1
|
Kayahashi K, Hasan M, Khatun A, Kohno S, Terakawa J, Horike SI, Toyoda N, Matsuoka A, Iizuka T, Obata T, Ono M, Mizumoto Y, Takahashi C, Fujiwara H, Daikoku T. Androgen-responsive FOXP4 is a target for endometrial carcinoma. Commun Biol 2024; 7:740. [PMID: 38890503 PMCID: PMC11189448 DOI: 10.1038/s42003-024-06433-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 06/07/2024] [Indexed: 06/20/2024] Open
Abstract
Although low estrogen is considered to suppress uterine endometrial carcinoma, the most cases occur in the postmenopausal stage. After menopause, the production of androgen level also declines. Therefore, to resolve the above enigma, we hypothesize that the postmenopausal decline of androgen is a trigger of its progression. In the present study, to validate this hypothesis, we examine the pathological roles of androgen/AR by analyzing clinical data, culturing endometrioid cancer cell lines, and using murine models. Clinical data show that androgen receptor (AR) expression and serum dihydrotestosterone (DHT) are associated with lower disease-free survival (DFS). DHT suppresses malignant behaviors in AR-transfected human endometrial cancer cells (ECC). In ovariectomized Ptenff/PRcre/+ mice, DHT decreases the proliferation of spontaneously developed murine ECC. In AR-transfected human ECC and Ptenff/PRcre/+ mice, DHT suppresses FOXP4 expression. FOXP4-overexpressed human ECC increases, while FOXP4-knocked-down ECC shows decreased malignant behaviors. DHT/AR-mediated ECC suppression is restored by FOXP4 overexpression. The high FOXP4 expression is significantly correlated with low postoperative DFS. These findings indicate that the androgen/AR system suppresses the malignant activity of endometrial carcinoma and that downstream FOXP4 is another target molecule. These findings will also impact developments in clinical approaches to elderly health.
Collapse
Affiliation(s)
- Kayo Kayahashi
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Mahadi Hasan
- Division of Animal Disease Model, Research Center for Experimental Modeling of Human Disease, Kanazawa University, Kanazawa, Japan
| | - Anowara Khatun
- Division of Animal Disease Model, Research Center for Experimental Modeling of Human Disease, Kanazawa University, Kanazawa, Japan
| | - Susumu Kohno
- Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Jumpei Terakawa
- Graduate School of Veterinary Science, Azabu University, Sagamihara, Japan
- Laboratory of Toxicology, School of Veterinary Medicine, Azabu University, Sagamihara, Japan
| | - Shin-Ichi Horike
- Division of Integrated Omics Research, Research Center for Experimental Modeling of Human Disease, Kanazawa University, Kanazawa, Japan
| | - Natsumi Toyoda
- Division of Animal Disease Model, Research Center for Experimental Modeling of Human Disease, Kanazawa University, Kanazawa, Japan
| | - Ayumi Matsuoka
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Takashi Iizuka
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Takeshi Obata
- Department of Obstetrics and Gynecology, Toyama Prefectural Central Hospital, Toyama, Japan
| | - Masanori Ono
- Department of Obstetrics and Gynecology, Tokyo Medical University, Nishi-Shinjuku, Japan
| | - Yasunari Mizumoto
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Chiaki Takahashi
- Cancer Research Institute, Kanazawa University, Kanazawa, Japan
- Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Japan
| | - Hiroshi Fujiwara
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan.
- Ochi Yume Clinic, Nagoya, Aichi, Japan.
| | - Takiko Daikoku
- Division of Animal Disease Model, Research Center for Experimental Modeling of Human Disease, Kanazawa University, Kanazawa, Japan.
| |
Collapse
|
2
|
Tiwari P, Yadav A, Kaushik M, Dada R. Cancer risk and male Infertility: Unravelling predictive biomarkers and prognostic indicators. Clin Chim Acta 2024; 558:119670. [PMID: 38614420 DOI: 10.1016/j.cca.2024.119670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 04/15/2024]
Abstract
In recent years, there has been a global increase in cases of male infertility. There are about 30 million cases of male infertility worldwide and male reproductive health is showing rapid decline in last few decades. It is now recognized as a potential risk factor for developing certain types of cancer, particularly genitourinary malignancies like testicular and prostate cancer. Male infertility is considered a potential indicator of overall health and an early biomarker for cancer. Cases of unexplained male factor infertility have high levels of oxidative stress and oxidative DNA damage and this induces both denovo germ line mutations and epimutations due to build up of 8-hydroxy 2 deoxygunaosine abase which is highly mutagenic and also induces hypomethylation and genomic instability. Consequently, there is growing evidence to explore the various factors contributing to an increased cancer risk. Currently, the available prognostic and predictive biomarkers associated with semen characteristics and cancer risk are limited but gaining significant attention in clinical research for the diagnosis and treatment of elevated cancer risk in the individual and in offspring. The male germ cell being transcriptionally and translationally inert has a highly truncated repair mechanism and has minimal antioxidants and thus most vulnerable to oxidative injury due to environmental factors and unhealthy lifestyle and social habits. Therefore, advancing our understanding requires a thorough evaluation of the pathophysiologic mechanisms at the DNA, RNA, protein, and metabolite levels to identify key biomarkers that may underlie the pathogenesis of male infertility and associated cancer. Advanced methodologies such as genomics, epigenetics, proteomics, transcriptomics, and metabolomics stand at the forefront of cutting-edge approaches for discovering novel biomarkers, spanning from infertility to associated cancer types. Henceforth, in this review, we aim to assess the role and potential of recently identified predictive and prognostic biomarkers, offering insights into the success of assisted reproductive technologies, causes of azoospermia and idiopathic infertility, the impact of integrated holistic approach and lifestyle modifications, and the monitoring of cancer susceptibility, initiation and progression. Comprehending these biomarkers is crucial for providing comprehensive counselling to infertile men and cancer patients, along with their families.
Collapse
Affiliation(s)
- Prabhakar Tiwari
- Lab for Molecular Reproduction and Genetics, Department of Anatomy, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India.
| | - Anjali Yadav
- Lab for Molecular Reproduction and Genetics, Department of Anatomy, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Meenakshi Kaushik
- Lab for Molecular Reproduction and Genetics, Department of Anatomy, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Rima Dada
- Lab for Molecular Reproduction and Genetics, Department of Anatomy, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India.
| |
Collapse
|
3
|
Navaridas R, Vidal‐Sabanés M, Ruiz‐Mitjana A, Altés G, Perramon‐Güell A, Yeramian A, Egea J, Encinas M, Gatius S, Matias‐Guiu X, Dolcet X. In Vivo Intra-Uterine Delivery of TAT-Fused Cre Recombinase and CRISPR/Cas9 Editing System in Mice Unveil Histopathology of Pten/p53-Deficient Endometrial Cancers. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303134. [PMID: 37749866 PMCID: PMC10646277 DOI: 10.1002/advs.202303134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/25/2023] [Indexed: 09/27/2023]
Abstract
Phosphatase and TENsin homolog (Pten) and p53 are two of the most frequently mutated tumor suppressor genes in endometrial cancer. However, the functional consequences and histopathological manifestation of concomitant p53 and Pten loss of function alterations in the development of endometrial cancer is still controversial. Here, it is demonstrated that simultaneous Pten and p53 deletion is sufficient to cause epithelial to mesenchymal transition phenotype in endometrial organoids. By a novel intravaginal delivery method using HIV1 trans-activator of transcription cell penetrating peptide fused with a Cre recombinase protein (TAT-Cre), local ablation of both p53 and Pten is achieved specifically in the uterus. These mice developed high-grade endometrial carcinomas and a high percentage of uterine carcinosarcomas resembling those found in humans. To further demonstrate that carcinosarcomas arise from epithelium, double Pten/p53 deficient epithelial cells are mixed with wild type stromal and myometrial cells and subcutaneously transplanted to Scid mice. All xenotransplants resulted in the development of uterine carcinosarcomas displaying high nuclear pleomorphism and metastatic potential. Accordingly, in vivo CRISPR/Cas9 disruption of Pten and p53 also triggered the development of metastatic carcinosarcomas. The results unfadingly demonstrate that simultaneous deletion of p53 and Pten in endometrial epithelial cells is enough to trigger epithelial to mesenchymal transition that is consistently translated to the formation of uterine carcinosarcomas in vivo.
Collapse
Affiliation(s)
- Raúl Navaridas
- Developmental and Oncogenic Signalling Group, Department of Basic Medical Sciences and Department of Experimental MedicineInstitut de Recerca Biomèdica de Lleida, IRBLleida. University of Lleida, UdL.Av. Rovira Roure 80LleidaCatalonia25198Spain
| | - Maria Vidal‐Sabanés
- Developmental and Oncogenic Signalling Group, Department of Basic Medical Sciences and Department of Experimental MedicineInstitut de Recerca Biomèdica de Lleida, IRBLleida. University of Lleida, UdL.Av. Rovira Roure 80LleidaCatalonia25198Spain
| | - Anna Ruiz‐Mitjana
- Developmental and Oncogenic Signalling Group, Department of Basic Medical Sciences and Department of Experimental MedicineInstitut de Recerca Biomèdica de Lleida, IRBLleida. University of Lleida, UdL.Av. Rovira Roure 80LleidaCatalonia25198Spain
| | - Gisela Altés
- Developmental and Oncogenic Signalling Group, Department of Basic Medical Sciences and Department of Experimental MedicineInstitut de Recerca Biomèdica de Lleida, IRBLleida. University of Lleida, UdL.Av. Rovira Roure 80LleidaCatalonia25198Spain
| | - Aida Perramon‐Güell
- Developmental and Oncogenic Signalling Group, Department of Basic Medical Sciences and Department of Experimental MedicineInstitut de Recerca Biomèdica de Lleida, IRBLleida. University of Lleida, UdL.Av. Rovira Roure 80LleidaCatalonia25198Spain
| | - Andree Yeramian
- Developmental and Oncogenic Signalling Group, Department of Basic Medical Sciences and Department of Experimental MedicineInstitut de Recerca Biomèdica de Lleida, IRBLleida. University of Lleida, UdL.Av. Rovira Roure 80LleidaCatalonia25198Spain
| | - Joaquim Egea
- Developmental and Oncogenic Signalling Group, Department of Basic Medical Sciences and Department of Experimental MedicineInstitut de Recerca Biomèdica de Lleida, IRBLleida. University of Lleida, UdL.Av. Rovira Roure 80LleidaCatalonia25198Spain
| | - Mario Encinas
- Developmental and Oncogenic Signalling Group, Department of Basic Medical Sciences and Department of Experimental MedicineInstitut de Recerca Biomèdica de Lleida, IRBLleida. University of Lleida, UdL.Av. Rovira Roure 80LleidaCatalonia25198Spain
| | - Sonia Gatius
- Oncologic Pathology Group, Department of Basic Medical SciencesBiomedical Research Institute of Lleida (IRBLleida), CIBERONC.Av. Rovira Roure 80LleidaCatalonia25198Spain
| | - Xavier Matias‐Guiu
- Oncologic Pathology Group, Department of Basic Medical SciencesBiomedical Research Institute of Lleida (IRBLleida), CIBERONC.Av. Rovira Roure 80LleidaCatalonia25198Spain
| | - Xavier Dolcet
- Developmental and Oncogenic Signalling Group, Department of Basic Medical Sciences and Department of Experimental MedicineInstitut de Recerca Biomèdica de Lleida, IRBLleida. University of Lleida, UdL.Av. Rovira Roure 80LleidaCatalonia25198Spain
| |
Collapse
|
4
|
Navaridas R, Vidal-Sabanés M, Ruiz-Mitjana A, Perramon-Güell A, Megino-Luque C, Llobet-Navas D, Matias-Guiu X, Egea J, Encinas M, Bardia L, Colombelli J, Dolcet X. Transient and DNA-free in vivo CRISPR/Cas9 genome editing for flexible modeling of endometrial carcinogenesis. Cancer Commun (Lond) 2023; 43:620-624. [PMID: 36762520 PMCID: PMC10174088 DOI: 10.1002/cac2.12409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 01/12/2023] [Accepted: 01/19/2023] [Indexed: 02/11/2023] Open
Affiliation(s)
- Raúl Navaridas
- Oncological Pathology Group, Department of Basic Medical Sciences, University of Lleida, Biomedical Research Institute of Lleida, Lleida, Spain
| | - Maria Vidal-Sabanés
- Oncological Pathology Group, Department of Basic Medical Sciences, University of Lleida, Biomedical Research Institute of Lleida, Lleida, Spain
| | - Anna Ruiz-Mitjana
- Oncological Pathology Group, Department of Basic Medical Sciences, University of Lleida, Biomedical Research Institute of Lleida, Lleida, Spain
| | - Aida Perramon-Güell
- Oncological Pathology Group, Department of Basic Medical Sciences, University of Lleida, Biomedical Research Institute of Lleida, Lleida, Spain
| | - Cristina Megino-Luque
- Oncological Pathology Group, Department of Basic Medical Sciences, University of Lleida, Biomedical Research Institute of Lleida, Lleida, Spain
| | - David Llobet-Navas
- Molecular Mechanisms and Experimental Therapy in Oncology-Oncobell Program, Bellvitge Biomedical Research Institute, 'L'Hospitalet de Llobregat, Barcelona, Spain.,Cancer Networking Biomedical Research Center, Institute of Health Carlos III, Madrid, Spain
| | - Xavier Matias-Guiu
- Department of Pathology, Bellvitge Hospital, University of Barcelona, Bellvitge Biomedical Research Institute, L'Hospitalet de Llobregat, Barcelona, Spain.,Department of Pathology, Arnau de Vilanova Hospital, University of Lleida, Biomedical Research Institute of Lleida, Lleida, Spain.,Cancer Networking Biomedical Research Center, Institute of Health Carlos III, Madrid, Spain
| | - Joaquim Egea
- Molecular Developmental Neurobiology Group, Department of Basic Medical Sciences, University of Lleida, Biomedical Research Institute of Lleida, Lleida, Spain
| | - Mario Encinas
- Developmental and Oncogenic Signalling Group, Department of Experimental Medicine, University of Lleida, Biomedical Research Institute of Lleida, Lleida, Spain
| | - Lídia Bardia
- Advanced Digital Microscopy Core Facility, Institute for Research in Biomedicine, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Julien Colombelli
- Advanced Digital Microscopy Core Facility, Institute for Research in Biomedicine, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Xavier Dolcet
- Oncological Pathology Group, Department of Basic Medical Sciences, University of Lleida, Biomedical Research Institute of Lleida, Lleida, Spain
| |
Collapse
|
5
|
Kobayashi R, Kawabata‐Iwakawa R, Sugiyama M, Oyama T, Ohtsuka M, Horii T, Morita S, Nishiyama M, Hatada I. Multiplexed genome editing by in vivo electroporation of Cas9 ribonucleoproteins effectively induces endometrial carcinoma in mice. Int J Cancer 2022; 152:2331-2337. [PMID: 36378073 DOI: 10.1002/ijc.34342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 09/28/2022] [Accepted: 10/14/2022] [Indexed: 11/16/2022]
Abstract
Synergistic effects among multiple gene mutations are involved in cancer development and progression. However, developing genetically modified mouse models to analyze various combinations of mutations is extremely labor-intensive and time-consuming. To address these problems, we developed a novel method for in vivo multiplexed genome editing of the murine uterus to model human endometrial carcinoma (EMC). To do this, we injected a CRISPR-Cas9 ribonucleoprotein complex into the uterine cavity of adult female mice, followed by electroporation. Evaluation of reporter mice demonstrated that genome editing occurred specifically in uterine epithelial cells, which are the origin of EMCs. Simultaneous targeting of Pten/Trp53/Lkb1, or targeting of Pten/Lkb1 along with the Ctnnb1ΔEx3 mutation, resulted in efficient generation of invasive tumors in wild-type females within 3 months. This novel method will enable rapid and easy validation of many combinations of gene mutations that lead to endometrial carcinogenesis.
Collapse
Affiliation(s)
- Ryosuke Kobayashi
- Laboratory of Genome Science, Biosignal Genome Resource Center Institute for Molecular and Cellular Regulation, Gunma University Gunma Japan
| | - Reika Kawabata‐Iwakawa
- Division of Integrated Oncology Research Gunma University Initiative for Advanced Research (GIAR) Gunma Japan
| | - Makoto Sugiyama
- Faculty of Veterinary Medicine Kitasato University School of Veterinary Medicine Aomori Japan
| | - Tetsunari Oyama
- Department of Diagnostic Pathology Gunma University Graduate School of Medicine Gunma Japan
| | - Masato Ohtsuka
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine Tokai University School of Medicine Isehara Kanagawa Japan
- The Institute of Medical Sciences, Tokai University Isehara Kanagawa Japan
| | - Takuro Horii
- Laboratory of Genome Science, Biosignal Genome Resource Center Institute for Molecular and Cellular Regulation, Gunma University Gunma Japan
| | - Sumiyo Morita
- Laboratory of Genome Science, Biosignal Genome Resource Center Institute for Molecular and Cellular Regulation, Gunma University Gunma Japan
| | - Masahiko Nishiyama
- Division of Integrated Oncology Research Gunma University Initiative for Advanced Research (GIAR) Gunma Japan
| | - Izuho Hatada
- Laboratory of Genome Science, Biosignal Genome Resource Center Institute for Molecular and Cellular Regulation, Gunma University Gunma Japan
- Viral Vector Core Gunma University Initiative for Advanced Research (GIAR) Gunma Japan
| |
Collapse
|
6
|
Chávez-Genaro R, Toledo A, Hernández K, Anesetti G. Structural and functional changes in rat uterus induced by neonatal androgenization. J Mol Histol 2022; 53:903-914. [PMID: 36201133 DOI: 10.1007/s10735-022-10106-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 09/27/2022] [Indexed: 11/25/2022]
Abstract
Fetal or neonatal androgen exposure has a programming effect on ovarian function inducing a polycystic ovarian syndrome-like condition. Its effects on uterine structure and function are poorly studied. The aim of this work was to characterize the temporal course of changes in the rat uterine structure induced by neonatal exposure to aromatizable or not aromatizable androgens. Rats were daily treated with testosterone, dihydrotestosterone or vehicle during follicle assembly period (postnatal days 1 to 5). Uterine histoarchitecture, hormonal milieu, endometrial stromal collagen and capillary density were analyzed at prepubertal, pubertal and adult ages. Our data shows that neonatal androgen exposure induces early and long-lasting deleterious effects on uterine development, including altered adenogenesis and superficial epithelial alterations and suggest a role for altered serum estradiol levels in the maintenance and worsening of the situation. Our results suggest that alterations of the neonatal androgenic environment on the uterus could be responsible for alterations in the processes of implantation and maintenance of the embryo in women with polycystic ovary syndrome.
Collapse
Affiliation(s)
- Rebeca Chávez-Genaro
- Laboratorio de Biología de la Reproducción, Departamento de Histología y Embriología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Agustina Toledo
- Laboratorio de Biología de la Reproducción, Departamento de Histología y Embriología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Karina Hernández
- Laboratorio de Biología de la Reproducción, Departamento de Histología y Embriología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Gabriel Anesetti
- Laboratorio de Biología de la Reproducción, Departamento de Histología y Embriología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay.
| |
Collapse
|
7
|
Sahoo SS, Ramanand SG, Gao Y, Abbas A, Kumar A, Cuevas IC, Li HD, Aguilar M, Xing C, Mani RS, Castrillon DH. FOXA2 suppresses endometrial carcinogenesis and epithelial-mesenchymal transition by regulating enhancer activity. J Clin Invest 2022; 132:157574. [PMID: 35703180 PMCID: PMC9197528 DOI: 10.1172/jci157574] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 05/04/2022] [Indexed: 01/23/2023] Open
Abstract
FOXA2 encodes a transcription factor mutated in 10% of endometrial cancers (ECs), with a higher mutation rate in aggressive variants. FOXA2 has essential roles in embryonic and uterine development. However, FOXA2’s role in EC is incompletely understood. Functional investigations using human and mouse EC cell lines revealed that FOXA2 controls endometrial epithelial gene expression programs regulating cell proliferation, adhesion, and endometrial-epithelial transition. In live animals, conditional inactivation of Foxa2 or Pten alone in endometrial epithelium did not result in ECs, but simultaneous inactivation of both genes resulted in lethal ECs with complete penetrance, establishing potent synergism between Foxa2 and PI3K signaling. Studies in tumor-derived cell lines and organoids highlighted additional invasion and cell growth phenotypes associated with malignant transformation and identified key mediators, including Myc and Cdh1. Transcriptome and cistrome analyses revealed that FOXA2 broadly controls gene expression programs through modification of enhancer activity in addition to regulating specific target genes, rationalizing its tumor suppressor functions. By integrating results from our cell lines, organoids, animal models, and patient data, our findings demonstrated that FOXA2 is an endometrial tumor suppressor associated with aggressive disease and with shared commonalities among its roles in endometrial function and carcinogenesis.
Collapse
Affiliation(s)
| | | | | | | | - Ashwani Kumar
- Eugene McDermott Center for Human Growth and Development
| | | | | | | | - Chao Xing
- Eugene McDermott Center for Human Growth and Development.,Department of Bioinformatics.,Department of Population and Data Sciences
| | - Ram S Mani
- Department of Pathology.,Harold C. Simmons Comprehensive Cancer Center.,Department of Urology, and
| | - Diego H Castrillon
- Department of Pathology.,Harold C. Simmons Comprehensive Cancer Center.,Department of Obstetrics and Gynecology, UT Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
8
|
Abstract
Decades of research have concluded that disruptions to Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) have profound effects on cancer progression. However, as our understanding of the tumor stroma has evolved, we can appreciate that disruptions to tumor suppressors such as PTEN should not be studied solely in an epithelial context. Inactivation of PTEN in the stroma is associated with worse outcomes in human cancers, therefore, it is important to understand activities regulated downstream of PTEN in stromal compartments. Studies reviewed herein provide evidence for important mechanistic targets downstream of PTEN signaling in cancer-associated fibroblasts (CAFs), a major component of the tumor stroma. We also discuss the potential clinical implications for these findings.
Collapse
Affiliation(s)
- Julia E Lefler
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, United States; Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States
| | - Cara Seward
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, United States; Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States
| | - Michael C Ostrowski
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, United States; Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States.
| |
Collapse
|
9
|
Maru Y, Hippo Y. Two-Way Development of the Genetic Model for Endometrial Tumorigenesis in Mice: Current and Future Perspectives. Front Genet 2021; 12:798628. [PMID: 34956336 PMCID: PMC8696168 DOI: 10.3389/fgene.2021.798628] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 11/23/2021] [Indexed: 12/23/2022] Open
Abstract
Endometrial cancer (EC) is the most common malignancy of the female reproductive tract worldwide. Although comprehensive genomic analyses of EC have already uncovered many recurrent genetic alterations and deregulated signaling pathways, its disease model has been limited in quantity and quality. Here, we review the current status of genetic models for EC in mice, which have been developed in two distinct ways at the level of organisms and cells. Accordingly, we first describe the in vivo model using genetic engineering. This approach has been applied to only a subset of genes, with a primary focus on Pten inactivation, given that PTEN is the most frequently altered gene in human EC. In these models, the tissue specificity in genetic engineering determined by the Cre transgenic line has been insufficient. Consequently, the molecular mechanisms underlying EC development remain poorly understood, and preclinical models are still limited in number. Recently, refined Cre transgenic mice have been created to address this issue. With highly specific gene recombination in the endometrial cell lineage, acceptable in vivo modeling of EC development is warranted using these Cre lines. Second, we illustrate an emerging cell-based model. This hybrid approach comprises ex vivo genetic engineering of organoids and in vivo tumor development in immunocompromised mice. Although only a few successful cases have been reported as proof of concept, this approach allows quick and comprehensive analysis, ensuring a high potential for reconstituting carcinogenesis. Hence, ex vivo/in vivo hybrid modeling of EC development and its comparison with corresponding in vivo models may dramatically accelerate EC research. Finally, we provide perspectives on future directions of EC modeling.
Collapse
Affiliation(s)
- Yoshiaki Maru
- Department of Molecular Carcinogenesis, Chiba Cancer Center Research Institute, Chiba, Japan
| | - Yoshitaka Hippo
- Department of Molecular Carcinogenesis, Chiba Cancer Center Research Institute, Chiba, Japan
| |
Collapse
|
10
|
Zakrzewski PK. Canonical TGFβ Signaling and Its Contribution to Endometrial Cancer Development and Progression-Underestimated Target of Anticancer Strategies. J Clin Med 2021; 10:3900. [PMID: 34501347 PMCID: PMC8432036 DOI: 10.3390/jcm10173900] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 08/24/2021] [Accepted: 08/26/2021] [Indexed: 02/08/2023] Open
Abstract
Endometrial cancer is one of the leading gynecological cancers diagnosed among women in their menopausal and postmenopausal age. Despite the progress in molecular biology and medicine, no efficient and powerful diagnostic and prognostic marker is dedicated to endometrial carcinogenesis. The canonical TGFβ pathway is a pleiotropic signaling cascade orchestrating a variety of cellular and molecular processes, whose alterations are responsible for carcinogenesis that originates from different tissue types. This review covers the current knowledge concerning the canonical TGFβ pathway (Smad-dependent) induced by prototypical TGFβ isoforms and the involvement of pathway alterations in the development and progression of endometrial neoplastic lesions. Since Smad-dependent signalization governs opposed cellular processes, such as growth arrest, apoptosis, tumor cells growth and differentiation, as well as angiogenesis and metastasis, TGFβ cascade may act both as a tumor suppressor or tumor promoter. However, the final effect of TGFβ signaling on endometrial cancer cells depends on the cancer disease stage. The multifunctional role of the TGFβ pathway indicates the possible utilization of alterations in the TGFβ cascade as a potential target of novel anticancer strategies.
Collapse
Affiliation(s)
- Piotr K Zakrzewski
- Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| |
Collapse
|
11
|
Maru Y, Tanaka N, Tatsumi Y, Nakamura Y, Itami M, Hippo Y. Kras activation in endometrial organoids drives cellular transformation and epithelial-mesenchymal transition. Oncogenesis 2021; 10:46. [PMID: 34172714 PMCID: PMC8233399 DOI: 10.1038/s41389-021-00337-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/04/2021] [Accepted: 06/10/2021] [Indexed: 01/06/2023] Open
Abstract
KRAS, an oncogene, is frequently activated by mutations in many cancers. Kras-driven adenocarcinoma development in the lung, pancreas, and biliary tract has been extensively studied using gene targeting in mice. By taking the organoid- and allograft-based genetic approach to these organs, essentially the same results as in vivo models were obtained in terms of tumor development. To verify the applicability of this approach to other organs, we investigated whether the combination of Kras activation and Pten inactivation, which gives rise to endometrial tumors in mice, could transform murine endometrial organoids in the subcutis of immunodeficient mice. We found that in KrasG12D-expressing endometrial organoids, Pten knockdown did not confer tumorigenicity, but Cdkn2a knockdown or Trp53 deletion led to the development of carcinosarcoma (CS), a rare, aggressive tumor comprising both carcinoma and sarcoma. Although they originated from epithelial cells, some CS cells expressed both epithelial and mesenchymal markers. Upon inoculation in immunodeficient mice, tumor-derived round organoids developed carcinoma or CS, whereas spindle-shaped organoids formed monophasic sarcoma only, suggesting an irreversible epithelial-mesenchymal transition during the transformation of endometrial cells and progression. As commonly observed in mutant Kras-driven tumors, the deletion of the wild-type Kras allele was identified in most induced tumors, whereas some epithelial cells in CS-derived organoids were unexpectedly negative for KrasG12D. Collectively, we showed that the oncogenic potential of KrasG12D and the histological features of derived tumors are context-dependent and varies according to the organ type and experimental settings. Our findings provide novel insights into the mechanisms underlying tissue-specific Kras-driven tumorigenesis.
Collapse
Affiliation(s)
- Yoshiaki Maru
- Department of Molecular Carcinogenesis, Chiba Cancer Center Research Institute, Chiba, Japan
| | - Naotake Tanaka
- Department of Gynecology, Chiba Cancer Center, Chiba, Japan
| | - Yasutoshi Tatsumi
- Division of Oncogenomics, Chiba Cancer Center Research Institute, Chiba, Japan
| | - Yuki Nakamura
- Division of Oncogenomics, Chiba Cancer Center Research Institute, Chiba, Japan
| | - Makiko Itami
- Division of Surgical Pathology, Chiba Cancer Center, Chiba, Japan
| | - Yoshitaka Hippo
- Department of Molecular Carcinogenesis, Chiba Cancer Center Research Institute, Chiba, Japan.
| |
Collapse
|
12
|
Kim YS, Yang SC, Park M, Choi Y, DeMayo FJ, Lydon JP, Kim H, Lim HJ, Song H. Different Cre systems induce differential microRNA landscapes and abnormalities in the female reproductive tracts of Dgcr8 conditional knockout mice. Cell Prolif 2021; 54:e12996. [PMID: 33496365 PMCID: PMC7941225 DOI: 10.1111/cpr.12996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/05/2021] [Accepted: 01/07/2021] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVES The female reproductive tract comprises several different cell types. Using three representative Cre systems, we comparatively analysed the phenotypes of Dgcr8 conditional knockout (cKO) mice to understand the function of Dgcr8, involved in canonical microRNA biogenesis, in the female reproductive tract. MATERIALS AND METHODS Dgcr8f/f mice were crossed with Ltficre/+ , Amhr2cre/+ or PRcre/+ mice to produce mice deficient in Dgcr8 in epithelial (Dgcr8ed/ed ), mesenchymal (Dgcr8md/md ) and all the compartments (Dgcr8td/td ) in the female reproductive tract. Reproductive phenotypes were evaluated in Dgcr8 cKO mice. Uteri and/or oviducts were used for small RNA-seq, mRNA-seq, real-time RT-PCR, and/or morphologic and histological analyses. RESULT Dgcr8ed/ed mice did not exhibit any distinct defects, whereas Dgcr8md/md mice showed sub-fertility and oviductal smooth muscle deformities. Dgcr8td/td mice were infertile due to anovulation and acute inflammation in the female reproductive tract and suffered from an atrophic uterus with myometrial defects. The microRNAs and mRNAs related to immune modulation and/or smooth muscle growth were systemically altered in the Dgcr8td/td uterus. Expression profiles of dysregulated microRNAs and mRNAs in the Dgcr8td/td uterus were different from those in other genotypes in a Cre-dependent manner. CONCLUSIONS Dgcr8 deficiency with different Cre systems induces overlapping but distinct phenotypes as well as the profiles of microRNAs and their target mRNAs in the female reproductive tract, suggesting the importance of selecting the appropriate Cre driver to investigate the genes of interest.
Collapse
Affiliation(s)
- Yeon Sun Kim
- Department of Biomedical ScienceCHA UniversitySeongnamKorea
- Present address:
Division of reproductive sciencesDepartment of PediatricsCincinnati Children’s HospitalOHUSA
| | | | - Mira Park
- Department of Biomedical ScienceCHA UniversitySeongnamKorea
| | - Youngsok Choi
- Department of Stem Cell and Regenerative BiotechnologyKonkuk UniversitySeoulKorea
| | - Francesco J. DeMayo
- Department of Reproductive and Developmental Biology LaboratoryNational Institute of Environmental Health SciencesResearch Triangle ParkNCUSA
| | - John P. Lydon
- Department of Molecular and Cellular Biology and Center for Reproductive MedicineBaylor College of MedicineHoustonTXUSA
| | - Hye‐Ryun Kim
- Department of Biomedical ScienceCHA UniversitySeongnamKorea
| | - Hyunjung Jade Lim
- Department of Veterinary Medicine, School of Veterinary MedicineKonkuk UniversitySeoulKorea
| | - Haengseok Song
- Department of Biomedical ScienceCHA UniversitySeongnamKorea
| |
Collapse
|
13
|
Sankhe R, Pai SRK, Kishore A. Tumour suppression through modulation of neprilysin signaling: A comprehensive review. Eur J Pharmacol 2020; 891:173727. [PMID: 33160935 DOI: 10.1016/j.ejphar.2020.173727] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/31/2020] [Accepted: 11/01/2020] [Indexed: 02/09/2023]
Abstract
Peptidases are emerging as promising drug targets in tumour suppression. Neprilysin, also known as neutral endopeptidase, is a cell surface peptidase that degrades various peptides such as angiotensin II, endothelin I, Substance P, etc., and reduces their local concentration. Neprilysin is expressed in various tissues such as kidney, prostate, lung, breast, brain, intestine, adrenal gland, etc. The tumour-suppressor mechanisms of neprilysin include its peptidase activity that degrades mitogenic growth factors such as fibroblast growth factor-2 and insulin-like growth factors, and the protein-protein interaction of neprilysin with phosphatase and tensin homolog, focal adhesion kinase, ezrin/radixin/moesin, and phosphoinositide 3-kinase. Studies have shown that the levels of neprilysin play an important role in malignancies. NEP is downregulated in prostate, renal, lung, breast, urothelial, cervical, hepatic cancers, etc. Histone deacetylation and hypermethylation of the neprilysin promoter region are the common mechanisms involved in the downregulation of neprilysin. Downregulation of the peptidase promotes angiogenesis, cell survival and cell migration. This review presents an overview of the role of neprilysin in malignancy, the tumour suppression mechanisms of neprilysin, the epigenetic mechanisms responsible for downregulation of neprilysin, and the potential pharmacological approaches to upregulate neprilysin levels and its activity.
Collapse
Affiliation(s)
- Runali Sankhe
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Sreedhara Ranganath K Pai
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Anoop Kishore
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.
| |
Collapse
|
14
|
Bai S, Wei L, Bai X, Gong Z, Yang J, Wei S. FRBI suppresses carcinogenesis of uterine cancers by regulating expressions of FHIT, PTEN and ARID1A. Biomed Signal Process Control 2020. [DOI: 10.1016/j.bspc.2020.102107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
Kyo S, Sato S, Nakayama K. Cancer-associated mutations in normal human endometrium: Surprise or expected? Cancer Sci 2020; 111:3458-3467. [PMID: 32654393 PMCID: PMC7541016 DOI: 10.1111/cas.14571] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 06/29/2020] [Accepted: 07/07/2020] [Indexed: 12/14/2022] Open
Abstract
The human endometrium is an essential component in human reproduction that has the unique characteristic of undergoing cyclic regeneration during each menstrual cycle. Vigorous regeneration after shedding may be sustained by stem/progenitor cells, for which molecular markers have not been fully identified. Although clonality analysis using X chromosome inactivation patterns has shown that normal human endometrial glands are composed of a monoclonal cell population, whether clonal expansion is derived from stem/progenitor cells remains unclear. Remarkable advances in next‐generation sequencing technology over the past decade have enabled somatic mutations to be detected in not only cancers, but also normal solid tissues. Unexpectedly frequent cancer‐associated mutations have been detected in a variety of normal tissues, and recent studies have clarified the mutational landscape of normal human endometrium. In epithelial glandular cells, representative cancer‐associated mutations are frequently observed in an age‐dependent manner, presumably leading to growth advantage. However, the extremely high mutation loads attributed to DNA mismatch repair deficiency and POLE mutations, as well as structural and copy number alterations, are specific to endometrial cancer, not to normal epithelial cells. The malignant conversion of normal epithelial cells requires these additional genetic hits, which are presumably accumulated during aging, and may therefore be a rare life event. These discoveries could be expected to shed light on the physiology and pathogenesis of the human endometrium and urge caution against the application of genetic screening for the early detection of endometrial cancer.
Collapse
Affiliation(s)
- Satoru Kyo
- Department of Obstetrics and Gynecology, Faculty of Medicine, Shimane University, Izumo, Japan
| | - Seiya Sato
- Department of Obstetrics and Gynecology, Faculty of Medicine, Shimane University, Izumo, Japan
| | - Kentaro Nakayama
- Department of Obstetrics and Gynecology, Faculty of Medicine, Shimane University, Izumo, Japan
| |
Collapse
|
16
|
Tao Y, Liang B. PTEN mutation: A potential prognostic factor associated with immune infiltration in endometrial carcinoma. Pathol Res Pract 2020; 216:152943. [PMID: 32279917 DOI: 10.1016/j.prp.2020.152943] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 03/05/2020] [Accepted: 03/21/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Endometrial carcinoma (EC) is a genetic disease, normally accompanied by gene mutations or abnormal expression patterns. However, PTEN mutation and its prognostic value in EC remained debated. Meanwhile, the distribution of PTEN mutation, as well as its correlation with clinical characteristics and tumor immune infiltrating cells, is still poorly understood. METHODS We conducted a comprehensive analysis of PTEN mutation based on The Cancer Genome Atlas (TCGA) database, including 525 uterine corpus endometrial carcinoma (UCEC) samples. We analyzed the frequency of PTEN mutation, distribution of PTEN mutation in different clinical characteristics, the prognostic value of PTEN mutation, and the correlation with tumor immune infiltrating cells in tumor microenvironment. RESULTS PTEN mutation was detected in 65.5﹪of total EC samples. PTEN mutation was significantly associated with age, histological type, clinical stage, and grade. In addition, the patients with PTEN mutation showed a significantly prolonged overall survival (OS) time and disease free survival (DFS) time compared with EC patients without PTEN mutation in entire group, training group, and validation group. Multivariate Cox regression analyses suggested that PTEN mutation was an independent prognostic factor in DFS. Moreover, the percentages of Tregs (P = 0.014) and M1 macrophages (P = 0.013) were significantly different in PTEN mutation group and non-mutation group. CONCLUSION PTEN mutation was correlated with favorable prognosis in EC patients. In addition, PTEN mutation was found to be associated with immune infiltrating cells in tumor microenvironment. Taken together, these findings suggested that PTEN could be regarded a potential predictive and therapeutic target for EC.
Collapse
Affiliation(s)
- Ye Tao
- Bioinformatics of Department, Key laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, China
| | - Bin Liang
- Bioinformatics of Department, Key laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, China.
| |
Collapse
|
17
|
Fbxw7 is a driver of uterine carcinosarcoma by promoting epithelial-mesenchymal transition. Proc Natl Acad Sci U S A 2019; 116:25880-25890. [PMID: 31772025 PMCID: PMC6926017 DOI: 10.1073/pnas.1911310116] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Uterine carcinosarcoma (UCS) is an aggressive endometrial cancer variant distinguished from endometrial adenocarcinoma (EC) by admixed malignant epithelial and mesenchymal components (carcinoma and sarcoma). The molecular events underlying UCS are enigmatic, as cancer gene mutations are generally shared among UCS/EC. We take advantage of genetic approaches in mice to show that inactivation of Fbxw7 and Pten results in UCS through spontaneous acquisition of mutations in a third gene (Tp53), arguing for strong biological selection and synergism in UCS. We used this UCS model including tumor-derived cell lines to show that Fbxw7 loss drives epithelial–mesenchymal transition, explaining Fbxw7’s role in UCS. This model system argues that simultaneous genetic defects in 3 distinct pathways (Fbxw7, Pten/PI3K, Tp53) converge in UCS genesis. Uterine carcinosarcoma is an aggressive variant of endometrial carcinoma characterized by unusual histologic features including discrete malignant epithelial and mesenchymal components (carcinoma and sarcoma). Recent studies have confirmed a monoclonal origin, and comprehensive genomic characterizations have identified mutations such as Tp53 and Pten. However, the biological origins and specific combination of driver events underpinning uterine carcinosarcoma have remained mysterious. Here, we explored the role of the tumor suppressor Fbxw7 in endometrial cancer through defined genetic model systems. Inactivation of Fbxw7 and Pten resulted in the formation of precancerous lesions (endometrioid intraepithelial neoplasia) and well-differentiated endometrioid adenocarcinomas. Surprisingly, all adenocarcinomas eventually developed into definitive uterine carcinosarcomas with carcinomatous and sarcomatous elements including heterologous differentiation, yielding a faithful genetically engineered model of this cancer type. Genomic analysis showed that most tumors spontaneously acquired Trp53 mutations, pointing to a triad of pathways (p53, PI3K, and Fbxw7) as the critical combination underpinning uterine carcinosarcoma, and to Fbxw7 as a key driver of this enigmatic endometrial cancer type. Lineage tracing provided formal genetic proof that the uterine carcinosarcoma cell of origin is an endometrial epithelial cell that subsequently undergoes a prominent epithelial–mesenchymal transition underlying the attainment of a highly invasive phenotype specifically driven by Fbxw7.
Collapse
|
18
|
Thies KA, Lefler JE, Leone G, Ostrowski MC. PTEN in the Stroma. Cold Spring Harb Perspect Med 2019; 9:cshperspect.a036111. [PMID: 31427286 DOI: 10.1101/cshperspect.a036111] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Although tremendous progress has been made in understanding the functions of Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) in tumor cells, only recently have tumor cell-non-autonomous PTEN actions within the tumor microenvironment (TME) been appreciated. While it is accepted that the TME actively communicates with cancer cells to influence disease progression, our understanding of the genes and pathways responsible is still evolving. Given that inactivation of PTEN in the stroma is correlated with worse outcomes in human cancers, determining the unique functions and mechanisms of PTEN regulation in various TME cell compartments is essential. In this review, the evidence for PTEN function in different TME cell compartments, the mechanisms governing PTEN inactivation, and the downstream pathways regulated by PTEN that are critical for intracellular communication, are covered. The potential clinical implications of these findings as well as the future directions for the study of stromal PTEN are discussed.
Collapse
Affiliation(s)
- Katie A Thies
- Department of Radiation Oncology and The Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA
| | - Julia E Lefler
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Hollings Cancer Center, Charleston, South Carolina 29425, USA.,Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | - Gustavo Leone
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Hollings Cancer Center, Charleston, South Carolina 29425, USA.,Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | - Michael C Ostrowski
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Hollings Cancer Center, Charleston, South Carolina 29425, USA.,Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| |
Collapse
|
19
|
Reply to Liu et al.: ALK5-mediated tumor suppressor signaling through SMAD2 and SMAD3 in the uterus. Proc Natl Acad Sci U S A 2019; 116:9166-9167. [PMID: 31068478 DOI: 10.1073/pnas.1904354116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
20
|
Fang X, Ni N, Lydon JP, Ivanov I, Bayless KJ, Rijnkels M, Li Q. Enhancer of Zeste 2 Polycomb Repressive Complex 2 Subunit Is Required for Uterine Epithelial Integrity. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:1212-1225. [PMID: 30954472 DOI: 10.1016/j.ajpath.2019.02.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 02/11/2019] [Accepted: 02/13/2019] [Indexed: 12/25/2022]
Abstract
Normal proliferation and differentiation of uterine epithelial cells are critical for uterine development and function. Enhancer of zeste 2 polycomb repressive complex 2 subunit (EZH2), a core component of polycomb repressive complexes 2, possesses histone methyltransferase activity that catalyzes the trimethylation of lysine 27 of histone H3. EZH2 has been involved in epithelial-mesenchymal transition, a key event in development and carcinogenesis. However, its role in uterine epithelial cell function remains unknown. To determine the role of uterine EZH2, Ezh2 was conditionally deleted using progesterone receptor Cre recombinase, which is expressed in both epithelial and mesenchymal compartments of the uterus. Loss of EZH2 promoted stratification of uterine epithelium, an uncommon and detrimental event in the uterus. The abnormal epithelium expressed basal cell markers, including tumor protein 63, cytokeratin 5 (KRT5), KRT6A, and KRT14. These results suggest that EZH2 serves as a guardian of uterine epithelial integrity, partially via inhibiting the differentiation of basal-like cells and preventing epithelial stratification. The observed epithelial abnormality was accompanied by fertility defects, altered uterine growth and function, and the development of endometrial hyperplasia. Thus, the Ezh2 conditional knockout mouse model may be useful to explore mechanisms that regulate endometrial homeostasis and uterine function.
Collapse
Affiliation(s)
- Xin Fang
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas
| | - Nan Ni
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas
| | - John P Lydon
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Ivan Ivanov
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas; Center for Translational Environmental Health Research, Texas A&M University, College Station, Texas
| | - Kayla J Bayless
- Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center, College Station, Texas
| | - Monique Rijnkels
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas
| | - Qinglei Li
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas.
| |
Collapse
|
21
|
Terakawa J, Serna VA, Taketo MM, Daikoku T, Suarez AA, Kurita T. Ovarian insufficiency and CTNNB1 mutations drive malignant transformation of endometrial hyperplasia with altered PTEN/PI3K activities. Proc Natl Acad Sci U S A 2019; 116:4528-4537. [PMID: 30782821 PMCID: PMC6410785 DOI: 10.1073/pnas.1814506116] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Endometrioid endometrial carcinomas (EECs) carry multiple driver mutations even when they are low grade. However, the biological significance of these concurrent mutations is unknown. We explored the interactions among three signature EEC mutations: loss-of-function (LOF) mutations in PTEN, gain-of-function (GOF) mutations of phosphoinositide 3-kinase (PI3K), and CTNNB1 exon 3 mutations, utilizing in vivo mutagenesis of the mouse uterine epithelium. While epithelial cells with a monoallelic mutation in any one of three genes failed to propagate in the endometrium, any combination of two or more mutant alleles promoted the growth of epithelium, causing simple hyperplasia, in a dose-dependent manner. Notably, Ctnnb1 exon 3 deletion significantly increased the size of hyperplastic lesions by promoting the growth of PTEN LOF and/or PI3K GOF mutant cells through the activation of neoadenogenesis pathways. Although these three mutations were insufficient to cause EEC in intact female mice, castration triggered malignant transformation, leading to myometrial invasion and serosal metastasis. Treatment of castrated mice with progesterone or estradiol attenuated the neoplastic transformation. This study demonstrates that multiple driver mutations are required for premalignant cells to break the growth-repressing field effect of normal endometrium maintained by ovarian steroids and that CTNNB1 exon 3 mutations play critical roles in the growth of preneoplastic cells within the endometrium of premenopausal women and in the myometrial invasion of EECs in menopausal women.
Collapse
Affiliation(s)
- Jumpei Terakawa
- Department of Cancer Biology and Genetics, Ohio State University, Columbus, OH 43210
- The Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210
| | - Vanida Ann Serna
- Department of Cancer Biology and Genetics, Ohio State University, Columbus, OH 43210
- The Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210
| | - Makoto Mark Taketo
- Division of Experimental Therapeutics, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, 606-8506 Kyoto, Japan
| | - Takiko Daikoku
- Division of Transgenic Animal Science, Advanced Science Research Center, Kanazawa University, 920-8640 Kanazawa, Japan
| | - Adrian A Suarez
- The Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210
- Department of Pathology, Ohio State University, Columbus, OH 43210
| | - Takeshi Kurita
- Department of Cancer Biology and Genetics, Ohio State University, Columbus, OH 43210;
- The Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210
| |
Collapse
|
22
|
Affiliation(s)
- Qinglei Li
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843
| |
Collapse
|