondence: ; Tel.: +81-58-293-2944
| | | | - Hiroki Sakai
- Laboratory of Veterinary Pathology, Joint Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, Gifu 501-1193, Japan
| |
Collapse
|
25
|
Moura E, Tasqueti UI, Mangrich-Rocha RMV, Filho JRE, de Farias MR, Pimpão CT. Inborn Errors of Metabolism in Dogs: Historical, Metabolic, Genetic, and Clinical Aspects. Top Companion Anim Med 2022; 51:100731. [DOI: 10.1016/j.tcam.2022.100731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 09/11/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022]
|
26
|
Dog-human translational genomics: state of the art and genomic resources. J Appl Genet 2022; 63:703-716. [PMID: 36074326 DOI: 10.1007/s13353-022-00721-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 08/26/2022] [Accepted: 08/30/2022] [Indexed: 10/14/2022]
Abstract
Innovative models for medical research are strongly required nowadays. Convincing evidence supports dog as the most suitable spontaneous model for several human genetic diseases. Decades of studies on dog genome allowed the identification of hundreds of mutations causing genetic disorders, many of which are proposed as counterparts responsible for human diseases. Traditionally, the murine model is the most extensively used in human translational research. However, this species shows large physiological differences from humans, and it is kept under a controlled artificial environment. Conversely, canine genetic disorders often show pathophysiological and clinical features highly resembling the human counterpart. In addition, dogs share the same environment with humans; therefore, they are naturally exposed to many risk factors. Thus, different branches of translational medicine aim to study spontaneously occurring diseases in dogs to provide a more reliable model for human disorders. This review offers a comprehensive overview of the knowledge and resources available today for all the researchers involved in the field of dog-human translational medicine. Some of the main successful examples from dog-human translational genomics are reported, such as the canine association studies which helped to identify the causal mutation in the human counterpart. We also illustrated the ongoing projects aiming to create public canine big datasets. Finally, specific online databases are discussed along with several information resources that can speed up clinical translational research.
Collapse
|
27
|
Clark JA, Hooser SB, Dreger DL, Burcham GN, Ekenstedt KJ. Investigation of a common canine factor VII deficiency variant in dogs with unexplained bleeding on autopsy. J Vet Diagn Invest 2022; 34:806-812. [PMID: 35949113 PMCID: PMC9446296 DOI: 10.1177/10406387221118581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The factor VII (FVII) protein is an integral component of the extrinsic coagulation pathway. Deleterious variants in the gene encoding this protein can result in factor VII deficiency (FVIID), a bleeding disorder characterized by abnormal (slowed) clotting with a wide range of severity, from asymptomatic to life-threatening. In canids, a single FVIID-associated variant, first described in Beagles, has been observed in 24 breeds and mixed-breed dogs. Because this variant is present in breeds of diverse backgrounds, we hypothesized that it could be a contributing factor to unexplained bleeding observed in some canine autopsy cases. DNA was extracted from paraffin-embedded tissue samples from 67 anticoagulant-negative autopsy cases with unexplained etiology for gross lesions of hemorrhage. Each dog was genotyped for the c.407G>A (F71) variant. Experimental controls included 3 known heterozygotes and 2 known homozygotes for the F71 variant, 2 normal dogs with known homozygous wild-type genotypes (F7WF7W), and 5 dogs with bleeding at autopsy that tested positive for anticoagulant rodenticide and were genotyped as F7WF7W. All 67 cases tested homozygous for the wild-type allele, indicating that the common FVIID variant was not responsible for the observed unexplained bleeding. Our work demonstrates the usefulness of retrospective studies utilizing veterinary diagnostic laboratory databases and tissue archives for genetic studies. In the case of FVIID, our results suggest that a singular molecular test for the F71 variant is not a high-yield addition to postmortem screening in these scenarios.
Collapse
Affiliation(s)
- Jessica A. Clark
- Department of Basic Medical Sciences, College
of Veterinary Medicine, Purdue University, West Lafayette, IN, USA
| | - Stephen B. Hooser
- Animal Disease Diagnostic Laboratory,
Department of Comparative Pathobiology, College of Veterinary Medicine,
Purdue University, West Lafayette, IN, USA
| | - Dayna L. Dreger
- Department of Basic Medical Sciences, College
of Veterinary Medicine, Purdue University, West Lafayette, IN, USA. Current
address: National Human Genome Research Institute, NIH, Bethesda, MD,
USA
| | - Grant N. Burcham
- Animal Disease Diagnostic Laboratory,
Department of Comparative Pathobiology, College of Veterinary Medicine,
Purdue University, West Lafayette, IN, USA
| | - Kari J. Ekenstedt
- Department of Basic Medical Sciences, College
of Veterinary Medicine, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
28
|
Beckers E, Casselman I, Soudant E, Daminet S, Paepe D, Peelman L, Broeckx BJG. The prevalence of the ABCB1-1Δ variant in a clinical veterinary setting: The risk of not genotyping. PLoS One 2022; 17:e0273706. [PMID: 36037240 PMCID: PMC9423603 DOI: 10.1371/journal.pone.0273706] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/11/2022] [Indexed: 11/29/2022] Open
Abstract
Multidrug sensitivity is an autosomal recessive disorder in dogs caused by a 4-bp deletion in the ABCB1 gene, often referred to as the ABCB1-1Δ variant. This disease has a high prevalence in some breeds and causes adverse reactions to certain drugs when given in normal doses. Though most dogs known to be at risk are of the collie lineage or were traced back to it, the variant has also been described in several seemingly unrelated breeds. It is generally advised to genotype dogs at risk before treating them. However, there seems to be a discrepancy between the advice and current veterinary practices, as a recent study in Belgium and the Netherlands showed that most veterinarians never order a DNA test. To assess the possible risk of not testing for multidrug sensitivity in a clinical setting, the ABCB1-1Δ variant allele frequency was established in a sample of 286 dogs from a veterinary clinic. This frequency was compared to the allelic frequency in 599 samples specifically sent for genetic testing. While the allelic frequency in the sample for genetic testing was high (21.6%) and in line with the general reports, the allelic frequency in the clinical setting was low (0.2%), demonstrating an enormous difference between laboratory and clinical frequencies. Because of the low frequency of the disease-causing variant in the general clinical population, the risk of encountering a dog displaying multidrug sensitivity despite not genotyping seems to be low. As the variant was only found in an at-risk breed, the current recommendation of routinely genotyping at-risk breeds before treatment seems justified.
Collapse
Affiliation(s)
- Evy Beckers
- Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Iris Casselman
- Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Emma Soudant
- Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Sylvie Daminet
- Small Animal Department, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Dominique Paepe
- Small Animal Department, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Luc Peelman
- Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Bart J. G. Broeckx
- Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
- * E-mail:
| |
Collapse
|
29
|
Kopke MA, Diane Shelton G, Lyons LA, Wall MJ, Pemberton S, Gedye KR, Owen R, Guo LT, Buckley RM, Valencia JA, Jones BR. X-linked myotubular myopathy associated with an MTM1 variant in a Maine coon cat. J Vet Intern Med 2022; 36:1800-1805. [PMID: 35962713 PMCID: PMC9511081 DOI: 10.1111/jvim.16509] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 07/19/2022] [Indexed: 12/05/2022] Open
Abstract
Objective Describe the clinical course and diagnostic and genetic findings in a cat with X‐linked myotubular myopathy. Case Summary A 7‐month‐old male Maine coon was evaluated for progressively worsening gait abnormalities and generalized weakness. Neurolocalization was to the neuromuscular system. Genetic testing for spinal muscular atrophy (LIX1) was negative. Given the progressive nature and suspected poor long‐term prognosis, the owners elected euthanasia. Histopathology of skeletal muscle obtained post‐mortem disclosed numerous rounded atrophic or hypotrophic fibers with internal nuclei or central basophilic staining. Using oxidative reactions mediated by cytochrome C oxidase and succinic dehydrogenase, scattered myofibers were observed to have central dark staining structures and a “ring‐like” appearance. Given the cat's age and clinical history, a congenital myopathy was considered most likely, with the central nuclei and “ring‐like” changes consistent with either centronuclear or myotubular myopathy. Whole genome sequencing identified an underlying missense variant in myotubularin 1 (MTM1), a known candidate gene for X‐linked myotubular myopathy. New or Unique Information Provided This case is the first report of X‐linked myotubular myopathy in a cat with an MTM1 missense mutation. Maine coon cat breeders may consider screening for this variant to prevent production of affected cats and to eradicate the variant from the breeding population.
Collapse
Affiliation(s)
- Matthew A Kopke
- School of Veterinary Science, Massey University, Palmerston North, New Zealand.,Veterinary Nutrition Group, Le Fel, France
| | - G Diane Shelton
- Department of Pathology, School of Medicine, University of California San Diego, La Jolla, California, USA
| | - Leslie A Lyons
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA
| | - Meredith J Wall
- School of Veterinary Science, Massey University, Palmerston North, New Zealand.,Veterinary Nutrition Group, Le Fel, France
| | - Sarah Pemberton
- School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - Kristene R Gedye
- School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - Rebecca Owen
- School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - Ling T Guo
- Department of Pathology, School of Medicine, University of California San Diego, La Jolla, California, USA
| | - Reuben M Buckley
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA
| | - Juan A Valencia
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA
| | | | - Boyd R Jones
- School of Veterinary Science, Massey University, Palmerston North, New Zealand
| |
Collapse
|
30
|
Yoshizaki K, Hirata A, Matsushita H, Sakaguchi M, Yoneji W, Owaki K, Sakai H. Molecular epidemiological study of germline APC variant associated with hereditary gastrointestinal polyposis in dogs: current frequency in Jack Russell Terriers in Japan and breed distribution. BMC Vet Res 2022; 18:230. [PMID: 35717217 PMCID: PMC9206296 DOI: 10.1186/s12917-022-03338-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/10/2022] [Indexed: 11/25/2022] Open
Abstract
Background Cases of gastrointestinal (GI) neoplastic polyps in Jack Russell Terriers (JRTs) have increased in Japan since the late 2000s. We recently demonstrated that JRTs with GI polyps heterozygously harbor an identical germline variant in the adenomatous polyposis coli (APC) gene, c.[462_463delinsTT]; therefore, this is an autosomal dominant hereditary disease. We conducted a molecular epidemiological study to explore the current frequency of the APC variant in JRTs in Japan and the breed distribution of this disease. Results Peripheral blood samples from 792 JRTs were collected at 93 veterinary hospitals in Japan in 2020. Using an established polymerase chain reaction-restriction fragment length polymorphism assay, the germline APC variant was detected in 15 JRTs, with an overall frequency of 1.89%. The frequency was not significantly different for sex, age, and coat type criteria. Notably, the variant carriers had a current or previous history of GI neoplastic polyps, providing further evidence of the association of the germline APC variant with GI polyposis. Pedigree analysis of carrier dogs revealed that the germline APC variant was no longer confined to a few specific families but was widely spread among JRTs in Japan. Furthermore, some ancestors of the carriers were from Australia or New Zealand, suggesting the possible presence of carriers in countries other than Japan. Next, we retrospectively investigated the germline APC variant status of dogs with GI epithelial tumors using genomic DNA samples extracted from archived pathological specimens (28 purebred dogs of 14 breeds and four mixed-breed dog), as well as those stored in a canine genome bank (38 dogs of 18 breeds and a mixed-breed dogs). In total, 66 purebred dogs of 25 breeds, including another four JRTs, and five mixed-breed dogs were examined. While three variant carriers were found in JRTs, the germline APC variant was not detected in any of the other breeds. Conclusion The current frequency of the germline APC variant was approximately 2% in JRTs in Japan and the frequency remained roughly flat during the last 15 years. In addition, hereditary GI polyposis associated with the variant was virtually specific to JRTs. Supplementary Information The online version contains supplementary material available at 10.1186/s12917-022-03338-w.
Collapse
Affiliation(s)
- Kyoko Yoshizaki
- Laboratory of Veterinary Pathology, Joint Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan.,Present Address: Department of Veterinary Pathology, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, 753-8511, Japan
| | - Akihiro Hirata
- Laboratory of Veterinary Pathology, Joint Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan.
| | - Hiroyuki Matsushita
- Laboratory of Veterinary Pathology, Joint Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Masahiro Sakaguchi
- Laboratory of Microbiology I, Department of Veterinary Medicine, Azabu University, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara-shi, Kanagawa, 252-5201, Japan.,Present Address: Institute of Tokyo Environmental Allergy, 1-33-18 Hakusan, Bunkyo-ku, Tokyo, 113-0001, Japan
| | - Wakana Yoneji
- Laboratory of Veterinary Pathology, Joint Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan.,Nara Animal Referral Clinic, 5-20-7 Mitsugarasu, Nara, 631-0061, Japan
| | - Keishi Owaki
- Laboratory of Veterinary Pathology, Joint Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Hiroki Sakai
- Laboratory of Veterinary Pathology, Joint Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| |
Collapse
|
31
|
Anderson H, Davison S, Lytle KM, Honkanen L, Freyer J, Mathlin J, Kyöstilä K, Inman L, Louviere A, Chodroff Foran R, Forman OP, Lohi H, Donner J. Genetic epidemiology of blood type, disease and trait variants, and genome-wide genetic diversity in over 11,000 domestic cats. PLoS Genet 2022; 18:e1009804. [PMID: 35709088 PMCID: PMC9202916 DOI: 10.1371/journal.pgen.1009804] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 05/06/2022] [Indexed: 11/30/2022] Open
Abstract
In the largest DNA-based study of domestic cats to date, 11,036 individuals (10,419 pedigreed cats and 617 non-pedigreed cats) were genotyped via commercial panel testing elucidating the distribution and frequency of known disease, blood type, and physical trait associated genetic variants across cat breeds. This study provides allele frequencies for many disease-associated variants for the first time and provides updates on previously reported information with evidence suggesting that DNA testing has been effectively used to reduce disease associated variants within certain pedigreed cat populations over time. We identified 13 disease-associated variants in 47 breeds or breed types in which the variant had not previously been documented, highlighting the relevance of comprehensive genetic screening across breeds. Three disease-associated variants were discovered in non-pedigreed cats only. To investigate the causality of nine disease-associated variants in cats of different breed backgrounds our veterinarians conducted owner interviews, reviewed clinical records, and invited cats to have follow-up clinical examinations. Additionally, genetic variants determining blood types A, B and AB, which are relevant clinically and in cat breeding, were genotyped. Appearance-associated genetic variation in all cats is also discussed. Lastly, genome-wide SNP heterozygosity levels were calculated to obtain a comparable measure of the genetic diversity in different cat breeds. This study represents the first comprehensive exploration of informative Mendelian variants in felines by screening over 10,000 pedigreed cats. The results qualitatively contribute to the understanding of feline variant heritage and genetic diversity and demonstrate the clinical utility and importance of such information in supporting breeding programs and the research community. The work also highlights the crucial commitment of pedigreed cat breeders and registries in supporting the establishment of large genomic databases, that when combined with phenotype information can advance scientific understanding and provide insights that can be applied to improve the health and welfare of cats. Domestic cats are one of the world’s most popular companion animals, of which pedigreed cats represent small unique subpopulations. Genetic research on pedigreed cats has facilitated discoveries of heritable conditions resulting in the availability of DNA testing for studying and managing inherited disorders and traits in specific cat breeds. We have explored an extensive study cohort of 11,036 domestic cat samples representing pedigreed cats of 90 breeds and breed types. This work provided insight into the heritage of feline disease and trait alleles. We gained knowledge on the most common and relevant genetic markers for inherited disorders and physical traits, and the genetic determinants of the clinically relevant AB blood group system. We also used a measure of genetic diversity to compare inbreeding levels within and between breeds. This information can help support sustainable breeding goals within the cat fancy. Direct-to-consumer genetic tests help to raise awareness of various inherited single gene conditions in cats and provide information that owners can share with their veterinarians. In due course, ventures of this type will enable the genetics of common complex feline disease to be deciphered, paving the way for precision healthcare with the potential to ultimately improve welfare for all cats.
Collapse
Affiliation(s)
- Heidi Anderson
- Wisdom Panel Research Team, Wisdom Panel, Kinship, Portland, Oregon, United States of America
- * E-mail:
| | - Stephen Davison
- Wisdom Panel Research Team, Wisdom Panel, Kinship, Portland, Oregon, United States of America
| | - Katherine M. Lytle
- Wisdom Panel Research Team, Wisdom Panel, Kinship, Portland, Oregon, United States of America
| | - Leena Honkanen
- Wisdom Panel Research Team, Wisdom Panel, Kinship, Portland, Oregon, United States of America
| | - Jamie Freyer
- Wisdom Panel Research Team, Wisdom Panel, Kinship, Portland, Oregon, United States of America
| | - Julia Mathlin
- Wisdom Panel Research Team, Wisdom Panel, Kinship, Portland, Oregon, United States of America
| | - Kaisa Kyöstilä
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
- Folkhälsan Research Center, Helsinki, Finland
| | - Laura Inman
- Wisdom Panel Research Team, Wisdom Panel, Kinship, Portland, Oregon, United States of America
| | - Annette Louviere
- Wisdom Panel Research Team, Wisdom Panel, Kinship, Portland, Oregon, United States of America
| | - Rebecca Chodroff Foran
- Wisdom Panel Research Team, Wisdom Panel, Kinship, Portland, Oregon, United States of America
| | - Oliver P. Forman
- Wisdom Panel Research Team, Wisdom Panel, Kinship, Portland, Oregon, United States of America
| | - Hannes Lohi
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
- Folkhälsan Research Center, Helsinki, Finland
| | - Jonas Donner
- Wisdom Panel Research Team, Wisdom Panel, Kinship, Portland, Oregon, United States of America
| |
Collapse
|
32
|
Schulte E, Arlt SP. What Kinds of Dogs Are Used in Clinical and Experimental Research? Animals (Basel) 2022; 12:ani12121487. [PMID: 35739824 PMCID: PMC9219481 DOI: 10.3390/ani12121487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/27/2022] [Accepted: 06/03/2022] [Indexed: 11/23/2022] Open
Abstract
Simple Summary The objective of this study was to evaluate the signalment of dogs used in veterinary research in six different specialties. In total, 150 randomly chosen clinical studies (25 studies per specialty) published between 2007 and 2019 were evaluated for the breed, sex, neuter status, age, and weight information of the dogs used. Breed information was given for 5.7% of the included animals. Beagles were used 1.9% of the time, which was a less significant role in research than we expected. Information about the sex of the dogs was lacking for 16.2% of the included animals, while age and weight information were missing for 22.7 and 32.7%, respectively. The neuter status was not given in 38.7% of the clinical studies. The results show deficits in the reporting of demographic data for the dogs. The need for an improvement in the documentation and/or reporting of animal signalment is obvious and should be addressed by authors, reviewers, and journal editors in the future. Abstract Background: Dogs are widely used in research to answer questions about canine or human conditions. For the latter, research dogs are often used as models, since they are physiologically more similar to humans than other species used in research and they share similar environmental conditions. From a veterinary perspective, research findings are widely based on academic research, and thus are generated under experimental conditions. In that regard, the question arises: do the dogs used for research adequately represent the dog population seen in veterinary practice? It may, for example, be assumed that Beagle dogs are often used as experimental animals. The objective of this study was to evaluate the signalment of dogs used in veterinary research. Furthermore, we aimed to assess other relevant criteria regarding the validity of clinical trials in the context of six different veterinary medicine specialties: cardiology, internal medicine, neurology, orthopaedics, reproduction, and surgery. Methods: A literature search was conducted and 25 studies per specialty were randomly selected. The breed, sex, neuter status, median age, and median weight of the dogs used for clinical studies (n = 150) published between 2007 and 2019 were evaluated. Results: In total, 596,542 dogs were used in the 150 trials. Breed information was given for 33,835 of these dogs (5.7%). Of the latter, 1.9% were Beagles. Nine clinical trials exclusively used Beagles. The most frequently used breeds were German Shepherds (7.3%), Labrador Retrievers (6.7%), and Golden Retrievers (4.7%). The major reporting deficits found were missing breed specification in 25.3% of the articles; missing information about the sex of the dogs in 16.2%; missing age and weight information in 22.7 and 32.7%, respectively; and missing neuter status in 38.7% of the clinical studies. The median sample size was 56 (Q1:29; Q3:365) dogs. Conclusions: The presented project revealed that Beagle dogs represent only a small proportion of dogs in veterinary research. Based on the evaluated publications, it seems that some relevant dog attributes differ between the specialties. The results, however, show deficits in the reporting of demographic data for the dogs. The need for an improvement in the documentation and/or reporting of animal signalment is obvious and should be addressed by authors, reviewers, and journal editors in the future.
Collapse
|
33
|
Blades M, Freyer J, Donner J, Chodroff Foran R, Forman OP. Large scale across-breed genome-wide association study reveals a variant in HMGA2 associated with inguinal cryptorchidism risk in dogs. PLoS One 2022; 17:e0267604. [PMID: 35617214 PMCID: PMC9135263 DOI: 10.1371/journal.pone.0267604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 04/11/2022] [Indexed: 11/18/2022] Open
Abstract
Cryptorchidism is the most common congenital sex development disorder in dogs. Despite this, little progress has been made in understanding its genetic background. Extensive genetic testing of dogs through consumer and veterinary channels using a high-density SNP genotyping microarray coupled with links to clinical records presents the opportunity for a large-scale genome-wide association study to elucidate the molecular risk factors associated with cryptorchidism in dogs. Using an inter-breed genome-wide association study approach, a significant statistical association on canine chromosome 10 was identified, with the top SNP pinpointing a variant of HMGA2 previously associated with adult weight variance. In further analysis we show that incidence of cryptorchidism is skewed towards smaller dogs in concordance with the identified variant’s previous association with adult weight. This study represents the first putative variant to be associated with cryptorchidism in dogs.
Collapse
Affiliation(s)
- Matthew Blades
- Wisdom Panel Research Team, Wisdom Panel, Kinship, Waltham on the Wolds, Leicestershire, United Kingdom
| | - Jamie Freyer
- Wisdom Panel Research Team, Wisdom Panel, Kinship, Vancouver, Washington, United States of America
| | - Jonas Donner
- Wisdom Panel Research Team, Wisdom Panel, Kinship, Helsinki, Finland
| | - Rebecca Chodroff Foran
- Wisdom Panel Research Team, Wisdom Panel, Kinship, Vancouver, Washington, United States of America
| | - Oliver P. Forman
- Wisdom Panel Research Team, Wisdom Panel, Kinship, Waltham on the Wolds, Leicestershire, United Kingdom
- * E-mail:
| |
Collapse
|
34
|
Burnett E, Brand CL, O'Neill DG, Pegram CL, Belshaw Z, Stevens KB, Packer RMA. How much is that doodle in the window? Exploring motivations and behaviours of UK owners acquiring designer crossbreed dogs (2019-2020). Canine Med Genet 2022; 9:8. [PMID: 35610665 PMCID: PMC9127489 DOI: 10.1186/s40575-022-00120-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 05/13/2022] [Indexed: 11/10/2022] Open
Abstract
Background Demand for intentional crosses of purebred dog breeds, often labelled ‘designer crossbreeds’ (e.g., Labrador Retriever X Poodle, the ‘Labradoodle’), has recently increased in the UK. This study aimed to explore this phenomenon by comparing pre-purchase motivations, pre-purchase and purchase behaviours of UK owners of designer crossbred puppies purchased during 2019-2020 with those of owners of purebred puppies purchased during the same period. Results Data were collected in an online cross-sectional survey between November-December 2020. Responses from n = 6293 puppies (designer crossbred puppies: n = 1575; purebred puppies: n = 4718) were analysed. Perceived hypoallergenicity was cited as a motivator for breed/crossbreed choice by almost half of designer crossbreed owners (47.1%), six times more than purebred dog owners (7.86%; odds ratio [OR]: 9.12, 95% CI: 7.70-10.8). Designer crossbred puppies were more likely to have been acquired via a general selling website (e.g., Gumtree; 13.8%) compared to purebred puppies (7.67%; OR: 2.19, 95% CI: 1.77-2.71), or an animal-specific selling websites (e.g., Pets4Homes; 55.7%) compared to purebred puppies (37.4%; OR: 1.89, 95% CI: 1.65-2.17). Designer crossbreed owners were less likely to see their puppy in person prior to purchase than purebred owners (60.4% vs. 67.0%, respectively; OR: 0.74, 95% CI: 0.64-0.85), and at purchase, designer crossbred puppies were less likely to be seen with their mother (73.1% vs. 79.8%, respectively; OR: 0.82, 95% CI: 0.70-0.95), and littermates (67.7% vs. 78.1%, respectively; OR: 0.63, 95% CI: 0.55-0.73). Designer crossbreeds had a significantly higher purchase price, with 25.7% of designer crossbreed puppies costing £2000-£2999 compared to 15.1% of purebred puppies (X2 = 207.31, p < 0.001). Conclusions The recent boom in designer crossbreeds in the UK has been fuelled by a desire for perceived hypoallergenic and generally healthy dogs that fit the lifestyles of households with children and limited experience with dogs. Some sought-after traits in designer crossbreeds are misconceptions that risk canine welfare, including relinquishment risk, if owner expectations are not met. Purchasing practices fuelling this boom support irresponsible breeding and selling practices, which combined with reduced pressure for health testing from buyers, may result in a higher disease burden and poorer future welfare for this growing designer dog population.
Collapse
Affiliation(s)
- E Burnett
- Department of Clinical Sciences and Services, The Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Herts, AL9 7TA, UK.,School of Veterinary Medicine and Science, The University of Nottingham, Sutton Bonington Campus, Leicester, UK
| | - C L Brand
- Department of Clinical Sciences and Services, The Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Herts, AL9 7TA, UK
| | - D G O'Neill
- Department of Pathobiology and Population Sciences, The Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Herts, AL9 7TA, UK
| | - C L Pegram
- Department of Pathobiology and Population Sciences, The Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Herts, AL9 7TA, UK
| | - Z Belshaw
- EviVet Evidence-based Veterinary Consultancy, Nottingham, UK
| | - K B Stevens
- Department of Pathobiology and Population Sciences, The Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Herts, AL9 7TA, UK
| | - R M A Packer
- Department of Clinical Sciences and Services, The Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Herts, AL9 7TA, UK.
| |
Collapse
|
35
|
Raymond PW, Velie BD, Wade CM. Forensic DNA phenotyping: Canis familiaris breed classification and skeletal phenotype prediction using functionally significant skeletal SNPs and indels. Anim Genet 2021; 53:247-263. [PMID: 34963196 DOI: 10.1111/age.13165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/30/2021] [Accepted: 12/12/2021] [Indexed: 11/29/2022]
Abstract
This review highlights a novel application of breed identification and prediction of skeletal traits in forensic investigations using canine DNA evidence. Currently, genotyping methods used for canine breed classification involve the application of highly polymorphic short tandem repeats in addition to larger commercially available SNP arrays. Both applications face technical challenges. An additional approach to breed identification could be through genotyping SNPs and indels that characterise the array of skeletal differences displayed across domestic dog populations. Research has shown that a small number of genetic variants of large effect drive differences in skeletal phenotypes among domestic dog breeds. This feature makes functionally significant canine skeletal variants a cost-effective target for forensic investigators to classify individuals according to their breed. Further analysis of these skeletal variants would enable the prediction of external appearance. To date, functionally significant genes with genetic variants associated with differences in size, bulk, skull shape, ear shape, limb length, digit type, and tail morphology have been uncovered. Recommendations of a cost-effective genotyping method that can be readily designed and applied by forensic investigators have been given. Further advances to improve the field of canine skeletal forensic DNA phenotyping include the refinement of phenotyping methods, further biological validation of the skeletal genetic variants and establishing a publicly available database for storage of allele frequencies of the skeletal genetic variants in the wider domestic dog population.
Collapse
Affiliation(s)
- Patrick W Raymond
- School of Life and Environmental Sciences, University of Sydney, Sydney, Australia
| | - Brandon D Velie
- School of Life and Environmental Sciences, University of Sydney, Sydney, Australia
| | - Claire M Wade
- School of Life and Environmental Sciences, University of Sydney, Sydney, Australia
| |
Collapse
|
36
|
Thorsrud JA, Huson HJ. Description of breed ancestry and genetic health traits in arctic sled dog breeds. Canine Med Genet 2021; 8:8. [PMID: 34544496 PMCID: PMC8454093 DOI: 10.1186/s40575-021-00108-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 09/08/2021] [Indexed: 11/22/2022] Open
Abstract
Background This study describes the presence and frequency of health traits among three populations of dogs traditionally used for sledding and explores their ancestry and breed composition as provided by the commercially available Embark dog DNA test. The three populations include the purebred Siberian Husky and the admixed populations of Alaskan sled dogs and Polar Huskies. While the Siberian Husky represents a well-established breed with extensive historical and health data, the Alaskan sled dog is less studied but has been the subject of nutritional, physiological, and genetic studies related to ancestry and performance. In contrast, the Polar Husky is a relatively obscure and rare group of dogs used for arctic exploration with very little-known information. The three populations were compared using Embark results, providing new insight into the health traits circulating within the populations and the potential ancestral linkage of the health traits between the sledding populations. Embark results are based upon 228,588 single-nucleotide polymorphisms (SNPs) spanning the canine genome, characterized using a custom-designed Illumina beadchip array. Results Specifically, breed composition was summarized for the two admixed populations with most of the dogs being predominantly categorized as Alaskan husky- type dog or “Supermutt”. Mitochondrial and Y chromosome haplogroups and haplotypes were found with Alaskan sled dogs carrying most of the haplogroups and types found in Siberian and Polar Huskies. Genomic principal component analysis reflected population structure corresponding to breed and substructure within the Alaskan sled dogs related to sprint or distance competition. Genetic markers associated with Alanine Aminotransferase activity, Alaskan Husky Encephalopathy, dilated cardiomyopathy, Collie eye anomaly, degenerative myelopathy, ichthyosis, and factor VII deficiency were identified in the populations of sledding breeds. Conclusion These results provide a preliminary description of genetic characteristics found in sledding breeds, improving the understanding and care of working sled dogs. Supplementary Information The online version contains supplementary material available at 10.1186/s40575-021-00108-z.
Collapse
Affiliation(s)
- Joseph A Thorsrud
- Department of Animal Sciences, Cornell University College of Agriculture and Life Sciences, 201 Morrison Hall, 507 Tower Road, Ithaca, NY, 14853, USA
| | - Heather J Huson
- Department of Animal Sciences, Cornell University College of Agriculture and Life Sciences, 201 Morrison Hall, 507 Tower Road, Ithaca, NY, 14853, USA.
| |
Collapse
|
37
|
Shaffer LG, Hopp B, Switonski M, Zahand A, Ballif BC. Identification of aneuploidy in dogs screened by a SNP microarray. Hum Genet 2021; 140:1619-1624. [PMID: 34287710 DOI: 10.1007/s00439-021-02318-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 07/14/2021] [Indexed: 01/23/2023]
Abstract
Microarray analysis is an efficient approach for screening and identifying cytogenetic imbalances in humans. SNP arrays, in particular, are a powerful way to identify copy-number gains and losses representing aneuploidy and aneusomy, but moreover, allow for the direct assessment of individual genotypes in known disease loci. Using these approaches, trisomies, monosomies, and mosaicism of whole chromosomes have been identified in human microarray studies. For canines, this approach is not widely used in clinical laboratory diagnostic practice. In our laboratory, we have implemented the use of a proprietary SNP array that represents approximately 650,000 loci across the domestic dog genome. During the validation of this microarray prior to clinical use, we identified three cases of aneuploidy after screening 2053 dogs of various breeds including monosomy X, trisomy X, and an apparent mosaic trisomy of canine chromosome 38 (CFA38). This study represents the first use of microarrays for copy-number evaluation to identify cytogenetic anomalies in canines. As microarray analysis becomes more routine in canine genetic testing, more cases of chromosome aneuploidy are likely to be uncovered.
Collapse
Affiliation(s)
- Lisa G Shaffer
- Paw Print Genetics, Genetic Veterinary Sciences, Inc, 220 E Rowan, Suite 220, Spokane, WA, 99207, USA. .,Center for Reproductive Biology, Washington State University, Pullman, WA, USA.
| | - Bradley Hopp
- Paw Print Genetics, Genetic Veterinary Sciences, Inc, 220 E Rowan, Suite 220, Spokane, WA, 99207, USA
| | - Marek Switonski
- Department of Genetics and Animal Breeding, Poznan University of Life Sciences, Poznan, Poland
| | - Adam Zahand
- Paw Print Genetics, Genetic Veterinary Sciences, Inc, 220 E Rowan, Suite 220, Spokane, WA, 99207, USA
| | - Blake C Ballif
- Paw Print Genetics, Genetic Veterinary Sciences, Inc, 220 E Rowan, Suite 220, Spokane, WA, 99207, USA
| |
Collapse
|
38
|
Berger C, Heinrich J, Berger B, Hecht W, Parson W. Towards Forensic DNA Phenotyping for Predicting Visible Traits in Dogs. Genes (Basel) 2021; 12:genes12060908. [PMID: 34208207 PMCID: PMC8230911 DOI: 10.3390/genes12060908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 11/16/2022] Open
Abstract
The popularity of dogs as human companions explains why these pets regularly come into focus in forensic cases such as bite attacks or accidents. Canine evidence, e.g., dog hairs, can also act as a link between the victim and suspect in a crime case due to the close contact between dogs and their owners. In line with human DNA identification, dog individualization from crime scene evidence is mainly based on the analysis of short tandem repeat (STR) markers. However, when the DNA profile does not match a reference, additional information regarding the appearance of the dog may provide substantial intelligence value. Key features of the dog's appearance, such as the body size and coat colour are well-recognizable and easy to describe even to non-dog experts, including most investigating officers and eyewitnesses. Therefore, it is reasonable to complement eyewitnesses' testimonies with externally visible traits predicted from associated canine DNA samples. Here, the feasibility and suitability of canine DNA phenotyping is explored from scratch in the form of a proof of concept study. To predict the overall appearance of an unknown dog from its DNA as accurately as possible, the following six traits were chosen: (1) coat colour, (2) coat pattern, (3) coat structure, (4) body size, (5) ear shape, and (6) tail length. A total of 21 genetic markers known for high predicting values for these traits were selected from previously published datasets, comprising 15 SNPs and six INDELS. Three of them belonged to SINE insertions. The experiments were designed in three phases. In the first two stages, the performance of the markers was tested on DNA samples from dogs with well-documented physical characteristics from different breeds. The final blind test, including dogs with initially withheld appearance information, showed that the majority of the selected markers allowed to develop composite sketches, providing a realistic impression of the tested dogs. We regard this study as the first attempt to evaluate the possibilities and limitations of forensic canine DNA phenotyping.
Collapse
Affiliation(s)
- Cordula Berger
- Institute of Legal Medicine, Medical University of Innsbruck, 6020 Innsbruck, Austria; (J.H.); (B.B.); (W.P.)
- Correspondence: ; Tel.: +43-512-9003-70640
| | - Josephin Heinrich
- Institute of Legal Medicine, Medical University of Innsbruck, 6020 Innsbruck, Austria; (J.H.); (B.B.); (W.P.)
| | - Burkhard Berger
- Institute of Legal Medicine, Medical University of Innsbruck, 6020 Innsbruck, Austria; (J.H.); (B.B.); (W.P.)
| | - Werner Hecht
- Institute of Veterinary Pathology, Justus-Liebig-University Giessen, 35390 Giessen, Germany;
| | - Walther Parson
- Institute of Legal Medicine, Medical University of Innsbruck, 6020 Innsbruck, Austria; (J.H.); (B.B.); (W.P.)
- Forensic Science Program, The Pennsylvania State University, University Park, PA 16801, USA
| | | |
Collapse
|
39
|
Chibuk J, Flory A, Kruglyak KM, Leibman N, Nahama A, Dharajiya N, van den Boom D, Jensen TJ, Friedman JS, Shen MR, Clemente-Vicario F, Chorny I, Tynan JA, Lytle KM, Holtvoigt LE, Murtaza M, Diaz LA, Tsui DWY, Grosu DS. Horizons in Veterinary Precision Oncology: Fundamentals of Cancer Genomics and Applications of Liquid Biopsy for the Detection, Characterization, and Management of Cancer in Dogs. Front Vet Sci 2021; 8:664718. [PMID: 33834049 PMCID: PMC8021921 DOI: 10.3389/fvets.2021.664718] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 02/23/2021] [Indexed: 12/14/2022] Open
Abstract
Cancer is the leading cause of death in dogs, in part because many cases are identified at an advanced stage when clinical signs have developed, and prognosis is poor. Increased understanding of cancer as a disease of the genome has led to the introduction of liquid biopsy testing, allowing for detection of genomic alterations in cell-free DNA fragments in blood to facilitate earlier detection, characterization, and management of cancer through non-invasive means. Recent discoveries in the areas of genomics and oncology have provided a deeper understanding of the molecular origins and evolution of cancer, and of the "one health" similarities between humans and dogs that underlie the field of comparative oncology. These discoveries, combined with technological advances in DNA profiling, are shifting the paradigm for cancer diagnosis toward earlier detection with the goal of improving outcomes. Liquid biopsy testing has already revolutionized the way cancer is managed in human medicine - and it is poised to make a similar impact in veterinary medicine. Multiple clinical use cases for liquid biopsy are emerging, including screening, aid in diagnosis, targeted treatment selection, treatment response monitoring, minimal residual disease detection, and recurrence monitoring. This review article highlights key scientific advances in genomics and their relevance for veterinary oncology, with the goal of providing a foundational introduction to this important topic for veterinarians. As these technologies migrate from human medicine into veterinary medicine, improved awareness and understanding will facilitate their rapid adoption, for the benefit of veterinary patients.
Collapse
Affiliation(s)
| | | | | | - Nicole Leibman
- The Cancer Institute, Animal Medical Center, New York, NY, United States
| | | | | | | | | | | | - M. Richard Shen
- RS Technology Ventures LLC., Rancho Santa Fe, CA, United States
| | | | | | | | | | | | - Muhammed Murtaza
- Department of Surgery and Center for Human Genomics and Precision Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Luis A. Diaz
- Division of Solid Tumor Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | | | | |
Collapse
|
40
|
Kaukonen M, Pettinen IT, Wickström K, Arumilli M, Donner J, Juhola IJ, Holopainen S, Turunen JA, Yoshihara M, Kere J, Lohi H. A missense variant in IFT122 associated with a canine model of retinitis pigmentosa. Hum Genet 2021; 140:1569-1579. [PMID: 33606121 PMCID: PMC8519925 DOI: 10.1007/s00439-021-02266-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/10/2021] [Indexed: 11/28/2022]
Abstract
Retinitis pigmentosa (RP) is a blinding eye disease affecting nearly two million people worldwide. Dogs are affected with a similar illness termed progressive retinal atrophy (PRA). Lapponian herders (LHs) are affected with several types of inherited retinal dystrophies, and variants in PRCD and BEST1 genes have been associated with generalized PRA and canine multifocal retinopathy 3 (cmr3), respectively. However, all retinal dystrophy cases in LHs are not explained by these variants, indicating additional genetic causes of disease in the breed. We collected DNA samples from 10 PRA affected LHs, with known PRCD and BEST1 variants excluded, and 34 unaffected LHs. A genome-wide association study identified a locus on CFA20 (praw = 2.4 × 10-7, pBonf = 0.035), and subsequent whole-genome sequencing of an affected LH revealed a missense variant, c.3176G>A, in the intraflagellar transport 122 (IFT122) gene. The variant was also found in Finnish Lapphunds, in which its clinical relevancy needs to be studied further. The variant interrupts a highly conserved residue, p.(R1059H), in IFT122 and likely impairs its function. Variants in IFT122 have not been associated with retinal degeneration in mammals, but the loss of ift122 in zebrafish larvae impaired opsin transport and resulted in progressive photoreceptor degeneration. Our study establishes a new spontaneous dog model to study the role of IFT122 in RP biology, while the affected breed will benefit from a genetic test for a recessive condition.
Collapse
Affiliation(s)
- Maria Kaukonen
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland.,Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland.,Folkhälsan Research Center, Helsinki, Finland
| | - Inka-Tuulevi Pettinen
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland.,Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland.,Folkhälsan Research Center, Helsinki, Finland
| | | | - Meharji Arumilli
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland.,Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland.,Folkhälsan Research Center, Helsinki, Finland
| | - Jonas Donner
- Genoscoper Laboratories Ltd (Wisdom Health), Helsinki, Finland
| | - Ida-Julia Juhola
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland.,Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland.,Folkhälsan Research Center, Helsinki, Finland
| | - Saila Holopainen
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland.,Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland.,Folkhälsan Research Center, Helsinki, Finland.,Department of Equine and Small Animal Medicine, University of Helsinki, Helsinki, Finland
| | - Joni A Turunen
- Folkhälsan Research Center, Helsinki, Finland.,Department of Ophthalmology, University of Helsinki, Helsinki University Hospital, Helsinki, Finland
| | - Masahito Yoshihara
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Juha Kere
- Folkhälsan Research Center, Helsinki, Finland.,Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden.,Stem Cells and Metabolism Research Program STEMM, University of Helsinki, 00014, Helsinki, Finland
| | - Hannes Lohi
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland. .,Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland. .,Folkhälsan Research Center, Helsinki, Finland.
| |
Collapse
|
41
|
Inbreeding levels in an open-registry pedigreed dog breed: The Australian working kelpie. Vet J 2021; 269:105609. [PMID: 33593498 DOI: 10.1016/j.tvjl.2021.105609] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 01/07/2021] [Accepted: 01/12/2021] [Indexed: 11/21/2022]
Abstract
The depletion in genetic diversity of closed-pedigree dog breeds can be a contentious topic and can lead to calls for open-registry. However, strong evidence in support of proposed open-registry solutions is lacking, with the reproductive isolation of these breeds unlikely to be the sole cause of elevated inbreeding levels. Human-induced limitations, such as popular sire effects, are unlikely to be confined to closed-registry breeds and conceivably play an important role in maintaining genetic diversity within all breeds. Consequently, the aim of the current study was to explore inbreeding levels in an open-registry breed and determine the impact open-registry has on genetic diversity. Complete pedigree records on all Australian working kelpies (AWKs) were provided by the Working Kelpie Council with the cleaned pedigree consisting of 86,671 individuals with a median pedigree depth of 6.6 generations. The average inbreeding coefficient in the AWK population was 0.049 with an increase in inbreeding coefficient of 0.0016/year. This demonstrates that opening a breed registry can have a beneficial impact on the level of inbreeding within a population over the longer-term. However, allowing for a generation length of 5.1 years yielded an effective population size of 61 for AWKs and demonstrated a pattern consistent with closed-registry dog populations of comparable size.
Collapse
|
42
|
Mandrioli L, Gandini G, Gentilini F, Chiocchetti R, Turba ME, Avallone G, Pellegrino V, Menchetti M, Kobatake Y, Kamishina H, Cantile C. Degenerative Myelopathy in Hovawart Dogs: Molecular Characterization, Pathological Features and Accumulation of Mutant Superoxide Dismutase 1 Protein. J Comp Pathol 2020; 182:37-42. [PMID: 33494906 DOI: 10.1016/j.jcpa.2020.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 09/28/2020] [Accepted: 11/11/2020] [Indexed: 11/18/2022]
Abstract
Degenerative myelopathy (DM) is an adult-onset, progressive neurological disease affecting several breeds of dog. Homozygosity or compound heterozygosity for the canine superoxide dismutase 1 (SOD1) gene mutations, possibly modulated by the modifier SP110 locus, are associated with a high risk for DM. Although the pathophysiological mechanisms are largely unknown, a role for mutant SOD1 in causing neuronal degeneration has been postulated. Three Hovawart dogs, 9-12 years of age, developed slowly progressive incoordination and weakness of the pelvic limbs leading to non-ambulatory flaccid paraparesis and muscle atrophy. Neuropathological lesions comprised axonal degeneration and loss of ascending and descending spinal pathways, which were most severe in the mid- to caudal thoracic segments. Accumulation of mutant SOD1 protein in neurons and reactive astrocytes was demonstrated by immunolabelling with the 16G9 antibody against the mutant SOD1 protein (p.E40K amino acid substitution). All three dogs were homozygous for the c.118A allele, but none had the SP110 'risk' haplotype, suggesting a weak association of SP110 with the onset of DM in this breed. Our data suggest that the Hovawart breed is predisposed to the SOD1:c.118G>A mutation, which is associated with the development of DM. Prevention of DM could be achieved with the help of strategies based on epidemiological and genetic testing.
Collapse
Affiliation(s)
- Luciana Mandrioli
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Gualtiero Gandini
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Fabio Gentilini
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Roberto Chiocchetti
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | | | - Giancarlo Avallone
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Valeria Pellegrino
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Marika Menchetti
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Yui Kobatake
- The United Graduate School of Veterinary Sciences, Gifu University, Japan
| | - Hiroaki Kamishina
- The United Graduate School of Veterinary Sciences, Gifu University and Joint Department of Veterinary Medicine, Gifu Center for Highly Advanced Integration of Nanosciences and Life Sciences, Gifu, Japan
| | - Carlo Cantile
- Department of Veterinary Sciences, University of Pisa, Pisa, Italy.
| |
Collapse
|
43
|
Abstract
The prevalence of urolithiasis in humans is increasing worldwide; however, non-surgical treatment and prevention options remain limited despite decades of investigation. Most existing laboratory animal models for urolithiasis rely on highly artificial methods of stone induction and, as a result, might not be fully applicable to the study of natural stone initiation and growth. Animal models that naturally and spontaneously form uroliths are an underused resource in the study of human stone disease and offer many potential opportunities for improving insight into stone pathogenesis. These models include domestic dogs and cats, as well as a variety of other captive and wild species, such as otters, dolphins and ferrets, that form calcium oxalate, struvite, uric acid, cystine and other stone types. Improved collaboration between urologists, basic scientists and veterinarians is warranted to further our understanding of how stones form and to consider possible new preventive and therapeutic treatment options.
Collapse
|
44
|
Anderson H, Honkanen L, Ruotanen P, Mathlin J, Donner J. Comprehensive genetic testing combined with citizen science reveals a recently characterized ancient MC1R mutation associated with partial recessive red phenotypes in dog. Canine Med Genet 2020; 7:16. [PMID: 33292722 PMCID: PMC7643265 DOI: 10.1186/s40575-020-00095-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 10/19/2020] [Indexed: 11/23/2022] Open
Abstract
Background The Melanocortin 1 Receptor (MC1R) plays a central role in regulation of coat color determination in various species and is commonly referred to as the “E (extension) Locus”. Allelic variation of the MC1R gene is associated with coat color phenotypes EM (melanistic mask), EG (grizzle/domino) and e1–3 (recessive red) in dogs. In addition, a previous study of archeological dog specimens over 10,000 years of age identified a variant p.R301C in the MC1R gene that may have influenced coat color of early dogs. Results Commercial genotyping of 11,750 dog samples showed the R301C variant of the MC1R gene was present in 35 breeds or breed varieties, at an allele frequency of 1.5% in the tested population. We detected no linkage disequilibrium between R301C and other tested alleles of the E locus. Based on current convention we propose that R301C should be considered a novel allele of the E locus, which we have termed eA for “e ancient red”. Phenotype analysis of owner-provided dog pictures reveals that the eA allele has an impact on coat color and is recessive to wild type E and dominant to the e alleles. In dominant black (KB/*) dogs it can prevent the phenotypic expression of the K locus, and the expressed coat color is solely determined by the A locus. In the absence of dominant black, eA/eA and eA/e genotypes result in the coat color patterns referred to in their respective breed communities as domino in Alaskan Malamute and other Spitz breeds, grizzle in Chihuahua, and pied in Beagle. Conclusions This study demonstrates a large genotype screening effort to identify the frequency and distribution of the MC1R R301C variant, one of the earliest mutations captured by canine domestication, and citizen science empowered characterization of its impact on coat color. Supplementary Information The online version contains supplementary material available at 10.1186/s40575-020-00095-7.
Collapse
|
45
|
Winkler PA, Ramsey HD, Petersen-Jones SM. A novel mutation in PDE6B in Spanish Water Dogs with early-onset progressive retinal atrophy. Vet Ophthalmol 2020; 23:792-796. [PMID: 32639685 DOI: 10.1111/vop.12792] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 05/13/2020] [Accepted: 05/15/2020] [Indexed: 01/23/2023]
Abstract
OBJECTIVE To identify the underlying mutation in a recently identified early-onset progressive retinal atrophy (PRA) in the Spanish Water Dog (SWD) breed. ANIMAL STUDIED Eighteen SWDs were used in this study. Six SWDs diagnosed with PRA and 12 phenotypically normal SWDs. PROCEDURES An exclusion analysis using an established microsatellite panel to screen PRA candidate genes was combined with whole genome sequencing of two affected SWD siblings and two phenotypically normal SWDs (a sibling and the dam). RESULTS A 6-bp deletion was identified in exon 19 of PDE6B removing two highly conserved amino acids from the enzymatic domain of the PDE6B protein (c.2218-2223del; p.Phe740_Phe741del). This segregated with the disease status in the small study pedigree. CONCLUSIONS Identification of this novel PDE6B mutation adds to the already described PDE6B mutations responsible for PRA in the Irish Setter, Sloughi, and American Staffordshire Terrier dog breeds. A DNA-based test was designed to allow breeders to genotype their animals and make informed breeding decisions in the effort to eradicate PRA from the SWD breed.
Collapse
Affiliation(s)
- Paige A Winkler
- Department of Small Animal Clinical Sciences, Veterinary Medical Center, Michigan State University, East Lansing, MI, USA
| | - Harrison D Ramsey
- Department of Small Animal Clinical Sciences, Veterinary Medical Center, Michigan State University, East Lansing, MI, USA.,Biology Program, Kalamazoo College, Kalamazoo, MI, USA
| | - Simon M Petersen-Jones
- Department of Small Animal Clinical Sciences, Veterinary Medical Center, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
46
|
Atypical Genotypes for Canine Agouti Signaling Protein Suggest Novel Chromosomal Rearrangement. Genes (Basel) 2020; 11:genes11070739. [PMID: 32635139 PMCID: PMC7397341 DOI: 10.3390/genes11070739] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/19/2020] [Accepted: 06/24/2020] [Indexed: 02/05/2023] Open
Abstract
Canine coat color is a readily observed phenotype of great interest to dog enthusiasts; it is also an excellent avenue to explore the mechanisms of genetics and inheritance. As such, multiple commercial testing laboratories include basic color alleles in their popular screening panels, allowing for the creation of genotyped datasets at a scale not before appreciated in canine genetic research. These vast datasets have revealed rare genotype anomalies that encourage further exploration of color and pattern inheritance. We previously reported the simultaneous presence of greater than two allele variants at the Agouti Signaling Protein (ASIP) locus in a commercial genotype cohort of 11,790 canids. Here we present additional data to characterize the occurrence of anomalous ASIP genotypes. We document the detection of combinations of three or four ASIP allele variants in 17 dog breeds and Dingoes, at within-breed frequencies of 1.32–63.34%. We analyze the potential impact on phenotype that these allele combinations present, and propose mechanisms that could account for the findings, including: gene recombination, duplication, and incorrect causal variant identification. These findings speak to the accuracy of industry-wide protocols for commercial ASIP genotyping and imply that ASIP should be analyzed via haplotype, rather than using only the existing allele hierarchy, in the future.
Collapse
|
47
|
Baker L, Muir P, Sample SJ. Genome-wide association studies and genetic testing: understanding the science, success, and future of a rapidly developing field. J Am Vet Med Assoc 2020; 255:1126-1136. [PMID: 31687891 DOI: 10.2460/javma.255.10.1126] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Dog owners are increasingly interested in using commercially available testing panels to learn about the genetics of their pets, both to identify breed ancestry and to screen for specific genetic diseases. Helping owners interpret and understand results from genetic screening panels is becoming an important issue facing veterinarians. The objective of this review article is to introduce basic concepts behind genetic studies and current genetic screening tests while highlighting their value in veterinary medicine. The potential uses and limitations of commercially available genetic testing panels as screening tests are discussed, including appropriate cautions regarding the interpretation of results. Future directions, particularly with regard to the study of common complex genetic diseases, are also described.
Collapse
|
48
|
Detilleux JC. A Leaky Noisy-OR Bayesian Network Applied to Genetic Counseling in Dogs. Animals (Basel) 2020; 10:ani10061104. [PMID: 32604816 PMCID: PMC7341277 DOI: 10.3390/ani10061104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 06/24/2020] [Indexed: 12/03/2022] Open
Abstract
Simple Summary Genetic disorders represent a serious health problem for companion animals and combating such disorders is a real challenge. Bayes networks facilitate the objective assessment of the risk of such disorders. We apply the methodology to answer two typical questions in genetic counselling, i.e., the risk for an animal of showing clinical signs of a genetic disease when the result at the genetic test is known and the risk of testing positive for the mutant allele when the genetic test is not made. Results showed the network is appropriate to answer objectively and transparently both questions under a variety of alternative scenarios. It can be updated automatically and can be represented visually so interactive discussion are easy between the veterinarian and his/her interlocutor. Abstract Genetic disorders are very frequent in dogs but evaluating individualized risks of their occurrence can be uncertain. Bayesian networks are tools to characterize and analyze such events. The paper illustrates their benefits and challenges in answering two typical questions in genetic counselling: (1) What is the probability of a test-positive animal showing clinical signs of the disease? (2) What is the risk of testing positive for the mutant allele when one parent presents clinical signs? Current limited knowledge on the hereditary mode of transmission of degenerative myelopathy and on the effects of sex, diet, exercise regimen and age on the occurrence of clinical signs concurrent with the finding of the deleterious mutation was retrieved from the scientific literature. Uncertainty on this information was converted into prior Beta distributions and leaky-noisy OR models were used to construct the conditional probability tables necessary to answer the questions. Results showed the network is appropriate to answer objectively and transparently both questions under a variety of scenarios. Once users of the network have agreed with its structure and the values of the priors, computations are straightforward. The network can be updated automatically and can be represented visually so interactive discussion are easy between the veterinarian and his/her interlocutor.
Collapse
Affiliation(s)
- Johann C Detilleux
- Fundamental and Applied Research in Animal Health (FARAH), Veterinary Faculty, University of Liege, Quartier Vallée 2, 6 Avenue de Cureghem, 4000 Liège, Belgium
| |
Collapse
|
49
|
Quartuccio M, Biondi V, Liotta L, Passantino A. Legislative and ethical aspects on use of canine artificial insemination in the 21st century. ITALIAN JOURNAL OF ANIMAL SCIENCE 2020. [DOI: 10.1080/1828051x.2020.1775503] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Marco Quartuccio
- Dipartimento di Scienze Veterinarie, University of Messina, Messina, Italy
| | - Vito Biondi
- Dipartimento di Scienze Veterinarie, University of Messina, Messina, Italy
| | - Luigi Liotta
- Dipartimento di Scienze Veterinarie, University of Messina, Messina, Italy
| | | |
Collapse
|
50
|
Barthélémy I, Hitte C, Tiret L. The Dog Model in the Spotlight: Legacy of a Trustful Cooperation. J Neuromuscul Dis 2020; 6:421-451. [PMID: 31450509 PMCID: PMC6918919 DOI: 10.3233/jnd-190394] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Dogs have long been used as a biomedical model system and in particular as a preclinical proof of concept for innovative therapies before translation to humans. A recent example of the utility of this animal model is the promising myotubularin gene delivery in boys affected by X-linked centronuclear myopathy after successful systemic, long-term efficient gene therapy in Labrador retrievers. Mostly, this is due to unique features that make dogs an optimal system. The continuous emergence of spontaneous inherited disorders enables the identification of reliable complementary molecular models for human neuromuscular disorders (NMDs). Dogs’ characteristics including size, lifespan and unprecedented medical care level allow a comprehensive longitudinal description of diseases. Moreover, the highly similar pathogenic mechanisms with human patients yield to translational robustness. Finally, interindividual phenotypic heterogeneity between dogs helps identifying modifiers and anticipates precision medicine issues. This review article summarizes the present list of molecularly characterized dog models for NMDs and provides an exhaustive list of the clinical and paraclinical assays that have been developed. This toolbox offers scientists a sensitive and reliable system to thoroughly evaluate neuromuscular function, as well as efficiency and safety of innovative therapies targeting these NMDs. This review also contextualizes the model by highlighting its unique genetic value, shaped by the long-term coevolution of humans and domesticated dogs. Because the dog is one of the most protected research animal models, there is considerable opposition to include it in preclinical projects, posing a threat to the use of this model. We thus discuss ethical issues, emphasizing that unlike many other models, the dog also benefits from its contribution to comparative biomedical research with a drastic reduction in the prevalence of morbid alleles in the breeding stock and an improvement in medical care.
Collapse
Affiliation(s)
- Inès Barthélémy
- U955 - IMRB, Team 10 - Biology of the neuromuscular system, Inserm, UPEC, EFS, École nationale vétérinaire d'Alfort, Maisons-Alfort, France
| | - Christophe Hitte
- CNRS, University of Rennes 1, UMR 6290, IGDR, Faculty of Medicine, SFR Biosit, Rennes, France
| | - Laurent Tiret
- U955 - IMRB, Team 10 - Biology of the neuromuscular system, Inserm, UPEC, EFS, École nationale vétérinaire d'Alfort, Maisons-Alfort, France
| |
Collapse
|