1
|
Nozari A, Babaahmadi P, Jalilian N, Sadeghi T, Hasani M. Introducing a novel TRAPPC10 gene variant as a potential cause of developmental delay and intellectual disability in an Iranian family. Neurogenetics 2024; 26:1. [PMID: 39560797 DOI: 10.1007/s10048-024-00785-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 10/17/2024] [Indexed: 11/20/2024]
Abstract
BACKGROUND TRAPP complexes are crucial components for intracellular transport and cellular organization. Their role in vesicle trafficking, particularly through their involvement in the secretory pathway, make them more important in neurodevelopmental mechanisms. This study aims to identify a novel genetic variant, associated with developmental delay and intellectual disability by analyzing a consanguineous Iranian family. MATERIALS AND METHODS Here, we performed whole-exome sequencing on an Iranian family, originating from a small population. The patient presented with severe developmental delay, microcephaly, and behavioral abnormalities. Through our analysis, we discovered a new biallelic variant on a previously introduced gene: TRAPPC10 (NM_003274.5): c.3222 C > A; p.(Cys1074Ter) that is a potential cause for these specific clinical characteristics. RESULTS Previous functional analysis suggest that the mutation causes premature termination of protein translation, likely leading to nonsense-mediated decay because of biallelic loss of functional TRAPPC10 protein which leads to severe developmental delay, microcephaly, and behavioral abnormalities such as aggression and autistic traits. CONCLUSION The aim of this research is to discover a novel variant in the TRAPPC10 gene that is responsible for a particular neurodevelopmental condition, dominantly characterized by developmental delay, intellectual disability, and microcephaly. These findings advance the comprehension of TRAPP-related diseases and emphasize the need for further exploration into the impact of TRAPPC10 on the development of the nervous system.
Collapse
Affiliation(s)
- Ahoura Nozari
- Medical Genetics laboratory, Sadra Medical Genetics Laboratory, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| | - Paria Babaahmadi
- Student research committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Narges Jalilian
- Department of Medical Biochemistry, Faculty of Medical Sciences, Ilam University of medical sciences, Ilam, Iran
| | - Taha Sadeghi
- Sadra Medical Genetics Laboratory, Shahrekord, 8815938702, Iran
| | - Mahdieh Hasani
- Department of Medical Genetics, School of Medicine, Ilam University of Medical sciences, Ilam, Iran
| |
Collapse
|
2
|
Kharrat M, Triki C, Ben Isaa A, Bouchaala W, Alila O, Chouchen J, Ghouliya Y, Kamoun F, Tlili A, Fakhfakh F. Expanding the genetic and phenotypic spectrum of TRAPPC9 and MID2-related neurodevelopmental disabilities: report of two novel mutations, 3D-modelling, and molecular docking studies. J Hum Genet 2024; 69:291-299. [PMID: 38467738 DOI: 10.1038/s10038-024-01242-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/13/2024]
Abstract
Intellectual disabilities (ID) and autism spectrum disorders (ASD) have a variety of etiologies, including environmental and genetic factors. Our study reports a psychiatric clinical investigation and a molecular analysis using whole exome sequencing (WES) of two siblings with ID and ASD from a consanguineous family. Bioinformatic prediction and molecular docking analysis were also carried out. The two patients were diagnosed with profound intellectual disability, brain malformations such as cortical atrophy, acquired microcephaly, and autism level III. The neurological and neuropsychiatric examination revealed that P2 was more severely affected than P1, as he was unable to walk, presented with dysmorphic feature and exhibited self and hetero aggressive behaviors. The molecular investigations revealed a novel TRAPPC9 biallelic nonsense mutation (c.2920 C > T, p.R974X) in the two siblings. The more severely affected patient (P2) presented, along with the TRAPPC9 variant, a new missense mutation c.166 C > T (p.R56C) in the MID2 gene at hemizygous state, while his sister P1 was merely a carrier. The 3D modelling and molecular docking analysis revealed that c.166 C > T variant could affect the ability of MID2 binding to Astrin, leading to dysregulation of microtubule dynamics and causing morphological abnormalities in the brain. As our knowledge, the MID2 mutation (p.R56C) is the first one to be detected in Tunisia and causing phenotypic variability between the siblings. We extend the genetic and clinical spectrum of TRAPPC9 and MID2 mutations and highlights the possible concomitant presence of X-linked as well as autosomal recessive inheritance to causing ID, microcephaly, and autism.
Collapse
Affiliation(s)
- Marwa Kharrat
- Laboratory of Molecular and Functional Genetics, Faculty of Sciences of Sfax University, Sfax, Tunisia.
| | - Chahnez Triki
- Child Neurology Department, Hedi Chaker Hospital, Sfax, Tunisia
- Research laboratory (LR19ES15), Sfax Medical School, Sfax University, Sfax, Tunisia
| | - Abir Ben Isaa
- Child Neurology Department, Hedi Chaker Hospital, Sfax, Tunisia
- Research laboratory (LR19ES15), Sfax Medical School, Sfax University, Sfax, Tunisia
| | - Wafa Bouchaala
- Child Neurology Department, Hedi Chaker Hospital, Sfax, Tunisia
- Research laboratory (LR19ES15), Sfax Medical School, Sfax University, Sfax, Tunisia
| | - Olfa Alila
- Laboratory of Molecular and Functional Genetics, Faculty of Sciences of Sfax University, Sfax, Tunisia
| | - Jihen Chouchen
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Yosra Ghouliya
- Child Neurology Department, Hedi Chaker Hospital, Sfax, Tunisia
- Research laboratory (LR19ES15), Sfax Medical School, Sfax University, Sfax, Tunisia
| | - Fatma Kamoun
- Child Neurology Department, Hedi Chaker Hospital, Sfax, Tunisia
- Research laboratory (LR19ES15), Sfax Medical School, Sfax University, Sfax, Tunisia
| | - Abdelaziz Tlili
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Faiza Fakhfakh
- Laboratory of Molecular and Functional Genetics, Faculty of Sciences of Sfax University, Sfax, Tunisia.
| |
Collapse
|
3
|
Li Y, Usman M, Sapp E, Ke Y, Wang Z, Boudi A, DiFiglia M, Li X. Chronic pharmacologic manipulation of dopamine transmission ameliorates metabolic disturbance in Trappc9-linked brain developmental syndrome. JCI Insight 2024; 9:e181339. [PMID: 38889014 PMCID: PMC11383600 DOI: 10.1172/jci.insight.181339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024] Open
Abstract
Loss-of-function mutations of the gene encoding the trafficking protein particle complex subunit 9 (Trappc9) cause autosomal recessive intellectual disability and obesity by unknown mechanisms. Genome-wide analysis links Trappc9 to nonalcoholic fatty liver disease (NAFLD). Trappc9-deficient mice have been shown to appear overweight shortly after weaning. Here, we analyzed serum biochemistry and histology of adipose and liver tissues to determine the incidence of obesity and NAFLD in Trappc9-deficient mice and combined transcriptomic and proteomic analyses, pharmacological studies, and biochemical and histological examinations of postmortem mouse brains to unveil mechanisms involved. We found that Trappc9-deficient mice presented with systemic glucose homeostatic disturbance, obesity, and NAFLD, which were relieved upon chronic treatment combining dopamine receptor D2 (DRD2) agonist quinpirole and DRD1 antagonist SCH23390. Blood glucose homeostasis in Trappc9-deficient mice was restored upon administering quinpirole alone. RNA-sequencing analysis of DRD2-containing neurons and proteomic study of brain synaptosomes revealed signs of impaired neurotransmitter secretion in Trappc9-deficient mice. Biochemical and histological studies of mouse brains showed that Trappc9-deficient mice synthesized dopamine normally, but their dopamine-secreting neurons had a lower abundance of structures for releasing dopamine in the striatum. Our study suggests that Trappc9 loss of function causes obesity and NAFLD by constraining dopamine synapse formation.
Collapse
Affiliation(s)
- Yan Li
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
| | - Muhammad Usman
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Ellen Sapp
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
| | - Yuting Ke
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
| | - Zejian Wang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Adel Boudi
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
| | - Marian DiFiglia
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
| | - Xueyi Li
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
| |
Collapse
|
4
|
Rengifo Rojas C, Cercy J, Perillous S, Gonthier-Guéret C, Montibus B, Maupetit-Méhouas S, Espinadel A, Dupré M, Hong CC, Hata K, Nakabayashi K, Plagge A, Bouschet T, Arnaud P, Vaillant I, Court F. Biallelic non-productive enhancer-promoter interactions precede imprinted expression of Kcnk9 during mouse neural commitment. HGG ADVANCES 2024; 5:100271. [PMID: 38297831 PMCID: PMC10869267 DOI: 10.1016/j.xhgg.2024.100271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/18/2023] [Accepted: 01/23/2024] [Indexed: 02/02/2024] Open
Abstract
It is only partially understood how constitutive allelic methylation at imprinting control regions (ICRs) interacts with other regulation levels to drive timely parental allele-specific expression along large imprinted domains. The Peg13-Kcnk9 domain is an imprinted domain with important brain functions. To gain insights into its regulation during neural commitment, we performed an integrative analysis of its allele-specific epigenetic, transcriptomic, and cis-spatial organization using a mouse stem cell-based corticogenesis model that recapitulates the control of imprinted gene expression during neurodevelopment. We found that, despite an allelic higher-order chromatin structure associated with the paternally CTCF-bound Peg13 ICR, enhancer-Kcnk9 promoter contacts occurred on both alleles, although they were productive only on the maternal allele. This observation challenges the canonical model in which CTCF binding isolates the enhancer and its target gene on either side and suggests a more nuanced role for allelic CTCF binding at some ICRs.
Collapse
Affiliation(s)
- Cecilia Rengifo Rojas
- Genetics, Reproduction and Development Institute (iGReD), CNRS, INSERM, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Jil Cercy
- Genetics, Reproduction and Development Institute (iGReD), CNRS, INSERM, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Sophie Perillous
- Genetics, Reproduction and Development Institute (iGReD), CNRS, INSERM, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Céline Gonthier-Guéret
- Genetics, Reproduction and Development Institute (iGReD), CNRS, INSERM, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Bertille Montibus
- Genetics, Reproduction and Development Institute (iGReD), CNRS, INSERM, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Stéphanie Maupetit-Méhouas
- Genetics, Reproduction and Development Institute (iGReD), CNRS, INSERM, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Astrid Espinadel
- Genetics, Reproduction and Development Institute (iGReD), CNRS, INSERM, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Marylou Dupré
- Genetics, Reproduction and Development Institute (iGReD), CNRS, INSERM, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Charles C Hong
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Kenichiro Hata
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo 157-8535, Japan; Department of Human Molecular Genetics, Gunma University Graduate School of Medicine 3-39-22 Showa, Maebashi, Gunma 371-8511, Japan
| | - Kazuhiko Nakabayashi
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo 157-8535, Japan
| | - Antonius Plagge
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Tristan Bouschet
- Institut de Génomique Fonctionnelle, CNRS, INSERM, Université de Montpellier, Montpellier, France
| | - Philippe Arnaud
- Genetics, Reproduction and Development Institute (iGReD), CNRS, INSERM, Université Clermont Auvergne, Clermont-Ferrand, France.
| | - Isabelle Vaillant
- Genetics, Reproduction and Development Institute (iGReD), CNRS, INSERM, Université Clermont Auvergne, Clermont-Ferrand, France.
| | - Franck Court
- Genetics, Reproduction and Development Institute (iGReD), CNRS, INSERM, Université Clermont Auvergne, Clermont-Ferrand, France.
| |
Collapse
|
5
|
Aljuraysi S, Platt M, Pulix M, Poptani H, Plagge A. Microcephaly with a disproportionate hippocampal reduction, stem cell loss and neuronal lipid droplet symptoms in Trappc9 KO mice. Neurobiol Dis 2024; 192:106431. [PMID: 38331351 DOI: 10.1016/j.nbd.2024.106431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/23/2024] [Accepted: 02/04/2024] [Indexed: 02/10/2024] Open
Abstract
Mutations of the human TRAFFICKING PROTEIN PARTICLE COMPLEX SUBUNIT 9 (TRAPPC9) cause a neurodevelopmental disorder characterised by microcephaly and intellectual disability. Trappc9 constitutes a subunit specific to the intracellular membrane-associated TrappII complex. The TrappII complex interacts with Rab11 and Rab18, the latter being specifically associated with lipid droplets (LDs). Here we used non-invasive imaging to characterise Trappc9 knock-out (KO) mice as a model of the human hereditary disorder. KOs developed postnatal microcephaly with many grey and white matter regions being affected. In vivo magnetic resonance imaging (MRI) identified a disproportionately stronger volume reduction in the hippocampus, which was associated with a significant loss of Sox2-positive neural stem and progenitor cells. Diffusion tensor imaging indicated a reduced organisation or integrity of white matter areas. Trappc9 KOs displayed behavioural abnormalities in several tests related to exploration, learning and memory. Trappc9-deficient primary hippocampal neurons accumulated a larger LD volume per cell following Oleic Acid stimulation, and the coating of LDs by Perilipin-2 was much reduced. Additionally, Trappc9 KOs developed obesity, which was significantly more severe in females than in males. Our findings indicate that, beyond previously reported Rab11-related vesicle transport defects, dysfunctions in LD homeostasis might contribute to the neurobiological symptoms of Trappc9 deficiency.
Collapse
Affiliation(s)
- Sultan Aljuraysi
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK; Department of Physiology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Mark Platt
- Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK; Centre for Preclinical Imaging, University of Liverpool, Liverpool, UK
| | - Michela Pulix
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Harish Poptani
- Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK; Centre for Preclinical Imaging, University of Liverpool, Liverpool, UK.
| | - Antonius Plagge
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK; Centre for Preclinical Imaging, University of Liverpool, Liverpool, UK.
| |
Collapse
|
6
|
Gruber T, Lechner F, Murat C, Contreras RE, Sanchez-Quant E, Miok V, Makris K, Le Thuc O, González-García I, García-Clave E, Althammer F, Krabichler Q, DeCamp LM, Jones RG, Lutter D, Williams RH, Pfluger PT, Müller TD, Woods SC, Pospisilik JA, Martinez-Jimenez CP, Tschöp MH, Grinevich V, García-Cáceres C. High-calorie diets uncouple hypothalamic oxytocin neurons from a gut-to-brain satiation pathway via κ-opioid signaling. Cell Rep 2023; 42:113305. [PMID: 37864798 PMCID: PMC10636643 DOI: 10.1016/j.celrep.2023.113305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/21/2023] [Accepted: 10/04/2023] [Indexed: 10/23/2023] Open
Abstract
Oxytocin-expressing paraventricular hypothalamic neurons (PVNOT neurons) integrate afferent signals from the gut, including cholecystokinin (CCK), to adjust whole-body energy homeostasis. However, the molecular underpinnings by which PVNOT neurons orchestrate gut-to-brain feeding control remain unclear. Here, we show that mice undergoing selective ablation of PVNOT neurons fail to reduce food intake in response to CCK and develop hyperphagic obesity on a chow diet. Notably, exposing wild-type mice to a high-fat/high-sugar (HFHS) diet recapitulates this insensitivity toward CCK, which is linked to diet-induced transcriptional and electrophysiological aberrations specifically in PVNOT neurons. Restoring OT pathways in diet-induced obese (DIO) mice via chemogenetics or polypharmacology sufficiently re-establishes CCK's anorexigenic effects. Last, by single-cell profiling, we identify a specialized PVNOT neuronal subpopulation with increased κ-opioid signaling under an HFHS diet, which restrains their CCK-evoked activation. In sum, we document a (patho)mechanism by which PVNOT signaling uncouples a gut-brain satiation pathway under obesogenic conditions.
Collapse
Affiliation(s)
- Tim Gruber
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI 49506, USA; Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49506, USA.
| | - Franziska Lechner
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Cahuê Murat
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Raian E Contreras
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Eva Sanchez-Quant
- Helmholtz Pioneer Campus (HPC), Helmholtz Zentrum München, Neuherberg, Germany
| | - Viktorian Miok
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Konstantinos Makris
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; Computational Discovery Research, Institute for Diabetes and Obesity (IDO), Helmholtz Diabetes Center (HDC), Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Ophélia Le Thuc
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Ismael González-García
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Elena García-Clave
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | | | - Quirin Krabichler
- Department of Neuropeptide Research in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Lisa M DeCamp
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI 49506, USA
| | - Russell G Jones
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI 49506, USA
| | - Dominik Lutter
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; Computational Discovery Research, Institute for Diabetes and Obesity (IDO), Helmholtz Diabetes Center (HDC), Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Rhiannan H Williams
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute for Neurogenomics, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Paul T Pfluger
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; Research Unit NeuroBiology of Diabetes, Helmholtz Zentrum München, 85764 Neuherberg, Germany; Neurobiology of Diabetes, TUM School of Medicine, Technical University Munich, 80333 Munich, Germany
| | - Timo D Müller
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; Department of Pharmacology and Experimental Therapy, Institute for Experimental and Clinical Pharmacology and Toxicology, Eberhard Karls Hospitals and Clinics, Tübingen, Germany
| | - Stephen C Woods
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, USA
| | - John Andrew Pospisilik
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI 49506, USA; Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49506, USA
| | - Celia P Martinez-Jimenez
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49506, USA; TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Matthias H Tschöp
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; Division of Metabolic Diseases, Department of Medicine, Technische Universität, Munich, Germany
| | - Valery Grinevich
- Department of Neuropeptide Research in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany; Center for Neuroinflammation and Cardiometabolic Diseases, Georgia State University, Atlanta, GA, USA.
| | - Cristina García-Cáceres
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; Medizinische Klinik und Poliklinik IV, Klinikum der Universität, Ludwig-Maximilians-Universität München, 80336 Munich, Germany.
| |
Collapse
|
7
|
Hu M, Bodnar B, Zhang Y, Xie F, Li F, Li S, Zhao J, Zhao R, Gedupoori N, Mo Y, Lin L, Li X, Meng W, Yang X, Wang H, Barbe MF, Srinivasan S, Bethea JR, Mo X, Xu H, Hu W. Defective neurite elongation and branching in Nibp/Trappc9 deficient zebrafish and mice. Int J Biol Sci 2023; 19:3226-3248. [PMID: 37416774 PMCID: PMC10321293 DOI: 10.7150/ijbs.78489] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 06/06/2023] [Indexed: 07/08/2023] Open
Abstract
Loss of function in transport protein particles (TRAPP) links a new set of emerging genetic disorders called "TRAPPopathies". One such disorder is NIBP syndrome, characterized by microcephaly and intellectual disability, and caused by mutations of NIBP/TRAPPC9, a crucial and unique member of TRAPPII. To investigate the neural cellular/molecular mechanisms underlying microcephaly, we developed Nibp/Trappc9-deficient animal models using different techniques, including morpholino knockdown and CRISPR/Cas mutation in zebrafish and Cre/LoxP-mediated gene targeting in mice. Nibp/Trappc9 deficiency impaired the stability of the TRAPPII complex at actin filaments and microtubules of neurites and growth cones. This deficiency also impaired elongation and branching of neuronal dendrites and axons, without significant effects on neurite initiation or neural cell number/types in embryonic and adult brains. The positive correlation of TRAPPII stability and neurite elongation/branching suggests a potential role for TRAPPII in regulating neurite morphology. These results provide novel genetic/molecular evidence to define patients with a type of non-syndromic autosomal recessive intellectual disability and highlight the importance of developing therapeutic approaches targeting the TRAPPII complex to cure TRAPPopathies.
Collapse
Affiliation(s)
- Min Hu
- Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Brittany Bodnar
- Center for Metabolic Disease Research, Department of Pathalogy and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Yonggang Zhang
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu 610052, China
| | - Fangxin Xie
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu 610052, China
- Department of Clinical Laboratory, Xi'an NO. 3 Hospital, Xi'an, Shaanxi, 710018, China
| | - Fang Li
- Center for Metabolic Disease Research, Department of Pathalogy and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Siying Li
- Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Jin Zhao
- Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Ruotong Zhao
- Center for Metabolic Disease Research, Department of Pathalogy and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Naveen Gedupoori
- Center for Metabolic Disease Research, Department of Pathalogy and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Yifan Mo
- Center for Metabolic Disease Research, Department of Pathalogy and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Lanyi Lin
- Center for Metabolic Disease Research, Department of Pathalogy and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Xue Li
- Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Wentong Meng
- Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Xiaofeng Yang
- Center for Metabolic Disease Research, Department of Pathalogy and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Hong Wang
- Center for Metabolic Disease Research, Department of Pathalogy and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Mary F. Barbe
- Center for Metabolic Disease Research, Department of Pathalogy and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Shanthi Srinivasan
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - John R. Bethea
- Department of Biology, Drexel University, Philadelphia, PA, USA
| | - Xianming Mo
- Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Hong Xu
- Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Wenhui Hu
- Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
- Center for Metabolic Disease Research, Department of Pathalogy and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
8
|
Penon-Portmann M, Hodoglugil U, Arun P W, Yip T, Slavotinek A, Tenney JL. TRAPPC9-related neurodevelopmental disorder: Report of a homozygous deletion in TRAPPC9 due to paternal uniparental isodisomy. Am J Med Genet A 2023; 191:1077-1082. [PMID: 36574751 DOI: 10.1002/ajmg.a.63100] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 10/24/2022] [Accepted: 12/11/2022] [Indexed: 12/28/2022]
Abstract
TRAPPC9 loss-of-function biallelic variants are associated with an autosomal recessive intellectual disability syndrome (Online Mendelian Inheritance of Man no. 613192), also characterized by microcephaly, hypertelorism, obesity, growth delay, and behavioral differences. Here, we describe an 8-year-old Hispanic female with neurodevelopmental disorder, partial epilepsy, microcephaly, bilateral cleft lip and alveolus, growth delay, and dysmorphic features. She had abnormal myelination, mega cisterna magna, and colpocephaly on brain magnetic resonance imaging (MRI). Microarray showed a single ~146 Mb region of homozygosity (ROH) encompassing all of Chromosome 8, consistent with uniparental isodisomy (UPD). Exome sequencing performed in-house did not identify single nucleotide variants to explain her phenotype. Algorithms developed in-house and further evaluation of BAM files revealed a homozygous deletion overlapping Exon 2 in TRAPPC9 within the ROH. Subsequent del/dup analyses with exon-level oligo array confirmed a likely pathogenic deletion in TRAPPC9 (NM_031466.5): arr[GRCh37] 8q24.3(141460661_141461780)x0. Our case highlights the implications of downstream analyses from UPD/ROH given the increased risk for AR conditions, the strengths of combining orthologous molecular methods to establish a diagnosis and further delineates the TRAPPC9-related phenotype in an individual of Hispanic ancestry.
Collapse
Affiliation(s)
- Monica Penon-Portmann
- Division of Medical Genetics, Department of Pediatrics, University of California San Francisco, San Francisco, California, USA.,Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - Ugur Hodoglugil
- Genomic Medicine Laboratory, University of California San Francisco, San Francisco, California, USA
| | - Wiita Arun P
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, California, USA
| | - Tiffany Yip
- Institute for Human Genetics, University of California San Francisco, San Francisco, California, USA
| | - Anne Slavotinek
- Division of Medical Genetics, Department of Pediatrics, University of California San Francisco, San Francisco, California, USA.,Division of Human Genetics, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Jessica L Tenney
- Division of Medical Genetics, Department of Pediatrics, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
9
|
RNAseq Analysis of FABP4 Knockout Mouse Hippocampal Transcriptome Suggests a Role for WNT/β-Catenin in Preventing Obesity-Induced Cognitive Impairment. Int J Mol Sci 2023; 24:ijms24043381. [PMID: 36834799 PMCID: PMC9961923 DOI: 10.3390/ijms24043381] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 02/10/2023] Open
Abstract
Microglial fatty-acid binding protein 4 (FABP4) is a regulator of neuroinflammation. We hypothesized that the link between lipid metabolism and inflammation indicates a role for FABP4 in regulating high fat diet (HFD)-induced cognitive decline. We have previously shown that obese FABP4 knockout mice exhibit decreased neuroinflammation and cognitive decline. FABP4 knockout and wild type mice were fed 60% HFD for 12 weeks starting at 15 weeks old. Hippocampal tissue was dissected and RNA-seq was performed to measure differentially expressed transcripts. Reactome molecular pathway analysis was utilized to examine differentially expressed pathways. Results showed that HFD-fed FABP4 knockout mice have a hippocampal transcriptome consistent with neuroprotection, including associations with decreased proinflammatory signaling, ER stress, apoptosis, and cognitive decline. This is accompanied by an increase in transcripts upregulating neurogenesis, synaptic plasticity, long-term potentiation, and spatial working memory. Pathway analysis revealed that mice lacking FABP4 had changes in metabolic function that support reduction in oxidative stress and inflammation, and improved energy homeostasis and cognitive function. Analysis suggested a role for WNT/β-Catenin signaling in the protection against insulin resistance, alleviating neuroinflammation and cognitive decline. Collectively, our work shows that FABP4 represents a potential target in alleviating HFD-induced neuroinflammation and cognitive decline and suggests a role for WNT/β-Catenin in this protection.
Collapse
|
10
|
Bastos GC, Tolezano GC, Krepischi ACV. Rare CNVs and Known Genes Linked to Macrocephaly: Review of Genomic Loci and Promising Candidate Genes. Genes (Basel) 2022; 13:genes13122285. [PMID: 36553552 PMCID: PMC9778424 DOI: 10.3390/genes13122285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/25/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
Macrocephaly frequently occurs in single-gene disorders affecting the PI3K-AKT-MTOR pathway; however, epigenetic mutations, mosaicism, and copy number variations (CNVs) are emerging relevant causative factors, revealing a higher genetic heterogeneity than previously expected. The aim of this study was to investigate the role of rare CNVs in patients with macrocephaly and review genomic loci and known genes. We retrieved from the DECIPHER database de novo <500 kb CNVs reported on patients with macrocephaly; in four cases, a candidate gene for macrocephaly could be pinpointed: a known microcephaly gene-TRAPPC9, and three genes based on their functional roles-RALGAPB, RBMS3, and ZDHHC14. From the literature review, 28 pathogenic CNV genomic loci and over 300 known genes linked to macrocephaly were gathered. Among the genomic regions, 17 CNV loci (~61%) exhibited mirror phenotypes, that is, deletions and duplications having opposite effects on head size. Identifying structural variants affecting head size can be a preeminent source of information about pathways underlying brain development. In this study, we reviewed these genes and recurrent CNV loci associated with macrocephaly, as well as suggested novel potential candidate genes deserving further studies to endorse their involvement with this phenotype.
Collapse
|
11
|
Amin M, Vignal C, Eltaraifee E, Mohammed IN, Hamed AAA, Elseed MA, Babai A, Elbadi I, Mustafa D, Abubaker R, Mustafa M, Drunat S, Elsayed LEO, Ahmed AE, Boespflug-Tanguy O, Dorboz I. A novel homozygous mutation in TRAPPC9 gene causing autosomal recessive non-syndromic intellectual disability. BMC Med Genomics 2022; 15:236. [PMID: 36348459 PMCID: PMC9644490 DOI: 10.1186/s12920-022-01354-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 09/09/2022] [Indexed: 11/10/2022] Open
Abstract
Background The etiology of intellectual disabilities is diverse and includes both genetic and environmental factors. The genetic causes of intellectual disabilities range from chromosomal aberrations to single gene disorders. The TRAPPC9 gene has been reported to cause autosomal recessive forms of intellectual disabilities in 56 patients from consanguineous and non-consanguineous families around the world. Methods We analyzed two siblings with intellectual disability, microcephaly and delayed motor and speech development from a consanguineous Sudanese family. Genomic DNA was screened for mutations using NGS panel (NextSeq500 Illumina) testing 173 microcephaly associated genes in the Molecular Genetics service in Robert Debre hospital in Paris, France. Results A novel homozygous mutation (NM_031466.7 (TRAPPC9):c.2288dup, p. (Val764Glyfs*7) in exon 14 of TRAPPC9 gene was found in the two patients. The mutation was predicted to cause nonsense mediated decay (NSMD) using SIFT prediction tool. The variant has not been found in either gnomAD or Exac databases. Both parents were heterozygous (carriers) to the mutation. Conclusion This is the first study to report patients with TRAPPC9-related disorder from Sub-Saharan Africa.
Collapse
|
12
|
Claxton M, Pulix M, Seah MKY, Bernardo R, Zhou P, Aljuraysi S, Liloglou T, Arnaud P, Kelsey G, Messerschmidt DM, Plagge A. Variable allelic expression of imprinted genes at the Peg13, Trappc9, Ago2 cluster in single neural cells. Front Cell Dev Biol 2022; 10:1022422. [PMID: 36313557 PMCID: PMC9596773 DOI: 10.3389/fcell.2022.1022422] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Genomic imprinting is an epigenetic process through which genes are expressed in a parent-of-origin specific manner resulting in mono-allelic or strongly biased expression of one allele. For some genes, imprinted expression may be tissue-specific and reliant on CTCF-influenced enhancer-promoter interactions. The Peg13 imprinting cluster is associated with neurodevelopmental disorders and comprises canonical imprinted genes, which are conserved between mouse and human, as well as brain-specific imprinted genes in mouse. The latter consist of Trappc9, Chrac1 and Ago2, which have a maternal allelic expression bias of ∼75% in brain. Findings of such allelic expression biases on the tissue level raise the question of how they are reflected in individual cells and whether there is variability and mosaicism in allelic expression between individual cells of the tissue. Here we show that Trappc9 and Ago2 are not imprinted in hippocampus-derived neural stem cells (neurospheres), while Peg13 retains its strong bias of paternal allele expression. Upon analysis of single neural stem cells and in vitro differentiated neurons, we find not uniform, but variable states of allelic expression, especially for Trappc9 and Ago2. These ranged from mono-allelic paternal to equal bi-allelic to mono-allelic maternal, including biased bi-allelic transcriptional states. Even Peg13 expression deviated from its expected paternal allele bias in a small number of cells. Although the cell populations consisted of a mosaic of cells with different allelic expression states, as a whole they reflected bulk tissue data. Furthermore, in an attempt to identify potential brain-specific regulatory elements across the Trappc9 locus, we demonstrate tissue-specific and general silencer activities, which might contribute to the regulation of its imprinted expression bias.
Collapse
Affiliation(s)
- Michael Claxton
- Department of Molecular Physiology and Cell Signaling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Michela Pulix
- Department of Molecular Physiology and Cell Signaling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Michelle K. Y. Seah
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Ralph Bernardo
- Department of Molecular Physiology and Cell Signaling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Peng Zhou
- Department of Molecular Physiology and Cell Signaling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Sultan Aljuraysi
- Department of Molecular Physiology and Cell Signaling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
- Department of Physiology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Triantafillos Liloglou
- Faculty of Health, Social Care and Medicine, Edge Hill University, Ormskirk, Lancashire, United Kingdom
| | - Philippe Arnaud
- Université Clermont Auvergne, CNRS, Inserm, GReD, Clermont-Ferrand, France
| | - Gavin Kelsey
- Epigenetics Programme, The Babraham Institute, Cambridge, United Kingdom
- Centre for Trophoblast Research, University of Cambridge, Cambridge, United Kingdom
- Wellcome-MRC Institute of Metabolic Science-Metabolic Research Laboratories, Cambridge, United Kingdom
| | - Daniel M. Messerschmidt
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Institute of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Antonius Plagge
- Department of Molecular Physiology and Cell Signaling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
13
|
Cui P, Wang W, Zhang D, Li C, Huang Y, Ma Z, Wang X, Zhao L, Zhang Y, Yang X, Xu D, Cheng J, Li X, Zeng X, Zhao Y, Li W, Wang J, Lin C, Zhou B, Liu J, Zhai R, Zhang X. Identification of TRAPPC9 and BAIAP2 Gene Polymorphisms and Their Association With Fat Deposition-Related Traits in Hu Sheep. Front Vet Sci 2022; 9:928375. [PMID: 35865874 PMCID: PMC9295322 DOI: 10.3389/fvets.2022.928375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/14/2022] [Indexed: 12/12/2022] Open
Abstract
Fat deposition is an important economic trait that is closely related to feed efficiency and carcass performance in livestock. In this study, the fat deposition-related traits of 1,293 Hu sheep were measured and descriptive statistical analysis was conducted. The results showed that the coefficient of variation of all fat deposition-related traits was higher than 24%. In addition, single nucleotide polymorphisms and the expression characteristics of TRAPPC9 (encoding trafficking protein particle complex subunit 9) and BAIAP2 (encoding brain-specific Angiogenesis inhibitor 1-associated protein 2) genes in Hu sheep were detected using PCR amplification, Sanger sequencing, KASPar genotyping, and quantitative real-time reverse transcription PCR (qRT-PCR). The associations between SNPs and fat deposition-related traits were also analyzed. Two intronic mutations, TRAPPC9 g.57654 A > G and BAIAP2 g.46061 C > T, were identified in Hu sheep. The result of association analysis showed that TRAPPC9 g.57654 A > G and BAIAP2 g.46061 C > T were both significantly associated with the weight of tail fat, tail fat relative weight (body weight), and tail fat relative weight (carcass) (P < 0.05). Comprehensive effects analysis showed that there were significant differences between the combined genotypes and tail fat and perirenal fat deposition. Moreover, qRT-PCR analysis showed that TRAPPC9 and BAIAP2 are widely expressed, and their expression levels were significantly higher in the small-tail group compared with those in the big-tail group (P < 0.01). These results provided important candidate molecular markers that could be used in strategies to reduce tail fat deposition in Hu sheep.
Collapse
Affiliation(s)
- Panpan Cui
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Weimin Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
- The State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Deyin Zhang
- The State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Chong Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Yongliang Huang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Zongwu Ma
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Xiaojuan Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Liming Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Yukun Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Xiaobin Yang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Dan Xu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Jiangbo Cheng
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Xiaolong Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Xiwen Zeng
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Yuan Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Wenxin Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Jianghui Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Changchun Lin
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Bubo Zhou
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Jia Liu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Rui Zhai
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Xiaoxue Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
- *Correspondence: Xiaoxue Zhang
| |
Collapse
|
14
|
TRAPPC9-CDG: A novel congenital disorder of glycosylation with dysmorphic features and intellectual disability. Genet Med 2022; 24:894-904. [PMID: 35042660 DOI: 10.1016/j.gim.2021.12.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 02/07/2023] Open
Abstract
PURPOSE TRAPPC9 deficiency is an autosomal recessive disorder mainly associated with intellectual disability (ID), microcephaly, and obesity. Previously, TRAPPC9 deficiency has not been associated with biochemical abnormalities. METHODS Exome sequencing was performed in 3 individuals with ID and dysmorphic features. N-Glycosylation analyses were performed in the patients' blood samples to test for possible congenital disorder of glycosylation (CDG). TRAPPC9 gene, TRAPPC9 protein expression, and N-glycosylation markers were assessed in patient fibroblasts. Complementation with wild-type TRAPPC9 and immunofluorescence studies to assess TRAPPC9 expression and localization were performed. The metabolic consequences of TRAPPC9 deficiency were evaluated using tracer metabolomics. RESULTS All 3 patients carried biallelic missense variants in TRAPPC9 and presented with an N-glycosylation defect in blood, consistent with CDG type I. Extensive investigations in patient fibroblasts corroborated TRAPPC9 deficiency and an N-glycosylation defect. Tracer metabolomics revealed global metabolic changes with several affected glycosylation-related metabolites. CONCLUSION We identified 3 TRAPPC9 deficient patients presenting with ID, dysmorphic features, and abnormal glycosylation. On the basis of our findings, we propose that TRAPPC9 deficiency could lead to a CDG (TRAPPC9-CDG). The finding of abnormal glycosylation in these patients is highly relevant for diagnosis, further elucidation of the pathophysiology, and management of the disease.
Collapse
|
15
|
Rawlins LE, Almousa H, Khan S, Collins SC, Milev MP, Leslie J, Saint-Dic D, Khan V, Hincapie AM, Day JO, McGavin L, Rowley C, Harlalka GV, Vancollie VE, Ahmad W, Lelliott CJ, Gul A, Yalcin B, Crosby AH, Sacher M, Baple EL. Biallelic variants in TRAPPC10 cause a microcephalic TRAPPopathy disorder in humans and mice. PLoS Genet 2022; 18:e1010114. [PMID: 35298461 PMCID: PMC8963566 DOI: 10.1371/journal.pgen.1010114] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 03/29/2022] [Accepted: 02/20/2022] [Indexed: 11/25/2022] Open
Abstract
The highly evolutionarily conserved transport protein particle (TRAPP) complexes (TRAPP II and III) perform fundamental roles in subcellular trafficking pathways. Here we identified biallelic variants in TRAPPC10, a component of the TRAPP II complex, in individuals with a severe microcephalic neurodevelopmental disorder. Molecular studies revealed a weakened interaction between mutant TRAPPC10 and its putative adaptor protein TRAPPC2L. Studies of patient lymphoblastoid cells revealed an absence of TRAPPC10 alongside a concomitant absence of TRAPPC9, another key TRAPP II complex component associated with a clinically overlapping neurodevelopmental disorder. The TRAPPC9/10 reduction phenotype was recapitulated in TRAPPC10-/- knockout cells, which also displayed a membrane trafficking defect. Notably, both the reduction in TRAPPC9 levels and the trafficking defect in these cells could be rescued by wild type but not mutant TRAPPC10 gene constructs. Moreover, studies of Trappc10-/- knockout mice revealed neuroanatomical brain defects and microcephaly, paralleling findings seen in the human condition as well as in a Trappc9-/- mouse model. Together these studies confirm autosomal recessive TRAPPC10 variants as a cause of human disease and define TRAPP-mediated pathomolecular outcomes of importance to TRAPPC9 and TRAPPC10 mediated neurodevelopmental disorders in humans and mice. Microcephalic neurodevelopmental disorders are a group of conditions that are often inherited in families, involving small head size and abnormal brain development and function. This often results in delayed development of an affected child, affecting their movement, language and/or non-verbal communication and learning, as well as seizures and neuropsychiatric problems. A group of proteins called the transport protein particles (TRAPPs) are important for the transport of cargos inside cells. Alterations within a number of the TRAPP proteins have previously been associated with human inherited diseases called the ‘TRAPPopathies’, which involve neurodevelopmental and skeletal abnormalities. Here we show that TRAPPC10 gene alterations cause a new TRAPPopathy microcephalic neurodevelopmental disorder, and we provide a detailed clinical description of the condition termed ‘TRAPPC10-related disorder’. Our studies in mice lacking the TRAPPC10 gene identified similar features to those of affected humans, including small brain size and skeletal abnormalities. Our molecular studies showed that an affected individual with an alteration in the TRAPPC10 gene has no functional TRAPPC10 protein in their cells, which in turn causes a reduction in levels of another important TRAPP molecule, TRAPPC9. Cells lacking TRAPPC10 also display abnormalities in cellular transport processes. Together our data confirm alterations in TRAPPC10 as a cause of a microcephalic neurodevelopmental disorder in both humans and mice.
Collapse
Affiliation(s)
- Lettie E. Rawlins
- RILD Wellcome Wolfson Medical Research Centre, RD&E (Wonford) NHS Foundation Trust, University of Exeter Medical School, Exeter, United Kingdom
- Peninsula Clinical Genetics Service, Royal Devon & Exeter Hospital (Heavitree), Exeter, United Kingdom
| | - Hashem Almousa
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | - Shazia Khan
- RILD Wellcome Wolfson Medical Research Centre, RD&E (Wonford) NHS Foundation Trust, University of Exeter Medical School, Exeter, United Kingdom
- Department of Biological Sciences, International Islamic University, Islamabad, Pakistan
| | - Stephan C. Collins
- Institute of Genetics and Molecular and Cellular Biology, Inserm, Illkirch, France
- Inserm, University of Bourgogne Franche-Comté, Dijon, France
| | - Miroslav P. Milev
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | - Joseph Leslie
- RILD Wellcome Wolfson Medical Research Centre, RD&E (Wonford) NHS Foundation Trust, University of Exeter Medical School, Exeter, United Kingdom
| | - Djenann Saint-Dic
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | - Valeed Khan
- Department of Molecular Diagnostics, Rehman Medical Institute, Peshawar, Pakistan
| | | | - Jacob O. Day
- RILD Wellcome Wolfson Medical Research Centre, RD&E (Wonford) NHS Foundation Trust, University of Exeter Medical School, Exeter, United Kingdom
- Faculty of Health, University of Plymouth, Plymouth, United Kingdom
| | - Lucy McGavin
- University Hospitals Plymouth NHS Trust, Plymouth, United Kingdom
| | | | - Gaurav V. Harlalka
- RILD Wellcome Wolfson Medical Research Centre, RD&E (Wonford) NHS Foundation Trust, University of Exeter Medical School, Exeter, United Kingdom
- Department of Pharmacology, Rajarshi Shahu College of Pharmacy, Malvihir, Buldana, India
| | | | - Wasim Ahmad
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | | | - Asma Gul
- Department of Biological Sciences, International Islamic University, Islamabad, Pakistan
| | - Binnaz Yalcin
- Institute of Genetics and Molecular and Cellular Biology, Inserm, Illkirch, France
- Inserm, University of Bourgogne Franche-Comté, Dijon, France
| | - Andrew H. Crosby
- RILD Wellcome Wolfson Medical Research Centre, RD&E (Wonford) NHS Foundation Trust, University of Exeter Medical School, Exeter, United Kingdom
| | - Michael Sacher
- Department of Biology, Concordia University, Montreal, Quebec, Canada
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
| | - Emma L. Baple
- RILD Wellcome Wolfson Medical Research Centre, RD&E (Wonford) NHS Foundation Trust, University of Exeter Medical School, Exeter, United Kingdom
- Peninsula Clinical Genetics Service, Royal Devon & Exeter Hospital (Heavitree), Exeter, United Kingdom
- * E-mail:
| |
Collapse
|
16
|
Zaletaev DV, Nemtsova MV, Strelnikov VV. Epigenetic Regulation Disturbances on Gene Expression in Imprinting Diseases. Mol Biol 2022. [DOI: 10.1134/s0026893321050149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Kehinde TA, Bhatia A, Olarewaju B, Shoaib MZ, Mousa J, Osundiji MA. Syndromic obesity with neurodevelopmental delay: Opportunities for targeted interventions. Eur J Med Genet 2022; 65:104443. [DOI: 10.1016/j.ejmg.2022.104443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 01/09/2022] [Accepted: 01/22/2022] [Indexed: 01/01/2023]
|
18
|
Do WL, Nguyen S, Yao J, Guo X, Whitsel EA, Demerath E, Rotter JI, Rich SS, Lange L, Ding J, Van Den Berg D, Liu Y, Justice AE, Guan W, Horvath S, Assimes TL, Bhatti P, Jordahl K, Shadyab A, Valencia CI, Stein AD, Smith A, Staimez LR, Conneely K, Narayan KMV. Associations between DNA methylation and BMI vary by metabolic health status: a potential link to disparate cardiovascular outcomes. Clin Epigenetics 2021; 13:230. [PMID: 34937574 PMCID: PMC8697469 DOI: 10.1186/s13148-021-01194-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 11/01/2021] [Indexed: 11/26/2022] Open
Abstract
Background Body mass index (BMI), a well-known risk factor for poor cardiovascular outcomes, is associated with differential DNA methylation (DNAm). Similarly, metabolic health has also been associated with changes in DNAm. It is unclear how overall metabolic health outside of BMI may modify the relationship between BMI and methylation profiles, and what consequences this may have on downstream cardiovascular disease. The purpose of this study was to identify cytosine-phosphate-guanine (CpG) sites at which the association between BMI and DNAm could be modified by overall metabolic health. Results The discovery study population was derived from three Women’s Health Initiative (WHI) ancillary studies (n = 3977) and two Atherosclerosis Risk in Communities (ARIC) ancillary studies (n = 3520). Findings were validated in the Multi-Ethnic Study of Atherosclerosis (MESA) cohort (n = 1200). Generalized linear models regressed methylation β values on the interaction between BMI and metabolic health Z score (BMI × MHZ) adjusted for BMI, MHZ, cell composition, chip number and location, study characteristics, top three ancestry principal components, smoking, age, ethnicity (WHI), and sex (ARIC). Among the 429,566 sites examined, differential associations between BMI × MHZ and DNAm were identified at 22 CpG sites (FDR q < 0.05), with one site replicated in MESA (cg18989722, in the TRAPPC9 gene). Three of the 22 sites were associated with incident coronary heart disease (CHD) in WHI. For each 0.01 unit increase in DNAm β value, the risk of incident CHD increased by 9% in one site and decreased by 6–10% in two sites over 25 years. Conclusions Differential associations between DNAm and BMI by MHZ were identified at 22 sites, one of which was validated (cg18989722) and three of which were predictive of incident CHD. These sites are located in several genes related to NF-kappa-B signaling, suggesting a potential role for inflammation between DNA methylation and BMI-associated metabolic health. Supplementary Information The online version contains supplementary material available at 10.1186/s13148-021-01194-3.
Collapse
Affiliation(s)
- Whitney L Do
- Nutrition and Health Sciences Program, Laney Graduate School, Emory University, 1518 Clifton Rd, Atlanta, GA, 30322, USA.
| | - Steve Nguyen
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego, CA, USA
| | - Jie Yao
- Department of Pediatrics, The Institute for Translational Genomics and Population Sciences, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Xiuqing Guo
- Department of Pediatrics, The Institute for Translational Genomics and Population Sciences, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Eric A Whitsel
- Departments of Epidemiology and Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Ellen Demerath
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Jerome I Rotter
- Department of Pediatrics, The Institute for Translational Genomics and Population Sciences, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Stephen S Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Leslie Lange
- Division of Biomedical Informatics & Personalized Medicine, School of Medicine, Colorado University Anschutz Medical Campus, Aurora, CO, USA
| | - Jingzhong Ding
- Gerontology and Geriatric Medicine, School of Medicine, Wake Forest, Winston-Salem, NC, USA
| | - David Van Den Berg
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
| | - Yongmei Liu
- Duke Molecular Physiology Institute, Duke University, Durham, NC, USA
| | - Anne E Justice
- Center for Biomedical and Translational Informatics, Geisinger, Wilkes-Barre, PA, USA
| | - Weihua Guan
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Steve Horvath
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | | | - Parveen Bhatti
- Cancer Control Research, BC Cancer, Vancouver, BC, Canada
| | - Kristina Jordahl
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Aladdin Shadyab
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego, CA, USA
| | - Celina I Valencia
- College of Medicine, University of Arizona Cancer Center, Tucson, AZ, USA
| | - Aryeh D Stein
- Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Alicia Smith
- Department of Gynecology and Obstetrics, School of Medicine, Emory University, Atlanta, GA, USA
| | - Lisa R Staimez
- Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Karen Conneely
- Department of Human Genetics, Emory University, Atlanta, GA, USA
| | - K M Venkat Narayan
- Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| |
Collapse
|
19
|
Tang BL. Defects in early secretory pathway transport machinery components and neurodevelopmental disorders. Rev Neurosci 2021; 32:851-869. [PMID: 33781010 DOI: 10.1515/revneuro-2021-0020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 03/12/2021] [Indexed: 12/23/2022]
Abstract
The early secretory pathway, provisionally comprising of vesicular traffic between the endoplasmic reticulum (ER) and the Golgi apparatus, occurs constitutively in mammalian cells. Critical for a constant supply of secretory and plasma membrane (PM) materials, the pathway is presumably essential for general cellular function and survival. Neurons exhibit a high intensity in membrane dynamics and protein/lipid trafficking, with differential and polarized trafficking towards the somatodendritic and axonal PM domains. Mutations in genes encoding early secretory pathway membrane trafficking machinery components are known to result in neurodevelopmental or neurological disorders with disease manifestation in early life. Here, such rare disorders associated with autosomal recessive mutations in coat proteins, membrane tethering complexes and membrane fusion machineries responsible for trafficking in the early secretory pathway are summarily discussed. These mutations affected genes encoding subunits of coat protein complex I and II, subunits of transport protein particle (TRAPP) complexes, members of the YIP1 domain family (YIPF) and a SNAP receptor (SNARE) family member. Why the ubiquitously present and constitutively acting early secretory pathway machinery components could specifically affect neurodevelopment is addressed, with the plausible underlying disease etiologies and neuropathological mechanisms resulting from these mutations explored.
Collapse
Affiliation(s)
- Bor Luen Tang
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore117597, Singapore
| |
Collapse
|