1
|
Sanchez-Arias JC, Carrier M, Frederiksen SD, Shevtsova O, McKee C, van der Slagt E, Gonçalves de Andrade E, Nguyen HL, Young PA, Tremblay MÈ, Swayne LA. A Systematic, Open-Science Framework for Quantification of Cell-Types in Mouse Brain Sections Using Fluorescence Microscopy. Front Neuroanat 2021; 15:722443. [PMID: 34949993 PMCID: PMC8691181 DOI: 10.3389/fnana.2021.722443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 10/28/2021] [Indexed: 02/03/2023] Open
Abstract
The ever-expanding availability and evolution of microscopy tools has enabled ground-breaking discoveries in neurobiology, particularly with respect to the analysis of cell-type density and distribution. Widespread implementation of many of the elegant image processing tools available continues to be impeded by the lack of complete workflows that span from experimental design, labeling techniques, and analysis workflows, to statistical methods and data presentation. Additionally, it is important to consider open science principles (e.g., open-source software and tools, user-friendliness, simplicity, and accessibility). In the present methodological article, we provide a compendium of resources and a FIJI-ImageJ-based workflow aimed at improving the quantification of cell density in mouse brain samples using semi-automated open-science-based methods. Our proposed framework spans from principles and best practices of experimental design, histological and immunofluorescence staining, and microscopy imaging to recommendations for statistical analysis and data presentation. To validate our approach, we quantified neuronal density in the mouse barrel cortex using antibodies against pan-neuronal and interneuron markers. This framework is intended to be simple and yet flexible, such that it can be adapted to suit distinct project needs. The guidelines, tips, and proposed methodology outlined here, will support researchers of wide-ranging experience levels and areas of focus in neuroscience research.
Collapse
Affiliation(s)
| | - Micaël Carrier
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada.,Axe Neurosciences, Centre de Recherche du CHU de Québec, Université de Laval, Québec City, QC, Canada
| | | | - Olga Shevtsova
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Chloe McKee
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Emma van der Slagt
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | | | - Hai Lam Nguyen
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Penelope A Young
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada.,Axe Neurosciences, Centre de Recherche du CHU de Québec, Université de Laval, Québec City, QC, Canada.,Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada.,Department of Molecular Medicine, Université de Laval, Québec City, QC, Canada.,Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada.,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Leigh Anne Swayne
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada.,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada.,Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada.,Department of Neurology and Neurosurgery, Centre for Research in Neuroscience, Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, QC, Canada
| |
Collapse
|
2
|
Jiao F, Guo R, Beckmann JS, Yan Z, Yang Y, Hu J, Wang X, Xie S. Great future or greedy venture: Precision medicine needs philosophy. Health Sci Rep 2021; 4:e376. [PMID: 34541334 PMCID: PMC8439431 DOI: 10.1002/hsr2.376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 08/06/2021] [Accepted: 08/16/2021] [Indexed: 11/07/2022] Open
Abstract
INTRODUCTION Over the past decade, we have witnessed the initiation and implementation of precision medicine (PM), a discipline that promises to individualize and personalize medical management and treatment, rendering them ultimately more precise and effective. Despite of the continuing advances and numerous clinical applications, the potential of PM remains highly controversial, sparking heated debates about its future. METHOD The present article reviews the philosophical issues and practical challenges that are critical to the feasibility and implementation of PM. OUTCOME The explanation and argument about the relations between PM and computability, uncertainty as well as complexity, show that key foundational assumptions of PM might not be fully validated. CONCLUSION The present analysis suggests that our current understanding of PM is probably oversimplified and too superficial. More efforts are needed to realize the hope that PM has elicited, rather than make the term just as a hype.
Collapse
Affiliation(s)
- Fei Jiao
- Department of Biochemistry and Molecular BiologyBinzhou Medical UniversityYantaiChina
| | - Ruoyu Guo
- Department of Biochemistry and Molecular BiologyBinzhou Medical UniversityYantaiChina
| | | | - Zhonghai Yan
- Department of Medicine, College of Physicians and SurgeonsColumbia UniversityNew YorkNew YorkUSA
| | - Yun Yang
- Department of Biochemistry and Molecular BiologyBinzhou Medical UniversityYantaiChina
| | - Jinxia Hu
- Department of Biochemistry and Molecular BiologyBinzhou Medical UniversityYantaiChina
| | - Xin Wang
- Department of Clinical Laboratory & Center of Health Service Training970 Hospital of the PLA Joint Logistic Support ForceYantaiChina
| | - Shuyang Xie
- Department of Biochemistry and Molecular BiologyBinzhou Medical UniversityYantaiChina
| |
Collapse
|