1
|
Voložonoka L, Bārdiņa L, Kornete A, Krūmiņa Z, Rots D, Minkauskienė M, Rota A, Strelcoviene Z, Vilne B, Kempa I, Miskova A, Gailīte L, Rezeberga D. Unravelling the genetic landscape of cervical insufficiency: Insights into connective tissue dysfunction and hormonal pathways. PLoS One 2024; 19:e0310718. [PMID: 39298385 DOI: 10.1371/journal.pone.0310718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 09/05/2024] [Indexed: 09/21/2024] Open
Abstract
BACKGROUND The intricate molecular pathways and genetic factors that underlie the pathophysiology of cervical insufficiency (CI) remain largely unknown and understudied. METHODS We sequenced exomes from 114 patients in Latvia and Lithuania, diagnosed with a short cervix, CI, or a history of CI in previous pregnancies. To probe the well-known link between CI and connective tissue dysfunction, we introduced a connective tissue dysfunction assessment questionnaire, incorporating Beighton and Brighton scores. The phenotypic data obtained from the questionnaire was correlated with the number of rare damaging variants identified in genes associated with connective tissue disorders (in silico NGS panel). SKAT, SKAT-O, and burden tests were performed to identify genes associated with CI without a priori hypotheses. Pathway enrichment analysis was conducted using both targeted and genome-wide approaches. RESULTS No patient could be assigned monogenic connective tissue disorder neither genetically, neither clinically upon clinical geneticist evaluation. Expanding our exploration to a genome-wide perspective, pathway enrichment analysis replicated the significance of extracellular matrix-related pathways as important contributors to CI's development. A genome-wide burden analysis unveiled a statistically significant prevalence of rare damaging variants in genes and pathways associated with steroids (p-adj = 5.37E-06). Rare damaging variants, absent in controls (internal database, n = 588), in the progesterone receptor (PGR) (six patients) and glucocorticoid receptor (NR3C1) (two patients) genes were identified within key functional domains, potentially disrupting the receptors' affinity for DNA or ligands. CONCLUSION Cervical insufficiency in non-syndromic patients is not attributed to a single connective tissue gene variant in a Mendelian fashion but rather to the cumulative effect of multiple inherited gene variants highlighting the significance of the connective tissue pathway in the multifactorial nature of CI. PGR or NR3C1 variants may contribute to the pathophysiology of CI and/or preterm birth through the impaired progesterone action pathways, opening new perspectives for targeted interventions and enhanced clinical management strategies of this condition.
Collapse
Affiliation(s)
- Ludmila Voložonoka
- Riga Stradins University, Riga, Latvia
- Children's University Hospital, Riga, Latvia
| | - Līvija Bārdiņa
- Riga Stradins University, Riga, Latvia
- Children's University Hospital, Riga, Latvia
| | - Anna Kornete
- Riga Stradins University, Riga, Latvia
- Riga Maternity Hospital, Riga, Latvia
| | | | - Dmitrijs Rots
- Riga Stradins University, Riga, Latvia
- Children's University Hospital, Riga, Latvia
| | | | - Adele Rota
- Riga Stradins University, Riga, Latvia
- Riga Maternity Hospital, Riga, Latvia
| | | | | | | | - Anna Miskova
- Riga Stradins University, Riga, Latvia
- Riga Maternity Hospital, Riga, Latvia
| | | | - Dace Rezeberga
- Riga Stradins University, Riga, Latvia
- Riga Maternity Hospital, Riga, Latvia
- Riga East Clinical University Hospital, Riga, Latvia
| |
Collapse
|
2
|
Mead EC, Wang CA, Phung J, Fu JY, Williams SM, Merialdi M, Jacobsson B, Lye S, Menon R, Pennell CE. The Role of Genetics in Preterm Birth. Reprod Sci 2023; 30:3410-3427. [PMID: 37450251 PMCID: PMC10692032 DOI: 10.1007/s43032-023-01287-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 06/09/2023] [Indexed: 07/18/2023]
Abstract
Preterm birth (PTB), defined as the birth of a child before 37 completed weeks gestation, affects approximately 11% of live births and is the leading cause of death in children under 5 years. PTB is a complex disease with multiple risk factors including genetic variation. Much research has aimed to establish the biological mechanisms underlying PTB often through identification of genetic markers for PTB risk. The objective of this review is to present a comprehensive and updated summary of the published data relating to the field of PTB genetics. A literature search in PubMed was conducted and English studies related to PTB genetics were included. Genetic studies have identified genes within inflammatory, immunological, tissue remodeling, endocrine, metabolic, and vascular pathways that may be involved in PTB. However, a substantial proportion of published data have been largely inconclusive and multiple studies had limited power to detect associations. On the contrary, a few large hypothesis-free approaches have identified and replicated multiple novel variants associated with PTB in different cohorts. Overall, attempts to predict PTB using single "-omics" datasets including genomic, transcriptomic, and epigenomic biomarkers have been mostly unsuccessful and have failed to translate to the clinical setting. Integration of data from multiple "-omics" datasets has yielded the most promising results.
Collapse
Affiliation(s)
- Elyse C Mead
- School of Medicine and Public Health, University of Newcastle, Newcastle, NSW, 2308, Australia
| | - Carol A Wang
- School of Medicine and Public Health, University of Newcastle, Newcastle, NSW, 2308, Australia
- Hunter Medical Research Institute, Newcastle, NSW, 2305, Australia
| | - Jason Phung
- School of Medicine and Public Health, University of Newcastle, Newcastle, NSW, 2308, Australia
- Hunter Medical Research Institute, Newcastle, NSW, 2305, Australia
- Department of Maternity and Gynaecology, John Hunter Hospital, Newcastle, NSW, 2305, Australia
| | - Joanna Yx Fu
- School of Medicine and Public Health, University of Newcastle, Newcastle, NSW, 2308, Australia
| | - Scott M Williams
- Department of Population and Quantitative Health Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Mario Merialdi
- Maternal Newborn Health Innovations, Geneva, PBC, Switzerland
| | - Bo Jacobsson
- Department of Obstetrics and Gynaecology, Institute of Clinical Science, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Obstetrics and Gynaecology, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Genetics and Bioinformatics, Domain of Health Data and Digitalization, Institute of Public Health, Oslo, Norway
| | - Stephen Lye
- Lunenfeld Tanenbaum Research Institute, Toronto, Ontario, Canada
| | - Ramkumar Menon
- Department of Obstetrics and Gynecology, Division of Basic Science and Translational Research, University of Texas Medical Branch, Galveston, TX, USA
| | - Craig E Pennell
- School of Medicine and Public Health, University of Newcastle, Newcastle, NSW, 2308, Australia.
- Hunter Medical Research Institute, Newcastle, NSW, 2305, Australia.
- Department of Maternity and Gynaecology, John Hunter Hospital, Newcastle, NSW, 2305, Australia.
| |
Collapse
|
3
|
Huang G, Yao D, Yan X, Zheng M, Yan P, Chen X, Wang D. Emerging role of toll-like receptors signaling and its regulators in preterm birth: a narrative review. Arch Gynecol Obstet 2023; 308:319-339. [PMID: 35916961 DOI: 10.1007/s00404-022-06701-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 07/03/2022] [Indexed: 11/02/2022]
Abstract
INTRODUCTION Despite intensive research, preterm birth (PTB) rates have not decreased significantly in recent years due to a lack of understanding of the underlying causes and insufficient treatment options for PTB. We are committed to finding promising biomarkers for the treatment of PTB. METHODS An extensive search of the literature was conducted with MEDLINE/PubMed, and in total, 151 studies were included and summarized in the present review. RESULTS Substantial evidence supports that the infection and/or inflammatory cascade associated with infection is an early event in PTB. Toll-like receptor (TLR) is a prominent pattern recognition receptor (PRR) found on both immune and non-immune cells, including fetal membrane cells. The activation of TLR downstream molecules, followed by TLR binding to its ligand, is critical for infection and inflammation, leading to the involvement of the TLR signaling pathway in PTB. TLR ligands are derived from microbial components and molecules released by damaged and dead cells. Particularly, TLR4 is an essential TLR because of its ability to recognize lipopolysaccharide (LPS). In this comprehensive overview, we discuss the role of TLR signaling in PTB, focus on numerous host-derived genetic and epigenetic regulators of the TLR signaling pathway, and cover ongoing research and prospective therapeutic options for treating PTB by inhibiting TLR signaling. CONCLUSION This is a critical topic because TLR-related molecules and mechanisms may enable obstetricians to better understand the physiological changes in PTB and develop new treatment and prevention strategies.
Collapse
Affiliation(s)
- Ge Huang
- Department of Gynecology and Obstetrics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Dan Yao
- Department of Gynecology and Obstetrics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xiaoli Yan
- Department of Gynecology and Obstetrics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Mingyu Zheng
- Department of Pharmacy, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Ping Yan
- Department of Gynecology and Obstetrics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xiaoxia Chen
- Department of Gynecology and Obstetrics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Dan Wang
- Department of Gynecology and Obstetrics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.
| |
Collapse
|
4
|
Elevated human placental heat shock protein 5 is associated with spontaneous preterm birth. Pediatr Res 2023:10.1038/s41390-023-02501-9. [PMID: 36788289 PMCID: PMC9926443 DOI: 10.1038/s41390-023-02501-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 12/28/2022] [Accepted: 01/13/2023] [Indexed: 02/16/2023]
Abstract
BACKGROUND Specific heat shock proteins are associated with pregnancy complications, including spontaneous preterm birth (SPTB). Placental proteomics and whole exome sequencing recently suggested an association between heat shock protein HSPA5 and uncomplicated SPTB. In the present study, we investigated the localization of and possible roles for HSPA5 in SPTB. METHODS Western blot was performed to validate the result from the previously published proteomic analysis. We used qPCR to assess mRNA expression of genes and immunohistochemistry and immunoelectron microscopy to examine localization of HSPA5 in placental tissue. We silenced the HSPA5 gene in the HTR8/SVneo human trophoblast cell line to investigate possible functions of HSPA5. RESULTS HSPA5 was upregulated in placentas from SPTBs compared to spontaneous term births. We did not observe upregulation of HSPA5 mRNA in placental samples. The protein was localized in placental trophoblast in both spontaneous preterm and term placentas. Gene silencing of HSPA5 in human trophoblast cell culture affected the inflammatory response and decreased the expression of several proinflammatory genes. CONCLUSIONS We suggest that upregulation of HSPA5 in the placenta is associated with spontaneous preterm labor. HSPA5 may promote the inflammatory response and alter the anti-inflammatory state of the placenta which could eventually lead to premature labor. IMPACT We validated upregulation of HSPA5 in placentas from spontaneous preterm birth. HSPA5 was not upregulated at transcriptional level which suggests that it may be regulated post-translationally. Silencing HSPA5 in a human trophoblast-derived cell line suggested that HSPA5 promotes expression of proinflammatory cytokines. The emerging inflammation could lead to spontaneous preterm labor. Identifying inflammatory pathways and factors associated with spontaneous preterm birth increases knowledge of the molecular mechanisms of premature labor. This could provide cues to predict imminent premature labor and lead to information about how to safely maintain pregnancies.
Collapse
|
5
|
Association of the FCN2 Gene Promoter Region Polymorphisms with Very Low Birthweight in Preterm Neonates. Int J Mol Sci 2022; 23:ijms232315336. [PMID: 36499663 PMCID: PMC9740280 DOI: 10.3390/ijms232315336] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/02/2022] [Accepted: 12/03/2022] [Indexed: 12/09/2022] Open
Abstract
Single nucleotide polymorphisms (SNPs) localised to the promoter region of the FCN2 gene are known to influence the concentration of ficolin-2 in human serum and therefore potentially have clinical associations. We investigated the relationships between SNPs at positions −986 (A > G), −602 (G > A), −64 (A > C) and −4 (A > G) and clinical complications in 501 preterms. Major alleles at positions −986 and −64 and A/A homozygosity for both polymorphisms were less frequent among babies with very low birthweight (VLBW, ≤1500 g) compared with the reference group (OR = 0.24, p = 0.0029; and OR = 0.49, p = 0.024, respectively for A/A genotypes). A lower frequency of G/G homozygosity at position −4 was associated with gestational age <33 weeks and VLBW (OR = 0.38, p = 0.047; and OR = 0.07, p = 0.0034, respectively). The AGAG haplotype was protective for VLBW (OR = 0.6, p = 0.0369), whilst the GGCA haplotype had the opposite effect (OR = 2.95, p = 0.0249). The latter association was independent of gestational age. The AGAG/GGAA diplotype favoured both shorter gestational age and VLBW (OR = 1.82, p = 0.0234 and OR = 1.95, p = 0.0434, respectively). In contrast, AGAG homozygosity was protective for lower body mass (OR = 0.09, p = 0.0155). Our data demonstrate that some FCN2 variants associated with relatively low ficolin-2 increase the risk of VLBW and suggest that ficolin-2 is an important factor for fetal development/intrauterine growth.
Collapse
|
6
|
Jain VG, Monangi N, Zhang G, Muglia LJ. Genetics, epigenetics, and transcriptomics of preterm birth. Am J Reprod Immunol 2022; 88:e13600. [PMID: 35818963 PMCID: PMC9509423 DOI: 10.1111/aji.13600] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/13/2022] [Accepted: 07/06/2022] [Indexed: 11/29/2022] Open
Abstract
Preterm birth contributes significantly to neonatal mortality and morbidity. Despite its global significance, there has only been limited progress in preventing preterm birth. Spontaneous preterm birth (sPTB) results from a wide variety of pathological processes. Although many non-genetic risk factors influence the timing of gestation and labor, compelling evidence supports the role of substantial genetic and epigenetic influences and their interactions with the environment contributing to sPTB. To investigate a common and complex disease such as sPTB, various approaches such as genome-wide association studies, whole-exome sequencing, transcriptomics, and integrative approaches combining these with other 'omics studies have been used. However, many of these studies were typically small or focused on a single ethnicity or geographic region with limited data, particularly in populations at high risk for sPTB, or lacked a robust replication. These studies found many genes involved in the inflammation and immunity-related pathways that may affect sPTB. Recent studies also suggest the role of epigenetic modifications of gene expression by the environmental signals as a potential contributor to the risk of sPTB. Future genetic studies of sPTB should continue to consider the contributions of both maternal and fetal genomes as well as their interaction with the environment.
Collapse
Affiliation(s)
- Viral G. Jain
- Division of Neonatology, Department of Pediatrics, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Nagendra Monangi
- Division of Neonatology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
- Center for Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children’s Hospital Medical Center and March of Dimes Prematurity Research Center Ohio Collaborative, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Ge Zhang
- Center for Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children’s Hospital Medical Center and March of Dimes Prematurity Research Center Ohio Collaborative, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Louis J. Muglia
- Center for Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children’s Hospital Medical Center and March of Dimes Prematurity Research Center Ohio Collaborative, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- Burroughs Wellcome Fund, Research Triangle Park, North Carolina, USA
| |
Collapse
|
7
|
Liu X, Zheng J, Xin S, Zeng Y, Wu X, Zeng X, Lai H, Zou Y. Whole-exome sequencing expands the roles of novel mutations of organic anion transporting polypeptide, ATP-binding cassette transporter, and receptor genes in intrahepatic cholestasis of pregnancy. Front Genet 2022; 13:941027. [PMID: 36046230 PMCID: PMC9421141 DOI: 10.3389/fgene.2022.941027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 07/01/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Intrahepatic cholestasis of pregnancy (ICP) is associated with a high incidence of fetal morbidity and mortality. Therefore, revealing the mechanisms involved in ICP and its association with fetal complications is very important. Methods: Here, we used a whole-exome sequencing (WES) approach to detect novel mutations of organic anion transporting polypeptide (OTAP) genes, ATP-binding cassette transporter (ABC) genes, and receptor genes associated with ICP in 249 individuals and 1,029 local control individuals. Two available tools, SIFT and PolyPhen-2, were used to predict protein damage. Protein structuremodeling and comparison between the reference and modified protein structures were conducted by SWISS-MODEL and Chimera 1.14rc software, respectively. Results: A total of 5,583 mutations were identified in 82 genes related to bile acid transporters and receptors, of which 62 were novel mutations. These novel mutations were absent in the 1,029 control individuals and three databases, including the 1,000 Genome Project (1000G_ALL), Exome Aggregation Consortium (ExAC), and Single-Nucleotide Polymorphism Database (dbSNP). We classified the 62 novel loci into two groups (damaging and probably damaging) according to the results of SIFT and PolyPhen-2. Out of the 62 novel mutations, 24 were detected in the damaging group. Of these, five novel possibly pathogenic variants were identified that were located in known functional genes, including ABCB4 (Ile377Asn), ABCB11 (Ala588Pro), ABCC2 (Ile681Lys and Met688Thr), and NR1H4 (Tyr149Ter). Moreover, compared to the wild-type protein structure, ABCC2 Ile681Lys and Met688Thr protein structures showed a slight change in the chemical bond lengths of ATP-ligand binding amino acid side chains. The combined 32 clinical data points indicate that the mutation group had a significantly (p = 0.04) lower level of Cl ions than the wild-type group. Particularly, patients with the 24 novel mutations had higher average values of alanine transaminase (ALT), aspartate transaminase (AST), alkaline phosphatase (ALP), total bile acids (TBA), high-density lipoprotein (HDL), and low-density lipoprotein (LDL) than patients with the 38 novel mutations in the probably damaging group and the local control individuals. Conclusion: The present study provides new insights into the genetic architecture of ICP involving these novel mutations.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiaoming Zeng
- *Correspondence: Xiaoming Zeng, ; Hua Lai, ; Yang Zou,
| | - Hua Lai
- *Correspondence: Xiaoming Zeng, ; Hua Lai, ; Yang Zou,
| | - Yang Zou
- *Correspondence: Xiaoming Zeng, ; Hua Lai, ; Yang Zou,
| |
Collapse
|
8
|
Hallman M, Ronkainen E, Saarela TV, Marttila RH. Management Practices During Perinatal Respiratory Transition of Very Premature Infants. Front Pediatr 2022; 10:862038. [PMID: 35620146 PMCID: PMC9127974 DOI: 10.3389/fped.2022.862038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/25/2022] [Indexed: 12/24/2022] Open
Abstract
The present review considers some controversial management practices during extremely premature perinatal transition. We focus on perinatal prevention and treatment of respiratory distress syndrome (RDS) in immature infants. New concerns regarding antenatal corticosteroid management have been raised. Many fetuses are only exposed to potential adverse effects of the drug. Hence, the formulation and the dosage may need to be modified. Another challenge is to increase the fraction of the high-risk fetuses that benefit from the drug and to minimize the harmful effects of the drug. On the other hand, boosting anti-inflammatory and anti-microbial properties of surfactant requires further attention. Techniques of prophylactic surfactant administration to extremely immature infants at birth may be further refined. Also, new findings suggest that prophylactic treatment of patent ductus arteriosus (PDA) of a high-risk population rather than later selective closure of PDA may be preferred. The TREOCAPA trial (Prophylactic treatment of the ductus arteriosus in preterm infants by acetaminophen) evaluates, whether early intravenous paracetamol decreases the serious cardiorespiratory consequences following extremely premature birth. Lastly, is inhaled nitric oxide (iNO) used in excess? According to current evidence, iNO treatment of uncomplicated RDS is not indicated. Considerably less than 10% of all very premature infants are affected by early persistence of pulmonary hypertension (PPHN). According to observational studies, effective ventilation combined with early iNO treatment are effective in management of this previously fatal disease. PPHN is associated with prolonged rupture of fetal membranes and birth asphyxia. The lipopolysaccharide (LPS)-induced immunotolerance and hypoxia-reperfusion-induced oxidant stress may inactivate NO-synthetases in pulmonary arterioles and terminal airways. Prospective trials on iNO in the management of PPHN are indicated. Other pulmonary vasodilators may be considered as comparison drugs or adjunctive drugs. The multidisciplinary challenge is to understand the regulation of pregnancy duration and the factors participating the onset of extremely premature preterm deliveries and respiratory adaptation. Basic research aims to identify deficiencies in maternal and fetal tissues that predispose to very preterm births and deteriorate the respiratory adaptation of immature infants. Better understanding on causes and prevention of extremely preterm births would eventually provide effective antenatal and neonatal management practices required for the intact survival.
Collapse
Affiliation(s)
- Mikko Hallman
- PEDEGO Research Unit, MRC Oulu, University of Oulu, Oulu, Finland
- Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland
| | - Eveliina Ronkainen
- PEDEGO Research Unit, MRC Oulu, University of Oulu, Oulu, Finland
- Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland
| | - Timo V. Saarela
- PEDEGO Research Unit, MRC Oulu, University of Oulu, Oulu, Finland
- Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland
| | - Riitta H. Marttila
- PEDEGO Research Unit, MRC Oulu, University of Oulu, Oulu, Finland
- Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland
| |
Collapse
|
9
|
Tiensuu H, Haapalainen AM, Tissarinen P, Pasanen A, Määttä TA, Huusko JM, Ohlmeier S, Bergmann U, Ojaniemi M, Muglia LJ, Hallman M, Rämet M. Human placental proteomics and exon variant studies link AAT/SERPINA1 with spontaneous preterm birth. BMC Med 2022; 20:141. [PMID: 35477570 PMCID: PMC9047282 DOI: 10.1186/s12916-022-02339-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/14/2022] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Preterm birth is defined as live birth before 37 completed weeks of pregnancy, and it is a major problem worldwide. The molecular mechanisms that lead to onset of spontaneous preterm birth are incompletely understood. Prediction and evaluation of the risk of preterm birth is challenging as there is a lack of accurate biomarkers. In this study, our aim was to identify placental proteins that associate with spontaneous preterm birth. METHODS We analyzed the proteomes from placentas to identify proteins that associate with both gestational age and spontaneous labor. Next, rare and potentially damaging gene variants of the identified protein candidates were sought for from our whole exome sequencing data. Further experiments we performed on placental samples and placenta-associated cells to explore the location and function of the spontaneous preterm labor-associated proteins in placentas. RESULTS Exome sequencing data revealed rare damaging variants in SERPINA1 in families with recurrent spontaneous preterm deliveries. Protein and mRNA levels of alpha-1 antitrypsin/SERPINA1 from the maternal side of the placenta were downregulated in spontaneous preterm births. Alpha-1 antitrypsin was expressed by villous trophoblasts in the placenta, and immunoelectron microscopy showed localization in decidual fibrinoid deposits in association with specific extracellular proteins. siRNA knockdown in trophoblast-derived HTR8/SVneo cells revealed that SERPINA1 had a marked effect on regulation of the actin cytoskeleton pathway, Slit-Robo signaling, and extracellular matrix organization. CONCLUSIONS Alpha-1 antitrypsin is a protease inhibitor. We propose that loss of the protease inhibition effects of alpha-1 antitrypsin renders structures critical to maintaining pregnancy susceptible to proteases and inflammatory activation. This may lead to spontaneous premature birth.
Collapse
Affiliation(s)
- Heli Tiensuu
- PEDEGO Research Unit and Medical Research Center Oulu, University of Oulu, PO Box 5000, 90014, Oulu, Finland.,Department of Children and Adolescents, Oulu University Hospital, 90014, Oulu, Finland
| | - Antti M Haapalainen
- PEDEGO Research Unit and Medical Research Center Oulu, University of Oulu, PO Box 5000, 90014, Oulu, Finland.,Department of Children and Adolescents, Oulu University Hospital, 90014, Oulu, Finland
| | - Pinja Tissarinen
- PEDEGO Research Unit and Medical Research Center Oulu, University of Oulu, PO Box 5000, 90014, Oulu, Finland.,Department of Children and Adolescents, Oulu University Hospital, 90014, Oulu, Finland
| | - Anu Pasanen
- PEDEGO Research Unit and Medical Research Center Oulu, University of Oulu, PO Box 5000, 90014, Oulu, Finland.,Department of Children and Adolescents, Oulu University Hospital, 90014, Oulu, Finland
| | - Tomi A Määttä
- PEDEGO Research Unit and Medical Research Center Oulu, University of Oulu, PO Box 5000, 90014, Oulu, Finland.,Department of Children and Adolescents, Oulu University Hospital, 90014, Oulu, Finland
| | - Johanna M Huusko
- PEDEGO Research Unit and Medical Research Center Oulu, University of Oulu, PO Box 5000, 90014, Oulu, Finland.,Department of Children and Adolescents, Oulu University Hospital, 90014, Oulu, Finland.,Division of Human Genetics, Center for Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, March of Dimes Prematurity Research Center Ohio Collaborative, Cincinnati, OH, 45267, USA
| | - Steffen Ohlmeier
- Proteomics and Mass Spectrometry Core Facilities, Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90014, Oulu, Finland
| | - Ulrich Bergmann
- Proteomics and Mass Spectrometry Core Facilities, Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90014, Oulu, Finland
| | - Marja Ojaniemi
- PEDEGO Research Unit and Medical Research Center Oulu, University of Oulu, PO Box 5000, 90014, Oulu, Finland.,Department of Children and Adolescents, Oulu University Hospital, 90014, Oulu, Finland
| | - Louis J Muglia
- Division of Human Genetics, Center for Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, March of Dimes Prematurity Research Center Ohio Collaborative, Cincinnati, OH, 45267, USA.,Burroughs Wellcome Fund, Research Triangle Park, North Carolina, 27709, USA
| | - Mikko Hallman
- PEDEGO Research Unit and Medical Research Center Oulu, University of Oulu, PO Box 5000, 90014, Oulu, Finland. .,Department of Children and Adolescents, Oulu University Hospital, 90014, Oulu, Finland.
| | - Mika Rämet
- PEDEGO Research Unit and Medical Research Center Oulu, University of Oulu, PO Box 5000, 90014, Oulu, Finland. .,Department of Children and Adolescents, Oulu University Hospital, 90014, Oulu, Finland. .,Faculty of Medicine and Health Technology, Tampere University, 33014, Tampere, Finland.
| |
Collapse
|
10
|
Lai H, Liu X, Xin S, Zheng J, Liu H, Ouyang Y, Yang H, Zeng Y, Zou Y, Zeng X. Identification of two novel pathogenic variants of the NR1H4 gene in intrahepatic cholestasis of pregnancy patients. BMC Med Genomics 2022; 15:90. [PMID: 35436901 PMCID: PMC9017038 DOI: 10.1186/s12920-022-01240-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 04/12/2022] [Indexed: 12/18/2022] Open
Abstract
Background Intrahepatic cholestasis of pregnancy (ICP) can cause adverse pregnancy outcomes, such as spontaneous preterm delivery and stillbirth. It is a complex disease influenced by multiple factors, including genetics and the environment. Previous studies have reported that functioning nuclear receptor subfamily 1 group H member 4 (NR1H4) plays an essential role in bile acid (BA) homeostasis. However, some novel variants and their pathogenesis have not been fully elucidated. Therefore, this research aimed to investigate the genetic characteristics of the NR1H4 gene in ICP.
Methods In this study, we sequenced the entire coding region of NR1H4 in 197 pregnant women with ICP disease. SIFT and PolyPhen2 were used to predict protein changes. Protein structure modelling and comparisons between NR1H4 reference and modified protein structures were performed by SWISS-MODEL and Chimera 1.14rc, respectively. T-tests were used to analyse the potential significant differences between NR1H4 mutations and wild types for 29 clinical features. Fisher’s test was conducted to test the significance of differences in mutation frequencies between ICP and the three databases. Results We identified four mutations: two novel missense mutations, p.S145F and p.M185L; rs180957965 (A230S); and rs147030757 (N275N). The two novel missense mutations were absent in 1029 controls and three databases, including the 1000 Genomes Project (1000G_ALL), Exome Aggregation Consortium (ExAC) and ChinaMAP. Two web-available tools, SIFT and PolyPhen2, predicted that these mutations are harmful to the function of the protein. Moreover, compared to the wild-type protein structure, the NR1H4 p.S145F and p.M185L protein structure showed a slight change in the chemical bond in two zinc finger structures. Combined clinical data indicate that the mutation group had higher levels of total bile acid (TBA) than the wild-type group. Therefore, we hypothesized that these two mutations altered the protein structure of NR1H4, which impaired the function of NR1H4 itself and its target gene and caused an increase in TBA. Conclusions To our knowledge, this is the first study to identify the novel p.S145F and p.M185L mutations in 197 ICP patients. Our present study provides new insights into the genetic architecture of ICP involving the two novel NR1H4 mutations. Supplementary Information The online version contains supplementary material available at 10.1186/s12920-022-01240-w.
Collapse
Affiliation(s)
- Hua Lai
- Key Laboratory of Women's Reproductive Health of Jiangxi Province, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, 330006, Jiangxi, China.,Department of Obstetrics, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, 330006, Jiangxi, China
| | - Xianxian Liu
- Key Laboratory of Women's Reproductive Health of Jiangxi Province, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, 330006, Jiangxi, China.,Central Lab, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, 330006, Jiangxi, China
| | - Siming Xin
- Key Laboratory of Women's Reproductive Health of Jiangxi Province, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, 330006, Jiangxi, China.,Department of Obstetrics, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, 330006, Jiangxi, China
| | - Jiusheng Zheng
- Key Laboratory of Women's Reproductive Health of Jiangxi Province, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, 330006, Jiangxi, China.,Department of Obstetrics, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, 330006, Jiangxi, China
| | - Huai Liu
- Key Laboratory of Women's Reproductive Health of Jiangxi Province, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, 330006, Jiangxi, China.,Department of Obstetrics, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, 330006, Jiangxi, China
| | - Yu Ouyang
- Key Laboratory of Women's Reproductive Health of Jiangxi Province, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, 330006, Jiangxi, China.,Department of Obstetrics, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, 330006, Jiangxi, China
| | - Huoxiu Yang
- Key Laboratory of Women's Reproductive Health of Jiangxi Province, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, 330006, Jiangxi, China.,Department of Obstetrics, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, 330006, Jiangxi, China
| | - Yang Zeng
- Key Laboratory of Women's Reproductive Health of Jiangxi Province, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, 330006, Jiangxi, China.,Central Lab, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, 330006, Jiangxi, China
| | - Yang Zou
- Key Laboratory of Women's Reproductive Health of Jiangxi Province, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, 330006, Jiangxi, China. .,Central Lab, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, 330006, Jiangxi, China.
| | - Xiaoming Zeng
- Key Laboratory of Women's Reproductive Health of Jiangxi Province, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, 330006, Jiangxi, China. .,Department of Obstetrics, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
11
|
Franks PW, Melén E, Friedman M, Sundström J, Kockum I, Klareskog L, Almqvist C, Bergen SE, Czene K, Hägg S, Hall P, Johnell K, Malarstig A, Catrina A, Hagström H, Benson M, Gustav Smith J, Gomez MF, Orho-Melander M, Jacobsson B, Halfvarson J, Repsilber D, Oresic M, Jern C, Melin B, Ohlsson C, Fall T, Rönnblom L, Wadelius M, Nordmark G, Johansson Å, Rosenquist R, Sullivan PF. Technological readiness and implementation of genomic-driven precision medicine for complex diseases. J Intern Med 2021; 290:602-620. [PMID: 34213793 DOI: 10.1111/joim.13330] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 03/21/2021] [Accepted: 04/12/2021] [Indexed: 12/20/2022]
Abstract
The fields of human genetics and genomics have generated considerable knowledge about the mechanistic basis of many diseases. Genomic approaches to diagnosis, prognostication, prevention and treatment - genomic-driven precision medicine (GDPM) - may help optimize medical practice. Here, we provide a comprehensive review of GDPM of complex diseases across major medical specialties. We focus on technological readiness: how rapidly a test can be implemented into health care. Although these areas of medicine are diverse, key similarities exist across almost all areas. Many medical areas have, within their standards of care, at least one GDPM test for a genetic variant of strong effect that aids the identification/diagnosis of a more homogeneous subset within a larger disease group or identifies a subset with different therapeutic requirements. However, for almost all complex diseases, the majority of patients do not carry established single-gene mutations with large effects. Thus, research is underway that seeks to determine the polygenic basis of many complex diseases. Nevertheless, most complex diseases are caused by the interplay of genetic, behavioural and environmental risk factors, which will likely necessitate models for prediction and diagnosis that incorporate genetic and non-genetic data.
Collapse
Affiliation(s)
- P W Franks
- From the, Department of Clinical Sciences, Lund University Diabetes Center, Lund University, Malmö, Sweden.,Department of Nutrition, Harvard School of Public Health, Boston, MA, USA
| | - E Melén
- Department of Clinical Science and Education Södersjukhuset, Karolinska Institutet, Stockholm, Sweden
| | - M Friedman
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - J Sundström
- Department of Cardiology, Akademiska Sjukhuset, Uppsala, Sweden.,George Institute for Global Health, Camperdown, NSW, Australia.,Medical Sciences, Uppsala University, Uppsala, Sweden
| | - I Kockum
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - L Klareskog
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Rheumatology, Karolinska Institutet, Stockholm, Sweden
| | - C Almqvist
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - S E Bergen
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - K Czene
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - S Hägg
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - P Hall
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.,Department of Oncology, Södersjukhuset, Stockholm, Sweden
| | - K Johnell
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - A Malarstig
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.,Pfizer, Worldwide Research and Development, Stockholm, Sweden
| | - A Catrina
- Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - H Hagström
- Department of Medicine, Karolinska Institutet, Stockholm, Sweden.,Division of Hepatology, Department of Upper GI, Karolinska University Hospital, Stockholm, Sweden
| | - M Benson
- Department of Pediatrics, Linkopings Universitet, Linkoping, Sweden.,Division of Ear, Nose and Throat Diseases, Department of Clinical Sciences, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden
| | - J Gustav Smith
- Department of Cardiology and Wallenberg Center for Molecular Medicine, Clinical Sciences, Lund University and Skåne University Hospital, Lund, Sweden.,Department of Molecular and Clinical Medicine, Institute of Medicine, Gothenburg University and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - M F Gomez
- From the, Department of Clinical Sciences, Lund University Diabetes Center, Lund University, Malmö, Sweden
| | - M Orho-Melander
- From the, Department of Clinical Sciences, Lund University Diabetes Center, Lund University, Malmö, Sweden
| | - B Jacobsson
- Division of Health Data and Digitalisation, Norwegian Institute of Public Health, Genetics and Bioinformatics, Oslo, Norway.,Department of Obstetrics and Gynecology, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden.,Department of Obstetrics and Gynecology, Institute of Clinical Sciences, University of Gothenburg, Gothenburg, Sweden
| | - J Halfvarson
- School of Medical Sciences, Örebro University, Örebro, Sweden
| | - D Repsilber
- Functional Bioinformatics, Örebro University, Örebro, Sweden
| | - M Oresic
- School of Medical Sciences, Örebro University, Örebro, Sweden.,Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, FI, Finland
| | - C Jern
- Department of Clinical Genetics and Genomics, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden.,Department of Laboratory Medicine, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - B Melin
- Department of Radiation Sciences, Oncology, Umeå Universitet, Umeå, Sweden
| | - C Ohlsson
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Osteoporosis Centre, CBAR, University of Gothenburg, Gothenburg, Sweden.,Department of Drug Treatment, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - T Fall
- Department of Medical Sciences, Molecular Epidemiology, Uppsala University, Uppsala, Sweden
| | - L Rönnblom
- Department of Medical Sciences, Rheumatology & Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - M Wadelius
- Department of Medical Sciences, Clinical Pharmacogenomics & Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - G Nordmark
- Department of Medical Sciences, Rheumatology & Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Å Johansson
- Institute for Immunology, Genetics, and Pathology, Uppsala University, Uppsala, Sweden
| | - R Rosenquist
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - P F Sullivan
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.,Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
12
|
Huusko JM, Tiensuu H, Haapalainen AM, Pasanen A, Tissarinen P, Karjalainen MK, Zhang G, Christensen K, Ryckman KK, Jacobsson B, Murray JC, Kingsmore SF, Hallman M, Muglia LJ, Rämet M. Integrative genetic, genomic and transcriptomic analysis of heat shock protein and nuclear hormone receptor gene associations with spontaneous preterm birth. Sci Rep 2021; 11:17115. [PMID: 34429451 PMCID: PMC8384995 DOI: 10.1038/s41598-021-96374-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 08/09/2021] [Indexed: 12/13/2022] Open
Abstract
Heat shock proteins are involved in the response to stress including activation of the immune response. Elevated circulating heat shock proteins are associated with spontaneous preterm birth (SPTB). Intracellular heat shock proteins act as multifunctional molecular chaperones that regulate activity of nuclear hormone receptors. Since SPTB has a significant genetic predisposition, our objective was to identify genetic and transcriptomic evidence of heat shock proteins and nuclear hormone receptors that may affect risk for SPTB. We investigated all 97 genes encoding members of the heat shock protein families and all 49 genes encoding nuclear hormone receptors for their potential role in SPTB susceptibility. We used multiple genetic and genomic datasets including genome-wide association studies (GWASs), whole-exome sequencing (WES), and placental transcriptomics to identify SPTB predisposing factors from the mother, infant, and placenta. There were multiple associations of heat shock protein and nuclear hormone receptor genes with SPTB. Several orthogonal datasets supported roles for SEC63, HSPA1L, SACS, RORA, and AR in susceptibility to SPTB. We propose that suppression of specific heat shock proteins promotes maintenance of pregnancy, whereas activation of specific heat shock protein mediated signaling may disturb maternal–fetal tolerance and promote labor.
Collapse
Affiliation(s)
- Johanna M Huusko
- PEDEGO Research Unit and Medical Research Center Oulu, University of Oulu, Oulu, Finland.,Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland.,Division of Human Genetics, Center for Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, March of Dimes Prematurity Research Center Ohio Collaborative, Cincinnati, OH, USA
| | - Heli Tiensuu
- PEDEGO Research Unit and Medical Research Center Oulu, University of Oulu, Oulu, Finland.,Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland
| | - Antti M Haapalainen
- PEDEGO Research Unit and Medical Research Center Oulu, University of Oulu, Oulu, Finland.,Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland
| | - Anu Pasanen
- PEDEGO Research Unit and Medical Research Center Oulu, University of Oulu, Oulu, Finland.,Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland
| | - Pinja Tissarinen
- PEDEGO Research Unit and Medical Research Center Oulu, University of Oulu, Oulu, Finland.,Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland
| | - Minna K Karjalainen
- PEDEGO Research Unit and Medical Research Center Oulu, University of Oulu, Oulu, Finland.,Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland
| | - Ge Zhang
- Division of Human Genetics, Center for Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, March of Dimes Prematurity Research Center Ohio Collaborative, Cincinnati, OH, USA
| | - Kaare Christensen
- Institute of Public Health, University of Southern Denmark, Odense, Denmark
| | - Kelli K Ryckman
- Department of Epidemiology, College of Public Health and Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Bo Jacobsson
- Department of Obstetrics and Gynecology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Genetics and Bioinformatics, Area of Health Data and Digitalisation, Norwegian Institute of Public Health, Oslo, Norway
| | - Jeffrey C Murray
- Department of Pediatrics, University of Iowa, Iowa City, Iowa, USA
| | - Stephen F Kingsmore
- Rady Children's Institute for Genomic Medicine, Rady Children's Hospital, San Diego, CA, USA
| | - Mikko Hallman
- PEDEGO Research Unit and Medical Research Center Oulu, University of Oulu, Oulu, Finland.,Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland
| | - Louis J Muglia
- Division of Human Genetics, Center for Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, March of Dimes Prematurity Research Center Ohio Collaborative, Cincinnati, OH, USA.,Burroughs Wellcome Fund, Research Triangle Park, NC, USA
| | - Mika Rämet
- PEDEGO Research Unit and Medical Research Center Oulu, University of Oulu, Oulu, Finland. .,Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland. .,Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.
| |
Collapse
|
13
|
Spontaneous preterm birth: the underpinnings in the maternal and fetal genomes. NPJ Genom Med 2021; 6:43. [PMID: 34103530 PMCID: PMC8187433 DOI: 10.1038/s41525-021-00209-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 05/20/2021] [Indexed: 12/20/2022] Open
Abstract
Preterm birth (PTB) is a major cause of neonatal mortality and health complications in infants. Elucidation of its genetic underpinnings can lead to improved understanding of the biological mechanisms and boost the development of methods to predict PTB. Although recent genome-based studies of both mother and fetus have identified several genetic loci which might be implicated in PTB, these results suffer from a lack of consistency across multiple studies and populations. Moreover, results of functional validation of most of these findings are unavailable. Since medically indicated preterm deliveries have well-known heterogeneous causes, we have reviewed only those studies which investigated spontaneous preterm birth (sPTB) and have attempted to suggest probable biological mechanisms by which the implicated genetic factors might result in sPTB. We expect our review to provide a panoramic view of the genetics of sPTB.
Collapse
|
14
|
Ambrose AJ, Chapman E. Function, Therapeutic Potential, and Inhibition of Hsp70 Chaperones. J Med Chem 2021; 64:7060-7082. [PMID: 34009983 DOI: 10.1021/acs.jmedchem.0c02091] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Hsp70s are among the most highly conserved proteins in all of biology. Through an iterative binding and release of exposed hydrophobic residues on client proteins, Hsp70s can prevent aggregation and promote folding to the native state of their client proteins. The human proteome contains eight canonical Hsp70s. Because Hsp70s are relatively promiscuous they play a role in folding a large proportion of the proteome. Hsp70s are implicated in disease through their ability to regulate protein homeostasis. In recent years, researchers have attempted to develop selective inhibitors of Hsp70 isoforms to better understand the role of individual isoforms in biology and as potential therapeutics. Selective inhibitors have come from rational design, forced localization, and serendipity, but the development of completely selective inhibitors remains elusive. In the present review, we discuss the Hsp70 structure and function, the known Hsp70 client proteins, the role of Hsp70s in disease, and current efforts to discover Hsp70 modulators.
Collapse
Affiliation(s)
- Andrew J Ambrose
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, 1703 East Mabel Street, Tucson, Arizona 85721, United States
| | - Eli Chapman
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, 1703 East Mabel Street, Tucson, Arizona 85721, United States
| |
Collapse
|
15
|
Espinosa C, Becker M, Marić I, Wong RJ, Shaw GM, Gaudilliere B, Aghaeepour N, Stevenson DK. Data-Driven Modeling of Pregnancy-Related Complications. Trends Mol Med 2021; 27:762-776. [PMID: 33573911 DOI: 10.1016/j.molmed.2021.01.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/01/2020] [Accepted: 01/20/2021] [Indexed: 12/11/2022]
Abstract
A healthy pregnancy depends on complex interrelated biological adaptations involving placentation, maternal immune responses, and hormonal homeostasis. Recent advances in high-throughput technologies have provided access to multiomics biological data that, combined with clinical and social data, can provide a deeper understanding of normal and abnormal pregnancies. Integration of these heterogeneous datasets using state-of-the-art machine-learning methods can enable the prediction of short- and long-term health trajectories for a mother and offspring and the development of treatments to prevent or minimize complications. We review advanced machine-learning methods that could: provide deeper biological insights into a pregnancy not yet unveiled by current methodologies; clarify the etiologies and heterogeneity of pathologies that affect a pregnancy; and suggest the best approaches to address disparities in outcomes affecting vulnerable populations.
Collapse
Affiliation(s)
- Camilo Espinosa
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA; Department of Biomedical Data Sciences, Stanford University, Stanford, CA, USA
| | - Martin Becker
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA; Department of Biomedical Data Sciences, Stanford University, Stanford, CA, USA
| | - Ivana Marić
- Department of Pediatrics, Division of Neonatal and Developmental Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Ronald J Wong
- Department of Pediatrics, Division of Neonatal and Developmental Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Gary M Shaw
- Department of Pediatrics, Division of Neonatal and Developmental Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Brice Gaudilliere
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA; Department of Pediatrics, Division of Neonatal and Developmental Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Nima Aghaeepour
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA; Department of Biomedical Data Sciences, Stanford University, Stanford, CA, USA; Department of Pediatrics, Division of Neonatal and Developmental Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - David K Stevenson
- Department of Pediatrics, Division of Neonatal and Developmental Medicine, Stanford University School of Medicine, Stanford, CA, USA.
| | | |
Collapse
|
16
|
Liu X, Lai H, Xin S, Li Z, Zeng X, Nie L, Liang Z, Wu M, Zheng J, Zou Y. Whole-exome sequencing identifies novel mutations in ABC transporter genes associated with intrahepatic cholestasis of pregnancy disease: a case-control study. BMC Pregnancy Childbirth 2021; 21:110. [PMID: 33546617 PMCID: PMC7866704 DOI: 10.1186/s12884-021-03595-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 01/27/2021] [Indexed: 01/03/2023] Open
Abstract
Background Intrahepatic cholestasis of pregnancy (ICP) can cause premature delivery and stillbirth. Previous studies have reported that mutations in ABC transporter genes strongly influence the transport of bile salts. However, to date, their effects are still largely elusive. Methods A whole-exome sequencing (WES) approach was used to detect novel variants. Rare novel exonic variants (minor allele frequencies: MAF < 1%) were analyzed. Three web-available tools, namely, SIFT, Mutation Taster and FATHMM, were used to predict protein damage. Protein structure modeling and comparisons between reference and modified protein structures were performed by SWISS-MODEL and Chimera 1.14rc, respectively. Results We detected a total of 2953 mutations in 44 ABC family transporter genes. When the MAF of loci was controlled in all databases at less than 0.01, 320 mutations were reserved for further analysis. Among these mutations, 42 were novel. We classified these loci into four groups (the damaging, probably damaging, possibly damaging, and neutral groups) according to the prediction results, of which 7 novel possible pathogenic mutations were identified that were located in known functional genes, including ABCB4 (Trp708Ter, Gly527Glu and Lys386Glu), ABCB11 (Gln1194Ter, Gln605Pro and Leu589Met) and ABCC2 (Ser1342Tyr), in the damaging group. New mutations in the first two genes were reported in our recent article. In addition, compared to the wild-type protein structure, the ABCC2 Ser1342Tyr-modified protein structure showed a slight change in the chemical bond lengths of ATP ligand-binding amino acid side chains. In placental tissue, the expression level of the ABCC2 gene in patients with ICP was significantly higher (P < 0.05) than that in healthy pregnant women. In particular, the patients with two mutations in ABC family genes had higher average values of total bile acids (TBA), aspartate transaminase (AST), direct bilirubin (DBIL), total cholesterol (CHOL), triglycerides (TG) and high-density lipoprotein (HDL) than the patients who had one mutation, no mutation in ABC genes and local controls. Conclusions Our present study provide new insight into the genetic architecture of ICP and will benefit the final identification of the underlying mutations. Supplementary Information The online version contains supplementary material available at 10.1186/s12884-021-03595-x.
Collapse
Affiliation(s)
- Xianxian Liu
- Key Laboratory of Women's Reproductive Health of Jiangxi Province, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, 330006, Jiangxi, China.,Central Lab, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, 330006, Jiangxi, China
| | - Hua Lai
- Key Laboratory of Women's Reproductive Health of Jiangxi Province, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, 330006, Jiangxi, China.,Department of Obstetrics, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, 330006, Jiangxi, China
| | - Siming Xin
- Key Laboratory of Women's Reproductive Health of Jiangxi Province, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, 330006, Jiangxi, China.,Department of Obstetrics, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, 330006, Jiangxi, China
| | - Zengming Li
- Key Laboratory of Women's Reproductive Health of Jiangxi Province, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, 330006, Jiangxi, China
| | - Xiaoming Zeng
- Key Laboratory of Women's Reproductive Health of Jiangxi Province, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, 330006, Jiangxi, China.,Department of Obstetrics, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, 330006, Jiangxi, China
| | - Liju Nie
- Key Laboratory of Women's Reproductive Health of Jiangxi Province, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, 330006, Jiangxi, China.,Department of Obstetrics, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, 330006, Jiangxi, China
| | - Zhengyi Liang
- Key Laboratory of Women's Reproductive Health of Jiangxi Province, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, 330006, Jiangxi, China.,Department of Obstetrics, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, 330006, Jiangxi, China
| | - Meiling Wu
- Key Laboratory of Women's Reproductive Health of Jiangxi Province, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, 330006, Jiangxi, China.,Department of Obstetrics, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, 330006, Jiangxi, China
| | - Jiusheng Zheng
- Key Laboratory of Women's Reproductive Health of Jiangxi Province, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, 330006, Jiangxi, China. .,Department of Obstetrics, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, 330006, Jiangxi, China.
| | - Yang Zou
- Key Laboratory of Women's Reproductive Health of Jiangxi Province, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, 330006, Jiangxi, China. .,Central Lab, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
17
|
Sole-Navais P, Bacelis J, Helgeland Ø, Modzelewska D, Vaudel M, Flatley C, Andreassen O, Njølstad PR, Muglia LJ, Johansson S, Zhang G, Jacobsson B. Autozygosity mapping and time-to-spontaneous delivery in Norwegian parent-offspring trios. Hum Mol Genet 2020; 29:3845-3858. [PMID: 33291140 PMCID: PMC7861013 DOI: 10.1093/hmg/ddaa255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 11/21/2020] [Accepted: 11/24/2020] [Indexed: 11/18/2022] Open
Abstract
Parental genetic relatedness may lead to adverse health and fitness outcomes in the offspring. However, the degree to which it affects human delivery timing is unknown. We use genotype data from ≃25 000 parent-offspring trios from the Norwegian Mother, Father and Child Cohort Study to optimize runs of homozygosity (ROH) calling by maximizing the correlation between parental genetic relatedness and offspring ROHs. We then estimate the effect of maternal, paternal and fetal autozygosity and that of autozygosity mapping (common segments and gene burden test) on the timing of spontaneous onset of delivery. The correlation between offspring ROH using a variety of parameters and parental genetic relatedness ranged between −0.2 and 0.6, revealing the importance of the minimum number of genetic variants included in an ROH and the use of genetic distance. The optimized compared to predefined parameters showed a ≃45% higher correlation between parental genetic relatedness and offspring ROH. We found no evidence of an effect of maternal, paternal nor fetal overall autozygosity on spontaneous delivery timing. Yet, through autozygosity mapping, we identified three maternal loci TBC1D1, SIGLECs and EDN1 gene regions reducing the median time-to-spontaneous onset of delivery by ≃2–5% (P-value < 2.3 × 10−6). We also found suggestive evidence of a fetal locus at 3q22.2, near the RYK gene region (P-value = 2.0 × 10−6). Autozygosity mapping may provide new insights on the genetic determinants of delivery timing beyond traditional genome-wide association studies, but particular and rigorous attention should be given to ROH calling parameter selection.
Collapse
Affiliation(s)
- Pol Sole-Navais
- Department of Obstetrics and Gynecology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg 41685, Sweden
| | - Jonas Bacelis
- Department of Obstetrics and Gynecology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg 41685, Sweden
| | - Øyvind Helgeland
- Center for Diabetes Research, Department of Clinical Science, University of Bergen, 5020 Bergen, Norway.,Division of Health Data and Digitalization, Department of Genetics and Bioinformatics, Norwegian Institute of Public Health, Oslo 0213, Norway
| | - Dominika Modzelewska
- Department of Obstetrics and Gynecology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg 41685, Sweden
| | - Marc Vaudel
- Center for Diabetes Research, Department of Clinical Science, University of Bergen, 5020 Bergen, Norway.,Department of Pediatrics and Adolescents, Haukeland University Hospital, Bergen 5021, Norway
| | - Christopher Flatley
- Division of Health Data and Digitalization, Department of Genetics and Bioinformatics, Norwegian Institute of Public Health, Oslo 0213, Norway
| | - Ole Andreassen
- NORMENT, University of Oslo, Oslo 0450, Norway.,Division of Mental Health and Addiction, Oslo University Hospital, Oslo 0450, Norway.,Department of Psychiatry, University of California San Diego, San Diego, CA 92093, USA
| | - Pål R Njølstad
- Center for Diabetes Research, Department of Clinical Science, University of Bergen, 5020 Bergen, Norway.,Department of Pediatrics and Adolescents, Haukeland University Hospital, Bergen 5021, Norway
| | - Louis J Muglia
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA.,Division of Human Genetics, The Center for Prevention of Preterm Birth, Perinatal Institute, March of Dimes Prematurity Research Center Ohio Collaborative, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45267, USA
| | - Stefan Johansson
- Center for Diabetes Research, Department of Clinical Science, University of Bergen, 5020 Bergen, Norway.,Center for Medical Genetics, Haukeland University Hospital, Bergen 5021, Norway
| | - Ge Zhang
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA.,Division of Human Genetics, The Center for Prevention of Preterm Birth, Perinatal Institute, March of Dimes Prematurity Research Center Ohio Collaborative, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45267, USA
| | - Bo Jacobsson
- Department of Obstetrics and Gynecology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg 41685, Sweden.,Division of Health Data and Digitalization, Department of Genetics and Bioinformatics, Norwegian Institute of Public Health, Oslo 0213, Norway.,Department of Obstetrics and Gynecology, Sahlgrenska University Hospital, Gothenburg 41685, Sweden
| |
Collapse
|
18
|
Wang X, Xie W, Yao Y, Zhu Y, Zhou J, Cui Y, Guo X, Yuan Y, Zhou Z, Liu M. The heat shock protein family gene Hspa1l in male mice is dispensable for fertility. PeerJ 2020; 8:e8702. [PMID: 32231871 PMCID: PMC7098389 DOI: 10.7717/peerj.8702] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 02/06/2020] [Indexed: 12/22/2022] Open
Abstract
Background Heat shock protein family A member 1 like (Hspa1l) is a member of the 70kD heat shock protein (Hsp70) family. HSPA1L is an ancient, evolutionarily conserved gene with a highly conserved domain structure. The gene is highly abundant and constitutively expressed in the mice testes. However, the role of Hspa1l in the testes has still not been elucidated. Methods Hspa1l-mutant mice were generated using the CRISPR/Cas9 system. Histological and immunofluorescence staining were used to analyze the phenotypes of testis and epididymis. Apoptotic cells were detected through TUNEL assays. Fertility and sperm motilities were also tested. Quantitative RT-PCR was used for analyzing of candidate genes expression. Heat treatment was used to induce heat stress of the testis. Results We successfully generated Hspa1l knockout mice. Hspa1l -/- mice exhibited normal development and fertility. Further, Hspa1l -/- mice shown no significant difference in spermatogenesis, the number of apoptotic cells in testes epididymal histology, sperm count and sperm motility from Hspa1l +/+ mice. Moreover, heat stress does not exacerbate the cell apoptosis in Hspa1l -/- testes. These results revealed that HSPA1L is not essential for physiological spermatogenesis, nor is it involved in heat-induced stress responses, which provides a basis for further studies.
Collapse
Affiliation(s)
- Xin Wang
- Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Wenxiu Xie
- Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Yejin Yao
- Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Yunfei Zhu
- Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Jianli Zhou
- Animal Core Facility, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yiqiang Cui
- Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Xuejiang Guo
- Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Yan Yuan
- Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Zuomin Zhou
- Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Mingxi Liu
- Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
| |
Collapse
|
19
|
Bublitz MH, Carpenter M, Bourjeily G. Preterm birth disparities between states in the United States: an opportunity for public health interventions. J Psychosom Obstet Gynaecol 2020; 41:38-46. [PMID: 30624142 PMCID: PMC9608822 DOI: 10.1080/0167482x.2018.1553156] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Objective: To examine associations between statelevel characteristics and state-level preterm birth rates.Study design: We conducted a retrospective ecological cross-sectional study using statelevel data from 2013 to 2014 extracted from publicly available sources -the March of Dimes PeriStats database, the U.S. Census Bureau, the US Department of Education, and the US Department of Justice.Results: State-level preterm birth rates correlated with the following state characteristics: poverty rate, obesity rate, percentage of non-Hispanic Black women residents, smoking rate, percent of C - section deliveries, percent of births to women <20 years old, pregnancies receiving late/no prenatal care, and violent crimes per capita. Linear regression analysis found that only the percent of non-Hispanic Black women by state remained a significant predictor of state-level preterm birth rates after adjusting for other risk factors.Conclusions: States with higher percentages of non-Hispanic Black women had higher rates of preterm birth, even after adjusting for sociodemographic characteristics, prenatal care, and maternal health by state. These findings suggest that public health interventions that target contextual and environmental risk factors affecting non-Hispanic Black women may help to curb rising rates of preterm birth in the United States.
Collapse
Affiliation(s)
- Margaret H. Bublitz
- The Miriam Hospital, Women’s Medicine Collaborative, Providence, RI, USA,Department of Medicine, Alpert School of Medicine at Brown University, Providence, RI, USA,Department of Psychiatry and Human Behavior, Alpert School of Medicine at Brown University, Providence, RI, USA
| | - Marshall Carpenter
- The Miriam Hospital, Women’s Medicine Collaborative, Providence, RI, USA
| | - Ghada Bourjeily
- The Miriam Hospital, Women’s Medicine Collaborative, Providence, RI, USA,Department of Medicine, Alpert School of Medicine at Brown University, Providence, RI, USA
| |
Collapse
|
20
|
Wong HS, Wadon M, Evans A, Kirov G, Modi N, O'Donovan MC, Thapar A. Contribution of de novo and inherited rare CNVs to very preterm birth. J Med Genet 2020; 57:552-557. [PMID: 32051258 DOI: 10.1136/jmedgenet-2019-106619] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 12/23/2019] [Accepted: 01/12/2020] [Indexed: 12/27/2022]
Abstract
BACKGROUND The genomic contribution to adverse health sequelae in babies born very preterm (<32 weeks' gestation) is unknown. We conducted an investigation of rare CNVs in infants born very preterm as part of a study to determine the feasibility and acceptability of a larger, well-powered genome-wide investigation in the UK, with follow-up using linked National Health Service records and DNA storage for additional research. METHODS We studied 488 parent-offspring trios. We performed genotyping using Illumina Infinium OmniExpress Arrays. CNV calling and quality control (QC) were undertaken using published protocols. We examined de novo CNVs in infants and the rate of known pathogenic variants in infants, mothers and fathers and compared these with published comparator data. We defined rare pathogenic CNVs as those consistently reported to be associated with clinical phenotypes. RESULTS We identified 14 de novo CNVs, representing a mutation rate of 2.9%, compared with 2.1% reported in control populations. The median size of these CNV was much higher than in comparator data (717 kb vs 255 kb). The rate of pathogenic CNVs was 4.3% in infants, 2.7% in mothers and 2% in fathers, compared with 2.3% in UK Biobank participants. CONCLUSION Our findings suggest that the rate of de novo CNVs, especially rare pathogenic CNVs, could be elevated in those born very preterm. However, we will need to conduct a much larger study to corroborate this conclusion.
Collapse
Affiliation(s)
- Hilary S Wong
- Department of Paediatrics, Cambridge University, Cambridge, UK
| | - Megan Wadon
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - Alexandra Evans
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - George Kirov
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - Neena Modi
- Section of Neonatal Medicine, Imperial College London, London, UK
| | - Michael C O'Donovan
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - Anita Thapar
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| |
Collapse
|
21
|
Zhu S, He M, Liu Z, Qin Z, Wang Z, Duan L. Shared genetic susceptibilities for irritable bowel syndrome and depressive disorder in Chinese patients uncovered by pooled whole-exome sequencing. J Adv Res 2020; 23:113-121. [PMID: 32099673 PMCID: PMC7029050 DOI: 10.1016/j.jare.2020.01.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 12/25/2019] [Accepted: 01/28/2020] [Indexed: 02/07/2023] Open
Abstract
Irritable bowel syndrome (IBS) is the most prevalent functional gastrointestinal disorder presenting a high comorbidity with depressive disorder (DD). Many studies have confirmed that these two disease share the similar pathophysiological process, but evidence of the genetic risks is limited. This study aimed to analyze the genetic susceptibilities for IBS and DD in Chinese patients. Pooled whole-exome sequencing (pooled-WES) was performed to identify the candidate variants in the group of diarrhea predominant IBS (IBS-D) patients, DD patients, and healthy controls (HC). Then, targeted sequencing was used to validate the candidate variants in three additional cohorts of IBS-D, DD, and HC. Four variants associated with both IBS-D and DD were identified through pooled-WES, and three of them were validated in targeted sequencing. SYT8 rs3741231 G allele and SSPO rs12536873 TT genotype were associated with both IBS-D and DD. The genes of these variants are important in neurogenesis and neurotransmission. In addition, we found COL6A1 rs13051496, a unique risk variation for IBS-D. It increased the IBS-D risk and had a positive correlation with the scores of abdominal bloating and dissatisfaction of bowel habits. Through the results of this study, it provides a genetic basis for the high comorbidity of IBS-D and DD.
Collapse
Affiliation(s)
- Shiwei Zhu
- Department of Gastroenterology, Peking University Third Hospital, No. 49 North Garden Rd., Haidian District, Beijing 100191, China
| | - Meibo He
- Department of Gastroenterology, Peking University Third Hospital, No. 49 North Garden Rd., Haidian District, Beijing 100191, China
| | - Zuojing Liu
- Department of Gastroenterology, Peking University Third Hospital, No. 49 North Garden Rd., Haidian District, Beijing 100191, China
| | - Zelian Qin
- Department of Plastic Surgery, Peking University Third Hospital, No.49 North Garden Rd., Haidian District, Beijing 100191, China
| | - Zhiren Wang
- Department of Science & Technology, Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Huilongguan Town, Changping District, Beijing 100096, China
| | - Liping Duan
- Department of Gastroenterology, Peking University Third Hospital, No. 49 North Garden Rd., Haidian District, Beijing 100191, China
| |
Collapse
|
22
|
Influence of Genetic Variants on Steady-State Etonogestrel Concentrations Among Contraceptive Implant Users. Obstet Gynecol 2020; 133:783-794. [PMID: 30870275 DOI: 10.1097/aog.0000000000003189] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
OBJECTIVE To identify genetic variants that influence steady-state etonogestrel concentrations among contraceptive implant users. METHODS We enrolled healthy, reproductive-age women in our pharmacogenomic study using etonogestrel implants for 12-36 months without concomitant use of hepatic enzyme inducers or inhibitors. We collected participant characteristics, measured serum etonogestrel concentrations, and genotyped each participant for 120 single nucleotide variants in 14 genes encoding proteins involved in steroid hormone (ie, estrogens, progestins) metabolism, regulation, or function. We performed generalized linear modeling to identify genetic variants associated with steady-state etonogestrel concentrations. RESULTS We enrolled 350 women, who had a median serum etonogestrel concentration of 137.4 pg/mL (range 55.8-695.1). Our final generalized linear model contained three genetic variants associated with serum etonogestrel concentrations: NR1I2(PXR) rs2461817 (β=13.36, P=.005), PGR rs537681 (β=-29.77, P=.007), and CYP3A7*1C (β=-35.06, P=.025). Variant allele frequencies were 69.4%, 84.9%, and 5.1%, respectively. Our linear model also contained two nongenetic factors associated with etonogestrel concentrations: body mass index (BMI) (β=-3.08, P=7.0×10) and duration of implant use (β=-1.60, P=5.8×10); R for the model =0.17. CONCLUSION Only BMI and duration of implant use remained significantly associated with steady-state etonogestrel concentrations. Of the three novel genetic associations found, one variant associated with increased etonogestrel metabolism (CYP3A7*1C) causes adult expression of fetal CYP3A7 proteins and can consequently alter steroid hormone metabolism. Women with this variant may potentially have increased metabolism of all steroid hormones, as 27.8% (5/18) of CYP3A7*1C carriers had serum etonogestrel concentrations that fell below the threshold for consistent ovulatory suppression (less than 90 pg/mL). More pharmacogenomic investigations are needed to advance our understanding of how genetic variation can influence the effectiveness and safety of hormonal contraception, and lay the groundwork for personalized medicine approaches in women's health. CLINICAL TRIAL REGISTRATION ClinicalTrials.gov, NCT03092037.
Collapse
|
23
|
Peng S, Chen H, Li X, Du Y, Gan Y. Maternal age and educational level modify the association between chronic hepatitis B infection and preterm labor. BMC Pregnancy Childbirth 2020; 20:38. [PMID: 31937269 PMCID: PMC6961340 DOI: 10.1186/s12884-020-2729-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 01/08/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Few studies have investigated whether maternal age and education level modify the association of chronic hepatitis B virus (HBV) infection with preterm labor. We hypothesized that the association of HBV infection with preterm labor is modified by maternal age and education level. METHODS A retrospective cohort study was conducted on the HBsAg-positive and HBsAg-negative pregnant women delivered from June 2012 to August 2017 at Wuhan Medical Care Center for Women and Children, Wuhan, China. A multivariate regression model was used in this study. RESULTS This study included 2050 HBsAg-positive pregnant women and 2050 HBsAg negative women. In the stratified analyses, positive HBsAg status was associated with the increased risk of preterm labor in women aged < 30 years, having low educational level, with an odds ratio of 1.65(95% CI 1.07-2.54) and 2.59(95% CI 1.41-4.76), respectively. Breslow-Day test showed that there existed significant differences in the ORs for HBsAg carriage across each stratum of maternal age (p = 0.023), educational level (p = 0.002). After adjusting other co-variables, we observed maternal HBV infection (OR 1.60, 95% CI 1.03-2.49) was still associated with risk of preterm labor in pregnancy women with age < 30. Similarly, the significant association of HBV infection (OR 2.49, 95% CI 1.34-4.63) with preterm labor remained in low educated women. CONCLUSIONS Our results indicated that HBV infection was associated with high risk of preterm labor, but maternal age and educational level could modify the association between HBV infection and preterm labor.
Collapse
Affiliation(s)
- Songxu Peng
- Department of Maternal and Child Health, Xiangya School of Public Health, Central South University, Changsha, China
| | - Hongyan Chen
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13th Hangkong Road, Wuhan, Hubei, China
| | - Xiu Li
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13th Hangkong Road, Wuhan, Hubei, China
| | - Yukai Du
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13th Hangkong Road, Wuhan, Hubei, China.
| | - Yong Gan
- Department of Social Medicine and Health Management, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Road, Wuhan, 430030, China.
| |
Collapse
|
24
|
Wadon M, Modi N, Wong HS, Thapar A, O'Donovan MC. Recent advances in the genetics of preterm birth. Ann Hum Genet 2019; 84:205-213. [PMID: 31853956 PMCID: PMC7187167 DOI: 10.1111/ahg.12373] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 11/20/2019] [Accepted: 11/20/2019] [Indexed: 02/06/2023]
Abstract
Preterm birth is associated with short- and long-term impairments affecting physical, cognitive, and neuropsychiatric health. These sequelae, together with a rising preterm birth rate and increased survival, make prematurity a growing public health issue because of the increased number of individuals with impaired health throughout the life span. Although a major contribution to preterm birth comes from environmental factors, it is also modestly heritable. Little is known about the architecture of this genetic contribution. Studies of common and of rare genetic variation have had limited power, but recent findings implicate variation in both the maternal and fetal genome. There is some evidence risk alleles in mothers may be enriched for processes related to immunity and inflammation, and in the preterm infant, processes related to brain development. Overall genomic discoveries for preterm birth lag behind progress for many other multifactorial diseases and traits. Investigations focusing on gene-environment interactions may also provide insights, but these studies still have a number of limitations. Adequately sized genetic studies of preterm birth are a priority for the future especially given the breadth of its negative health impacts across the life span and the current interest in newborn genome sequencing.
Collapse
Affiliation(s)
- Megan Wadon
- MRC Centre for Neuropsychiatric Genetics and Genomics, Institute of Psychological Medicine and Clinical Neurosciences, Cardiff University School of Medicine, Cardiff, Wales
| | - Neena Modi
- Section of Neonatal Medicine, Department of Medicine, Chelsea and Westminster Hospital Campus, Imperial College, London, United Kingdom
| | - Hilary S Wong
- Department of Paediatrics, University of Cambridge, Cambridge, United Kingdom
| | - Anita Thapar
- MRC Centre for Neuropsychiatric Genetics and Genomics, Institute of Psychological Medicine and Clinical Neurosciences, Cardiff University School of Medicine, Cardiff, Wales
| | - Michael C O'Donovan
- MRC Centre for Neuropsychiatric Genetics and Genomics, Institute of Psychological Medicine and Clinical Neurosciences, Cardiff University School of Medicine, Cardiff, Wales
| |
Collapse
|
25
|
Williams PA, Kobilnyk HE, McMillan EA, Strochlic TI. MAPKAP kinase 2-mediated phosphorylation of HspA1L protects male germ cells from heat stress-induced apoptosis. Cell Stress Chaperones 2019; 24:1127-1136. [PMID: 31642047 PMCID: PMC6882973 DOI: 10.1007/s12192-019-01035-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/29/2019] [Accepted: 09/12/2019] [Indexed: 12/19/2022] Open
Abstract
Developing male germ cells are extremely sensitive to heat stress; consequently, anatomic and physiologic adaptations have evolved to maintain proper thermoregulation during mammalian spermatogenesis. At the cellular level, increased expression and activity of HSP70 family members occur in response to heat stress in order to refold partially denatured proteins and restore function. In addition, several kinase-mediated signaling pathways are activated in the testis upon hyperthermia. The p38 MAP kinase (MAPK) pathway plays an important role in mitigating heat stress, and recent findings have implicated the downstream p38 substrate, MAPKAP kinase 2 (MK2), in this process. However, the precise function that this kinase plays in spermatogenesis is not completely understood. Using a proteomics-based screen, we identified and subsequently validated that the testis-enriched HSP70 family member, HspA1L, is a novel substrate of MK2. We demonstrate that MK2 phosphorylates HspA1L solely on Ser241, a residue within the N-terminal nucleotide-binding domain of the enzyme. This phosphorylation event enhances the chaperone activity of HspA1L in vitro and renders male germ cells more resistant to heat stress-induced apoptosis. Taken together, these findings illustrate a novel stress-induced signaling cascade that promotes the chaperone activity of HspA1L with implications for understanding male reproductive biology.
Collapse
Affiliation(s)
- Patrick A Williams
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, 245 N. 15th St., MS 497, Philadelphia, PA, 19102, USA
| | - Heather E Kobilnyk
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, 245 N. 15th St., MS 497, Philadelphia, PA, 19102, USA
| | - Emily A McMillan
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, 245 N. 15th St., MS 497, Philadelphia, PA, 19102, USA
| | - Todd I Strochlic
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, 245 N. 15th St., MS 497, Philadelphia, PA, 19102, USA.
| |
Collapse
|
26
|
Melatonin Enhances Mitophagy by Upregulating Expression of Heat Shock 70 kDa Protein 1L in Human Mesenchymal Stem Cells under Oxidative Stress. Int J Mol Sci 2019; 20:ijms20184545. [PMID: 31540288 PMCID: PMC6769944 DOI: 10.3390/ijms20184545] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/09/2019] [Accepted: 09/11/2019] [Indexed: 02/07/2023] Open
Abstract
Human mesenchymal stem cells (hMSCs) are a potent source of cell-based regenerative therapeutics used to treat patients with ischemic disease. However, disease-induced oxidative stress disrupts mitochondrial homeostasis in transplanted hMSCs, resulting in hMSC apoptosis and reducing their efficacy post-transplantation. To address this issue, we evaluated the effects of melatonin on cellular defense mechanisms and mitophagy in hMSCs subjected to oxidative stress. H2O2-induced oxidative stress increases the levels of reactive oxygen species and reduces membrane potential in hMSCs, leading to mitochondrial dysfunction and cell death. Oxidative stress also decreases the expression of 70-kDa heat shock protein 1L (HSPA1L), a molecular chaperone that assists in the recruitment of parkin to the autophagosomal mitochondrial membrane. Decreased expression of HSPA1L destabilizes parkin, thereby impairing mitophagy. Our results indicate that treating hMSCs with melatonin significantly inhibited mitochondrial dysfunction induced by oxidative stress, which decreased hMSCs apoptosis. In damaged hMSCs, treatment with melatonin increased the levels of HSPA1L, which bound to parkin. The interaction between HSPA1L and parkin increased membrane potential and levels of oxidative phosphorylation, resulting in enhanced mitophagy. Our results indicate that melatonin increased the expression of HSPA1L, thereby upregulating mitophagy and prolonging cell survival under conditions of oxidative stress. In this study, we have shown that melatonin, a readily available compound, can be used to improve hMSC-based therapies for patients with pathologic conditions involving oxidative stress.
Collapse
|
27
|
A Prospective Analysis of Genetic Variants Associated with Human Lifespan. G3-GENES GENOMES GENETICS 2019; 9:2863-2878. [PMID: 31484785 PMCID: PMC6723124 DOI: 10.1534/g3.119.400448] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
We present a massive investigation into the genetic basis of human lifespan. Beginning with a genome-wide association (GWA) study using a de-identified snapshot of the unique AncestryDNA database – more than 300,000 genotyped individuals linked to pedigrees of over 400,000,000 people – we mapped six genome-wide significant loci associated with parental lifespan. We compared these results to a GWA analysis of the traditional lifespan proxy trait, age, and found only one locus, APOE, to be associated with both age and lifespan. By combining the AncestryDNA results with those of an independent UK Biobank dataset, we conducted a meta-analysis of more than 650,000 individuals and identified fifteen parental lifespan-associated loci. Beyond just those significant loci, our genome-wide set of polymorphisms accounts for up to 8% of the variance in human lifespan; this value represents a large fraction of the heritability estimated from phenotypic correlations between relatives.
Collapse
|
28
|
Fang L, Jiang J, Li B, Zhou Y, Freebern E, Vanraden PM, Cole JB, Liu GE, Ma L. Genetic and epigenetic architecture of paternal origin contribute to gestation length in cattle. Commun Biol 2019; 2:100. [PMID: 30886909 PMCID: PMC6418173 DOI: 10.1038/s42003-019-0341-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 02/06/2019] [Indexed: 12/19/2022] Open
Abstract
The length of gestation can affect offspring health and performance. Both maternal and fetal effects contribute to gestation length; however, paternal contributions to gestation length remain elusive. Using genome-wide association study (GWAS) in 27,214 Holstein bulls with millions of gestation records, here we identify nine paternal genomic loci associated with cattle gestation length. We demonstrate that these GWAS signals are enriched in pathways relevant to embryonic development, and in differentially methylated regions between sperm samples with long and short gestation length. We reveal that gestation length shares genetic and epigenetic architecture in sperm with calving ability, body depth, and conception rate. While several candidate genes are detected in our fine-mapping analysis, we provide evidence indicating ZNF613 as a promising candidate for cattle gestation length. Collectively, our findings support that the paternal genome and epigenome can impact gestation length potentially through regulation of the embryonic development. Lingzhao Fang et al. studied the paternal genetic variants that affect gestational length in cattle. They found that paternal genes from pathways involved in embryonic development were associated with gestation length, and that these were often found in differentially methylated regions of the genome.
Collapse
Affiliation(s)
- Lingzhao Fang
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, 20742, USA.,Animal Genomics and Improvement Laboratory, BARC, Agricultural Research Service, USDA, Beltsville, MD, 20705, USA
| | - Jicai Jiang
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, 20742, USA
| | - Bingjie Li
- Animal Genomics and Improvement Laboratory, BARC, Agricultural Research Service, USDA, Beltsville, MD, 20705, USA
| | - Yang Zhou
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, Huazhong Agricultural University, 430070, Wuhan, Hubei, China
| | - Ellen Freebern
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, 20742, USA
| | - Paul M Vanraden
- Animal Genomics and Improvement Laboratory, BARC, Agricultural Research Service, USDA, Beltsville, MD, 20705, USA
| | - John B Cole
- Animal Genomics and Improvement Laboratory, BARC, Agricultural Research Service, USDA, Beltsville, MD, 20705, USA
| | - George E Liu
- Animal Genomics and Improvement Laboratory, BARC, Agricultural Research Service, USDA, Beltsville, MD, 20705, USA
| | - Li Ma
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, 20742, USA.
| |
Collapse
|
29
|
Hallman M, Haapalainen A, Huusko JM, Karjalainen MK, Zhang G, Muglia LJ, Rämet M. Spontaneous premature birth as a target of genomic research. Pediatr Res 2019; 85:422-431. [PMID: 30353040 DOI: 10.1038/s41390-018-0180-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 08/20/2018] [Accepted: 08/23/2018] [Indexed: 01/23/2023]
Abstract
Spontaneous preterm birth is a serious and common pregnancy complication associated with hormonal dysregulation, infection, inflammation, immunity, rupture of fetal membranes, stress, bleeding, and uterine distention. Heredity is 25-40% and mostly involves the maternal genome, with contribution of the fetal genome. Significant discoveries of candidate genes by genome-wide studies and confirmation in independent replicate populations serve as signposts for further research. The main task is to define the candidate genes, their roles, localization, regulation, and the associated pathways that influence the onset of human labor. Genomic research has identified some candidate genes that involve growth, differentiation, endocrine function, immunity, and other defense functions. For example, selenocysteine-specific elongation factor (EEFSEC) influences synthesis of selenoproteins. WNT4 regulates decidualization, while a heat-shock protein family A (HSP70) member 1 like, HSPAIL, influences expression of glucocorticoid receptor and WNT4. Programming of pregnancy duration starts before pregnancy and during placentation. Future goals are to understand the interactive regulation of the pathways in order to define the clocks that influence the risk of prematurity and the duration of pregnancy. Premature birth has a great impact on the duration and the quality of life. Intensification of focused research on causes, prediction and prevention of prematurity is justified.
Collapse
Affiliation(s)
- Mikko Hallman
- PEDEGO Research Unit, Medical Research Center Oulu, University of Oulu, and Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland.
| | - Antti Haapalainen
- PEDEGO Research Unit, Medical Research Center Oulu, University of Oulu, and Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland
| | - Johanna M Huusko
- Division of Human Genetics, Center for Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, March of Dimes Prematurity Research Center Ohio Collaborative, Cincinnati, OH, USA
| | - Minna K Karjalainen
- PEDEGO Research Unit, Medical Research Center Oulu, University of Oulu, and Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland
| | - Ge Zhang
- Division of Human Genetics, Center for Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, March of Dimes Prematurity Research Center Ohio Collaborative, Cincinnati, OH, USA
| | - Louis J Muglia
- Division of Human Genetics, Center for Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, March of Dimes Prematurity Research Center Ohio Collaborative, Cincinnati, OH, USA
| | - Mika Rämet
- PEDEGO Research Unit, Medical Research Center Oulu, University of Oulu, and Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland
| |
Collapse
|
30
|
|
31
|
Neuroinflammation in preterm babies and autism spectrum disorders. Pediatr Res 2019; 85:155-165. [PMID: 30446768 DOI: 10.1038/s41390-018-0208-4] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 09/25/2018] [Accepted: 09/25/2018] [Indexed: 12/23/2022]
Abstract
Genetic anomalies have a role in autism spectrum disorders (ASD). Each genetic factor is responsible for a small fraction of cases. Environment factors, like preterm delivery, have an important role in ASD. Preterm infants have a 10-fold higher risk of developing ASD. Preterm birth is often associated with maternal/fetal inflammation, leading to a fetal/neonatal inflammatory syndrome. There are demonstrated experimental links between fetal inflammation and the later development of behavioral symptoms consistent with ASD. Preterm infants have deficits in connectivity. Most ASD genes encode synaptic proteins, suggesting that ASD are connectivity pathologies. Microglia are essential for normal synaptogenesis. Microglia are diverted from homeostatic functions towards inflammatory phenotypes during perinatal inflammation, impairing synaptogenesis. Preterm infants with ASD have a different phenotype from term born peers. Our original hypothesis is that exposure to inflammation in preterm infants, combined with at risk genetic background, deregulates brain development leading to ASD.
Collapse
|
32
|
Huusko JM, Karjalainen MK, Graham BE, Zhang G, Farrow EG, Miller NA, Jacobsson B, Eidem HR, Murray JC, Bedell B, Breheny P, Brown NW, Bødker FL, Litterman NK, Jiang PP, Russell L, Hinds DA, Hu Y, Rokas A, Teramo K, Christensen K, Williams SM, Rämet M, Kingsmore SF, Ryckman KK, Hallman M, Muglia LJ. Correction: Whole exome sequencing reveals HSPA1L as a genetic risk factor for spontaneous preterm birth. PLoS Genet 2018; 14:e1007673. [PMID: 30212495 PMCID: PMC6136685 DOI: 10.1371/journal.pgen.1007673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|