1
|
Sekine S, Tarama M, Wada H, Sami MM, Shibata T, Hayashi S. Emergence of periodic circumferential actin cables from the anisotropic fusion of actin nanoclusters during tubulogenesis. Nat Commun 2024; 15:464. [PMID: 38267421 PMCID: PMC10808230 DOI: 10.1038/s41467-023-44684-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 12/29/2023] [Indexed: 01/26/2024] Open
Abstract
The periodic circumferential cytoskeleton supports various tubular tissues. Radial expansion of the tube lumen causes anisotropic tensile stress, which can be exploited as a geometric cue. However, the molecular machinery linking anisotropy to robust circumferential patterning is poorly understood. Here, we aim to reveal the emergent process of circumferential actin cable formation in a Drosophila tracheal tube. During luminal expansion, sporadic actin nanoclusters emerge and exhibit circumferentially biased motion and fusion. RNAi screening reveals the formin family protein, DAAM, as an essential component responding to tissue anisotropy, and non-muscle myosin II as a component required for nanocluster fusion. An agent-based model simulation suggests that crosslinkers play a crucial role in nanocluster formation and cluster-to-cable transition occurs in response to mechanical anisotropy. Altogether, we propose that an actin nanocluster is an organizational unit that responds to stress in the cortical membrane and builds a higher-order cable structure.
Collapse
Affiliation(s)
- Sayaka Sekine
- Laboratory for Morphogenetic Signaling, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan.
- Laboratory for Histogenetic Dynamics, Graduate School of Life Sciences, Tohoku University, Sendai, Japan.
| | - Mitsusuke Tarama
- Laboratory for Physical Biology, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan.
- Department of Physics, Faculty of Science, Kyushu University, Fukuoka, Japan.
| | - Housei Wada
- Laboratory for Morphogenetic Signaling, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Mustafa M Sami
- Laboratory for Morphogenetic Signaling, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
- Physics and Biology Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Tatsuo Shibata
- Laboratory for Physical Biology, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Shigeo Hayashi
- Laboratory for Morphogenetic Signaling, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
- Kobe University Graduate School of Science, Kobe, Japan
| |
Collapse
|
2
|
Drees L, Schneider S, Riedel D, Schuh R, Behr M. The proteolysis of ZP proteins is essential to control cell membrane structure and integrity of developing tracheal tubes in Drosophila. eLife 2023; 12:e91079. [PMID: 37872795 PMCID: PMC10597583 DOI: 10.7554/elife.91079] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/20/2023] [Indexed: 10/25/2023] Open
Abstract
Membrane expansion integrates multiple forces to mediate precise tube growth and network formation. Defects lead to deformations, as found in diseases such as polycystic kidney diseases, aortic aneurysms, stenosis, and tortuosity. We identified a mechanism of sensing and responding to the membrane-driven expansion of tracheal tubes. The apical membrane is anchored to the apical extracellular matrix (aECM) and causes expansion forces that elongate the tracheal tubes. The aECM provides a mechanical tension that balances the resulting expansion forces, with Dumpy being an elastic molecule that modulates the mechanical stress on the matrix during tracheal tube expansion. We show in Drosophila that the zona pellucida (ZP) domain protein Piopio interacts and cooperates with the ZP protein Dumpy at tracheal cells. To resist shear stresses which arise during tube expansion, Piopio undergoes ectodomain shedding by the Matriptase homolog Notopleural, which releases Piopio-Dumpy-mediated linkages between membranes and extracellular matrix. Failure of this process leads to deformations of the apical membrane, tears the apical matrix, and impairs tubular network function. We also show conserved ectodomain shedding of the human TGFβ type III receptor by Notopleural and the human Matriptase, providing novel findings for in-depth analysis of diseases caused by cell and tube shape changes.
Collapse
Affiliation(s)
- Leonard Drees
- Research Group Molecular Organogenesis, Department of Molecular Developmental Biology, Max Planck Institute for Multidisciplinary SciencesGöttingenGermany
| | - Susi Schneider
- Cell biology, Institute for Biology, Leipzig UniversityLeipzigGermany
| | - Dietmar Riedel
- Facility for electron microscopy, Max Planck Institute for Multidisciplinary SciencesGöttingenGermany
| | - Reinhard Schuh
- Research Group Molecular Organogenesis, Department of Molecular Developmental Biology, Max Planck Institute for Multidisciplinary SciencesGöttingenGermany
| | - Matthias Behr
- Cell biology, Institute for Biology, Leipzig UniversityLeipzigGermany
| |
Collapse
|
3
|
Pinheiro AS, Tsarouhas V, Senti KA, Arefin B, Samakovlis C. Scavenger receptor endocytosis controls apical membrane morphogenesis in the Drosophila airways. eLife 2023; 12:e84974. [PMID: 37706489 PMCID: PMC10564452 DOI: 10.7554/elife.84974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 09/13/2023] [Indexed: 09/15/2023] Open
Abstract
The acquisition of distinct branch sizes and shapes is a central aspect in tubular organ morphogenesis and function. In the Drosophila airway tree, the interplay of apical extracellular matrix (ECM) components with the underlying membrane and cytoskeleton controls tube elongation, but the link between ECM composition with apical membrane morphogenesis and tube size regulation is elusive. Here, we characterized Emp (epithelial membrane protein), a Drosophila CD36 homolog belonging to the scavenger receptor class B protein family. emp mutant embryos fail to internalize the luminal chitin deacetylases Serp and Verm at the final stages of airway maturation and die at hatching with liquid filled airways. Emp localizes in apical epithelial membranes and shows cargo selectivity for LDLr-domain containing proteins. emp mutants also display over elongated tracheal tubes with increased levels of the apical proteins Crb, DE-cad, and phosphorylated Src (p-Src). We show that Emp associates with and organizes the βH-Spectrin cytoskeleton and is itself confined by apical F-actin bundles. Overexpression or loss of its cargo protein Serp lead to abnormal apical accumulations of Emp and perturbations in p-Src levels. We propose that during morphogenesis, Emp senses and responds to luminal cargo levels by initiating apical membrane endocytosis along the longitudinal tube axis and thereby restricts airway elongation.
Collapse
Affiliation(s)
- Ana Sofia Pinheiro
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm UniversityStockholmSweden
| | - Vasilios Tsarouhas
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm UniversityStockholmSweden
| | - Kirsten André Senti
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm UniversityStockholmSweden
- IMBA – Institute of Molecular Biotechnology, Austrian Academy of SciencesViennaAustria
| | - Badrul Arefin
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm UniversityStockholmSweden
- Sahlgrenska Academy, Gothenburg UniversityGothenburgSweden
| | - Christos Samakovlis
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm UniversityStockholmSweden
- Cardiopulmonary Institute, Justus Liebig University of GiessenGiessenGermany
| |
Collapse
|
4
|
Araújo SJ, Llimargas M. Time-Lapse Imaging and Morphometric Analysis of Tracheal Development in Drosophila. Methods Mol Biol 2023; 2608:163-182. [PMID: 36653708 DOI: 10.1007/978-1-0716-2887-4_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Detailed and quantitative analyses of the cellular events underlying the formation of specific organs or tissues is essential to understand the general mechanisms of morphogenesis and pattern formation. Observation of live tissues or whole-mount fixed specimens has emerged as the method of choice for identifying and quantifying specific cellular and tissular structures within the organism. In both cases, cell and subcellular structure identification and good quality image acquisition for these analyses are essential. Many markers for live imaging and fixed tissue are now available for detecting cell membranes, subcellular structures, and extracellular structures like the extracellular matrix (ECM). Combination of live imaging and analysis of fixed tissue is ideal to obtain a general and detailed picture of the events underlying embryonic development. By applying morphometric methods to both approaches, we can, in addition, obtain a quantitative evaluation of the specific parameters under investigation in morphogenetic and cell biological studies. In this chapter, we focus on the development of the tracheal system of Drosophila melanogaster, which provides an ideal paradigm to understand the formation of branched tubular organs. We describe the most used methods of imaging and morphometric analysis in tubulogenesis using mainly (but not exclusively) examples from embryonic development. We cover embryo preparation for fixed and live analysis of tubulogenesis, together with methods to visualize larval tracheal terminal cell branching and lumen formation. Finally, we describe morphometric analysis and quantification methods using fluorescent images of tracheal cells.
Collapse
Affiliation(s)
- Sofia J Araújo
- Department of Genetics, Microbiology and Statistics, School of Biology, University of Barcelona (UB), Barcelona, Spain. .,Institute of Biomedicine, University of Barcelona (IBUB), Barcelona, Spain.
| | - Marta Llimargas
- Institute of Molecular Biology of Barcelona (IBMB), CSIC, Parc Científic de Barcelona, Barcelona, Spain.
| |
Collapse
|
5
|
The basement membrane controls size and integrity of the Drosophila tracheal tubes. Cell Rep 2022; 39:110734. [PMID: 35476979 DOI: 10.1016/j.celrep.2022.110734] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 01/17/2022] [Accepted: 04/04/2022] [Indexed: 11/20/2022] Open
Abstract
Biological tubes are fundamental units of most metazoan organs. Their defective morphogenesis can cause malformations and pathologies. An integral component of biological tubes is the extracellular matrix, present apically (aECM) and basally (BM). Studies using the Drosophila tracheal system established an essential function for the aECM in tubulogenesis. Here, we demonstrate that the BM also plays a critical role in this process. We find that BM components are deposited in a spatial-temporal manner in the trachea. We show that laminins, core BM components, control size and shape of tracheal tubes and their topology within the embryo. At a cellular level, laminins control cell shape changes and distribution of the cortical cytoskeleton component α-spectrin. Finally, we report that the BM and aECM act independently-yet cooperatively-to control tube elongation and together to guarantee tissue integrity. Our results unravel key roles for the BM in shaping, positioning, and maintaining biological tubes.
Collapse
|
6
|
Hebbar S, Knust E. Reactive oxygen species (ROS) constitute an additional player in regulating epithelial development. Bioessays 2021; 43:e2100096. [PMID: 34260754 DOI: 10.1002/bies.202100096] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 06/09/2021] [Accepted: 06/09/2021] [Indexed: 12/18/2022]
Abstract
Reactive oxygen species (ROS) are highly reactive molecules produced in cells. So far, they have mostly been connected to diseases and pathological conditions. More recent results revealed a somewhat unexpected role of ROS in control of developmental processes. In this review, we elaborate on ROS in development, focussing on their connection to epithelial tissue morphogenesis. After briefly summarising unique characteristics of epithelial cells, we present some characteristic features of ROS species, their production and targets, with a focus on proteins important for epithelial development and function. Finally, we provide examples of regulation of epithelial morphogenesis by ROS, and also of developmental genes that regulate the overall redox status. We conclude by discussing future avenues of research that will further elucidate ROS regulation in epithelial development.
Collapse
Affiliation(s)
- Sarita Hebbar
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Elisabeth Knust
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| |
Collapse
|
7
|
Tamada M, Shi J, Bourdot KS, Supriyatno S, Palmquist KH, Gutierrez-Ruiz OL, Zallen JA. Toll receptors remodel epithelia by directing planar-polarized Src and PI3K activity. Dev Cell 2021; 56:1589-1602.e9. [PMID: 33932332 DOI: 10.1016/j.devcel.2021.04.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 03/11/2021] [Accepted: 04/07/2021] [Indexed: 12/12/2022]
Abstract
Toll-like receptors are essential for animal development and survival, with conserved roles in innate immunity, tissue patterning, and cell behavior. The mechanisms by which Toll receptors signal to the nucleus are well characterized, but how Toll receptors generate rapid, localized signals at the cell membrane to produce acute changes in cell polarity and behavior is not known. We show that Drosophila Toll receptors direct epithelial convergent extension by inducing planar-polarized patterns of Src and PI3-kinase (PI3K) activity. Toll receptors target Src activity to specific sites at the membrane, and Src recruits PI3K to the Toll-2 complex through tyrosine phosphorylation of the Toll-2 cytoplasmic domain. Reducing Src or PI3K activity disrupts planar-polarized myosin assembly, cell intercalation, and convergent extension, whereas constitutive Src activity promotes ectopic PI3K and myosin cortical localization. These results demonstrate that Toll receptors direct cell polarity and behavior by locally mobilizing Src and PI3K activity.
Collapse
Affiliation(s)
- Masako Tamada
- Howard Hughes Medical Institute and Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
| | - Jay Shi
- Howard Hughes Medical Institute and Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA; Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY, USA
| | - Kia S Bourdot
- Howard Hughes Medical Institute and Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
| | - Sara Supriyatno
- Howard Hughes Medical Institute and Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
| | - Karl H Palmquist
- Howard Hughes Medical Institute and Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
| | - Omar L Gutierrez-Ruiz
- Howard Hughes Medical Institute and Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
| | - Jennifer A Zallen
- Howard Hughes Medical Institute and Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA.
| |
Collapse
|
8
|
Cells into tubes: Molecular and physical principles underlying lumen formation in tubular organs. Curr Top Dev Biol 2020; 143:37-74. [PMID: 33820625 DOI: 10.1016/bs.ctdb.2020.09.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Tubular networks, such as the vascular and respiratory systems, transport liquids and gases in multicellular organisms. The basic units of these organs are tubes formed by single or multiple cells enclosing a luminal cavity. The formation and maintenance of correctly sized and shaped lumina are fundamental steps in organogenesis and are essential for organismal homeostasis. Therefore, understanding how cells generate, shape and maintain lumina is crucial for understanding normal organogenesis as well as the basis of pathological conditions. Lumen formation involves polarized membrane trafficking, cytoskeletal dynamics, and the influence of intracellular as well as extracellular mechanical forces, such as cortical tension, luminal pressure or blood flow. Various tissue culture and in vivo model systems, ranging from MDCK cell spheroids to tubular organs in worms, flies, fish, and mice, have provided many insights into the molecular and cellular mechanisms underlying lumenogenesis and revealed key factors that regulate the size and shape of cellular tubes. Moreover, the development of new experimental and imaging approaches enabled quantitative analyses of intracellular dynamics and allowed to assess the roles of cellular and tissue mechanics during tubulogenesis. However, how intracellular processes are coordinated and regulated across scales of biological organization to generate properly sized and shaped tubes is only beginning to be understood. Here, we review recent insights into the molecular, cellular and physical mechanisms underlying lumen formation during organogenesis. We discuss how these mechanisms control lumen formation in various model systems, with a special focus on the morphogenesis of tubular organs in Drosophila.
Collapse
|
9
|
Skouloudaki K, Papadopoulos DK, Tomancak P, Knust E. The apical protein Apnoia interacts with Crumbs to regulate tracheal growth and inflation. PLoS Genet 2019; 15:e1007852. [PMID: 30645584 PMCID: PMC6333334 DOI: 10.1371/journal.pgen.1007852] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 11/25/2018] [Indexed: 12/21/2022] Open
Abstract
Most organs of multicellular organisms are built from epithelial tubes. To exert their functions, tubes rely on apico-basal polarity, on junctions, which form a barrier to separate the inside from the outside, and on a proper lumen, required for gas or liquid transport. Here we identify apnoia (apn), a novel Drosophila gene required for tracheal tube elongation and lumen stability at larval stages. Larvae lacking Apn show abnormal tracheal inflation and twisted airway tubes, but no obvious defects in early steps of tracheal maturation. apn encodes a transmembrane protein, primarily expressed in the tracheae, which exerts its function by controlling the localization of Crumbs (Crb), an evolutionarily conserved apical determinant. Apn physically interacts with Crb to control its localization and maintenance at the apical membrane of developing airways. In apn mutant tracheal cells, Crb fails to localize apically and is trapped in retromer-positive vesicles. Consistent with the role of Crb in apical membrane growth, RNAi-mediated knockdown of Crb results in decreased apical surface growth of tracheal cells and impaired axial elongation of the dorsal trunk. We conclude that Apn is a novel regulator of tracheal tube expansion in larval tracheae, the function of which is mediated by Crb.
Collapse
Affiliation(s)
- Kassiani Skouloudaki
- Max-Planck Institute for Molecular Cell Biology and Genetics, Dresden, Germany
- * E-mail: (EK); (KS)
| | | | - Pavel Tomancak
- Max-Planck Institute for Molecular Cell Biology and Genetics, Dresden, Germany
| | - Elisabeth Knust
- Max-Planck Institute for Molecular Cell Biology and Genetics, Dresden, Germany
- * E-mail: (EK); (KS)
| |
Collapse
|