1
|
Liu K, Grover M, Trusch F, Vagena-Pantoula C, Ippolito D, Barkoulas M. Paired C-type lectin receptors mediate specific recognition of divergent oomycete pathogens in C. elegans. Cell Rep 2024; 43:114906. [PMID: 39460939 DOI: 10.1016/j.celrep.2024.114906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/16/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Innate immune responses can be triggered upon detection of pathogen- or damage-associated molecular patterns by host receptors that are often present on the surface of immune cells. While invertebrates like Caenorhabditis elegans lack professional immune cells, they still mount pathogen-specific responses. However, the identity of host receptors in the nematode remains poorly understood. Here, we show that C-type lectin receptors mediate species-specific recognition of divergent oomycetes in C. elegans. A CLEC-27/CLEC-35 pair is essential for recognition of the oomycete Myzocytiopsis humicola, while a CLEC-26/CLEC-36 pair is required for detection of Haptoglossa zoospora. Both clec pairs are transcriptionally regulated through a shared promoter by the conserved PRD-like homeodomain transcription factor CEH-37/OTX2 and act in sensory neurons and the anterior intestine to trigger a protective immune response in the epidermis. This system enables redundant tissue sensing of oomycete threats through canonical CLEC receptors and host defense via cross-tissue communication.
Collapse
Affiliation(s)
- Kenneth Liu
- Department of Life Sciences, Imperial College, SW7 2AZ London, UK
| | - Manish Grover
- Department of Life Sciences, Imperial College, SW7 2AZ London, UK
| | - Franziska Trusch
- Department of Life Sciences, Imperial College, SW7 2AZ London, UK
| | | | | | | |
Collapse
|
2
|
Wang E, Jiang Y, Zhao C. Structural and physiological functions of Caenorhabditis elegans epidermis. Heliyon 2024; 10:e38680. [PMID: 39397934 PMCID: PMC11471208 DOI: 10.1016/j.heliyon.2024.e38680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 09/27/2024] [Accepted: 09/27/2024] [Indexed: 10/15/2024] Open
Abstract
Research on the skin is continuously evolving, and it is imperative to select a streamlined and efficient research model. Caenorhabditis elegans is a free-leaving nematode whose epidermis serves as the primary barrier epithelium, composed of a collagen matrix. Differentiation of the epidermis begins in the middle of embryonic development, including polarization of the cytoskeleton and formation of cell junctions. Cuticle secretion is one of the main developmental and physiological features of the epidermis. Mutations in the collagen genes of individual worms lead to cuticle defects, thereby changing the shape of the animals. The complete genome sequence of C. elegans indicates that more than 170 different collagen genes may be related to this structure. Collagen is a structural protein that plays an important role in the development of extracellular matrix. Different collagen genes are expressed at different stages of matrix synthesis, which may help form specific interactions between different collagens. The differentiated epidermis also plays a key role in the transmission of hormonal signals, fat storage, and ion homeostasis and is closely related to the development and function of the nervous system. The epidermis also provides passive and active defenses against pathogens that penetrate the skin and can repair wounds. In addition, age-dependent epidermal degeneration is a prominent feature of aging and may affect aging and lifespan. This review we highlight recent findings of the structure and related physiological functions of the cuticle of C. elegans. In contrast to previous studies, we offer novel insights into the utilization of C. elegans as valuable models for skin-related investigations. It also encourages the use of C. elegans as a skin model, and its high-throughput screening properties facilitate the acceleration of fundamental research in skin-related diseases.
Collapse
Affiliation(s)
- Enhui Wang
- Beijing Qingyan Boshi Health Management Co., Ltd, No.8, Hangfeng Road, Fengtai District, Beijing, China
| | - Yanfei Jiang
- Beijing Qingyan Boshi Health Management Co., Ltd, No.8, Hangfeng Road, Fengtai District, Beijing, China
| | - Chunyue Zhao
- Beijing Qingyan Boshi Health Management Co., Ltd, No.8, Hangfeng Road, Fengtai District, Beijing, China
| |
Collapse
|
3
|
Batachari LE, Dai AY, Troemel ER. Caenorhabditis elegans RIG-I-like receptor DRH-1 signals via CARDs to activate antiviral immunity in intestinal cells. Proc Natl Acad Sci U S A 2024; 121:e2402126121. [PMID: 38980902 PMCID: PMC11260149 DOI: 10.1073/pnas.2402126121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 06/06/2024] [Indexed: 07/11/2024] Open
Abstract
Upon sensing viral RNA, mammalian RIG-I-like receptors (RLRs) activate downstream signals using caspase activation and recruitment domains (CARDs), which ultimately promote transcriptional immune responses that have been well studied. In contrast, the downstream signaling mechanisms for invertebrate RLRs are much less clear. For example, the Caenorhabditis elegans RLR DRH-1 lacks annotated CARDs and up-regulates the distinct output of RNA interference. Here, we found that similar to mammal RLRs, DRH-1 signals through two tandem CARDs (2CARD) to induce a transcriptional immune response. Expression of DRH-1(2CARD) alone in the intestine was sufficient to induce immune gene expression, increase viral resistance, and promote thermotolerance, a phenotype previously associated with immune activation in C. elegans. We also found that DRH-1 is required in the intestine to induce immune gene expression, and we demonstrate subcellular colocalization of DRH-1 puncta with double-stranded RNA inside the cytoplasm of intestinal cells upon viral infection. Altogether, our results reveal mechanistic and spatial insights into antiviral signaling in C. elegans, highlighting unexpected parallels in RLR signaling between C. elegans and mammals.
Collapse
Affiliation(s)
- Lakshmi E. Batachari
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA92093
| | - Alyssa Y. Dai
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA92093
| | - Emily R. Troemel
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA92093
| |
Collapse
|
4
|
Bardan Sarmiento M, Gang SS, van Oosten-Hawle P, Troemel ER. CUL-6/cullin ubiquitin ligase-mediated degradation of HSP-90 by intestinal lysosomes promotes thermotolerance. Cell Rep 2024; 43:114279. [PMID: 38795346 PMCID: PMC11238739 DOI: 10.1016/j.celrep.2024.114279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/10/2024] [Accepted: 05/10/2024] [Indexed: 05/27/2024] Open
Abstract
Heat shock can be a lethal stressor. Previously, we described a CUL-6/cullin-ring ubiquitin ligase complex in the nematode Caenorhabditis elegans that is induced by intracellular intestinal infection and proteotoxic stress and that promotes improved survival upon heat shock (thermotolerance). Here, we show that CUL-6 promotes thermotolerance by targeting the heat shock protein HSP-90 for degradation. We show that CUL-6-mediated lowering of HSP-90 protein levels, specifically in the intestine, improves thermotolerance. Furthermore, we show that lysosomal function is required for CUL-6-mediated promotion of thermotolerance and that CUL-6 directs HSP-90 to lysosome-related organelles upon heat shock. Altogether, these results indicate that a CUL-6 ubiquitin ligase promotes organismal survival upon heat shock by promoting HSP-90 degradation in intestinal lysosomes. Thus, HSP-90, a protein commonly associated with protection against heat shock and promoting degradation of other proteins, is itself degraded to protect against heat shock.
Collapse
Affiliation(s)
| | - Spencer S Gang
- School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | | | - Emily R Troemel
- School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
5
|
Gang SS, Lažetić V. Microsporidia: Pervasive natural pathogens of Caenorhabditis elegans and related nematodes. J Eukaryot Microbiol 2024:e13027. [PMID: 38702921 DOI: 10.1111/jeu.13027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 02/02/2024] [Indexed: 05/06/2024]
Abstract
The nematode Caenorhabditis elegans is an invaluable host model for studying infections caused by various pathogens, including microsporidia. Microsporidia represent the first natural pathogens identified in C. elegans, revealing the previously unknown Nematocida genus of microsporidia. Following this discovery, the utilization of nematodes as a model host has rapidly expanded our understanding of microsporidia biology and has provided key insights into the cell and molecular mechanisms of antimicrosporidia defenses. Here, we first review the isolation history, morphological characteristics, life cycles, tissue tropism, genetics, and host immune responses for the four most well-characterized Nematocida species that infect C. elegans. We then highlight additional examples of microsporidia that infect related terrestrial and aquatic nematodes, including parasitic nematodes. To conclude, we assess exciting potential applications of the nematode-microsporidia system while addressing the technical advances necessary to facilitate future growth in this field.
Collapse
Affiliation(s)
- Spencer S Gang
- Molecular Biology Department, Colorado College, Colorado Springs, Colorado, USA
| | - Vladimir Lažetić
- Department of Biological Sciences, Columbian College of Arts & Sciences, The George Washington University, Washington, District of Columbia, USA
| |
Collapse
|
6
|
González R, Félix MA. Caenorhabditis elegans immune responses to microsporidia and viruses. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 154:105148. [PMID: 38325500 DOI: 10.1016/j.dci.2024.105148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 01/30/2024] [Accepted: 02/03/2024] [Indexed: 02/09/2024]
Abstract
The model organism Caenorhabditis elegans is susceptible to infection by obligate intracellular pathogens, specifically microsporidia and viruses. These intracellular pathogens infect intestinal cells, or, for some microsporidia, epidermal cells. Strikingly, intestinal cell infections by viruses or microsporidia trigger a common transcriptional response, activated in part by the ZIP-1 transcription factor. Among the strongest activated genes in this response are ubiquitin-pathway members and members of the pals family, an intriguing gene family with cross-regulations of different members of genomic clusters. Some of the induced genes participate in host defense against the pathogens, for example through ubiquitin-mediated inhibition. Other mechanisms defend the host specifically against viral infections, including antiviral RNA interference and uridylation. These various immune responses are altered by environmental factors and by intraspecific genetic variation of the host. These pathogens were first isolated 15 years ago and much remains to be discovered using C. elegans genetics; also, other intracellular pathogens of C. elegans may yet to be discovered.
Collapse
Affiliation(s)
- Rubén González
- Institut de Biologie de l'École Normale Supérieure, CNRS, INSERM, 75005, Paris, France.
| | - Marie-Anne Félix
- Institut de Biologie de l'École Normale Supérieure, CNRS, INSERM, 75005, Paris, France
| |
Collapse
|
7
|
Grover M, Gang SS, Troemel ER, Barkoulas M. Proteasome inhibition triggers tissue-specific immune responses against different pathogens in C. elegans. PLoS Biol 2024; 22:e3002543. [PMID: 38466732 PMCID: PMC10957088 DOI: 10.1371/journal.pbio.3002543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 03/21/2024] [Accepted: 02/09/2024] [Indexed: 03/13/2024] Open
Abstract
Protein quality control pathways play important roles in resistance against pathogen infection. For example, the conserved transcription factor SKN-1/NRF up-regulates proteostasis capacity after blockade of the proteasome and also promotes resistance against bacterial infection in the nematode Caenorhabditis elegans. SKN-1/NRF has 3 isoforms, and the SKN-1A/NRF1 isoform, in particular, regulates proteasomal gene expression upon proteasome dysfunction as part of a conserved bounce-back response. We report here that, in contrast to the previously reported role of SKN-1 in promoting resistance against bacterial infection, loss-of-function mutants in skn-1a and its activating enzymes ddi-1 and png-1 show constitutive expression of immune response programs against natural eukaryotic pathogens of C. elegans. These programs are the oomycete recognition response (ORR), which promotes resistance against oomycetes that infect through the epidermis, and the intracellular pathogen response (IPR), which promotes resistance against intestine-infecting microsporidia. Consequently, skn-1a mutants show increased resistance to both oomycete and microsporidia infections. We also report that almost all ORR/IPR genes induced in common between these programs are regulated by the proteasome and interestingly, specific ORR/IPR genes can be induced in distinct tissues depending on the exact trigger. Furthermore, we show that increasing proteasome function significantly reduces oomycete-mediated induction of multiple ORR markers. Altogether, our findings demonstrate that proteasome regulation keeps innate immune responses in check in a tissue-specific manner against natural eukaryotic pathogens of the C. elegans epidermis and intestine.
Collapse
Affiliation(s)
- Manish Grover
- Department of Life Sciences, Imperial College, London, United Kingdom
| | - Spencer S. Gang
- School of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| | - Emily R. Troemel
- School of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| | | |
Collapse
|
8
|
Tran TD, Luallen RJ. An organismal understanding of C. elegans innate immune responses, from pathogen recognition to multigenerational resistance. Semin Cell Dev Biol 2024; 154:77-84. [PMID: 36966075 PMCID: PMC10517082 DOI: 10.1016/j.semcdb.2023.03.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/05/2023] [Accepted: 03/14/2023] [Indexed: 03/27/2023]
Abstract
The nematode Caenorhabditis elegans has been a model for studying infection since the early 2000s and many major discoveries have been made regarding its innate immune responses. C. elegans has been found to utilize some key conserved aspects of immune responses and signaling, but new interesting features of innate immunity have also been discovered in the organism that might have broader implications in higher eukaryotes such as mammals. Some of the distinctive features of C. elegans innate immunity involve the mechanisms this bacterivore uses to detect infection and mount specific immune responses to different pathogens, despite lacking putative orthologs of many important innate immune components, including cellular immunity, the inflammasome, complement, or melanization. Even when orthologs of known immune factors exist, there appears to be an absence of canonical functions, most notably the lack of pattern recognition by its sole Toll-like receptor. Instead, recent research suggests that C. elegans senses infection by specific pathogens through contextual information, including unique products produced by the pathogen or infection-induced disruption of host physiology, similar to the proposed detection of patterns of pathogenesis in mammalian systems. Interestingly, C. elegans can also transfer information of past infection to their progeny, providing robust protection for their offspring in face of persisting pathogens, in part through the RNAi pathway as well as potential new mechanisms that remain to be elucidated. Altogether, some of these strategies employed by C. elegans share key conceptual features with vertebrate adaptive immunity, as the animal can differentiate specific microbial features, as well as propagate a form of immune memory to their offspring.
Collapse
Affiliation(s)
- Tuan D Tran
- Department of Biology San Diego State University, 5500 Campanile Dr., San Diego, CA 92182, USA
| | - Robert J Luallen
- Department of Biology San Diego State University, 5500 Campanile Dr., San Diego, CA 92182, USA.
| |
Collapse
|
9
|
Batachari LE, Dai AY, Troemel ER. C. elegans RIG-I-like receptor DRH-1 signals via CARDs to activate anti-viral immunity in intestinal cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.05.578694. [PMID: 38370651 PMCID: PMC10871272 DOI: 10.1101/2024.02.05.578694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Upon sensing viral RNA, mammalian RIG-I-like receptors activate downstream signals using caspase activation and recruitment domains (CARDs), which ultimately promote transcriptional immune responses that have been well-studied. In contrast, the downstream signaling mechanisms for invertebrate RIG-I-like receptors are much less clear. For example, the Caenorhabditis elegans RIG-I-like receptor DRH-1 lacks annotated CARDs and upregulates the distinct output of RNA interference (RNAi). Here we found that, similar to mammal RIG-I-like receptors, DRH-1 signals through two tandem caspase activation and recruitment domains (2CARD) to induce a transcriptional immune response. Expression of DRH-1(2CARD) alone in the intestine was sufficient to induce immune gene expression, increase viral resistance, and promote thermotolerance, a phenotype previously associated with immune activation. We also found that DRH-1 is required in the intestine to induce immune gene expression, and we demonstrate subcellular colocalization of DRH-1 puncta with double-stranded RNA inside the cytoplasm of intestinal cells upon viral infection. Altogether, our results reveal mechanistic and spatial insights into anti-viral signaling in C. elegans, highlighting unexpected parallels in RIG-I-like receptor signaling between C. elegans and mammals.
Collapse
Affiliation(s)
- Lakshmi E Batachari
- School of Biological Sciences, University of California, San Diego, La Jolla, California, United States
| | - Alyssa Y Dai
- School of Biological Sciences, University of California, San Diego, La Jolla, California, United States
| | - Emily R Troemel
- School of Biological Sciences, University of California, San Diego, La Jolla, California, United States
| |
Collapse
|
10
|
Lažetić V, Batachari LE, Russell AB, Troemel ER. Similarities in the induction of the intracellular pathogen response in Caenorhabditis elegans and the type I interferon response in mammals. Bioessays 2023; 45:e2300097. [PMID: 37667453 PMCID: PMC10694843 DOI: 10.1002/bies.202300097] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/11/2023] [Accepted: 08/16/2023] [Indexed: 09/06/2023]
Abstract
Although the type-I interferon (IFN-I) response is considered vertebrate-specific, recent findings about the Intracellular Pathogen Response (IPR) in nematode Caenorhabditis elegans indicate that there are similarities between these two transcriptional immunological programs. The IPR is induced during infection with natural intracellular fungal and viral pathogens of the intestine and promotes resistance against these pathogens. Similarly, the IFN-I response is induced by viruses and other intracellular pathogens and promotes resistance against infection. Whether the IPR and the IFN-I response evolved in a divergent or convergent manner is an unanswered and exciting question, which could be addressed by further studies of immunity against intracellular pathogens in C. elegans and other simple host organisms. Here we highlight similar roles played by RIG-I-like receptors, purine metabolism enzymes, proteotoxic stressors, and transcription factors to induce the IPR and IFN-I response, as well as the similar consequences of these defense programs on organismal development.
Collapse
Affiliation(s)
- Vladimir Lažetić
- School of Biological SciencesUniversity of California, San DiegoLa JollaCaliforniaUSA
- Department of Biological SciencesThe George Washington UniversityWashingtonDCUSA
| | - Lakshmi E. Batachari
- School of Biological SciencesUniversity of California, San DiegoLa JollaCaliforniaUSA
| | - Alistair B. Russell
- School of Biological SciencesUniversity of California, San DiegoLa JollaCaliforniaUSA
| | - Emily R. Troemel
- School of Biological SciencesUniversity of California, San DiegoLa JollaCaliforniaUSA
| |
Collapse
|
11
|
Lažetić V, Blanchard MJ, Bui T, Troemel ER. Multiple pals gene modules control a balance between immunity and development in Caenorhabditis elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.15.524171. [PMID: 36711775 PMCID: PMC9882112 DOI: 10.1101/2023.01.15.524171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The immune system continually battles against pathogen-induced pressures, which often leads to the evolutionary expansion of immune gene families in a species-specific manner. For example, the pals gene family expanded to 39 members in the Caenorhabditis elegans genome, in comparison to a single mammalian pals ortholog. Our previous studies have revealed that two members of this family, pals-22 and pals-25 , act as antagonistic paralogs to control the Intracellular Pathogen Response (IPR). The IPR is a protective transcriptional response, which is activated upon infection by two molecularly distinct natural intracellular pathogens of C. elegans - the Orsay virus and the fungus Nematocida parisii from the microsporidia phylum. In this study, we identify a previously uncharacterized member of the pals family, pals-17 , as a newly described negative regulator of the IPR. pals-17 mutants show constitutive upregulation of IPR gene expression, increased immunity against intracellular pathogens, as well as impaired development and reproduction. We also find that two other previously uncharacterized pals genes, pals-20 and pals-16 , are positive regulators of the IPR, acting downstream of pals-17 . These positive regulators reverse the effects caused by the loss of pals-17 on IPR gene expression, immunity and development. We show that the negative IPR regulator protein PALS-17 and the positive IPR regulator protein PALS-20 colocalize inside intestinal epithelial cells, which are the sites of infection for IPR-inducing pathogens. In summary, our study demonstrates that several pals genes from the expanded pals gene family act as ON/OFF switch modules to regulate a balance between organismal development and immunity against natural intracellular pathogens in C. elegans . AUTHOR SUMMARY Immune responses to pathogens induce extensive rewiring of host physiology. In the short term, these changes are generally beneficial as they can promote resistance against infection. However, prolonged activation of immune responses can have serious negative consequences on host health, including impaired organismal development and fitness. Therefore, the balance between activating the immune system and promoting development must be precisely regulated. In this study, we used genetics to identify a gene in the roundworm Caenorhabditis elegans called pals-17 that acts as a repressor of the Intracellular Pathogen Response (IPR), a defense response against viral and microsporidian infections. We also found that pals-17 is required for the normal development of these animals. Furthermore, we identified two other pals genes, pals-20 and pals-16 , as suppressors of pals-17 mutant phenotypes. Finally, we found that PALS-17 and PALS-20 proteins colocalize inside intestinal cells, where viruses and microsporidia invade and replicate in the host. Taken together, our study demonstrates a balance between organismal development and immunity that is regulated by several genetic ON/OFF switch 'modules' in C. elegans .
Collapse
Affiliation(s)
- Vladimir Lažetić
- School of Biological Sciences, University of California, San Diego, La Jolla, California, United States
| | - Michael J. Blanchard
- School of Biological Sciences, University of California, San Diego, La Jolla, California, United States
| | - Theresa Bui
- School of Biological Sciences, University of California, San Diego, La Jolla, California, United States
| | - Emily R. Troemel
- School of Biological Sciences, University of California, San Diego, La Jolla, California, United States,Corresponding author
| |
Collapse
|