1
|
Brown ME, Hernandez-Urbina DA, Kumsta C. Low humidity enhances thermotolerance in Caenorhabditis elegans. MICROPUBLICATION BIOLOGY 2024; 2024:10.17912/micropub.biology.001404. [PMID: 39650082 PMCID: PMC11625312 DOI: 10.17912/micropub.biology.001404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/15/2024] [Accepted: 11/20/2024] [Indexed: 12/11/2024]
Abstract
Humidity is an important environmental factor that causes physiological changes in organisms. In humans, high humidity disrupts thermoregulation by limiting heat dissipation, leading to heat stress. While Caenorhabditis elegans lacks comparable thermoregulatory systems, humidity may still impact its heat tolerance by affecting cellular stress responses. We tested this by subjecting C. elegans to heat shock under different humidity conditions and found that lower humidity during heat shock improved survival compared to higher humidity. These findings demonstrate that humidity is an important variable affecting thermotolerance in C. elegans and should be standardized in heat-stress experiments.
Collapse
Affiliation(s)
- Michelle E. Brown
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, United States
| | | | - Caroline Kumsta
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, United States
| |
Collapse
|
2
|
Czajewski I, Swain B, Xu J, McDowall L, Ferenbach AT, van Aalten DMF. Rescuable sleep and synaptogenesis phenotypes in a Drosophila model of O-GlcNAc transferase intellectual disability. eLife 2024; 13:e90376. [PMID: 39535175 PMCID: PMC11623933 DOI: 10.7554/elife.90376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 10/18/2024] [Indexed: 11/16/2024] Open
Abstract
O-GlcNAcylation is an essential intracellular protein modification mediated by O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA). Recently, missense mutations in OGT have been linked to intellectual disability, indicating that this modification is important for the development and functioning of the nervous system. However, the processes that are most sensitive to perturbations in O-GlcNAcylation remain to be identified. Here, we uncover quantifiable phenotypes in the fruit fly Drosophila melanogaster carrying a patient-derived OGT mutation in the catalytic domain. Hypo-O-GlcNAcylation leads to defects in synaptogenesis and reduced sleep stability. Both these phenotypes can be partially rescued by genetically or chemically targeting OGA, suggesting that a balance of OGT/OGA activity is required for normal neuronal development and function.
Collapse
Affiliation(s)
- Ignacy Czajewski
- Division of Molecular, Cell and Developmental Biology, School of Life Sciences, University of DundeeDundeeUnited Kingdom
| | - Bijayalaxmi Swain
- Section of Neurobiology and DANDRITE, Department of Molecular Biology and Genetics, Aarhus UniversityAarhusDenmark
| | - Jiawei Xu
- Section of Neurobiology and DANDRITE, Department of Molecular Biology and Genetics, Aarhus UniversityAarhusDenmark
| | - Laurin McDowall
- Division of Molecular, Cell and Developmental Biology, School of Life Sciences, University of DundeeDundeeUnited Kingdom
| | - Andrew T Ferenbach
- Division of Molecular, Cell and Developmental Biology, School of Life Sciences, University of DundeeDundeeUnited Kingdom
- Section of Neurobiology and DANDRITE, Department of Molecular Biology and Genetics, Aarhus UniversityAarhusDenmark
| | - Daan MF van Aalten
- Division of Molecular, Cell and Developmental Biology, School of Life Sciences, University of DundeeDundeeUnited Kingdom
- Section of Neurobiology and DANDRITE, Department of Molecular Biology and Genetics, Aarhus UniversityAarhusDenmark
| |
Collapse
|
3
|
Hammel F, Payne NC, Marando VM, Mazitschek R, Walker S. Identification of a Polypeptide Inhibitor of O-GlcNAc Transferase with Picomolar Affinity. J Am Chem Soc 2024; 146:26320-26330. [PMID: 39276112 PMCID: PMC11440498 DOI: 10.1021/jacs.4c08656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 09/16/2024]
Abstract
O-GlcNAc transferase (OGT) is an essential mammalian enzyme that binds thousands of different proteins, including substrates that it glycosylates and nonsubstrate interactors that regulate its biology. OGT also has one proteolytic substrate, the transcriptional coregulator host cell factor 1 (HCF-1), which it cleaves in a process initiated by glutamate side chain glycosylation at a series of central repeats. Although HCF-1 is OGT's most prominent binding partner, its affinity for the enzyme has not been quantified. Here, we report a time-resolved Förster resonance energy transfer assay to measure ligand binding to OGT and show that an HCF-1-derived polypeptide (HCF3R) binds with picomolar affinity to the enzyme (KD ≤ 85 pM). This high affinity is driven in large part by conserved asparagines in OGT's tetratricopeptide repeat domain, which form bidentate contacts to the HCF-1 peptide backbone; replacing any one of these asparagines with alanine reduces binding by more than 5 orders of magnitude. Because the HCF-1 polypeptide binds so tightly to OGT, we tested its ability to inhibit enzymatic function. We found that HCF3R potently inhibits OGT both in vitro and in cells and used this finding to develop a genetically encoded, inducible OGT inhibitor that can be degraded with a small molecule, allowing for reversible and tunable inhibition of OGT.
Collapse
Affiliation(s)
- Forrest
A. Hammel
- Department
of Microbiology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - N. Connor Payne
- Center
for Systems Biology, Massachusetts General
Hospital, Boston, Massachusetts 02114, United States
- Department
of Chemistry and Chemical Biology, Harvard
University, Cambridge, Massachusetts 02138, United States
| | - Victoria M. Marando
- Department
of Microbiology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Ralph Mazitschek
- Center
for Systems Biology, Massachusetts General
Hospital, Boston, Massachusetts 02114, United States
- T.H.
Chan School of Public Health, Harvard University, Boston, Massachusetts 02115, United States
- Broad
Institute of MIT and Harvard University, Cambridge, Massachusetts 02142, United States
| | - Suzanne Walker
- Department
of Microbiology, Harvard Medical School, Boston, Massachusetts 02115, United States
| |
Collapse
|
4
|
Hu CW, Wang K, Jiang J. The non-catalytic domains of O-GlcNAc cycling enzymes present new opportunities for function-specific control. Curr Opin Chem Biol 2024; 81:102476. [PMID: 38861851 PMCID: PMC11323188 DOI: 10.1016/j.cbpa.2024.102476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/19/2024] [Accepted: 05/17/2024] [Indexed: 06/13/2024]
Abstract
O-GlcNAcylation is an essential protein glycosylation governed by two O-GlcNAc cycling enzymes: O-GlcNAc transferase (OGT) installs a single sugar moiety N-acetylglucosamine (GlcNAc) on protein serine and threonine residues, and O-GlcNAcase (OGA) removes them. Aberrant O-GlcNAcylation has been implicated in various diseases. However, the large repertoire of more than 1000 O-GlcNAcylated proteins and the elusive mechanisms of OGT/OGA in substrate recognition present significant challenges in targeting the dysregulated O-GlcNAcylation for therapeutic development. Recently, emerging evidence suggested that the non-catalytic domains play critical roles in regulating the functional specificity of OGT/OGA via modulating their protein interactions and substrate recognition. Here, we discuss recent studies on the structures, mechanisms, and related tools of the OGT/OGA non-catalytic domains, highlighting new opportunities for function-specific control.
Collapse
Affiliation(s)
- Chia-Wei Hu
- School of Pharmacy, University of Wisconsin-Madison, 777 Highland Ave, Madison, WI 53705, USA
| | - Ke Wang
- School of Pharmacy, University of Wisconsin-Madison, 777 Highland Ave, Madison, WI 53705, USA
| | - Jiaoyang Jiang
- School of Pharmacy, University of Wisconsin-Madison, 777 Highland Ave, Madison, WI 53705, USA.
| |
Collapse
|
5
|
Cooper JF, Nguyen K, Gates D, Wolfrum E, Capan C, Lee H, Williams D, Okoye C, Wojtovich AP, Burton NO. Oocyte mitochondria link maternal environment to offspring phenotype. RESEARCH SQUARE 2024:rs.3.rs-4087193. [PMID: 38585755 PMCID: PMC10996803 DOI: 10.21203/rs.3.rs-4087193/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
During maturation oocytes undergo a recently discovered mitochondrial proteome remodeling event in flies1, frogs1, and humans2. This oocyte mitochondrial remodeling, which includes substantial changes in electron transport chain (ETC) subunit abundance1,2, is regulated by maternal insulin signaling1. Why oocytes undergo mitochondrial remodeling is unknown, with some speculating that it might be an evolutionarily conserved mechanism to protect oocytes from genotoxic damage by reactive oxygen species (ROS)2. In Caenorhabditis elegans, we previously found that maternal exposure to osmotic stress drives a 50-fold increase in offspring survival in response to future osmotic stress3. Like mitochondrial remodeling, we found that this intergenerational adaptation is also regulated by insulin signaling to oocytes3. Here, we used proteomics and genetic manipulations to show that insulin signaling to oocytes regulates offspring's ability to adapt to future stress via a mechanism that depends on ETC composition in maternal oocytes. Specifically, we found that maternally expressed mutant alleles of nduf-7 (complex I subunit) or isp-1 (complex III subunit) altered offspring's response to osmotic stress at hatching independently of offspring genotype. Furthermore, we found that expressing wild-type isp-1 in germ cells (oocytes) was sufficient to restore offspring's normal response to osmotic stress. Chemical mutagenesis screens revealed that maternal ETC composition regulates offspring's response to stress by altering AMP kinase function in offspring which in turn regulates both ATP and glycerol metabolism in response to continued osmotic stress. To our knowledge, these data are the first to show that proper oocyte ETC composition is required to link a mother's environment to adaptive changes in offspring metabolism. The data also raise the possibility that the reason diverse animals exhibit insulin regulated remodeling of oocyte mitochondria is to tailor offspring metabolism to best match the environment of their mother.
Collapse
Affiliation(s)
- Jason F. Cooper
- Van Andel Research Institute, Department of Metabolism and Nutritional Programing, Grand Rapids, Michigan, USA, 49503
| | - Kim Nguyen
- Van Andel Research Institute, Department of Metabolism and Nutritional Programing, Grand Rapids, Michigan, USA, 49503
| | - Darrick Gates
- Van Andel Research Institute, Department of Metabolism and Nutritional Programing, Grand Rapids, Michigan, USA, 49503
| | - Emily Wolfrum
- Van Andel Research Institute, Grand Rapids, Michigan, USA, 49503
| | - Colt Capan
- Van Andel Research Institute, Grand Rapids, Michigan, USA, 49503
| | - Hyoungjoo Lee
- Van Andel Research Institute, Grand Rapids, Michigan, USA, 49503
| | - Devia Williams
- Van Andel Research Institute, Department of Metabolism and Nutritional Programing, Grand Rapids, Michigan, USA, 49503
| | - Chidozie Okoye
- University of Rochester Medical Center, Department of Anaesthesiology and Perioperative Medicine, 575 Elmwood Ave., Rochester, NY, 14642, Box 711/604, USA
| | - Andrew P Wojtovich
- University of Rochester Medical Center, Department of Anaesthesiology and Perioperative Medicine, 575 Elmwood Ave., Rochester, NY, 14642, Box 711/604, USA
| | - Nicholas O. Burton
- Van Andel Research Institute, Department of Metabolism and Nutritional Programing, Grand Rapids, Michigan, USA, 49503
| |
Collapse
|
6
|
Price IF, Wagner JA, Pastore B, Hertz HL, Tang W. C. elegans germ granules sculpt both germline and somatic RNAome. Nat Commun 2023; 14:5965. [PMID: 37749091 PMCID: PMC10520050 DOI: 10.1038/s41467-023-41556-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 09/08/2023] [Indexed: 09/27/2023] Open
Abstract
Germ granules are membrane-less organelles essential for small RNA biogenesis and germline development. Among the conserved properties of germ granules is their association with the nuclear membrane. Recent studies demonstrated that LOTUS domain proteins, EGGD-1 and EGGD-2 (also known as MIP-1 and MIP-2 respectively), promote the formation of perinuclear germ granules in C. elegans. This finding presents a unique opportunity to evaluate the significance of perinuclear localization of germ granules. Here we show that loss of eggd-1 causes the coalescence of germ granules and formation of abnormal cytoplasmic aggregates. Impairment of perinuclear granules affects certain germline classes of small RNAs including Piwi-interacting RNAs. Transcriptome profiling reveals overexpression of spermatogenic and cuticle-related genes in eggd-1 hermaphrodites. We further demonstrate that disruption of germ granules activates HLH-30-mediated transcriptional program in somatic tissues. Collectively, our findings underscore the essential role of EGGD-1 in germ granule organization and reveal an unexpected germ granule-to-soma communication.
Collapse
Affiliation(s)
- Ian F Price
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH, 43210, USA
- Center for RNA Biology, The Ohio State University, Columbus, OH, 43210, USA
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH, 43210, USA
| | - Jillian A Wagner
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH, 43210, USA
- Center for RNA Biology, The Ohio State University, Columbus, OH, 43210, USA
| | - Benjamin Pastore
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH, 43210, USA
- Center for RNA Biology, The Ohio State University, Columbus, OH, 43210, USA
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH, 43210, USA
| | - Hannah L Hertz
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH, 43210, USA
- Center for RNA Biology, The Ohio State University, Columbus, OH, 43210, USA
| | - Wen Tang
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH, 43210, USA.
- Center for RNA Biology, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
7
|
Packer M. Fetal Reprogramming of Nutrient Surplus Signaling, O-GlcNAcylation, and the Evolution of CKD. J Am Soc Nephrol 2023; 34:1480-1491. [PMID: 37340541 PMCID: PMC10482065 DOI: 10.1681/asn.0000000000000177] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 06/07/2023] [Indexed: 06/22/2023] Open
Abstract
ABSTRACT Fetal kidney development is characterized by increased uptake of glucose, ATP production by glycolysis, and upregulation of mammalian target of rapamycin (mTOR) and hypoxia-inducible factor-1 alpha (HIF-1 α ), which (acting in concert) promote nephrogenesis in a hypoxic low-tubular-workload environment. By contrast, the healthy adult kidney is characterized by upregulation of sirtuin-1 and adenosine monophosphate-activated protein kinase, which enhances ATP production through fatty acid oxidation to fulfill the needs of a normoxic high-tubular-workload environment. During stress or injury, the kidney reverts to a fetal signaling program, which is adaptive in the short term, but is deleterious if sustained for prolonged periods when both oxygen tension and tubular workload are heightened. Prolonged increases in glucose uptake in glomerular and proximal tubular cells lead to enhanced flux through the hexosamine biosynthesis pathway; its end product-uridine diphosphate N -acetylglucosamine-drives the rapid and reversible O-GlcNAcylation of thousands of intracellular proteins, typically those that are not membrane-bound or secreted. Both O-GlcNAcylation and phosphorylation act at serine/threonine residues, but whereas phosphorylation is regulated by hundreds of specific kinases and phosphatases, O-GlcNAcylation is regulated only by O-GlcNAc transferase and O-GlcNAcase, which adds or removes N-acetylglucosamine, respectively, from target proteins. Diabetic and nondiabetic CKD is characterized by fetal reprogramming (with upregulation of mTOR and HIF-1 α ) and increased O-GlcNAcylation, both experimentally and clinically. Augmentation of O-GlcNAcylation in the adult kidney enhances oxidative stress, cell cycle entry, apoptosis, and activation of proinflammatory and profibrotic pathways, and it inhibits megalin-mediated albumin endocytosis in glomerular mesangial and proximal tubular cells-effects that can be aggravated and attenuated by augmentation and muting of O-GlcNAcylation, respectively. In addition, drugs with known nephroprotective effects-angiotensin receptor blockers, mineralocorticoid receptor antagonists, and sodium-glucose cotransporter 2 inhibitors-are accompanied by diminished O-GlcNAcylation in the kidney, although the role of such suppression in mediating their benefits has not been explored. The available evidence supports further work on the role of uridine diphosphate N -acetylglucosamine as a critical nutrient surplus sensor (acting in concert with upregulated mTOR and HIF-1 α signaling) in the development of diabetic and nondiabetic CKD.
Collapse
Affiliation(s)
- Milton Packer
- Baylor Heart and Vascular Institute , Dallas , Texas and Imperial College , London , United Kingdom
| |
Collapse
|
8
|
Urso SJ, Sathaseevan A, Brent Derry W, Lamitina T. Regulation of the hypertonic stress response by the 3' mRNA cleavage and polyadenylation complex. Genetics 2023; 224:iyad051. [PMID: 36972377 PMCID: PMC10490458 DOI: 10.1093/genetics/iyad051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/10/2023] [Accepted: 03/10/2023] [Indexed: 03/29/2023] Open
Abstract
Maintenance of osmotic homeostasis is one of the most aggressively defended homeostatic set points in physiology. One major mechanism of osmotic homeostasis involves the upregulation of proteins that catalyze the accumulation of solutes called organic osmolytes. To better understand how osmolyte accumulation proteins are regulated, we conducted a forward genetic screen in Caenorhabditis elegans for mutants with no induction of osmolyte biosynthesis gene expression (Nio mutants). The nio-3 mutant encoded a missense mutation in cpf-2/CstF64, while the nio-7 mutant encoded a missense mutation in symk-1/Symplekin. Both cpf-2 and symk-1 are nuclear components of the highly conserved 3' mRNA cleavage and polyadenylation complex. cpf-2 and symk-1 block the hypertonic induction of gpdh-1 and other osmotically induced mRNAs, suggesting they act at the transcriptional level. We generated a functional auxin-inducible degron (AID) allele for symk-1 and found that acute, post-developmental degradation in the intestine and hypodermis was sufficient to cause the Nio phenotype. symk-1 and cpf-2 exhibit genetic interactions that strongly suggest they function through alterations in 3' mRNA cleavage and/or alternative polyadenylation. Consistent with this hypothesis, we find that inhibition of several other components of the mRNA cleavage complex also cause a Nio phenotype. cpf-2 and symk-1 specifically affect the osmotic stress response since heat shock-induced upregulation of a hsp-16.2::GFP reporter is normal in these mutants. Our data suggest a model in which alternative polyadenylation of 1 or more mRNAs is essential to regulate the hypertonic stress response.
Collapse
Affiliation(s)
- Sarel J Urso
- Graduate Program in Cell Biology and Molecular Physiology, University of Pittsburgh Medical Center, Pittsburgh, PA 15261, USA
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Anson Sathaseevan
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - W Brent Derry
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Todd Lamitina
- Graduate Program in Cell Biology and Molecular Physiology, University of Pittsburgh Medical Center, Pittsburgh, PA 15261, USA
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
- Division of Child Neurology, Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA 15224, USA
| |
Collapse
|
9
|
Li A, Fan J, Jia Y, Tang X, Chen J, Shen C. Phenotype and metabolism alterations in PCB-degrading Rhodococcus biphenylivorans TG9 T under acid stress. J Environ Sci (China) 2023; 127:441-452. [PMID: 36522076 DOI: 10.1016/j.jes.2022.05.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 06/17/2023]
Abstract
Environmental acidification impairs microorganism diversity and their functions on substance transformation. Rhodococcus is a ubiquitously distributed genus for contaminant detoxification in the environment, and it can also adapt a certain range of pH. This work interpreted the acid responses from both phenotype and metabolism in strain Rhodococcus biphenylivorans TG9T (TG9) induced at pH 3. The phenotype alterations were described with the number of culturable and viable cells, intracellular ATP concentrations, cell shape and entocyte, degradation efficiency of polychlorinated biphenyl (PCB) 31 and biphenyl. The number of culturable cells maintained rather stable within the first 10 days, even though the other phenotypes had noticeable alterations, indicating that TG9 possesses certain capacities to survive under acid stress. The metabolism responses were interpreted based on transcription analyses with four treatments including log phase (LP), acid-induced (PER), early recovery after removing acid (RE) and later recovery (REL). With the overview on the expression regulations among the 4 treatments, the RE sample presented more upregulated and less downregulated genes, suggesting that its metabolism was somehow more active after recovering from acid stress. In addition, the response mechanism was interpreted on 10 individual metabolism pathways mainly covering protein modification, antioxidation, antipermeability, H+ consumption, neutralization and extrusion. Furthermore, the transcription variations were verified with RT-qPCR on 8 genes with 24-hr, 48-hr and 72-hr acid treatment. Taken together, TG9 possesses comprehensive metabolism strategies defending against acid stress. Consequently, a model was built to provide an integrate insight to understand the acid resistance/tolerance metabolisms in microorganisms.
Collapse
Affiliation(s)
- Aili Li
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jiahui Fan
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yangyang Jia
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xianjin Tang
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jingwen Chen
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chaofeng Shen
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
10
|
Veroli MV, Lamitina T. Endogenous gpdh-1 transcriptional reporters as new tools for the study of the osmotic stress response. MICROPUBLICATION BIOLOGY 2023; 2023:10.17912/micropub.biology.000818. [PMID: 37033710 PMCID: PMC10077060 DOI: 10.17912/micropub.biology.000818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 04/11/2023]
Abstract
In vivo monitoring of gpdh-1 gene expression using standard transcriptional reporters is a powerful and commonly used tool for genetic dissection of the osmotic stress response in C. elegans . Like all transgene reporters, these gpdh-1 reporters have important limitations that restrict their utility. To overcome these limitations, we created three different gpdh-1 reporters using CRISPR/Cas9 methods to insert several variants of GFP into the endogenous gpdh-1 locus. These new strains provide a more powerful and accurate tool for the analysis of gpdh-1 regulatory pathways.
Collapse
Affiliation(s)
- María Victoria Veroli
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Todd Lamitina
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- Correspondence to: Todd Lamitina (
)
| |
Collapse
|
11
|
Chandler LM, Rodriguez M, Choe KP. RNAi screening for modulators of an osmo-sensitive gene response to extracellular matrix damage reveals negative feedback and interactions with translation inhibition. PLoS One 2023; 18:e0285328. [PMID: 37155688 PMCID: PMC10166495 DOI: 10.1371/journal.pone.0285328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 04/19/2023] [Indexed: 05/10/2023] Open
Abstract
In epidermal tissues, extracellular matrices (ECMs) function as barriers between the organism and environment. Despite being at the interface with the environment, little is known about the role of animal barrier ECMs in sensing stress and communicating with cytoprotective gene pathways in neighboring cells. We and others have identified a putative damage sensor in the C. elegans cuticle that regulates osmotic, detoxification, and innate immune response genes. This pathway is associated with circumferential collagen bands called annular furrows; mutation or loss of furrow collagens causes constitutive activation of osmotic, detoxification, and innate immune response genes. Here, we performed a genome-wide RNAi screen for modulators of osmotic stress response gene gpdh-1 in a furrow collagen mutant strain. RNAi of six genes identified in this screen were tested under other conditions and for effects on other stress responses. The functions of these genes suggest negative feedback within osmolyte accumulation pathways and interactions with ATP homeostasis and protein synthesis. Loss of these gpdh-1 modulators had distinct effects on canonical detoxification and innate immune response genes.
Collapse
Affiliation(s)
- Luke M Chandler
- Department of Biology and Genetics Institute, University of Florida, Gainesville, FL, United States of America
| | - Michael Rodriguez
- Department of Biology and Genetics Institute, University of Florida, Gainesville, FL, United States of America
| | - Keith P Choe
- Department of Biology and Genetics Institute, University of Florida, Gainesville, FL, United States of America
| |
Collapse
|
12
|
Konzman D, Fukushige T, Dagnachew M, Krause M, Hanover JA. O-GlcNAc transferase plays a non-catalytic role in C. elegans male fertility. PLoS Genet 2022; 18:e1010273. [PMID: 36383567 PMCID: PMC9710795 DOI: 10.1371/journal.pgen.1010273] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 11/30/2022] [Accepted: 11/08/2022] [Indexed: 11/17/2022] Open
Abstract
Animal behavior is influenced by the competing drives to maintain energy and to reproduce. The balance between these evolutionary pressures and how nutrient signaling pathways intersect with mating remains unclear. The nutrient sensor O-GlcNAc transferase, which post-translationally modifies intracellular proteins with a single monosaccharide, is responsive to cellular nutrient status and regulates diverse biological processes. Though essential in most metazoans, O-GlcNAc transferase (ogt-1) is dispensable in Caenorhabditis elegans, allowing genetic analysis of its physiological roles. Compared to control, ogt-1 males had a four-fold reduction in mean offspring, with nearly two thirds producing zero progeny. Interestingly, we found that ogt-1 males transferred sperm less often, and virgin males had reduced sperm count. ogt-1 males were also less likely to engage in mate-searching and mate-response behaviors. Surprisingly, we found normal fertility for males with hypodermal expression of ogt-1 and for ogt-1 strains with catalytic-dead mutations. This suggests OGT-1 serves a non-catalytic function in the hypodermis impacting male fertility and mating behavior. This study builds upon research on the nutrient sensor O-GlcNAc transferase and demonstrates a role it plays in the interplay between the evolutionary drives for reproduction and survival.
Collapse
Affiliation(s)
- Daniel Konzman
- Laboratory of Cellular and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Tetsunari Fukushige
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Mesgana Dagnachew
- Laboratory of Cellular and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Michael Krause
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - John A. Hanover
- Laboratory of Cellular and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
13
|
Nutrient sensing pathways regulating adult reproductive diapause in C. elegans. PLoS One 2022; 17:e0274076. [PMID: 36112613 PMCID: PMC9480990 DOI: 10.1371/journal.pone.0274076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 08/22/2022] [Indexed: 11/19/2022] Open
Abstract
Genetic and environmental manipulations, such as dietary restriction, can improve both health span and lifespan in a wide range of organisms, including humans. Changes in nutrient intake trigger often overlapping metabolic pathways that can generate distinct or even opposite outputs depending on several factors, such as when dietary restriction occurs in the lifecycle of the organism or the nature of the changes in nutrients. Due to the complexity of metabolic pathways and the diversity in outputs, the underlying mechanisms regulating diet-associated pro-longevity are not yet well understood. Adult reproductive diapause (ARD) in the model organism Caenorhabditis elegans is a dietary restriction model that is associated with lengthened lifespan and reproductive potential. To explore the metabolic pathways regulating ARD in greater depth, we performed a candidate-based genetic screen analyzing select nutrient-sensing pathways to determine their contribution to the regulation of ARD. Focusing on the three phases of ARD (initiation, maintenance, and recovery), we found that ARD initiation is regulated by fatty acid metabolism, sirtuins, AMPK, and the O-linked N-acetyl glucosamine (O-GlcNAc) pathway. Although ARD maintenance was not significantly influenced by the nutrient sensors in our screen, we found that ARD recovery was modulated by energy sensing, stress response, insulin-like signaling, and the TOR pathway. Further investigation of downstream targets of NHR-49 suggest the transcription factor influences ARD initiation through the fatty acid β-oxidation pathway. Consistent with these findings, our analysis revealed a change in levels of neutral lipids associated with ARD entry defects. Our findings identify conserved genetic pathways required for ARD entry and recovery and uncover genetic interactions that provide insight into the role of OGT and OGA.
Collapse
|
14
|
Lockridge A, Hanover JA. A nexus of lipid and O-Glcnac metabolism in physiology and disease. Front Endocrinol (Lausanne) 2022; 13:943576. [PMID: 36111295 PMCID: PMC9468787 DOI: 10.3389/fendo.2022.943576] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/27/2022] [Indexed: 11/13/2022] Open
Abstract
Although traditionally considered a glucose metabolism-associated modification, the O-linked β-N-Acetylglucosamine (O-GlcNAc) regulatory system interacts extensively with lipids and is required to maintain lipid homeostasis. The enzymes of O-GlcNAc cycling have molecular properties consistent with those expected of broad-spectrum environmental sensors. By direct protein-protein interactions and catalytic modification, O-GlcNAc cycling enzymes may provide both acute and long-term adaptation to stress and other environmental stimuli such as nutrient availability. Depending on the cell type, hyperlipidemia potentiates or depresses O-GlcNAc levels, sometimes biphasically, through a diversity of unique mechanisms that target UDP-GlcNAc synthesis and the availability, activity and substrate selectivity of the glycosylation enzymes, O-GlcNAc Transferase (OGT) and O-GlcNAcase (OGA). At the same time, OGT activity in multiple tissues has been implicated in the homeostatic regulation of systemic lipid uptake, storage and release. Hyperlipidemic patterns of O-GlcNAcylation in these cells are consistent with both transient physiological adaptation and feedback uninhibited obesogenic and metabolic dysregulation. In this review, we summarize the numerous interconnections between lipid and O-GlcNAc metabolism. These links provide insights into how the O-GlcNAc regulatory system may contribute to lipid-associated diseases including obesity and metabolic syndrome.
Collapse
Affiliation(s)
- Amber Lockridge
- Laboratory of Cell and Molecular Biology, National Institute for Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - John A. Hanover
- Laboratory of Cell and Molecular Biology, National Institute for Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
15
|
Piloto JH, Rodriguez M, Choe KP. Sexual dimorphism in Caenorhabditis elegans stress resistance. PLoS One 2022; 17:e0272452. [PMID: 35951614 PMCID: PMC9371273 DOI: 10.1371/journal.pone.0272452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 07/19/2022] [Indexed: 11/18/2022] Open
Abstract
Physiological responses to the environment, disease, and aging vary by sex in many animals, but mechanisms of dimorphism have only recently begun to receive careful attention. The genetic model nematode Caenorhabditis elegans has well-defined mechanisms of stress response, aging, and sexual differentiation. C. elegans has males, but the vast majority of research only uses hermaphrodites. We found that males of the standard N2 laboratory strain were more resistant to hyperosmolarity, heat, and a natural pro-oxidant than hermaphrodites when in mixed-sex groups. Resistance to heat and pro-oxidant were also male-biased in three genetically and geographically diverse C. elegans strains consistent with a species-wide dimorphism that is not specific to domestication. N2 males were also more resistant to heat and pro-oxidant when keep individually indicating that differences in resistance do not require interactions between worms. We found that males induce canonical stress response genes by similar degrees and in similar tissues as hermaphrodites suggesting the importance of other mechanisms. We find that resistance to heat and pro-oxidant are influenced by the sex differentiation transcription factor TRA-1 suggesting that downstream organ differentiation pathways establish differences in stress resistance. Environmental stress influences survival in natural environments, degenerative disease, and aging. Understanding mechanisms of stress response dimorphism can therefore provide insights into sex-specific population dynamics, disease, and longevity.
Collapse
Affiliation(s)
- Juan H. Piloto
- Department of Biology and Genetics Institute, University of Florida, Gainesville, FL, United States of America
| | - Michael Rodriguez
- Department of Biology and Genetics Institute, University of Florida, Gainesville, FL, United States of America
| | - Keith P. Choe
- Department of Biology and Genetics Institute, University of Florida, Gainesville, FL, United States of America
- * E-mail:
| |
Collapse
|
16
|
Ouyang M, Yu C, Deng X, Zhang Y, Zhang X, Duan F. O-GlcNAcylation and Its Role in Cancer-Associated Inflammation. Front Immunol 2022; 13:861559. [PMID: 35432358 PMCID: PMC9010872 DOI: 10.3389/fimmu.2022.861559] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/14/2022] [Indexed: 12/24/2022] Open
Abstract
Cancer cells, as well as surrounding stromal and inflammatory cells, form an inflammatory tumor microenvironment (TME) to promote all stages of carcinogenesis. As an emerging post-translational modification (PTM) of serine and threonine residues of proteins, O-linked-N-Acetylglucosaminylation (O-GlcNAcylation) regulates diverse cancer-relevant processes, such as signal transduction, transcription, cell division, metabolism and cytoskeletal regulation. Recent studies suggest that O-GlcNAcylation regulates the development, maturation and functions of immune cells. However, the role of protein O-GlcNAcylation in cancer-associated inflammation has been less explored. This review summarizes the current understanding of the influence of protein O-GlcNAcylation on cancer-associated inflammation and the mechanisms whereby O-GlcNAc-mediated inflammation regulates tumor progression. This will provide a theoretical basis for further development of anti-cancer therapies.
Collapse
Affiliation(s)
- Muzi Ouyang
- Department of Pharmacology, School of Medicine, Sun Yat-sen University, Shenzhen, China
| | - Changmeng Yu
- School of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Xiaolian Deng
- Department of Pharmacology, School of Medicine, Sun Yat-sen University, Shenzhen, China
| | - Yingyi Zhang
- Department of Pharmacology, School of Medicine, Sun Yat-sen University, Shenzhen, China
| | - Xudong Zhang
- Department of Pharmacology, School of Medicine, Sun Yat-sen University, Shenzhen, China
| | - Fangfang Duan
- Department of Pharmacology, School of Medicine, Sun Yat-sen University, Shenzhen, China
- *Correspondence: Fangfang Duan,
| |
Collapse
|
17
|
Garde A, Kenny IW, Kelley LC, Chi Q, Mutlu AS, Wang MC, Sherwood DR. Localized glucose import, glycolytic processing, and mitochondria generate a focused ATP burst to power basement-membrane invasion. Dev Cell 2022; 57:732-749.e7. [PMID: 35316617 PMCID: PMC8969095 DOI: 10.1016/j.devcel.2022.02.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/18/2022] [Accepted: 02/18/2022] [Indexed: 11/27/2022]
Abstract
Invasive cells use transient, energy-consuming protrusions to breach basement membrane (BM) barriers. Using the ATP sensor PercevalHR during anchor cell (AC) invasion in Caenorhabditis elegans, we show that BM invasion is accompanied by an ATP burst from mitochondria at the invasive front. RNAi screening and visualization of a glucose biosensor identified two glucose transporters, FGT-1 and FGT-2, which bathe invasive front mitochondria with glucose and facilitate the ATP burst to form protrusions. FGT-1 localizes at high levels along the invasive membrane, while FGT-2 is adaptive, enriching most strongly during BM breaching and when FGT-1 is absent. Cytosolic glycolytic enzymes that process glucose for mitochondrial ATP production cluster with invasive front mitochondria and promote higher mitochondrial membrane potential and ATP levels. Finally, we show that UNC-6 (netrin), which polarizes invasive protrusions, also orients FGT-1. These studies reveal a robust and integrated energy acquisition, processing, and delivery network that powers BM breaching.
Collapse
Affiliation(s)
- Aastha Garde
- Department of Biology, Duke University, Box 90338, Durham, NC 27708, USA; Department of Cell Biology, Duke University Medical Center, Durham, NC 27708, USA
| | - Isabel W Kenny
- Department of Biology, Duke University, Box 90338, Durham, NC 27708, USA
| | - Laura C Kelley
- Department of Biology, Duke University, Box 90338, Durham, NC 27708, USA
| | - Qiuyi Chi
- Department of Biology, Duke University, Box 90338, Durham, NC 27708, USA
| | - Ayse Sena Mutlu
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA
| | - Meng C Wang
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA; Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030, USA
| | - David R Sherwood
- Department of Biology, Duke University, Box 90338, Durham, NC 27708, USA.
| |
Collapse
|
18
|
Mammalian cell proliferation requires noncatalytic functions of O-GlcNAc transferase. Proc Natl Acad Sci U S A 2021; 118:2016778118. [PMID: 33419956 DOI: 10.1073/pnas.2016778118] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
O-GlcNAc transferase (OGT), found in the nucleus and cytoplasm of all mammalian cell types, is essential for cell proliferation. Why OGT is required for cell growth is not known. OGT performs two enzymatic reactions in the same active site. In one, it glycosylates thousands of different proteins, and in the other, it proteolytically cleaves another essential protein involved in gene expression. Deconvoluting OGT's myriad cellular roles has been challenging because genetic deletion is lethal; complementation methods have not been established. Here, we developed approaches to replace endogenous OGT with separation-of-function variants to investigate the importance of OGT's enzymatic activities for cell viability. Using genetic complementation, we found that OGT's glycosyltransferase function is required for cell growth but its protease function is dispensable. We next used complementation to construct a cell line with degron-tagged wild-type OGT. When OGT was degraded to very low levels, cells stopped proliferating but remained viable. Adding back catalytically inactive OGT rescued growth. Therefore, OGT has an essential noncatalytic role that is necessary for cell proliferation. By developing a method to quantify how OGT's catalytic and noncatalytic activities affect protein abundance, we found that OGT's noncatalytic functions often affect different proteins from its catalytic functions. Proteins involved in oxidative phosphorylation and the actin cytoskeleton were especially impacted by the noncatalytic functions. We conclude that OGT integrates both catalytic and noncatalytic functions to control cell physiology.
Collapse
|
19
|
Urso SJ, Lamitina T. The C. elegans Hypertonic Stress Response: Big Insights from Shrinking Worms. Cell Physiol Biochem 2021; 55:89-105. [PMID: 33626269 DOI: 10.33594/000000332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2021] [Indexed: 12/23/2022] Open
Abstract
Cell volume is one of the most aggressively defended physiological set points in biology. Changes in intracellular ion and water concentrations, which are induced by changes in metabolism or environmental exposures, disrupt protein folding, enzymatic activity, and macromolecular assemblies. To counter these challenges, cells and organisms have evolved multifaceted, evolutionarily conserved molecular mechanisms to restore cell volume and repair stress induced damage. However, many unanswered questions remain regarding the nature of cell volume 'sensing' as well as the molecular signaling pathways involved in activating physiological response mechanisms. Unbiased genetic screening in the model organism C. elegans is providing new and unexpected insights into these questions, particularly questions relating to the hypertonic stress response (HTSR) pathway. One surprising characteristic of the HTSR pathway in C. elegans is that it is under strong negative regulation by proteins involved in protein homeostasis and the extracellular matrix (ECM). The role of the ECM in particular highlights the importance of studying the HTSR in the context of a live organism where native ECM-tissue associations are preserved. A second novel and recently discovered characteristic is that the HTSR is regulated at the post-transcriptional level. The goal of this review is to describe these discoveries, to provide context for their implications, and to raise outstanding questions to guide future research.
Collapse
Affiliation(s)
- Sarel J Urso
- University of Pittsburgh, Graduate Program in Cell Biology and Physiology, Pittsburgh, PA, USA.,University of Pittsburgh, Departments of Pediatrics and Cell Biology, Pittsburgh, PA, USA
| | - Todd Lamitina
- University of Pittsburgh, Graduate Program in Cell Biology and Physiology, Pittsburgh, PA, USA, .,University of Pittsburgh, Departments of Pediatrics and Cell Biology, Pittsburgh, PA, USA
| |
Collapse
|