1
|
Rips J, Halstuk O, Fuchs A, Lang Z, Sido T, Gershon-Naamat S, Abu-Libdeh B, Edvardson S, Salah S, Breuer O, Hadhud M, Eden S, Simon I, Slae M, Damseh NS, Abu-Libdeh A, Eskin-Schwartz M, Birk OS, Varga J, Schueler-Furman O, Rosenbluh C, Elpeleg O, Yanovsky-Dagan S, Mor-Shaked H, Harel T. Unbiased phenotype and genotype matching maximizes gene discovery and diagnostic yield. Genet Med 2024; 26:101068. [PMID: 38193396 DOI: 10.1016/j.gim.2024.101068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 12/31/2023] [Accepted: 01/04/2024] [Indexed: 01/10/2024] Open
Abstract
PURPOSE Widespread application of next-generation sequencing, combined with data exchange platforms, has provided molecular diagnoses for countless families. To maximize diagnostic yield, we implemented an unbiased semi-automated genematching algorithm based on genotype and phenotype matching. METHODS Rare homozygous variants identified in 2 or more affected individuals, but not in healthy individuals, were extracted from our local database of ∼12,000 exomes. Phenotype similarity scores (PSS), based on human phenotype ontology terms, were assigned to each pair of individuals matched at the genotype level using HPOsim. RESULTS 33,792 genotype-matched pairs were discovered, representing variants in 7567 unique genes. There was an enrichment of PSS ≥0.1 among pathogenic/likely pathogenic variant-level pairs (94.3% in pathogenic/likely pathogenic variant-level matches vs 34.75% in all matches). We highlighted founder or region-specific variants as an internal positive control and proceeded to identify candidate disease genes. Variant-level matches were particularly helpful in cases involving inframe indels and splice region variants beyond the canonical splice sites, which may otherwise have been disregarded, allowing for detection of candidate disease genes, such as KAT2A, RPAIN, and LAMP3. CONCLUSION Semi-automated genotype matching combined with PSS is a powerful tool to resolve variants of uncertain significance and to identify candidate disease genes.
Collapse
Affiliation(s)
- Jonathan Rips
- Department of Genetics, Hadassah Medical Center, Jerusalem, Israel
| | - Orli Halstuk
- Department of Genetics, Hadassah Medical Center, Jerusalem, Israel; Faculty of Medicine, Hebrew University of Jerusalem, Israel
| | - Adina Fuchs
- Department of Genetics, Hadassah Medical Center, Jerusalem, Israel; Faculty of Medicine, Hebrew University of Jerusalem, Israel
| | - Ziv Lang
- Department of Genetics, Hadassah Medical Center, Jerusalem, Israel
| | - Tal Sido
- Department of Genetics, Hadassah Medical Center, Jerusalem, Israel
| | | | - Bassam Abu-Libdeh
- Department of Pediatrics & Genetics, Makassed Hospital & Al-Quds Medical School, E. Jerusalem, Palestine
| | - Simon Edvardson
- Faculty of Medicine, Hebrew University of Jerusalem, Israel; Pediatric Neurology Unit, Hadassah Medical Center, Jerusalem, Israel
| | - Somaya Salah
- Department of Genetics, Hadassah Medical Center, Jerusalem, Israel
| | - Oded Breuer
- Faculty of Medicine, Hebrew University of Jerusalem, Israel; Pediatric Pulmonology and CF Unit, Department of Pediatrics, Hadassah Medical Center, Jerusalem, Israel
| | - Mohamad Hadhud
- Faculty of Medicine, Hebrew University of Jerusalem, Israel; Pediatric Pulmonology and CF Unit, Department of Pediatrics, Hadassah Medical Center, Jerusalem, Israel
| | - Sharon Eden
- Institute of Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| | - Itamar Simon
- Institute of Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| | - Mordechai Slae
- Pediatric Gastroenterology Unit, Department of Pediatrics, Hadassah Medical Center, Jerusalem, Israel
| | - Nadirah S Damseh
- Department of Pediatrics & Genetics, Makassed Hospital & Al-Quds Medical School, E. Jerusalem, Palestine
| | - Abdulsalam Abu-Libdeh
- Department of Pediatrics & Genetics, Makassed Hospital & Al-Quds Medical School, E. Jerusalem, Palestine; Division of Pediatric Endocrinology, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Marina Eskin-Schwartz
- The Morris Kahn Laboratory of Human Genetics at the National Institute of Biotechnology in the Negev and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel; Genetics Institute, Soroka University Medical Center, Beer-Sheva, Israel
| | - Ohad S Birk
- The Morris Kahn Laboratory of Human Genetics at the National Institute of Biotechnology in the Negev and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel; Genetics Institute, Soroka University Medical Center, Beer-Sheva, Israel
| | - Julia Varga
- Microbiology and Molecular Genetics, Institute for Biomedical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ora Schueler-Furman
- Microbiology and Molecular Genetics, Institute for Biomedical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | - Orly Elpeleg
- Department of Genetics, Hadassah Medical Center, Jerusalem, Israel; Faculty of Medicine, Hebrew University of Jerusalem, Israel
| | | | - Hagar Mor-Shaked
- Department of Genetics, Hadassah Medical Center, Jerusalem, Israel; Faculty of Medicine, Hebrew University of Jerusalem, Israel
| | - Tamar Harel
- Department of Genetics, Hadassah Medical Center, Jerusalem, Israel; Faculty of Medicine, Hebrew University of Jerusalem, Israel.
| |
Collapse
|
2
|
Niskanen JE, Ohlsson Å, Ljungvall I, Drögemüller M, Ernst RF, Dooijes D, van Deutekom HWM, van Tintelen JP, Snijders Blok CJB, van Vugt M, van Setten J, Asselbergs FW, Petrič AD, Salonen M, Hundi S, Hörtenhuber M, Kere J, Pyle WG, Donner J, Postma AV, Leeb T, Andersson G, Hytönen MK, Häggström J, Wiberg M, Friederich J, Eberhard J, Harakalova M, van Steenbeek FG, Wess G, Lohi H. Identification of novel genetic risk factors of dilated cardiomyopathy: from canine to human. Genome Med 2023; 15:73. [PMID: 37723491 PMCID: PMC10506233 DOI: 10.1186/s13073-023-01221-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 08/17/2023] [Indexed: 09/20/2023] Open
Abstract
BACKGROUND Dilated cardiomyopathy (DCM) is a life-threatening heart disease and a common cause of heart failure due to systolic dysfunction and subsequent left or biventricular dilatation. A significant number of cases have a genetic etiology; however, as a complex disease, the exact genetic risk factors are largely unknown, and many patients remain without a molecular diagnosis. METHODS We performed GWAS followed by whole-genome, transcriptome, and immunohistochemical analyses in a spontaneously occurring canine model of DCM. Canine gene discovery was followed up in three human DCM cohorts. RESULTS Our results revealed two independent additive loci associated with the typical DCM phenotype comprising left ventricular systolic dysfunction and dilatation. We highlight two novel candidate genes, RNF207 and PRKAA2, known for their involvement in cardiac action potentials, energy homeostasis, and morphology. We further illustrate the distinct genetic etiologies underlying the typical DCM phenotype and ventricular premature contractions. Finally, we followed up on the canine discoveries in human DCM patients and discovered candidate variants in our two novel genes. CONCLUSIONS Collectively, our study yields insight into the molecular pathophysiology of DCM and provides a large animal model for preclinical studies.
Collapse
Affiliation(s)
- Julia E Niskanen
- Department of Medical and Clinical Genetics, University of Helsinki, Haartmaninkatu 8, 00290, Helsinki, Finland
- Department of Veterinary Biosciences, University of Helsinki, Agnes Sjöbergin katu 2, 00790, Helsinki, Finland
- Folkhälsan Research Center, Haartmaninkatu 8, P.O.Box 63, 00290, Helsinki, Finland
| | - Åsa Ohlsson
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Ingrid Ljungvall
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Michaela Drögemüller
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, 3001, Switzerland
| | - Robert F Ernst
- Department of Genetics, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Dennis Dooijes
- Department of Genetics, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Hanneke W M van Deutekom
- Department of Genetics, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
| | - J Peter van Tintelen
- Department of Genetics, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Christian J B Snijders Blok
- Department of Cardiology, Division Heart & Lungs, University Medical Center Utrecht (UMCU), Utrecht, The Netherlands
- Regenerative Medicine Centre Utrecht, University of Utrecht, Utrecht, The Netherlands
| | - Marion van Vugt
- Department of Cardiology, Division Heart & Lungs, University Medical Center Utrecht (UMCU), Utrecht, The Netherlands
| | - Jessica van Setten
- Department of Cardiology, Division Heart & Lungs, University Medical Center Utrecht (UMCU), Utrecht, The Netherlands
| | - Folkert W Asselbergs
- Amsterdam University Medical Centers, Department of Cardiology, University of Amsterdam, Amsterdam, The Netherlands
- Health Data Research UK and Institute of Health Informatics, University College London, London, UK
| | | | - Milla Salonen
- Department of Medical and Clinical Genetics, University of Helsinki, Haartmaninkatu 8, 00290, Helsinki, Finland
- Department of Veterinary Biosciences, University of Helsinki, Agnes Sjöbergin katu 2, 00790, Helsinki, Finland
- Folkhälsan Research Center, Haartmaninkatu 8, P.O.Box 63, 00290, Helsinki, Finland
| | - Sruthi Hundi
- Department of Medical and Clinical Genetics, University of Helsinki, Haartmaninkatu 8, 00290, Helsinki, Finland
- Department of Veterinary Biosciences, University of Helsinki, Agnes Sjöbergin katu 2, 00790, Helsinki, Finland
- Folkhälsan Research Center, Haartmaninkatu 8, P.O.Box 63, 00290, Helsinki, Finland
| | - Matthias Hörtenhuber
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Juha Kere
- Folkhälsan Research Center, Haartmaninkatu 8, P.O.Box 63, 00290, Helsinki, Finland
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
- Research Programs Unit, Stem Cells and Metabolism Research Program, University of Helsinki, Helsinki, Finland
| | - W Glen Pyle
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, Canada
- IMPART Investigator Team Canada, Dalhousie Medicine, Saint John, NB, Canada
| | - Jonas Donner
- Wisdom Panel Research Team, Wisdom Panel, Kinship, Helsinki, Finland
| | - Alex V Postma
- Department of Human Genetics, Amsterdam University Medical Center, Amsterdam, The Netherlands
- Department of Medical Biology, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Tosso Leeb
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, 3001, Switzerland
| | - Göran Andersson
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Marjo K Hytönen
- Department of Medical and Clinical Genetics, University of Helsinki, Haartmaninkatu 8, 00290, Helsinki, Finland
- Department of Veterinary Biosciences, University of Helsinki, Agnes Sjöbergin katu 2, 00790, Helsinki, Finland
- Folkhälsan Research Center, Haartmaninkatu 8, P.O.Box 63, 00290, Helsinki, Finland
| | - Jens Häggström
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Maria Wiberg
- Department of Equine and Small Animal Medicine, University of Helsinki, Helsinki, Finland
| | - Jana Friederich
- LMU Small Animal Clinic, Ludwig Maximilians University of Munich, Munich, Germany
| | - Jenny Eberhard
- LMU Small Animal Clinic, Ludwig Maximilians University of Munich, Munich, Germany
| | - Magdalena Harakalova
- Department of Cardiology, Division Heart & Lungs, University Medical Center Utrecht (UMCU), Utrecht, The Netherlands
- Regenerative Medicine Centre Utrecht, University of Utrecht, Utrecht, The Netherlands
| | - Frank G van Steenbeek
- Department of Cardiology, Division Heart & Lungs, University Medical Center Utrecht (UMCU), Utrecht, The Netherlands
- Regenerative Medicine Centre Utrecht, University of Utrecht, Utrecht, The Netherlands
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 108, Utrecht, 3584 CM, The Netherlands
| | - Gerhard Wess
- LMU Small Animal Clinic, Ludwig Maximilians University of Munich, Munich, Germany
| | - Hannes Lohi
- Department of Medical and Clinical Genetics, University of Helsinki, Haartmaninkatu 8, 00290, Helsinki, Finland.
- Department of Veterinary Biosciences, University of Helsinki, Agnes Sjöbergin katu 2, 00790, Helsinki, Finland.
- Folkhälsan Research Center, Haartmaninkatu 8, P.O.Box 63, 00290, Helsinki, Finland.
| |
Collapse
|
3
|
Xu C, Xu J, Tang HW, Ericsson M, Weng JH, DiRusso J, Hu Y, Ma W, Asara JM, Perrimon N. A phosphate-sensing organelle regulates phosphate and tissue homeostasis. Nature 2023; 617:798-806. [PMID: 37138087 PMCID: PMC10443203 DOI: 10.1038/s41586-023-06039-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 03/31/2023] [Indexed: 05/05/2023]
Abstract
Inorganic phosphate (Pi) is one of the essential molecules for life. However, little is known about intracellular Pi metabolism and signalling in animal tissues1. Following the observation that chronic Pi starvation causes hyperproliferation in the digestive epithelium of Drosophila melanogaster, we determined that Pi starvation triggers the downregulation of the Pi transporter PXo. In line with Pi starvation, PXo deficiency caused midgut hyperproliferation. Interestingly, immunostaining and ultrastructural analyses showed that PXo specifically marks non-canonical multilamellar organelles (PXo bodies). Further, by Pi imaging with a Förster resonance energy transfer (FRET)-based Pi sensor2, we found that PXo restricts cytosolic Pi levels. PXo bodies require PXo for biogenesis and undergo degradation following Pi starvation. Proteomic and lipidomic characterization of PXo bodies unveiled their distinct feature as an intracellular Pi reserve. Therefore, Pi starvation triggers PXo downregulation and PXo body degradation as a compensatory mechanism to increase cytosolic Pi. Finally, we identified connector of kinase to AP-1 (Cka), a component of the STRIPAK complex and JNK signalling3, as the mediator of PXo knockdown- or Pi starvation-induced hyperproliferation. Altogether, our study uncovers PXo bodies as a critical regulator of cytosolic Pi levels and identifies a Pi-dependent PXo-Cka-JNK signalling cascade controlling tissue homeostasis.
Collapse
Affiliation(s)
- Chiwei Xu
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
- Robin Chemers Neustein Laboratory of Mammalian Development and Cell Biology, The Rockefeller University, New York, NY, USA.
| | - Jun Xu
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Hong-Wen Tang
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | - Maria Ericsson
- Department of Cell Biology, Electron Microscopy Facility, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Jui-Hsia Weng
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Jonathan DiRusso
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Yanhui Hu
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Wenzhe Ma
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - John M Asara
- Department of Medicine, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Department of Signal Transduction, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Norbert Perrimon
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
4
|
Leeb T, Bannasch D, Schoenebeck JJ. Identification of Genetic Risk Factors for Monogenic and Complex Canine Diseases. Annu Rev Anim Biosci 2023; 11:183-205. [PMID: 36322969 DOI: 10.1146/annurev-animal-050622-055534] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Advances in DNA sequencing and other technologies have greatly facilitated the identification of genetic risk factors for inherited diseases in dogs. We review recent technological developments based on selected examples from canine disease genetics. The identification of disease-causing variants in dogs with monogenic diseases may become a widely employed diagnostic approach in clinical veterinary medicine in the not-too-distant future. Diseases with complex modes of inheritance continue to pose challenges to researchers but have also become much more tangible than in the past. In addition to strategies for identifying genetic risk factors, we provide some thoughts on the interpretation of sequence variants that are largely inspired by developments in human clinical genetics.
Collapse
Affiliation(s)
- Tosso Leeb
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, Switzerland;
| | - Danika Bannasch
- Department of Population Health and Reproduction, University of California, Davis, California, USA;
| | - Jeffrey J Schoenebeck
- The Roslin Institute and Royal (Dick) School for Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, United Kingdom;
| |
Collapse
|
5
|
Upregulation of ATF4-LAMP3 Axis by ORF45 Facilitates Lytic Replication of Kaposi's Sarcoma-Associated Herpesvirus. J Virol 2022; 96:e0145622. [PMID: 36377873 PMCID: PMC9749464 DOI: 10.1128/jvi.01456-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is a γ-oncogenic herpesvirus, and both lytic and latent infections play important roles in its pathogenesis and tumorigenic properties. Multiple cellular pathways and diverse mediators are hijacked by viral proteins and are used to support KSHV lytic replication. In previous studies, we revealed that KSHV ORF45 promoted KSHV transcription and translation by inducing sustained p90 ribosomal S6 kinase (RSK) activation and the phosphorylation of its substrates c-Fos and eIF4B. However, the cellular mediators required for lytic replication remain largely unknown. Here, we reveal that ORF45 activates eIF2α phosphorylation and ATF4 translation and then upregulates the expression of lysosome-associated membrane protein 3 (LAMP3) in an ATF4-dependent manner during KSHV lytic replication. Consequently, LAMP3 promotes Akt and ERK activation and then facilitates lytic gene expression and virion production. Furthermore, ATF4 enhances lytic replication through LAMP3, and LAMP3 acts in an ATF4-independent manner. Our findings suggest that the ATF4-LAMP3 axis is upregulated by ORF45 through ER stress activation during the KSHV lytic life cycle and, in turn, facilitates optimal lytic replication. IMPORTANCE The lytic replication of Kaposi's sarcoma-associated herpesvirus (KSHV) reprograms cellular transcription and translation to generate viral proteins and virion particles. Here, we show that the mediator of ER stress ATF4 and the expression of the downstream gene LAMP3 are upregulated by ORF45 during lytic replication. Consequently, increased LAMP3 expression activates Akt and ERK and promotes lytic replication. Although several UPR transcription factors are able to promote KSHV lytic replication, the proviral effect of ATF4 on lytic replication is attenuated by LAMP3 silencing, whereas the effect of LAMP3 does not directly require ATF4 expression, indicating that LAMP3 primarily exerts effects on KSHV lytic replication downstream of ATF4 and ER stress. Taken together, our findings suggest that the ORF45-upregulated ATF4-LAMP3 axis plays an essential role in KSHV lytic replication.
Collapse
|
6
|
Lunding LP, Krause D, Stichtenoth G, Stamme C, Lauterbach N, Hegermann J, Ochs M, Schuster B, Sedlacek R, Saftig P, Schwudke D, Wegmann M, Damme M. LAMP3 deficiency affects surfactant homeostasis in mice. PLoS Genet 2021; 17:e1009619. [PMID: 34161347 PMCID: PMC8259984 DOI: 10.1371/journal.pgen.1009619] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 07/06/2021] [Accepted: 05/24/2021] [Indexed: 11/29/2022] Open
Abstract
Lysosome-associated membrane glycoprotein 3 (LAMP3) is a type I transmembrane protein of the LAMP protein family with a cell-type-specific expression in alveolar type II cells in mice and hitherto unknown function. In type II pneumocytes, LAMP3 is localized in lamellar bodies, secretory organelles releasing pulmonary surfactant into the extracellular space to lower surface tension at the air/liquid interface. The physiological function of LAMP3, however, remains enigmatic. We generated Lamp3 knockout mice by CRISPR/Cas9. LAMP3 deficient mice are viable with an average life span and display regular lung function under basal conditions. The levels of a major hydrophobic protein component of pulmonary surfactant, SP-C, are strongly increased in the lung of Lamp3 knockout mice, and the lipid composition of the bronchoalveolar lavage shows mild but significant changes, resulting in alterations in surfactant functionality. In ovalbumin-induced experimental allergic asthma, the changes in lipid composition are aggravated, and LAMP3-deficient mice exert an increased airway resistance. Our data suggest a critical role of LAMP3 in the regulation of pulmonary surfactant homeostasis and normal lung function. LAMP3 is a protein of unknown molecular function with highest expression in alveolar type II cells. In alveolar type II cells, LAMP3 localizes to lamellar bodies, specific lysosome-related organelles that play an important role in secreting pulmonary surfactant, a mixture of hydrophobic proteins and lipids lowering the surface tension between the gas and the liquid phase of the lung in order to prevent alveoli from collapsing. To decipher the physiological function of LAMP3, we generated Lamp3 knockout mice, which are viable and show no apparent phenotype. Under basal conditions, both the protein and lipid composition of pulmonary surfactant are altered, but do not affect the physiological function of the lung. However, under diseased conditions of experimental allergic asthma, changes in the lipid composition are aggravated and are associated with an impaired lung function, suggesting an important role of LAMP3 in the homeostasis of pulmonary surfactant.
Collapse
Affiliation(s)
- Lars P. Lunding
- Airway Research Center North, German Center for Lung Research (DZL), Borstel, Germany
- Division of Asthma Exacerbation & Regulation, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Daniel Krause
- Bioanalytical Chemistry, Priority Research Area Infections, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | | | - Cordula Stamme
- Division of Cellular Pneumology, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
- Department of Anesthesiology and Intensive Care, University of Lübeck, Lübeck, Germany
| | - Niklas Lauterbach
- Institute of Biochemistry, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Jan Hegermann
- Institute of Functional and Applied Anatomy, Research Core Unit Electron Microscopy, Hannover Medical School, Hannover, Germany
| | - Matthias Ochs
- Institute of Functional and Applied Anatomy, Research Core Unit Electron Microscopy, Hannover Medical School, Hannover, Germany
- Institute of Functional Anatomy, Charité Medical University of Berlin, Berlin, Germany
- German Center for Lung Research (DZL), Berlin, Germany
| | - Björn Schuster
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czech Republic
| | - Radislav Sedlacek
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czech Republic
| | - Paul Saftig
- Institute of Biochemistry, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Dominik Schwudke
- Airway Research Center North, German Center for Lung Research (DZL), Borstel, Germany
- Bioanalytical Chemistry, Priority Research Area Infections, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
- German Center for Infection Research (DZIF), TTU Tuberculosis, Borstel, Germany
| | - Michael Wegmann
- Airway Research Center North, German Center for Lung Research (DZL), Borstel, Germany
- Division of Asthma Exacerbation & Regulation, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
- * E-mail: (MW); (MD)
| | - Markus Damme
- Institute of Biochemistry, Christian-Albrechts-University Kiel, Kiel, Germany
- * E-mail: (MW); (MD)
| |
Collapse
|
7
|
Sarviaho R, Hakosalo O, Tiira K, Sulkama S, Niskanen JE, Hytönen MK, Sillanpää MJ, Lohi H. A novel genomic region on chromosome 11 associated with fearfulness in dogs. Transl Psychiatry 2020; 10:169. [PMID: 32467585 PMCID: PMC7256038 DOI: 10.1038/s41398-020-0849-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 05/05/2020] [Accepted: 05/14/2020] [Indexed: 02/07/2023] Open
Abstract
The complex phenotypic and genetic nature of anxieties hampers progress in unravelling their molecular etiologies. Dogs present extensive natural variation in fear and anxiety behaviour and could advance the understanding of the molecular background of behaviour due to their unique breeding history and genetic architecture. As dogs live as part of human families under constant care and monitoring, information from their behaviour and experiences are easily available. Here we have studied the genetic background of fearfulness in the Great Dane breed. Dogs were scored and categorised into cases and controls based on the results of the validated owner-completed behavioural survey. A genome-wide association study in a cohort of 124 dogs with and without socialisation as a covariate revealed a genome-wide significant locus on chromosome 11. Whole exome sequencing and whole genome sequencing revealed extensive regions of opposite homozygosity in the same locus on chromosome 11 between the cases and controls with interesting neuronal candidate genes such as MAPK9/JNK2, a known hippocampal regulator of anxiety. Further characterisation of the identified locus will pave the way for molecular understanding of fear in dogs and may provide a natural animal model for human anxieties.
Collapse
Affiliation(s)
- R. Sarviaho
- grid.7737.40000 0004 0410 2071Department of Veterinary Biosciences, University of Helsinki, 00014 Helsinki, Finland ,grid.7737.40000 0004 0410 2071Department of Medical and Clinical Genetics, University of Helsinki, 00014 Helsinki, Finland ,grid.428673.c0000 0004 0409 6302Folkhälsan Research Center, 00290 Helsinki, Finland
| | - O. Hakosalo
- grid.7737.40000 0004 0410 2071Department of Veterinary Biosciences, University of Helsinki, 00014 Helsinki, Finland ,grid.7737.40000 0004 0410 2071Department of Medical and Clinical Genetics, University of Helsinki, 00014 Helsinki, Finland ,grid.428673.c0000 0004 0409 6302Folkhälsan Research Center, 00290 Helsinki, Finland
| | - K. Tiira
- grid.7737.40000 0004 0410 2071Department of Veterinary Biosciences, University of Helsinki, 00014 Helsinki, Finland ,grid.7737.40000 0004 0410 2071Department of Medical and Clinical Genetics, University of Helsinki, 00014 Helsinki, Finland ,grid.428673.c0000 0004 0409 6302Folkhälsan Research Center, 00290 Helsinki, Finland ,grid.7737.40000 0004 0410 2071Equine and Small Animal Medicine, University of Helsinki, Helsinki, Finland
| | - S. Sulkama
- grid.7737.40000 0004 0410 2071Department of Veterinary Biosciences, University of Helsinki, 00014 Helsinki, Finland ,grid.7737.40000 0004 0410 2071Department of Medical and Clinical Genetics, University of Helsinki, 00014 Helsinki, Finland ,grid.428673.c0000 0004 0409 6302Folkhälsan Research Center, 00290 Helsinki, Finland
| | - J. E. Niskanen
- grid.7737.40000 0004 0410 2071Department of Veterinary Biosciences, University of Helsinki, 00014 Helsinki, Finland ,grid.7737.40000 0004 0410 2071Department of Medical and Clinical Genetics, University of Helsinki, 00014 Helsinki, Finland ,grid.428673.c0000 0004 0409 6302Folkhälsan Research Center, 00290 Helsinki, Finland
| | - M. K. Hytönen
- grid.7737.40000 0004 0410 2071Department of Veterinary Biosciences, University of Helsinki, 00014 Helsinki, Finland ,grid.7737.40000 0004 0410 2071Department of Medical and Clinical Genetics, University of Helsinki, 00014 Helsinki, Finland ,grid.428673.c0000 0004 0409 6302Folkhälsan Research Center, 00290 Helsinki, Finland
| | - M. J. Sillanpää
- grid.10858.340000 0001 0941 4873Department of Mathematical Sciences, Biocenter Oulu and Infotech Oulu, University of Oulu, Oulu, Finland
| | - H. Lohi
- grid.7737.40000 0004 0410 2071Department of Veterinary Biosciences, University of Helsinki, 00014 Helsinki, Finland ,grid.7737.40000 0004 0410 2071Department of Medical and Clinical Genetics, University of Helsinki, 00014 Helsinki, Finland ,grid.428673.c0000 0004 0409 6302Folkhälsan Research Center, 00290 Helsinki, Finland
| |
Collapse
|