1
|
Villamil CI, Negrón JJ, Middleton ER. Heritability in the Rhesus Macaque (Macaca mulatta) Vertebral Column. Am J Primatol 2024:e23686. [PMID: 39428679 DOI: 10.1002/ajp.23686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 09/19/2024] [Accepted: 09/28/2024] [Indexed: 10/22/2024]
Abstract
The vertebral column plays a central role in primate locomotion and positional behavior. Understanding its evolution, therefore, has the potential to clarify evolutionary processes that have occurred in the primate lineage as well as the specific behaviors of extinct primates. However, to understand primate vertebral anatomy, it is important to determine how much of this anatomy is heritable and how much develops as a response to environmental factors during life. We estimated heritability for vertebral counts as well as typical cervical, thoracic, and lumbar elements from 210 individuals from the pedigreed Cayo Santiago Macaca mulatta skeletal collection. We found moderate heritability of vertebral counts (h2 = 0.216-0.326), but with strong heritability of the type of variation (e.g., a tendency to meristic or homeotic change) in the vertebral count (h2 = 0.599), suggesting a possible explanation for high variability in vertebral numbers among the hominoids in particular. The moderate heritability of vertebral count also suggests that vertebral count is an unsuitable metric for estimating the ancestral state for some taxa. We found strong heritability in the morphology of cervical and upper lumbar zygapophyseal facets (h2 = 0.548-0.550) and the thoracic spinous processes (h2 = 0.609-0.761), including high heritability of the spinous process angle in the upper thoracic and upper lumbar elements (h2 = 0.649-0.752). We suggest these are related to maintaining stability in the cervical and lumbar regions, and reducing motion in the thoracic region, respectively. We propose that spinous processes may contain greater phylogenetic information, whereas transverse processes may contain greater information of function 'in life'. We also found important size effects, suggesting that size is the most heritable component of overall form and largely responsible for intertrait differences. This suggests that it is inappropriate to indiscriminately remove size effects from morphological comparisons.
Collapse
Affiliation(s)
- Catalina I Villamil
- School of Chiropractic, Universidad Central del Caribe, Bayamón, Puerto Rico, USA
| | - Jeziel J Negrón
- School of Chiropractic, Universidad Central del Caribe, Bayamón, Puerto Rico, USA
- Department of Biology, University of Puerto Rico-Bayamón, Bayamón, Puerto Rico, USA
| | - Emily R Middleton
- Department of Anthropology, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| |
Collapse
|
2
|
Kaufholz F, Ulrich J, Hakeemi MS, Bucher G. Temporal control of RNAi reveals both robust and labile feedback loops in the segmentation clock of the red flour beetle. Proc Natl Acad Sci U S A 2024; 121:e2318229121. [PMID: 38865277 PMCID: PMC11194489 DOI: 10.1073/pnas.2318229121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 05/03/2024] [Indexed: 06/14/2024] Open
Abstract
Animals from all major clades have evolved a segmented trunk, reflected in the human spine or the insect segments. These units emerge during embryogenesis from a posterior segment addition zone (SAZ), where repetitive gene activity is regulated by a mechanism described by the clock and wavefront/speed gradient model. In the red flour beetle Tribolium castaneum, RNA interference (RNAi) has been used to continuously knock down the function of primary pair-rule genes (pPRGs), caudal or Wnt pathway components, which has led to the complete breakdown of segmentation. However, it has remained untested, if this breakdown was reversible by bringing the missing gene function back to the system. To fill this gap, we established a transgenic system in T. castaneum, which allows blocking an ongoing RNAi effect with temporal control by expressing a viral inhibitor of RNAi via heat shock. We show that the T. castaneum segmentation machinery was able to reestablish after RNAi targeting the pPRGs Tc-eve, Tc-odd, and Tc-runt was blocked. However, we observed no rescue after blocking RNAi targeting Wnt pathway components. We conclude that the insect segmentation system contains both robust feedback loops that can reestablish and labile feedback loops that break down irreversibly. This combination may reconcile conflicting needs of the system: Labile systems controlling initiation and maintenance of the SAZ ensure that only one SAZ is formed. Robust feedback loops confer developmental robustness toward external disturbances.
Collapse
Affiliation(s)
- Felix Kaufholz
- Göttingen Graduate School for Neurosciences, Biophysics, and Molecular Biosciences, Göttingen37077, Germany
- Department of Evolutionary Developmental Genetics, University of Göttingen, Johann-Friedrich-Blumenbach Institute, Göttingen Center for Molecular Biosciences, Göttingen37077, Germany
| | - Julia Ulrich
- Department of Evolutionary Developmental Genetics, University of Göttingen, Johann-Friedrich-Blumenbach Institute, Göttingen Center for Molecular Biosciences, Göttingen37077, Germany
| | - Muhammad Salim Hakeemi
- Department of Evolutionary Developmental Genetics, University of Göttingen, Johann-Friedrich-Blumenbach Institute, Göttingen Center for Molecular Biosciences, Göttingen37077, Germany
| | - Gregor Bucher
- Department of Evolutionary Developmental Genetics, University of Göttingen, Johann-Friedrich-Blumenbach Institute, Göttingen Center for Molecular Biosciences, Göttingen37077, Germany
| |
Collapse
|
3
|
Green RA, Khaliullin RN, Zhao Z, Ochoa SD, Hendel JM, Chow TL, Moon H, Biggs RJ, Desai A, Oegema K. Automated profiling of gene function during embryonic development. Cell 2024; 187:3141-3160.e23. [PMID: 38759650 PMCID: PMC11166207 DOI: 10.1016/j.cell.2024.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 02/10/2024] [Accepted: 04/12/2024] [Indexed: 05/19/2024]
Abstract
Systematic functional profiling of the gene set that directs embryonic development is an important challenge. To tackle this challenge, we used 4D imaging of C. elegans embryogenesis to capture the effects of 500 gene knockdowns and developed an automated approach to compare developmental phenotypes. The automated approach quantifies features-including germ layer cell numbers, tissue position, and tissue shape-to generate temporal curves whose parameterization yields numerical phenotypic signatures. In conjunction with a new similarity metric that operates across phenotypic space, these signatures enabled the generation of ranked lists of genes predicted to have similar functions, accessible in the PhenoBank web portal, for ∼25% of essential development genes. The approach identified new gene and pathway relationships in cell fate specification and morphogenesis and highlighted the utilization of specialized energy generation pathways during embryogenesis. Collectively, the effort establishes the foundation for comprehensive analysis of the gene set that builds a multicellular organism.
Collapse
Affiliation(s)
- Rebecca A Green
- Ludwig Institute for Cancer Research, La Jolla, CA 92093, USA; Department of Cell and Developmental Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA.
| | | | - Zhiling Zhao
- Ludwig Institute for Cancer Research, La Jolla, CA 92093, USA
| | - Stacy D Ochoa
- Ludwig Institute for Cancer Research, La Jolla, CA 92093, USA
| | | | | | - HongKee Moon
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01307 Dresden, Germany
| | - Ronald J Biggs
- Ludwig Institute for Cancer Research, La Jolla, CA 92093, USA
| | - Arshad Desai
- Ludwig Institute for Cancer Research, La Jolla, CA 92093, USA; Department of Cell and Developmental Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Karen Oegema
- Ludwig Institute for Cancer Research, La Jolla, CA 92093, USA; Department of Cell and Developmental Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
4
|
Kingsley EP, Hager ER, Lassance JM, Turner KM, Harringmeyer OS, Kirby C, Neugeboren BI, Hoekstra HE. Adaptive tail-length evolution in deer mice is associated with differential Hoxd13 expression in early development. Nat Ecol Evol 2024; 8:791-805. [PMID: 38378804 PMCID: PMC11009118 DOI: 10.1038/s41559-024-02346-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 01/25/2024] [Indexed: 02/22/2024]
Abstract
Variation in the size and number of axial segments underlies much of the diversity in animal body plans. Here we investigate the evolutionary, genetic and developmental mechanisms driving tail-length differences between forest and prairie ecotypes of deer mice (Peromyscus maniculatus). We first show that long-tailed forest mice perform better in an arboreal locomotion assay, consistent with tails being important for balance during climbing. We then identify six genomic regions that contribute to differences in tail length, three of which associate with caudal vertebra length and the other three with vertebra number. For all six loci, the forest allele increases tail length, indicative of the cumulative effect of natural selection. Two of the genomic regions associated with variation in vertebra number contain Hox gene clusters. Of those, we find an allele-specific decrease in Hoxd13 expression in the embryonic tail bud of long-tailed forest mice, consistent with its role in axial elongation. Additionally, we find that forest embryos have more presomitic mesoderm than prairie embryos and that this correlates with an increase in the number of neuromesodermal progenitors, which are modulated by Hox13 paralogues. Together, these results suggest a role for Hoxd13 in the development of natural variation in adaptive morphology on a microevolutionary timescale.
Collapse
Affiliation(s)
- Evan P Kingsley
- Department of Organismic & Evolutionary Biology, Department of Molecular & Cellular Biology, Museum of Comparative Zoology and Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA.
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
| | - Emily R Hager
- Department of Organismic & Evolutionary Biology, Department of Molecular & Cellular Biology, Museum of Comparative Zoology and Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Jean-Marc Lassance
- Department of Organismic & Evolutionary Biology, Department of Molecular & Cellular Biology, Museum of Comparative Zoology and Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
- GIGA Institute, University of Liège, Liège, Belgium
| | - Kyle M Turner
- Department of Organismic & Evolutionary Biology, Department of Molecular & Cellular Biology, Museum of Comparative Zoology and Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
- Centre for Teaching Support & Innovation, University of Toronto, Toronto, Ontario, Canada
| | - Olivia S Harringmeyer
- Department of Organismic & Evolutionary Biology, Department of Molecular & Cellular Biology, Museum of Comparative Zoology and Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Christopher Kirby
- Department of Organismic & Evolutionary Biology, Department of Molecular & Cellular Biology, Museum of Comparative Zoology and Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Beverly I Neugeboren
- Department of Organismic & Evolutionary Biology, Department of Molecular & Cellular Biology, Museum of Comparative Zoology and Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
- Environmental Health and Safety, Harvard University, Cambridge, MA, USA
| | - Hopi E Hoekstra
- Department of Organismic & Evolutionary Biology, Department of Molecular & Cellular Biology, Museum of Comparative Zoology and Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
5
|
Lin S, Lim B. Multifaceted effects on even-skipped transcriptional dynamics upon Krüppel dosage changes. Development 2024; 151:dev202132. [PMID: 38345298 PMCID: PMC10948998 DOI: 10.1242/dev.202132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 02/08/2024] [Indexed: 03/05/2024]
Abstract
Although fluctuations in transcription factor (TF) dosage are often well tolerated, TF dosage modulation can change the target gene expression dynamics and result in significant non-lethal developmental phenotypes. Using MS2/MCP-mediated quantitative live imaging in early Drosophila embryos, we analyzed how changing levels of the gap gene Krüppel (Kr) affects transcriptional dynamics of the pair-rule gene even-skipped (eve). Halving the Kr dosage leads to a transient posterior expansion of the eve stripe 2 and an anterior shift of stripe 5. Surprisingly, the most significant changes are observed in eve stripes 3 and 4, the enhancers of which do not contain Kr-binding sites. In Kr heterozygous embryos, both stripes 3 and 4 display narrower widths, anteriorly shifted boundaries and reduced mRNA production levels. We show that Kr dosage indirectly affects stripe 3 and 4 dynamics by modulating other gap gene dynamics. We quantitatively correlate moderate body segment phenotypes of Kr heterozygotes with spatiotemporal changes in eve expression. Our results indicate that nonlinear relationships between TF dosage and phenotypes underlie direct TF-DNA and indirect TF-TF interactions.
Collapse
Affiliation(s)
- Shufan Lin
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Bomyi Lim
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
6
|
Filippopoulou K, Konstantinides N. Evolution of patterning. FEBS J 2024; 291:663-671. [PMID: 37943156 DOI: 10.1111/febs.16995] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/28/2023] [Accepted: 11/07/2023] [Indexed: 11/10/2023]
Abstract
Developing tissues are patterned in space and time; this enables them to differentiate their cell types and form complex structures to support different body plans. Although space and time are two independent entities, there are many examples of spatial patterns that originate from temporal ones. The most prominent example is the expression of the genes hunchback, Krüppel, pdm, and castor, which are expressed temporally in the neural stem cells of the Drosophila ventral nerve cord and spatially along the anteroposterior axis of the blastoderm stage embryo. In this Viewpoint, we investigate the relationship between space and time in specific examples of spatial and temporal patterns with the aim of gaining insight into the evolutionary history of patterning.
Collapse
|
7
|
Shapiro F, Wang J, Flynn E, Wu JY. Pudgy mouse rib deformities emanate from abnormal paravertebral longitudinal cartilage/bone accumulations. Biol Open 2024; 13:bio060139. [PMID: 38252118 PMCID: PMC10840853 DOI: 10.1242/bio.060139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 11/03/2023] [Indexed: 01/23/2024] Open
Abstract
The pudgy (pu/pu) mouse, caused by a recessive mutation in the Notch family Delta like-3 gene (Dll3), has severe rib, vertebral body and intervertebral disc abnormalities. Using whole-mount preparations and serial histologic sections we demonstrate: 1) localized paravertebral longitudinal cartilage/bone accumulations (PVLC/BAs) invariably associated with branched, fused and asymmetrically spaced ribs that emanate from it laterally; 2) abnormal rib formation immediately adjacent to abnormal vertebral body and intervertebral disc formation in asymmetric right/left fashion; and 3) patterns of rib deformation that differ in each mouse. Normal BALB/c embryo and age-matched non-affected pu/+ mice assessments allow for pu/pu comparisons. The Dll3 Notch family gene is involved in normal somitogenesis via the segmentation clock mechanism. Although pathogenesis of rib deformation is initially triggered by the Dll3 gene mutation, these findings of abnormal asymmetric costo-vertebral region structure imply that differing patterns cannot be attributed to this single gene mutation alone. All findings implicate a dual mechanism of malformation: the Dll3 gene mutation leading to subtle timing differences in traveling oscillation waves of the segmentation clock and further subsequent misdirection of tissue formation by altered chemical reaction-diffusion and epigenetic landscape responses. PVLC/BAs appear as primary supramolecular structures underlying severe rib malformation associated both with time-sensitive segmentation clock mutations and subsequent reactions.
Collapse
Affiliation(s)
- Frederic Shapiro
- Department of Medicine/Endocrinology, Stanford University School of Medicine, Palo Alto CA 94305, USA
- Department of Bioengineering, Northeastern University, Boston MA 02115, USA
| | - Jamie Wang
- Department of Medicine/Endocrinology, Stanford University School of Medicine, Palo Alto CA 94305, USA
| | - Evelyn Flynn
- Orthopaedic Research Laboratory, Boston Children's Hospital, Boston MA 02115, USA
| | - Joy Y. Wu
- Department of Medicine/Endocrinology, Stanford University School of Medicine, Palo Alto CA 94305, USA
| |
Collapse
|
8
|
Poethig RS, Fouracre J. Temporal regulation of vegetative phase change in plants. Dev Cell 2024; 59:4-19. [PMID: 38194910 PMCID: PMC10783531 DOI: 10.1016/j.devcel.2023.11.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/11/2023] [Accepted: 11/13/2023] [Indexed: 01/11/2024]
Abstract
During their vegetative growth, plants reiteratively produce leaves, buds, and internodes at the apical end of the shoot. The identity of these organs changes as the shoot develops. Some traits change gradually, but others change in a coordinated fashion, allowing shoot development to be divided into discrete juvenile and adult phases. The transition between these phases is called vegetative phase change. Historically, vegetative phase change has been studied because it is thought to be associated with an increase in reproductive competence. However, this is not true for all species; indeed, heterochronic variation in the timing of vegetative phase change and flowering has made important contributions to plant evolution. In this review, we describe the molecular mechanism of vegetative phase change, how the timing of this process is controlled by endogenous and environmental factors, and its ecological and evolutionary significance.
Collapse
Affiliation(s)
- R Scott Poethig
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Jim Fouracre
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
| |
Collapse
|
9
|
Masak G, Davidson LA. Constructing the pharyngula: Connecting the primary axial tissues of the head with the posterior axial tissues of the tail. Cells Dev 2023; 176:203866. [PMID: 37394035 PMCID: PMC10756936 DOI: 10.1016/j.cdev.2023.203866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/04/2023] [Accepted: 06/29/2023] [Indexed: 07/04/2023]
Abstract
The pharyngula stage of vertebrate development is characterized by stereotypical arrangement of ectoderm, mesoderm, and neural tissues from the anterior spinal cord to the posterior, yet unformed tail. While early embryologists over-emphasized the similarity between vertebrate embryos at the pharyngula stage, there is clearly a common architecture upon which subsequent developmental programs generate diverse cranial structures and epithelial appendages such as fins, limbs, gills, and tails. The pharyngula stage is preceded by two morphogenetic events: gastrulation and neurulation, which establish common shared structures despite the occurrence of cellular processes that are distinct to each of the species. Even along the body axis of a singular organism, structures with seemingly uniform phenotypic characteristics at the pharyngula stage have been established by different processes. We focus our review on the processes underlying integration of posterior axial tissue formation with the primary axial tissues that creates the structures laid out in the pharyngula. Single cell sequencing and novel gene targeting technologies have provided us with new insights into the differences between the processes that form the anterior and posterior axis, but it is still unclear how these processes are integrated to create a seamless body. We suggest that the primary and posterior axial tissues in vertebrates form through distinct mechanisms and that the transition between these mechanisms occur at different locations along the anterior-posterior axis. Filling gaps that remain in our understanding of this transition could resolve ongoing problems in organoid culture and regeneration.
Collapse
Affiliation(s)
- Geneva Masak
- Integrative Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Lance A Davidson
- Integrative Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15260, USA; Department of Developmental Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA; Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| |
Collapse
|
10
|
Verma N. Digest: Trilobites to vertebrates: how development influences the evolution of segmental patterning. Evolution 2023; 77:2109-2110. [PMID: 37407222 DOI: 10.1093/evolut/qpad123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 07/03/2023] [Indexed: 07/07/2023]
Abstract
How has the evolution of segment size patterning been developmentally regulated and what does the trilobite fossil record tell us about these ancestral control mechanisms? Nikolic et al. relate the evolutionary and developmental mechanisms of segmentation in extinct trilobites to those seen in extant arthropods and vertebrates to examine how ontogenic renovations are echoed in the phylogeny of segmental patterning.
Collapse
Affiliation(s)
- Neeharika Verma
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, United States
| |
Collapse
|
11
|
He S, Shao W, Chen SC, Wang T, Gibson MC. Spatial transcriptomics reveals a cnidarian segment polarity program in Nematostella vectensis. Curr Biol 2023:S0960-9822(23)00676-0. [PMID: 37315559 DOI: 10.1016/j.cub.2023.05.044] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 04/16/2023] [Accepted: 05/18/2023] [Indexed: 06/16/2023]
Abstract
During early animal evolution, the emergence of axially polarized segments was central to the diversification of complex bilaterian body plans. Nevertheless, precisely how and when segment polarity pathways arose remains obscure. Here, we demonstrate the molecular basis for segment polarization in developing larvae of the sea anemone Nematostella vectensis. Utilizing spatial transcriptomics, we first constructed a 3D gene expression atlas of developing larval segments. Capitalizing on accurate in silico predictions, we identified Lbx and Uncx, conserved homeodomain-containing genes that occupy opposing subsegmental domains under the control of both bone morphogenetic protein (BMP) signaling and the Hox-Gbx cascade. Functionally, Lbx mutagenesis eliminated all molecular evidence of segment polarization at the larval stage and caused an aberrant mirror-symmetric pattern of retractor muscles (RMs) in primary polyps. These results demonstrate the molecular basis for segment polarity in a non-bilaterian animal, suggesting that polarized metameric structures were present in the Cnidaria-Bilateria common ancestor over 600 million years ago.
Collapse
Affiliation(s)
- Shuonan He
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Wanqing Shao
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA; Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | - Ting Wang
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA; Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO 63108, USA
| | - Matthew C Gibson
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA; Department of Anatomy and Cell Biology, The University of Kansas School of Medicine, Kansas City, KS 66160, USA.
| |
Collapse
|
12
|
Courvoisier A. Congenital Cervical Spinal Deformities. Orthop Traumatol Surg Res 2023; 109:103459. [PMID: 36302448 DOI: 10.1016/j.otsr.2022.103459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 05/23/2022] [Accepted: 06/06/2022] [Indexed: 11/06/2022]
Abstract
Malformations of the cervical spine are a challenge in pediatric orthopedic surgery since the treatment options are limited. These congenital anomalies are often syndrome-related and have multiple repercussions on the function and statics of the cervical spine in all three planes. They are related to developmental abnormalities during the somite segmentation that occurs during the third week of embryonic development. Successful somitogenesis requires proper functioning of a clock regulated by complex signaling pathways that guide the steps needed to form the future spine. There is no specific classification for vertebral malformations at the cervical level. To characterize the progressive nature of a malformation, one must use general classifications. In the specific case of Klippel-Feil syndrome, these malformations can affect several vertebral levels in a continuous or discontinuous manner, but also the vertebral body and vertebral arch in a variable way. Thus, establishing a reliable prognosis in the coronal and sagittal planes is a complex undertaking. While technical mastery of certain osteotomy procedures has led to advances in the surgical treatment of rigid deformities of the cervical spine, the indications are still very rare. Nevertheless, the procedure has become safer and more accurate because of technical aids such as surgical navigation, robotics and 3D printed models or patient-specific guides. Occipitocervical transitional anomalies have embryological specificities that can explain the bony malformations seen at this level. However, most are rare, and the main concern is identifying any instability that justifies surgical stabilization. The presence of a cervical spine anomaly should trigger the search for occipitocervical instability and vice-versa.
Collapse
Affiliation(s)
- Aurélien Courvoisier
- Centre Hospitalo-Universitaire Grenoble Alpes, Hôpital Couple-Enfant, Centre Alpin de la Scoliose, Service d'orthopédie Pédiatrique, CS 10217, 38043 Grenoble Cedex 09, France.
| |
Collapse
|
13
|
He S, Shao W, Chen S(C, Wang T, Gibson MC. Spatial transcriptomics reveals a conserved segment polarity program that governs muscle patterning in Nematostella vectensis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.09.523347. [PMID: 36711919 PMCID: PMC9882047 DOI: 10.1101/2023.01.09.523347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
During early animal evolution, the emergence of axially-polarized segments was central to the diversification of complex bilaterian body plans. Nevertheless, precisely how and when segment polarity pathways arose remains obscure. Here we demonstrate the molecular basis for segment polarization in developing larvae of the pre-bilaterian sea anemone Nematostella vectensis . Utilizing spatial transcriptomics, we first constructed a 3-D gene expression atlas of developing larval segments. Capitalizing on accurate in silico predictions, we identified Lbx and Uncx, conserved homeodomain-containing genes that occupy opposing subsegmental domains under the control of both BMP signaling and the Hox-Gbx cascade. Functionally, Lbx mutagenesis eliminated all molecular evidence of segment polarization at larval stage and caused an aberrant mirror-symmetric pattern of retractor muscles in primary polyps. These results demonstrate the molecular basis for segment polarity in a pre-bilaterian animal, suggesting that polarized metameric structures were present in the Cnidaria-Bilateria common ancestor over 600 million years ago. Highlights Nematostella endomesodermal tissue forms metameric segments and displays a transcriptomic profile similar to that observed in bilaterian mesoderm Construction of a comprehensive 3-D gene expression atlas enables systematic dissection of segmental identity in endomesoderm Lbx and Uncx , two conserved homeobox-containing genes, establish segment polarity in Nematostella The Cnidarian-Bilaterian common ancestor likely possessed the genetic toolkit to generate polarized metameric structures.
Collapse
Affiliation(s)
- Shuonan He
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
- Current Address: Howard Hughes Medical Institute, Department of Organismic & Evolutionary Biology, Harvard University, 16 Divinity Avenue, Cambridge, Massachusetts 02138, USA
| | - Wanqing Shao
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- Current Address: Research Computing, Boston Children’s Hospital, 300 Longwood Avenue, Boston, Massachusetts 02115, USA
| | | | - Ting Wang
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri 63108, USA
| | - Matthew C. Gibson
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
- Department of Anatomy and Cell Biology, The University of Kansas School of Medicine, Kansas City, Kansas 66160, USA
| |
Collapse
|
14
|
Lagler DK, Hannemann E, Eck K, Klawatsch J, Seichter D, Russ I, Mendel C, Lühken G, Krebs S, Blum H, Upadhyay M, Medugorac I. Fine-mapping and identification of candidate causal genes for tail length in the Merinolandschaf breed. Commun Biol 2022; 5:918. [PMID: 36068271 PMCID: PMC9448734 DOI: 10.1038/s42003-022-03854-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 08/16/2022] [Indexed: 12/14/2022] Open
Abstract
Docking the tails of lambs in long-tailed sheep breeds is a common practice worldwide. But this practice is associated with pain. Breeding for a shorter tail could offer an alternative. Therefore, this study aimed to analyze the natural tail length variation in the Merinolandschaf and to identify causal alleles for the short tail phenotype segregating within long-tailed breeds. We used SNP-based association analysis and haplotype-based mapping in 362 genotyped (Illumina OvineSNP50) and phenotyped Merinolandschaf lambs. Genome-wide significant regions were capture sequenced in 48 lambs and comparatively analyzed in various long and short-tailed sheep breeds and wild sheep subspecies. Here we show a SNP located in the first exon of HOXB13 and a SINE element located in the promotor of HOXB13 as promising candidates. These results enable more precise breeding towards shorter tails, improve animal welfare by amplification of ancestral alleles and contribute to a better understanding of differential embryonic development.
Collapse
Affiliation(s)
- Dominik Karl Lagler
- Population Genomics Group, Department of Veterinary Sciences, LMU Munich, Lena-Christ-Str. 48, 82152, Martinsried, Germany
- Tierzuchtforschung e.V. München, Senator-Gerauer-Str. 23, 85586, Poing, Germany
| | - Elisabeth Hannemann
- Population Genomics Group, Department of Veterinary Sciences, LMU Munich, Lena-Christ-Str. 48, 82152, Martinsried, Germany
| | - Kim Eck
- Population Genomics Group, Department of Veterinary Sciences, LMU Munich, Lena-Christ-Str. 48, 82152, Martinsried, Germany
- Tierzuchtforschung e.V. München, Senator-Gerauer-Str. 23, 85586, Poing, Germany
| | - Jürgen Klawatsch
- Population Genomics Group, Department of Veterinary Sciences, LMU Munich, Lena-Christ-Str. 48, 82152, Martinsried, Germany
- Tierzuchtforschung e.V. München, Senator-Gerauer-Str. 23, 85586, Poing, Germany
| | - Doris Seichter
- Tierzuchtforschung e.V. München, Senator-Gerauer-Str. 23, 85586, Poing, Germany
| | - Ingolf Russ
- Tierzuchtforschung e.V. München, Senator-Gerauer-Str. 23, 85586, Poing, Germany
| | - Christian Mendel
- Institute for Animal Breeding, Bavarian State Research Center for Agriculture, Prof.-Dürrwaechter-Platz 1, 85586, Poing, Germany
| | - Gesine Lühken
- Institute of Animal Breeding and Genetics, JLU Gießen, Ludwigstr. 21, 35390, Gießen, Germany
| | - Stefan Krebs
- Laboratory for Functional Genome Analysis, Gene Center, Ludwig-Maximilians-University Munich, 80539, Munich, Germany
| | - Helmut Blum
- Laboratory for Functional Genome Analysis, Gene Center, Ludwig-Maximilians-University Munich, 80539, Munich, Germany
| | - Maulik Upadhyay
- Population Genomics Group, Department of Veterinary Sciences, LMU Munich, Lena-Christ-Str. 48, 82152, Martinsried, Germany
| | - Ivica Medugorac
- Population Genomics Group, Department of Veterinary Sciences, LMU Munich, Lena-Christ-Str. 48, 82152, Martinsried, Germany.
| |
Collapse
|
15
|
Patel R, Galagali H, Kim JK, Frand AR. Feedback between a retinoid-related nuclear receptor and the let-7 microRNAs controls the pace and number of molting cycles in C. elegans. eLife 2022; 11:e80010. [PMID: 35968765 PMCID: PMC9377799 DOI: 10.7554/elife.80010] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/22/2022] [Indexed: 11/13/2022] Open
Abstract
Animal development requires coordination among cyclic processes, sequential cell fate specifications, and once-a-lifetime morphogenic events, but the underlying timing mechanisms are not well understood. Caenorhabditis elegans undergoes four molts at regular 8 to 10 hour intervals. The pace of the cycle is governed by PERIOD/lin-42 and other as-yet unknown factors. Cessation of the cycle in young adults is controlled by the let-7 family of microRNAs and downstream transcription factors in the heterochronic pathway. Here, we characterize a negative feedback loop between NHR-23, the worm homolog of mammalian retinoid-related orphan receptors (RORs), and the let-7 family of microRNAs that regulates both the frequency and finite number of molts. The molting cycle is decelerated in nhr-23 knockdowns and accelerated in let-7(-) mutants, but timed similarly in let-7(-) nhr-23(-) double mutants and wild-type animals. NHR-23 binds response elements (ROREs) in the let-7 promoter and activates transcription. In turn, let-7 dampens nhr-23 expression across development via a complementary let-7-binding site (LCS) in the nhr-23 3' UTR. The molecular interactions between NHR-23 and let-7 hold true for other let-7 family microRNAs. Either derepression of nhr-23 transcripts by LCS deletion or high gene dosage of nhr-23 leads to protracted behavioral quiescence and extra molts in adults. NHR-23 and let-7 also coregulate scores of genes required for execution of the molts, including lin-42. In addition, ROREs and LCSs isolated from mammalian ROR and let-7 genes function in C. elegans, suggesting conservation of this feedback mechanism. We propose that this feedback loop unites the molting timer and the heterochronic gene regulatory network, possibly by functioning as a cycle counter.
Collapse
Affiliation(s)
- Ruhi Patel
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los AngelesLos AngelesUnited States
| | - Himani Galagali
- Department of Biology, Johns Hopkins UniversityBaltimoreUnited States
| | - John K Kim
- Department of Biology, Johns Hopkins UniversityBaltimoreUnited States
| | - Alison R Frand
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los AngelesLos AngelesUnited States
| |
Collapse
|
16
|
Lacalli TC. Patterning, From Conifers to Consciousness: Turing's Theory and Order From Fluctuations. Front Cell Dev Biol 2022; 10:871950. [PMID: 35592249 PMCID: PMC9111979 DOI: 10.3389/fcell.2022.871950] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 03/11/2022] [Indexed: 11/19/2022] Open
Abstract
This is a brief account of Turing's ideas on biological pattern and the events that led to their wider acceptance by biologists as a valid way to investigate developmental pattern, and of the value of theory more generally in biology. Periodic patterns have played a key role in this process, especially 2D arrays of oriented stripes, which proved a disappointment in theoretical terms in the case of Drosophila segmentation, but a boost to theory as applied to skin patterns in fish and model chemical reactions. The concept of "order from fluctuations" is a key component of Turing's theory, wherein pattern arises by selective amplification of spatial components concealed in the random disorder of molecular and/or cellular processes. For biological examples, a crucial point from an analytical standpoint is knowing the nature of the fluctuations, where the amplifier resides, and the timescale over which selective amplification occurs. The answer clarifies the difference between "inelegant" examples such as Drosophila segmentation, which is perhaps better understood as a programmatic assembly process, and "elegant" ones expressible in equations like Turing's: that the fluctuations and selection process occur predominantly in evolutionary time for the former, but in real time for the latter, and likewise for error suppression, which for Drosophila is historical, in being lodged firmly in past evolutionary events. The prospects for a further extension of Turing's ideas to the complexities of brain development and consciousness is discussed, where a case can be made that it could well be in neuroscience that his ideas find their most important application.
Collapse
|
17
|
Shaffer JM, Greenwald I. SALSA, a genetically encoded biosensor for spatiotemporal quantification of Notch signal transduction in vivo. Dev Cell 2022; 57:930-944.e6. [PMID: 35413239 PMCID: PMC9473748 DOI: 10.1016/j.devcel.2022.03.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 01/14/2022] [Accepted: 03/14/2022] [Indexed: 12/26/2022]
Abstract
Notch-mediated lateral specification is a fundamental mechanism to resolve stochastic cell fate choices by amplifying initial differences between equivalent cells. To study how stochastic events impact Notch activity, we developed a biosensor, SALSA (sensor able to detect lateral signaling activity), consisting of an amplifying "switch"-Notch tagged with TEV protease-and a "reporter"-GFP fused to a nuclearly localized red fluorescent protein, separated by a TEVp cut site. When ligand activates Notch, TEVp enters the nucleus and releases GFP from its nuclear tether, allowing Notch activation to be quantified based on the changes in GFP subcellular localization. We show that SALSA accurately reports Notch activity in different signaling paradigms in Caenorhabditis elegans and use time-lapse imaging to test hypotheses about how stochastic elements ensure a reproducible and robust outcome in a canonical lin-12/Notch-mediated lateral signaling paradigm. SALSA should be generalizable to other experimental systems and be adaptable to increase options for bespoke "SynNotch" applications.
Collapse
Affiliation(s)
- Justin M Shaffer
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Iva Greenwald
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
18
|
Essay the (unusual) heuristic value of Hox gene clusters; a matter of time? Dev Biol 2022; 484:75-87. [PMID: 35182536 DOI: 10.1016/j.ydbio.2022.02.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 12/22/2022]
Abstract
Ever since their first report in 1984, Antennapedia-type homeobox (Hox) genes have been involved in such a series of interesting observations, in particular due to their conserved clustered organization between vertebrates and arthropods, that one may legitimately wonder about the origin of this heuristic value. In this essay, I first consider different examples where Hox gene clusters have been instrumental in providing conceptual advances, taken from various fields of research and mostly involving vertebrate embryos. These examples touch upon our understanding of genomic evolution, the revisiting of 19th century views on the relationships between development and evolution and the building of a new framework to understand long-range and pleiotropic gene regulation during development. I then discuss whether the high value of the Hox gene family, when considered as an epistemic object, is related to its clustered structure (and the absence thereof in some animal species) and, if so, what is it in such particular genetic oddities that made them so generous in providing the scientific community with interesting information.
Collapse
|
19
|
Pourquié O. A brief history of the segmentation clock. Dev Biol 2022; 485:24-36. [DOI: 10.1016/j.ydbio.2022.02.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 02/23/2022] [Indexed: 11/16/2022]
|