1
|
Guo X, Prajapati R, Chun J, Byun I, Gebis KK, Wang YZ, Ling K, Dalton C, Blair JA, Hamidianjahromi A, Bachmann G, Rigo F, Jafar-Nejad P, Savas JN, Lee MJ, Sreedharan J, Kalb RG. Reduction of RAD23A extends lifespan and mitigates pathology in TDP-43 mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.10.612226. [PMID: 39314471 PMCID: PMC11419047 DOI: 10.1101/2024.09.10.612226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Protein misfolding and aggregation are cardinal features of neurodegenerative disease (NDD) and they contribute to pathophysiology by both loss-of-function (LOF) and gain-of-function (GOF) mechanisms. This is well exemplified by TDP-43 which aggregates and mislocalizes in several NDDs. The depletion of nuclear TDP-43 leads to reduction in its normal function in RNA metabolism and the cytoplasmic accumulation of TDP-43 leads to aberrant protein homeostasis. A modifier screen found that loss of rad23 suppressed TDP-43 pathology in invertebrate and tissue culture models. Here we show in a mouse model of TDP-43 pathology that genetic or antisense oligonucleotide (ASO)-mediated reduction in rad23a confers benefits on survival and behavior, histological hallmarks of disease and reduction of mislocalized and aggregated TDP-43. This results in improved function of the ubiquitin-proteasome system (UPS) and correction of transcriptomic alterations evoked by pathologic TDP-43. RAD23A-dependent remodeling of the insoluble proteome appears to be a key event driving pathology in this model. As TDP-43 pathology is prevalent in both familial and sporadic NDD, targeting RAD23A may have therapeutic potential.
Collapse
Affiliation(s)
- Xueshui Guo
- Department of Neurology, Northwestern University School of Medicine, Chicago, IL, United States
| | - Ravindra Prajapati
- Maurice Wohl Clinical Neuroscience Research Institute, King's College London, London, United Kingdom
| | - Jiyeon Chun
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Korea
| | - Insuk Byun
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Korea
| | - Kamil K Gebis
- Department of Neurology, Northwestern University School of Medicine, Chicago, IL, United States
| | - Yi-Zhi Wang
- Department of Neurology, Northwestern University School of Medicine, Chicago, IL, United States
| | - Karen Ling
- Ionis Pharmaceuticals, Carlsbad, CA, United States
| | - Casey Dalton
- Department of Neurology, Northwestern University School of Medicine, Chicago, IL, United States
| | - Jeff A Blair
- Department of Neurology, Northwestern University School of Medicine, Chicago, IL, United States
| | - Anahid Hamidianjahromi
- Department of Neurology, Northwestern University School of Medicine, Chicago, IL, United States
| | | | - Frank Rigo
- Ionis Pharmaceuticals, Carlsbad, CA, United States
| | | | - Jeffrey N Savas
- Department of Neurology, Northwestern University School of Medicine, Chicago, IL, United States
| | - Min Jae Lee
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Korea
| | - Jemeen Sreedharan
- Maurice Wohl Clinical Neuroscience Research Institute, King's College London, London, United Kingdom
| | - Robert G Kalb
- Department of Neurology, Northwestern University School of Medicine, Chicago, IL, United States
| |
Collapse
|
2
|
Smith K, Climer S. Capturing biomarkers associated with Alzheimer disease subtypes using data distribution characteristics. Front Comput Neurosci 2024; 18:1388504. [PMID: 39309755 PMCID: PMC11413970 DOI: 10.3389/fncom.2024.1388504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 08/20/2024] [Indexed: 09/25/2024] Open
Abstract
Late-onset Alzheimer disease (AD) is a highly complex disease with multiple subtypes, as demonstrated by its disparate risk factors, pathological manifestations, and clinical traits. Discovery of biomarkers to diagnose specific AD subtypes is a key step towards understanding biological mechanisms underlying this enigmatic disease, generating candidate drug targets, and selecting participants for drug trials. Popular statistical methods for evaluating candidate biomarkers, fold change (FC) and area under the receiver operating characteristic curve (AUC), were designed for homogeneous data and we demonstrate the inherent weaknesses of these approaches when used to evaluate subtypes representing less than half of the diseased cases. We introduce a unique evaluation metric that is based on the distribution of the values, rather than the magnitude of the values, to identify analytes that are associated with a subset of the diseased cases, thereby revealing potential biomarkers for subtypes. Our approach, Bimodality Coefficient Difference (BCD), computes the difference between the degrees of bimodality for the cases and controls. We demonstrate the effectiveness of our approach with large-scale synthetic data trials containing nearly perfect subtypes. In order to reveal novel AD biomarkers for heterogeneous subtypes, we applied BCD to gene expression data for 8,650 genes for 176 AD cases and 187 controls. Our results confirm the utility of BCD for identifying subtypes of heterogeneous diseases.
Collapse
Affiliation(s)
| | - Sharlee Climer
- Department of Computer Science, University of Missouri – St. Louis, St. Louis, MO, United States
| |
Collapse
|
3
|
Zhou L, Xu R. Invertebrate genetic models of amyotrophic lateral sclerosis. Front Mol Neurosci 2024; 17:1328578. [PMID: 38500677 PMCID: PMC10944931 DOI: 10.3389/fnmol.2024.1328578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/24/2024] [Indexed: 03/20/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a common adult-onset neurodegenerative disease characterized by the progressive death of motor neurons in the cerebral cortex, brain stem, and spinal cord. The exact mechanisms underlying the pathogenesis of ALS remain unclear. The current consensus regarding the pathogenesis of ALS suggests that the interaction between genetic susceptibility and harmful environmental factors is a promising cause of ALS onset. The investigation of putative harmful environmental factors has been the subject of several ongoing studies, but the use of transgenic animal models to study ALS has provided valuable information on the onset of ALS. Here, we review the current common invertebrate genetic models used to study the pathology, pathophysiology, and pathogenesis of ALS. The considerations of the usage, advantages, disadvantages, costs, and availability of each invertebrate model will also be discussed.
Collapse
Affiliation(s)
- LiJun Zhou
- Department of Neurology, National Regional Center for Neurological Diseases, Clinical College of Nanchang Medical College, Jiangxi Provincial People's Hospital, First Affiliated Hospital of Nanchang Medical College, Xiangya Hospital of Central South University Jiangxi Hospital, Nanchang, Jiangxi, China
- Medical College of Nanchang University, Nanchang, China
| | - RenShi Xu
- Department of Neurology, National Regional Center for Neurological Diseases, Clinical College of Nanchang Medical College, Jiangxi Provincial People's Hospital, First Affiliated Hospital of Nanchang Medical College, Xiangya Hospital of Central South University Jiangxi Hospital, Nanchang, Jiangxi, China
- Medical College of Nanchang University, Nanchang, China
| |
Collapse
|
4
|
Eck RJ, Stair JG, Kraemer BC, Liachko NF. Simple models to understand complex disease: 10 years of progress from Caenorhabditis elegans models of amyotrophic lateral sclerosis and frontotemporal lobar degeneration. Front Neurosci 2024; 17:1300705. [PMID: 38239833 PMCID: PMC10794587 DOI: 10.3389/fnins.2023.1300705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 11/28/2023] [Indexed: 01/22/2024] Open
Abstract
The nematode Caenorhabditis elegans are a powerful model system to study human disease, with numerous experimental advantages including significant genetic and cellular homology to vertebrate animals, a short lifespan, and tractable behavioral, molecular biology and imaging assays. Beginning with the identification of SOD1 as a genetic cause of amyotrophic lateral sclerosis (ALS), C. elegans have contributed to a deeper understanding of the mechanistic underpinnings of this devastating neurodegenerative disease. More recently this work has expanded to encompass models of other types of ALS and the related disease frontotemporal lobar degeneration (FTLD-TDP), including those characterized by mutation or accumulation of the proteins TDP-43, C9orf72, FUS, HnRNPA2B1, ALS2, DCTN1, CHCHD10, ELP3, TUBA4A, CAV1, UBQLN2, ATXN3, TIA1, KIF5A, VAPB, GRN, and RAB38. In this review we summarize these models and the progress and insights from the last ten years of using C. elegans to study the neurodegenerative diseases ALS and FTLD-TDP.
Collapse
Affiliation(s)
- Randall J. Eck
- Graduate Program in Neuroscience, University of Washington, Seattle, WA, United States
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA, United States
| | - Jade G. Stair
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, United States
| | - Brian C. Kraemer
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA, United States
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, United States
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, United States
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States
| | - Nicole F. Liachko
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA, United States
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, United States
| |
Collapse
|
5
|
Hayes LR, Kalab P. Emerging Therapies and Novel Targets for TDP-43 Proteinopathy in ALS/FTD. Neurotherapeutics 2022; 19:1061-1084. [PMID: 35790708 PMCID: PMC9587158 DOI: 10.1007/s13311-022-01260-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2022] [Indexed: 10/17/2022] Open
Abstract
Nuclear clearance and cytoplasmic mislocalization of the essential RNA binding protein, TDP-43, is a pathologic hallmark of amyotrophic lateral sclerosis, frontotemporal dementia, and related neurodegenerative disorders collectively termed "TDP-43 proteinopathies." TDP-43 mislocalization causes neurodegeneration through both loss and gain of function mechanisms. Loss of TDP-43 nuclear RNA processing function destabilizes the transcriptome by multiple mechanisms including disruption of pre-mRNA splicing, the failure of repression of cryptic exons, and retrotransposon activation. The accumulation of cytoplasmic TDP-43, which is prone to aberrant liquid-liquid phase separation and aggregation, traps TDP-43 in the cytoplasm and disrupts a host of downstream processes including the trafficking of RNA granules, local translation within axons, and mitochondrial function. In this review, we will discuss the TDP-43 therapy development pipeline, beginning with therapies in current and upcoming clinical trials, which are primarily focused on accelerating the clearance of TDP-43 aggregates. Then, we will look ahead to emerging strategies from preclinical studies, first from high-throughput genetic and pharmacologic screens, and finally from mechanistic studies focused on the upstream cause(s) of TDP-43 disruption in ALS/FTD. These include modulation of stress granule dynamics, TDP-43 nucleocytoplasmic shuttling, RNA metabolism, and correction of aberrant splicing events.
Collapse
Affiliation(s)
- Lindsey R Hayes
- Johns Hopkins School of Medicine, Dept. of Neurology, Baltimore, MD, USA.
| | - Petr Kalab
- Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
6
|
Kropp PA, Bauer R, Zafra I, Graham C, Golden A. Caenorhabditis elegans for rare disease modeling and drug discovery: strategies and strengths. Dis Model Mech 2021; 14:dmm049010. [PMID: 34370008 PMCID: PMC8380043 DOI: 10.1242/dmm.049010] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Although nearly 10% of Americans suffer from a rare disease, clinical progress in individual rare diseases is severely compromised by lack of attention and research resources compared to common diseases. It is thus imperative to investigate these diseases at their most basic level to build a foundation and provide the opportunity for understanding their mechanisms and phenotypes, as well as potential treatments. One strategy for effectively and efficiently studying rare diseases is using genetically tractable organisms to model the disease and learn about the essential cellular processes affected. Beyond investigating dysfunctional cellular processes, modeling rare diseases in simple organisms presents the opportunity to screen for pharmacological or genetic factors capable of ameliorating disease phenotypes. Among the small model organisms that excel in rare disease modeling is the nematode Caenorhabditis elegans. With a staggering breadth of research tools, C. elegans provides an ideal system in which to study human disease. Molecular and cellular processes can be easily elucidated, assayed and altered in ways that can be directly translated to humans. When paired with other model organisms and collaborative efforts with clinicians, the power of these C. elegans studies cannot be overstated. This Review highlights studies that have used C. elegans in diverse ways to understand rare diseases and aid in the development of treatments. With continuing and advancing technologies, the capabilities of this small round worm will continue to yield meaningful and clinically relevant information for human health.
Collapse
Affiliation(s)
| | | | | | | | - Andy Golden
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
7
|
Schultheis N, Jiang M, Selleck SB. Putting the brakes on autophagy: The role of heparan sulfate modified proteins in the balance of anabolic and catabolic pathways and intracellular quality control. Matrix Biol 2021; 100-101:173-181. [PMID: 33548399 DOI: 10.1016/j.matbio.2021.01.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 01/29/2021] [Accepted: 01/30/2021] [Indexed: 12/11/2022]
Abstract
Autophagy is a fundamental cellular process discovered as a response to nutrient deprivation. It provides the cellular and molecular machinery for catabolism of cellular constituents, generating energy and providing building blocks for continued survival. However, autophagy does much more than provide an entry into catabolic pathways, it provides a mechanism for intracellular quality control, removing damaged organelles and misfolded proteins, processes critical for cellular health. Autophagy serves as a counterpoint to cell growth and anabolic events, activated when growth is not possible or is suppressed. Hence, there is an inherent antagonism between autophagy and growth. Heparan sulfate modified proteins are important co-receptors that generally promote growth factor activity and are therefore positioned within signaling networks that inhibit, or negatively regulate autophagy levels. This review summarizes evidence that heparan sulfate modified proteins provide an evolutionarily conserved inhibitory modulation of autophagy that can have profound effects on cell physiology and organismal responses to stress.
Collapse
Affiliation(s)
- Nicholas Schultheis
- Department of Biochemistry & Molecular Biology, Pennsylvania State University, University Park, PA 16802, United States
| | - Mei Jiang
- Department of Biochemistry & Molecular Biology, Pennsylvania State University, University Park, PA 16802, United States
| | - Scott B Selleck
- Department of Biochemistry & Molecular Biology, Pennsylvania State University, University Park, PA 16802, United States.
| |
Collapse
|
8
|
Lloyd MD, Yevglevskis M, Nathubhai A, James TD, Threadgill MD, Woodman TJ. Racemases and epimerases operating through a 1,1-proton transfer mechanism: reactivity, mechanism and inhibition. Chem Soc Rev 2021; 50:5952-5984. [PMID: 34027955 PMCID: PMC8142540 DOI: 10.1039/d0cs00540a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Indexed: 12/12/2022]
Abstract
Racemases and epimerases catalyse changes in the stereochemical configurations of chiral centres and are of interest as model enzymes and as biotechnological tools. They also occupy pivotal positions within metabolic pathways and, hence, many of them are important drug targets. This review summarises the catalytic mechanisms of PLP-dependent, enolase family and cofactor-independent racemases and epimerases operating by a deprotonation/reprotonation (1,1-proton transfer) mechanism and methods for measuring their catalytic activity. Strategies for inhibiting these enzymes are reviewed, as are specific examples of inhibitors. Rational design of inhibitors based on substrates has been extensively explored but there is considerable scope for development of transition-state mimics and covalent inhibitors and for the identification of inhibitors by high-throughput, fragment and virtual screening approaches. The increasing availability of enzyme structures obtained using X-ray crystallography will facilitate development of inhibitors by rational design and fragment screening, whilst protein models will facilitate development of transition-state mimics.
Collapse
Affiliation(s)
- Matthew D Lloyd
- Drug & Target Discovery, Department of Pharmacy & Pharmacology, University of Bath, Claverton Down, Bath BA2 7AY, UK.
| | - Maksims Yevglevskis
- Drug & Target Discovery, Department of Pharmacy & Pharmacology, University of Bath, Claverton Down, Bath BA2 7AY, UK. and CatSci Ltd., CBTC2, Capital Business Park, Wentloog, Cardiff CF3 2PX, UK
| | - Amit Nathubhai
- Drug & Target Discovery, Department of Pharmacy & Pharmacology, University of Bath, Claverton Down, Bath BA2 7AY, UK. and University of Sunderland, School of Pharmacy & Pharmaceutical Sciences, Sciences Complex, Sunderland SR1 3SD, UK
| | - Tony D James
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK and School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, People's Republic of China
| | - Michael D Threadgill
- Drug & Target Discovery, Department of Pharmacy & Pharmacology, University of Bath, Claverton Down, Bath BA2 7AY, UK. and Institute of Biological, Environmental & Rural Sciences, Aberystwyth University, Aberystwyth SY23 3BY, UK
| | - Timothy J Woodman
- Drug & Target Discovery, Department of Pharmacy & Pharmacology, University of Bath, Claverton Down, Bath BA2 7AY, UK.
| |
Collapse
|
9
|
Giunti S, Andersen N, Rayes D, De Rosa MJ. Drug discovery: Insights from the invertebrate Caenorhabditis elegans. Pharmacol Res Perspect 2021; 9:e00721. [PMID: 33641258 PMCID: PMC7916527 DOI: 10.1002/prp2.721] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/06/2021] [Indexed: 12/18/2022] Open
Abstract
Therapeutic drug development is a long, expensive, and complex process that usually takes 12-15 years. In the early phases of drug discovery, in particular, there is a growing need for animal models that ensure the reduction in both cost and time. Caenorhabditis elegans has been traditionally used to address fundamental aspects of key biological processes, such as apoptosis, aging, and gene expression regulation. During the last decade, with the advent of large-scale platforms for screenings, this invertebrate has also emerged as an essential tool in the pharmaceutical research industry to identify novel drugs and drug targets. In this review, we discuss the reasons why C. elegans has been positioned as an outstanding cost-effective option for drug discovery, highlighting both the advantages and drawbacks of this model. Particular attention is paid to the suitability of this nematode in large-scale genetic and pharmacological screenings. High-throughput screenings in C. elegans have indeed contributed to the breakthrough of a wide variety of candidate compounds involved in extensive fields including neurodegeneration, pathogen infections and metabolic disorders. The versatility of this nematode, which enables its instrumentation as a model of human diseases, is another attribute also herein underscored. As illustrative examples, we discuss the utility of C. elegans models of both human neurodegenerative diseases and parasitic nematodes in the drug discovery industry. Summing up, this review aims to demonstrate the impact of C. elegans models on the drug discovery pipeline.
Collapse
Affiliation(s)
- Sebastián Giunti
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB) CCT UNS‐CONICETBahía BlancaArgentina
- Dpto de Biología, Bioquímica y FarmaciaUniversidad Nacional del SurBahía BlancaArgentina
| | - Natalia Andersen
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB) CCT UNS‐CONICETBahía BlancaArgentina
- Dpto de Biología, Bioquímica y FarmaciaUniversidad Nacional del SurBahía BlancaArgentina
| | - Diego Rayes
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB) CCT UNS‐CONICETBahía BlancaArgentina
- Dpto de Biología, Bioquímica y FarmaciaUniversidad Nacional del SurBahía BlancaArgentina
| | - María José De Rosa
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB) CCT UNS‐CONICETBahía BlancaArgentina
- Dpto de Biología, Bioquímica y FarmaciaUniversidad Nacional del SurBahía BlancaArgentina
| |
Collapse
|
10
|
Lehmkuhl EM, Loganathan S, Alsop E, Blythe AD, Kovalik T, Mortimore NP, Barrameda D, Kueth C, Eck RJ, Siddegowda BB, Joardar A, Ball H, Macias ME, Bowser R, Van Keuren-Jensen K, Zarnescu DC. TDP-43 proteinopathy alters the ribosome association of multiple mRNAs including the glypican Dally-like protein (Dlp)/GPC6. Acta Neuropathol Commun 2021; 9:52. [PMID: 33762006 PMCID: PMC7992842 DOI: 10.1186/s40478-021-01148-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/06/2021] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a genetically heterogeneous neurodegenerative disease in which 97% of patients exhibit cytoplasmic aggregates containing the RNA binding protein TDP-43. Using tagged ribosome affinity purifications in Drosophila models of TDP-43 proteinopathy, we identified TDP-43 dependent translational alterations in motor neurons impacting the spliceosome, pentose phosphate and oxidative phosphorylation pathways. A subset of the mRNAs with altered ribosome association are also enriched in TDP-43 complexes suggesting that they may be direct targets. Among these, dlp mRNA, which encodes the glypican Dally like protein (Dlp)/GPC6, a wingless (Wg/Wnt) signaling regulator is insolubilized both in flies and patient tissues with TDP-43 pathology. While Dlp/GPC6 forms puncta in the Drosophila neuropil and ALS spinal cords, it is reduced at the neuromuscular synapse in flies suggesting compartment specific effects of TDP-43 proteinopathy. These findings together with genetic interaction data show that Dlp/GPC6 is a novel, physiologically relevant target of TDP-43 proteinopathy.
Collapse
Affiliation(s)
- Erik M. Lehmkuhl
- Department of Cellular and Molecular Biology, University of Arizona, 1007 E. Lowell St, LSS RM 548A, Tucson, AZ 85721 USA
| | - Suvithanandhini Loganathan
- Department of Cellular and Molecular Biology, University of Arizona, 1007 E. Lowell St, LSS RM 548A, Tucson, AZ 85721 USA
| | - Eric Alsop
- Translational Genomics Research Institute, 445 N 5th St, Phoenix, AZ 85004 USA
| | - Alexander D. Blythe
- Department of Cellular and Molecular Biology, University of Arizona, 1007 E. Lowell St, LSS RM 548A, Tucson, AZ 85721 USA
| | - Tina Kovalik
- Department of Neurobiology, Barrow Neurological Institute, 350 W Thomas Rd, Phoenix, AZ 85013 USA
| | - Nicholas P. Mortimore
- Department of Cellular and Molecular Biology, University of Arizona, 1007 E. Lowell St, LSS RM 548A, Tucson, AZ 85721 USA
| | - Dianne Barrameda
- Department of Cellular and Molecular Biology, University of Arizona, 1007 E. Lowell St, LSS RM 548A, Tucson, AZ 85721 USA
| | - Chuol Kueth
- Department of Cellular and Molecular Biology, University of Arizona, 1007 E. Lowell St, LSS RM 548A, Tucson, AZ 85721 USA
| | - Randall J. Eck
- Department of Cellular and Molecular Biology, University of Arizona, 1007 E. Lowell St, LSS RM 548A, Tucson, AZ 85721 USA
| | - Bhavani B. Siddegowda
- Department of Cellular and Molecular Biology, University of Arizona, 1007 E. Lowell St, LSS RM 548A, Tucson, AZ 85721 USA
| | - Archi Joardar
- Department of Cellular and Molecular Biology, University of Arizona, 1007 E. Lowell St, LSS RM 548A, Tucson, AZ 85721 USA
| | - Hannah Ball
- Department of Cellular and Molecular Biology, University of Arizona, 1007 E. Lowell St, LSS RM 548A, Tucson, AZ 85721 USA
| | - Maria E. Macias
- Department of Cellular and Molecular Biology, University of Arizona, 1007 E. Lowell St, LSS RM 548A, Tucson, AZ 85721 USA
| | - Robert Bowser
- Department of Neurobiology, Barrow Neurological Institute, 350 W Thomas Rd, Phoenix, AZ 85013 USA
| | | | - Daniela C. Zarnescu
- Department of Cellular and Molecular Biology, University of Arizona, 1007 E. Lowell St, LSS RM 548A, Tucson, AZ 85721 USA
- Department of Neuroscience, University of Arizona, 1040 4th St, Tucson, AZ 85721 USA
- Department of Neurology, University of Arizona, 1501 N Campbell Ave, Tucson, AZ 85724 USA
| |
Collapse
|
11
|
Caldwell KA, Willicott CW, Caldwell GA. Modeling neurodegeneration in Caenorhabditis elegans. Dis Model Mech 2020; 13:13/10/dmm046110. [PMID: 33106318 PMCID: PMC7648605 DOI: 10.1242/dmm.046110] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The global burden of neurodegenerative diseases underscores the urgent need for innovative strategies to define new drug targets and disease-modifying factors. The nematode Caenorhabditis elegans has served as the experimental subject for multiple transformative discoveries that have redefined our understanding of biology for ∼60 years. More recently, the considerable attributes of C. elegans have been applied to neurodegenerative diseases, including amyotrophic lateral sclerosis, Alzheimer's disease, Parkinson's disease and Huntington's disease. Transgenic nematodes with genes encoding normal and disease variants of proteins at the single- or multi-copy level under neuronal-specific promoters limits expression to select neuronal subtypes. The anatomical transparency of C. elegans affords the use of co-expressed fluorescent proteins to follow the progression of neurodegeneration as the animals age. Significantly, a completely defined connectome facilitates detailed understanding of the impact of neurodegeneration on organismal health and offers a unique capacity to accurately link cell death with behavioral dysfunction or phenotypic variation in vivo. Moreover, chemical treatments, as well as forward and reverse genetic screening, hasten the identification of modifiers that alter neurodegeneration. When combined, these chemical-genetic analyses establish critical threshold states to enhance or reduce cellular stress for dissecting associated pathways. Furthermore, C. elegans can rapidly reveal whether lifespan or healthspan factor into neurodegenerative processes. Here, we outline the methodologies employed to investigate neurodegeneration in C. elegans and highlight numerous studies that exemplify its utility as a pre-clinical intermediary to expedite and inform mammalian translational research. Summary: While unsurpassed as an experimental system for fundamental biology, Caenorhabditis elegans remains undervalued for its translational potential. Here, we highlight significant outcomes from, and resources available for, C. elegans-based research into neurodegenerative disorders.
Collapse
Affiliation(s)
- Kim A Caldwell
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487, USA .,Departments of Neurobiology, Neurology, Center for Neurodegeneration and Experimental Therapeutics, and Nathan Shock Center of Excellence in the Basic Biology of Aging, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Corey W Willicott
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Guy A Caldwell
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487, USA.,Departments of Neurobiology, Neurology, Center for Neurodegeneration and Experimental Therapeutics, and Nathan Shock Center of Excellence in the Basic Biology of Aging, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|