1
|
Young MG, Straub TJ, Worby CJ, Metsky HC, Gnirke A, Bronson RA, van Dijk LR, Desjardins CA, Matranga C, Qu J, Villicana JB, Azimzadeh P, Kau A, Dodson KW, Schreiber HL, Manson AL, Hultgren SJ, Earl AM. Distinct Escherichia coli transcriptional profiles in the guts of recurrent UTI sufferers revealed by pangenome hybrid selection. Nat Commun 2024; 15:9466. [PMID: 39487120 PMCID: PMC11530686 DOI: 10.1038/s41467-024-53829-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 10/21/2024] [Indexed: 11/04/2024] Open
Abstract
Low-abundance members of microbial communities are difficult to study in their native habitats, including Escherichia coli, a minor but common inhabitant of the gastrointestinal tract, and key opportunistic pathogen of the urinary tract. While multi-omic analyses have detailed interactions between uropathogenic Escherichia coli (UPEC) and the bladder mediating urinary tract infection (UTI), little is known about UPEC in its pre-infection reservoir, the gastrointestinal tract, partly due to its low relative abundance (<1%). To sensitively explore the genomes and transcriptomes of diverse gut E. coli, we develop E. coli PanSelect, which uses probes designed to specifically capture E. coli's broad pangenome. We demonstrate its ability to enrich diverse E. coli by orders of magnitude, in a mock community and in human stool from a study investigating recurrent UTI (rUTI). Comparisons of transcriptomes between gut E. coli of women with and without history of rUTI suggest rUTI gut E. coli are responding to increased oxygen and nitrate, suggestive of mucosal inflammation, which may have implications for recurrent disease. E. coli PanSelect is well suited for investigations of in vivo E. coli biology in other low-abundance environments, and the framework described here has broad applicability to other diverse, low-abundance organisms.
Collapse
Affiliation(s)
- Mark G Young
- Infectious Disease & Microbiome Program, Broad Institute, Cambridge, MA, 02142, USA
| | - Timothy J Straub
- Infectious Disease & Microbiome Program, Broad Institute, Cambridge, MA, 02142, USA
| | - Colin J Worby
- Infectious Disease & Microbiome Program, Broad Institute, Cambridge, MA, 02142, USA
| | - Hayden C Metsky
- Infectious Disease & Microbiome Program, Broad Institute, Cambridge, MA, 02142, USA
| | - Andreas Gnirke
- Infectious Disease & Microbiome Program, Broad Institute, Cambridge, MA, 02142, USA
| | - Ryan A Bronson
- Infectious Disease & Microbiome Program, Broad Institute, Cambridge, MA, 02142, USA
| | - Lucas R van Dijk
- Infectious Disease & Microbiome Program, Broad Institute, Cambridge, MA, 02142, USA
- Delft Bioinformatics Lab, Delft University of Technology, Van Mourik Broekmanweg 6, Delft, 2628 XE, The Netherlands
| | | | - Christian Matranga
- Infectious Disease & Microbiome Program, Broad Institute, Cambridge, MA, 02142, USA
| | - James Qu
- Infectious Disease & Microbiome Program, Broad Institute, Cambridge, MA, 02142, USA
| | - Jesús Bazan Villicana
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Philippe Azimzadeh
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Andrew Kau
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
- Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO, USA
- Division of Allergy and Immunology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Karen W Dodson
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
- Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Henry L Schreiber
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
- Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Abigail L Manson
- Infectious Disease & Microbiome Program, Broad Institute, Cambridge, MA, 02142, USA
| | - Scott J Hultgren
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
- Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Ashlee M Earl
- Infectious Disease & Microbiome Program, Broad Institute, Cambridge, MA, 02142, USA.
| |
Collapse
|
2
|
Zimmern P. Gaps in knowledge and recurrent urinary tract infections in women. Curr Opin Urol 2024; 34:452-463. [PMID: 39279346 DOI: 10.1097/mou.0000000000001226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
PURPOSE OF REVIEW The focus of this review is to present recent literature and gaps in knowledge (GIKs) surrounding the current and future treatment and prevention of uncomplicated recurrent urinary tract infections (rUTIs) in women. RECENT FINDINGS Recurrent urinary tract infections are common, significantly reduce quality of life, and create a substantial economic burden to the healthcare system. They are disproportionately affecting the postmenopausal women. Antibiotics, which are used for the treatment and prophylaxis of uncomplicated rUTI, have become problematic, as there is a global rise in allergy and resistance to these agents and their use is associated with further antimicrobial resistance. Thus, in recent decades, several alternative, nonantibiotic approaches have been evaluated. SUMMARY There is a critical need for a concerted and standardized methodology for diagnosing, treating, and monitoring women with rUTIs. Additionally, novel nonantibiotic alternative treatment and preventive measures for UTIs are desperately required to address the global issue of antibiotic recalcitrance in all age groups, and specifically older women. Research efforts have sought to develop alternative and more effective techniques; many of which appear to be promising, but require additional evaluation and validation through clinical trials.
Collapse
|
3
|
Mediati DG, Blair TA, Costas A, Monahan LG, Söderström B, Charles IG, Duggin IG. Genetic requirements for uropathogenic E. coli proliferation in the bladder cell infection cycle. mSystems 2024; 9:e0038724. [PMID: 39287381 PMCID: PMC11495030 DOI: 10.1128/msystems.00387-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 08/09/2024] [Indexed: 09/19/2024] Open
Abstract
Uropathogenic Escherichia coli (UPEC) requires an adaptable physiology to survive the wide range of environments experienced in the host, including gut and urinary tract surfaces. To identify UPEC genes required during intracellular infection, we developed a transposon-directed insertion-site sequencing approach for cellular infection models and searched for genes in a library of ~20,000 UTI89 transposon-insertion mutants that are specifically required at the distinct stages of infection of cultured bladder epithelial cells. Some of the bacterial functional requirements apparent in host bladder cell growth overlapped with those for M9-glycerol, notably nutrient utilization, polysaccharide and macromolecule precursor biosynthesis, and cell envelope stress tolerance. Two genes implicated in the intracellular bladder cell infection stage were confirmed through independent gene deletion studies: neuC (sialic acid capsule biosynthesis) and hisF (histidine biosynthesis). Distinct sets of UPEC genes were also implicated in bacterial dispersal, where UPEC erupts from bladder cells in highly filamentous or motile forms upon exposure to human urine, and during recovery from infection in a rich medium. We confirm that the dedD gene linked to septal peptidoglycan remodeling is required during UPEC dispersal from human bladder cells and may help stabilize cell division or the cell wall during envelope stress created by host cells. Our findings support a view that the host intracellular environment and infection cycle are multi-nutrient limited and create stress that demands an array of biosynthetic, cell envelope integrity, and biofilm-related functions of UPEC. IMPORTANCE Urinary tract infections (UTIs) are one of the most frequent infections worldwide. Uropathogenic Escherichia coli (UPEC), which accounts for ~80% of UTIs, must rapidly adapt to highly variable host environments, such as the gut, bladder sub-surface, and urine. In this study, we searched for UPEC genes required for bacterial growth and survival throughout the cellular infection cycle. Genes required for de novo synthesis of biomolecules and cell envelope integrity appeared to be important, and other genes were also implicated in bacterial dispersal and recovery from infection of cultured bladder cells. With further studies of individual gene function, their potential as therapeutic targets may be realized. This study expands knowledge of the UTI cycle and establishes an approach to genome-wide functional analyses of stage-resolved microbial infections.
Collapse
Affiliation(s)
- Daniel G. Mediati
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Ultimo, Australia
| | - Tamika A. Blair
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Ultimo, Australia
| | - Ariana Costas
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Ultimo, Australia
- Institut Cochin, INSERM U1016, Université de Paris, Paris, France
| | - Leigh G. Monahan
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Ultimo, Australia
| | - Bill Söderström
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Ultimo, Australia
| | - Ian G. Charles
- Quadram Institute Bioscience, Norwich Research Park, Norwich, United Kingdom
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Iain G. Duggin
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Ultimo, Australia
| |
Collapse
|
4
|
Cornelius SA, Basu U, Zimmern PE, De Nisco NJ. Overcoming challenges in the management of recurrent urinary tract infections. Expert Rev Anti Infect Ther 2024:1-13. [PMID: 39387179 DOI: 10.1080/14787210.2024.2412628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/10/2024] [Accepted: 10/01/2024] [Indexed: 10/12/2024]
Abstract
INTRODUCTION Urinary tract infection (UTI) is a major global health concern. While acute UTIs can usually be effectively treated, recurrent UTIs (rUTIs) impact patients for years, causing significant morbidity and can become refractory to front-line antibiotics. AREAS COVERED This review discusses the risk factors associated with rUTI, current rUTI treatment paradigms, prophylactic strategies, and challenges in rUTI diagnostics. We specifically discuss common risk factors for rUTI, including biological sex, age, menopause status, and diabetes mellitus. We also review recently available evidence for commonly used treatments, from oral antibiotic therapy to intravesical antimicrobials, electrofulguration of chronic cystitis, and the last-resort treatment, cystectomy. We discuss the most current literature evaluating prophylactic strategies for rUTI including long-term antibiotic prophylaxis, estrogen hormone therapy, and dietary supplements. Finally, we address the important role of UTI diagnostics in effective rUTI management and review the strengths and limitations of both current and emerging UTI diagnostic platforms as well as their ability to operate at point-of-care. EXPERT OPINION We discuss the current challenges faced by clinicians in managing rUTI in women and the steps that should be taken so that clinicians, scientists, and patients can work together to better understand the disease and develop better strategies for its management.
Collapse
Affiliation(s)
- Samuel A Cornelius
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Ujjaini Basu
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Philippe E Zimmern
- Department of Urology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Nicole J De Nisco
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX, USA
- Department of Urology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
5
|
Collins CA, Waller C, Batourina E, Kumar L, Mendelsohn CL, Gilbert NM. Nur77 protects the bladder urothelium from intracellular bacterial infection. Nat Commun 2024; 15:8308. [PMID: 39333075 PMCID: PMC11436794 DOI: 10.1038/s41467-024-52454-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 09/06/2024] [Indexed: 09/29/2024] Open
Abstract
Intracellular infections by Gram-negative bacteria are a significant global health threat. The nuclear receptor Nur77 (also called TR3, NGFI-B, or NR4A1) was recently shown to sense cytosolic bacterial lipopolysaccharide (LPS). However, the potential role for Nur77 in controlling intracellular bacterial infection has not been examined. Here we show that Nur77 protects against intracellular infection in the bladder by uropathogenic Escherichia coli (UPEC), the leading cause of urinary tract infections (UTI). Nur77 deficiency in mice promotes the formation of UPEC intracellular bacterial communities (IBCs) in the cells lining the bladder lumen, leading to persistent infection in bladder tissue. Conversely, treatment with a small-molecule Nur77 agonist, cytosporone B, inhibits invasion and enhances the expulsion of UPEC from human urothelial cells in vitro, and significantly reduces UPEC IBC formation and bladder infection in mice. Our findings reveal a new role for Nur77 in control of bacterial infection and suggest that pharmacologic agonism of Nur77 function may represent a promising antibiotic-sparing therapeutic approach for UTI.
Collapse
Affiliation(s)
- Christina A Collins
- Department of Pediatrics, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
| | - Chevaughn Waller
- Department of Urology, Columbia University Irving Medical Center, New York, NY, USA
| | - Ekaterina Batourina
- Department of Urology, Columbia University Irving Medical Center, New York, NY, USA
| | - Lokesh Kumar
- Department of Pediatrics, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
| | - Cathy L Mendelsohn
- Department of Urology, Columbia University Irving Medical Center, New York, NY, USA
| | - Nicole M Gilbert
- Department of Pediatrics, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA.
- Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
6
|
Ramaiah KB, Suresh I, Nesakumar N, Sai Subramanian N, Rayappan JBB. "Urinary tract infection: Conventional testing to developing Technologies". Clin Chim Acta 2024; 565:119979. [PMID: 39341530 DOI: 10.1016/j.cca.2024.119979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024]
Abstract
Urinary tract infections (UTIs) present an escalating global health concern, precipitating increased hospitalizations and antibiotic utilization, thereby fostering the emergence of antimicrobial resistance. Current diagnostic modalities exhibit protracted timelines and substantial financial burdens, necessitating specialized infrastructures. Addressing these impediments mandates the development of a precise diagnostic paradigm to expedite identification and augment antibiotic stewardship. The application of biosensors, recognized for their transformative efficacy, emerges as a promising resolution. Recent strides in biosensor technologies have introduced pioneering methodologies, yielding pertinent biosensors and integrated systems with significant implications for point-of-care applications. This review delves into historical perspectives, furnishing a comprehensive delineation of advancements in UTI diagnostics, disease etiology, and biomarkers, underscoring the potential merits of these innovations for optimizing patient care.
Collapse
Affiliation(s)
- Kavi Bharathi Ramaiah
- School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India; Biofilm Biology Lab & Antimicrobial Resistance Lab, Centre for Research in Infectious Diseases, SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India
| | - Indhu Suresh
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), SASTRA Deemed University, Thanjavur 613401, Tamil Nadu, India; School of Electrical and Electronics Engineering, SASTRA Deemed University, Thanjavur 613401, Tamil Nadu, India
| | - Noel Nesakumar
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), SASTRA Deemed University, Thanjavur 613401, Tamil Nadu, India; School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India
| | - N Sai Subramanian
- School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India; Biofilm Biology Lab & Antimicrobial Resistance Lab, Centre for Research in Infectious Diseases, SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India.
| | - John Bosco Balaguru Rayappan
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), SASTRA Deemed University, Thanjavur 613401, Tamil Nadu, India; School of Electrical and Electronics Engineering, SASTRA Deemed University, Thanjavur 613401, Tamil Nadu, India.
| |
Collapse
|
7
|
Lopatto EDB, Pinkner JS, Sanick DA, Potter RF, Liu LX, Bazán Villicaña J, Tamadonfar KO, Ye Y, Zimmerman MI, Gualberto NC, Dodson KW, Janetka JW, Hunstad DA, Hultgren SJ. Conformational ensembles in Klebsiella pneumoniae FimH impact uropathogenesis. Proc Natl Acad Sci U S A 2024; 121:e2409655121. [PMID: 39288182 PMCID: PMC11441496 DOI: 10.1073/pnas.2409655121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/01/2024] [Indexed: 09/19/2024] Open
Abstract
Klebsiella pneumoniae is an important pathogen causing difficult-to-treat urinary tract infections (UTIs). Over 1.5 million women per year suffer from recurrent UTI, reducing quality of life and causing substantial morbidity and mortality, especially in the hospital setting. Uropathogenic E. coli (UPEC) is the most prevalent cause of UTI. Like UPEC, K. pneumoniae relies on type 1 pili, tipped with the mannose-binding adhesin FimH, to cause cystitis. However, K. pneumoniae FimH is a poor binder of mannose, despite a mannose-binding pocket identical to UPEC FimH. FimH is composed of two domains that are in an equilibrium between tense (low-affinity) and relaxed (high-affinity) conformations. Substantial interdomain interactions in the tense conformation yield a low-affinity, deformed mannose-binding pocket, while domain-domain interactions are broken in the relaxed state, resulting in a high-affinity binding pocket. Using crystallography, we identified the structural basis by which domain-domain interactions direct the conformational equilibrium of K. pneumoniae FimH, which is strongly shifted toward the low-affinity tense state. Removal of the pilin domain restores mannose binding to the lectin domain, thus showing that poor mannose binding by K. pneumoniae FimH is not an inherent feature of the mannose-binding pocket. Phylogenetic analyses of K. pneumoniae genomes found that FimH sequences are highly conserved. However, we surveyed a collection of K. pneumoniae isolates from patients with long-term indwelling catheters and identified isolates that possessed relaxed higher-binding FimH variants, which increased K. pneumoniae fitness in bladder infection models, suggesting that long-term residence within the urinary tract may select for higher-binding FimH variants.
Collapse
Affiliation(s)
- Edward D. B. Lopatto
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO63110
- Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO63110
| | - Jerome S. Pinkner
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO63110
- Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO63110
| | - Denise A. Sanick
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO63110
- Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO63110
| | - Robert F. Potter
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO63110
| | - Lily X. Liu
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO63110
- Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO63110
| | - Jesús Bazán Villicaña
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO63110
- Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO63110
| | - Kevin O. Tamadonfar
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO63110
- Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO63110
| | - Yijun Ye
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO63110
- Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO63110
| | - Maxwell I. Zimmerman
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO63110
- Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO63110
| | - Nathaniel C. Gualberto
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO63110
- Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO63110
| | - Karen W. Dodson
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO63110
- Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO63110
| | - James W. Janetka
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO63110
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO63110
| | - David A. Hunstad
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO63110
- Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO63110
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO63110
| | - Scott J. Hultgren
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO63110
- Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO63110
| |
Collapse
|
8
|
Timm MR, Russell SK, Hultgren SJ. Urinary tract infections: pathogenesis, host susceptibility and emerging therapeutics. Nat Rev Microbiol 2024:10.1038/s41579-024-01092-4. [PMID: 39251839 DOI: 10.1038/s41579-024-01092-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/25/2024] [Indexed: 09/11/2024]
Abstract
Urinary tract infections (UTIs), which include any infection of the urethra, bladder or kidneys, account for an estimated 400 million infections and billions of dollars in health-care spending per year. The most common bacterium implicated in UTI is uropathogenic Escherichia coli, but diverse pathogens including Klebsiella, Enterococcus, Pseudomonas, Staphylococcus and even yeast such as Candida species can also cause UTIs. UTIs occur in both women and men and in both healthy and immunocompromised patients. However, certain patient factors predispose to disease: for example, female sex, history of prior UTI, or the presence of a urinary catheter or other urinary tract abnormality. The current clinical paradigm for the treatment of UTIs involves the use of antibiotics. Unfortunately, the efficacy of this approach is dwindling as the prevalence of antimicrobial resistance rises among UTI isolates, and the immense quantity of antibiotics prescribed annually for these infections contributes to the emergence of resistant pathogens. Therefore, there is an urgent need for new antibiotics and non-antibiotic treatment and prevention strategies. In this Review, we discuss how recent studies of bacterial pathogenesis, recurrence, persistence, host-pathogen interactions and host susceptibility factors have elucidated new and promising targets for the treatment and prevention of UTIs.
Collapse
Affiliation(s)
- Morgan R Timm
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
- Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Seongmi K Russell
- Department of Paediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Scott J Hultgren
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA.
- Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
9
|
Peterson E, Söderström B, Prins N, Le GHB, Hartley-Tassell LE, Evenhuis C, Grønnemose RB, Andersen TE, Møller-Jensen J, Iosifidis G, Duggin IG, Saunders B, Harry EJ, Bottomley AL. The role of bacterial size, shape and surface in macrophage engulfment of uropathogenic E. coli cells. PLoS Pathog 2024; 20:e1012458. [PMID: 39241059 PMCID: PMC11410268 DOI: 10.1371/journal.ppat.1012458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/18/2024] [Accepted: 07/26/2024] [Indexed: 09/08/2024] Open
Abstract
Uropathogenic Escherichia coli (UPEC) can undergo extensive filamentation in the host during acute urinary tract infections (UTIs). It has been hypothesised that this morphological plasticity allows bacteria to avoid host immune responses such as macrophage engulfment. However, it is still unclear what properties of filaments are important in macrophage-bacteria interactions. The aim of this work was to investigate the contribution of bacterial biophysical parameters, such as cell size and shape, and physiological parameters, such as cell surface and the environment, to macrophage engulfment efficiency. Viable, reversible filaments of known lengths and volumes were produced in the UPEC strain UTI89 using a variety of methods, including exposure to cell-wall targeting antibiotics, genetic manipulation and isolation from an in vitro human bladder cell model. Quantification of the engulfment ability of macrophages using gentamicin-protection assays and fluorescence microscopy demonstrated that the ability of filaments to avoid macrophage engulfment is dependent on a combination of size (length and volume), shape, cell surface and external environmental factors. UTI89 filamentation and macrophage engulfment efficiency were also found to occur independently of the SOS-inducible filamentation genes, sulA and ymfM in both in vivo and in vitro models of infection. Compared to filaments formed via antibiotic inhibition of division, the infection-derived filaments were preferentially targeted by macrophages. With several strains of UPEC now resistant to current antibiotics, our work identifies the importance of bacterial physiological and morphological states during infection.
Collapse
Affiliation(s)
- Elizabeth Peterson
- Australian Institute for Microbiology & Infection, University of Technology Sydney, Australia
| | - Bill Söderström
- Australian Institute for Microbiology & Infection, University of Technology Sydney, Australia
| | - Nienke Prins
- Australian Institute for Microbiology & Infection, University of Technology Sydney, Australia
| | - Giang H B Le
- School of Life Sciences, University of Technology Sydney, Sydney, Australia
| | | | - Chris Evenhuis
- Australian Institute for Microbiology & Infection, University of Technology Sydney, Australia
| | - Rasmus Birkholm Grønnemose
- Research Unit of Clinical Microbiology, University of Southern Denmark and Odense University Hospital, Odense, Denmark
| | - Thomas Emil Andersen
- Research Unit of Clinical Microbiology, University of Southern Denmark and Odense University Hospital, Odense, Denmark
| | - Jakob Møller-Jensen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Gregory Iosifidis
- Australian Institute for Microbiology & Infection, University of Technology Sydney, Australia
| | - Iain G Duggin
- Australian Institute for Microbiology & Infection, University of Technology Sydney, Australia
| | | | - Elizabeth J Harry
- Australian Institute for Microbiology & Infection, University of Technology Sydney, Australia
| | - Amy L Bottomley
- Australian Institute for Microbiology & Infection, University of Technology Sydney, Australia
| |
Collapse
|
10
|
Isidro-Coxca MI, Ortiz-Jiménez S, Puente JL. Type 1 fimbria and P pili: regulatory mechanisms of the prototypical members of the chaperone-usher fimbrial family. Arch Microbiol 2024; 206:373. [PMID: 39127787 PMCID: PMC11316696 DOI: 10.1007/s00203-024-04092-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/18/2024] [Accepted: 07/27/2024] [Indexed: 08/12/2024]
Abstract
Adherence to both cellular and abiotic surfaces is a crucial step in the interaction of bacterial pathogens and commensals with their hosts. Bacterial surface structures known as fimbriae or pili play a fundamental role in the early colonization stages by providing specificity or tropism. Among the various fimbrial families, the chaperone-usher family has been extensively studied due to its ubiquity, diversity, and abundance. This family is named after the components that facilitate their biogenesis. Type 1 fimbria and P pilus, two chaperone-usher fimbriae associated with urinary tract infections, have been thoroughly investigated and serve as prototypes that have laid the foundations for understanding the biogenesis of this fimbrial family. Additionally, the study of the mechanisms regulating their expression has also been a subject of great interest, revealing that the regulation of the expression of the genes encoding these structures is a complex and diverse process, involving both common global regulators and those specific to each operon.
Collapse
Affiliation(s)
- María I Isidro-Coxca
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Mor, 62210, Mexico.
| | - Stephanie Ortiz-Jiménez
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Mor, 62210, Mexico
| | - José L Puente
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Mor, 62210, Mexico.
| |
Collapse
|
11
|
Kusin SB, Fan EM, Christie AL, Zimmern PE. Bacterial species cultured after electrofulguration in women with a history of antibiotic-recalcitrant urinary tract infections frequently compare with pre-fulguration findings: a pilot study. Microbiol Spectr 2024; 12:e0431123. [PMID: 38980026 PMCID: PMC11302007 DOI: 10.1128/spectrum.04311-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 05/10/2024] [Indexed: 07/10/2024] Open
Abstract
Electrofulguration (EF) of areas of chronic cystitis in women with antibiotic-recalcitrant recurrent urinary tract infections (RUTIs) can result in improvement of their urinary tract infections (UTIs). We compared urine culture (UC) findings in patients before and after EF, as well as how they vary with cystitis stage at the time of EF, to evaluate for persistent species. After obtaining institutional review board approval, we retrospectively reviewed a prospectively maintained database of EF patients for those with positive UC findings in the 3-6 months preceding EF. Patient pre-EF UC was then compared with first positive UC after EF prompted by a new symptomatic UTI episode, with the hypothesis that the same species will be identified before and after EF. Exclusion criteria included UC from outside institution, neurogenic bladder, and need for catheterization. Ninety-nine women with pre- or post-EF UC-recorded organisms met the study criteria. The median age was 65 years (interquartile range 64-74), with a median time to first positive culture following fulguration of 9.7 months. For 26 patients with positive cultures both pre- and post-EF, the same organism was present in both cultures in 73% of the patients, with predominantly Escherichia coli. EF was effective at reducing the rate of UTIs in this population. For women undergoing EF for antibiotic-recalcitrant RUTIs and associated chronic cystitis lesions, 73% of those with a UC obtained at the time of a first symptomatic recurrent UTI episode post-EF expressed the same organism as before EF. Further study is needed to better understand the evolution of the microbiome post-EF.IMPORTANCEAmong women who experience a recurrent urinary tract infection after a fulguration procedure on areas of chronic cystitis in their bladder, there are no data available on whether the bacterial species found in urine cultures are the same or different from those present before fulguration. By removing the inflamed surface layer of cystitis during fulguration, it is possible that the procedure unmasks deep-seated bacteria. The bacterial kingdom in the bladder wall of these chronically infected women may be different from what is expressed sporadically in urine cultures. Confirming prior studies, we found that fulguration in women with antibiotic-recalcitrant recurrent urinary tract infections and cystitis lesions was effective at reducing the rate of urinary tract infections. At the time of a first symptomatic recurrent UTI episode post-fulguration, 73% expressed the same organism in urine culture as before fulguration. Further study is needed to better understand the evolution of the microbiome post-EF. This article evaluates persistent infections after electrofulguration of areas with chronic cystitis in post-menopausal women with antibiotic-recalcitrant recurrent urinary tract infections. Pre-fulguration urine cultures were compared with the first positive urine culture prompted by a new symptomatic UTI episode after electrofulguration, with the hypothesis that the same species will be identified before and after the fulguration procedure. Electrofulguration was effective at reducing the rate of UTIs in this population. However, 73% of those with a urine culture obtained at the time of a first symptomatic recurrent UTI episode post-electrofulguration expressed the same organism (predominantly Escherichia coli) as before the fulguration procedure. Further study is needed to better understand the evolution of the microbiome after electrofulguration.
Collapse
Affiliation(s)
- Samuel B. Kusin
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Ethan M. Fan
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Alana L. Christie
- Simmons Comprehensive Cancer Center Biostatistics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Philippe E. Zimmern
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
12
|
Maddah R, Ghanbari F, Veisi M, Koosehlar E, Shadpirouz M, Basharat Z, Hejrati A, Amiri BS, Hejrati L. Unveiling Potential Biomarkers for Urinary Tract Infection: An Integrated Bioinformatics Approach. Adv Biomed Res 2024; 13:44. [PMID: 39224398 PMCID: PMC11368229 DOI: 10.4103/abr.abr_355_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/24/2024] [Accepted: 01/28/2024] [Indexed: 09/04/2024] Open
Abstract
Background Urinary tract infections (UTIs) are a widespread health concern with high recurrence rates and substantial economic impact, and they can increase the prevalence of antibiotic resistance. This study employed an integrated bioinformatics approach to identify key genes associated with UTI development, offering potential targets for interventions. Materials and Methods For this study, the microarray dataset GSE124917 from the Gene Expression Omnibus (GEO) database was selected and reanalyzed. The differentially expressed genes (DEGs) between UTIs and healthy samples were identified using the LIMMA package in R software. In this section, Enrichr database was utilized to perform functional enrichment analysis of DEGs. Subsequently, the protein-protein interaction (PPI) network of the DEGs was constructed and visualized through Cytoscape, utilizing the STRING online database. The identification of hub genes was performed using Cytoscape's cytoHubba plug-in employing various methods. Receiver operating characteristic (ROC) analysis was performed to assess the diagnostic accuracy of hub genes. Results Among the outcomes of the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, the tumor necrosis factor (TNF) signaling pathway was identified as one of the notable pathways. The PPI network of the DEGs was successfully established and visualized in Cytoscape with the aid of the STRING online database. Using cytoHubba with different methods, we identified seven hub genes (STAT1, IL6, IFIT1, IFIT3, IFIH1, MX1, and IRF7). Based on the ROC analysis, all hub genes showed high diagnostic value. Conclusion These findings provide a valuable baseline for future research aimed at unraveling the intricate molecular mechanisms behind UTI.
Collapse
Affiliation(s)
- Reza Maddah
- Department of Bioprocess Engineering, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Fahimeh Ghanbari
- Applied Physiology Research Center, Isfahan University of Medical, Isfahan, Iran
| | - Maziyar Veisi
- Department of Veterinary Medicine Shahrekord, Shahrekord University, Chaharmahal and Bakhtiari Province, Shahrekord, Iran
| | - Eman Koosehlar
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Marzieh Shadpirouz
- Department of Applied Mathematics, Faculty of Mathematical Sciences, Shahrood University of Technology, Semnan, Iran
| | | | - Alireza Hejrati
- Internal Medicine Department, School of Medicine, Hazrat-e Rasool General Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Bahareh Shateri Amiri
- Internal Medicine Department, School of Medicine, Hazrat-e Rasool General Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Lina Hejrati
- Internal Medicine Department, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Zuberi A, Ahmad N, Ahmad H, Saeed M, Ahmad I. Beyond antibiotics: CRISPR/Cas9 triumph over biofilm-associated antibiotic resistance infections. Front Cell Infect Microbiol 2024; 14:1408569. [PMID: 39035353 PMCID: PMC11257871 DOI: 10.3389/fcimb.2024.1408569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/27/2024] [Indexed: 07/23/2024] Open
Abstract
A complex structure known as a biofilm is formed when a variety of bacterial colonies or a single type of cell in a group sticks to a surface. The extracellular polymeric compounds that encase these cells, often consisting of proteins, eDNA, and polysaccharides, exhibit strong antibiotic resistance. Concerns about biofilm in the pharmaceutical industry, public health, and medical fields have sparked a lot of interest, as antibiotic resistance is a unique capacity exhibited by these biofilm-producing bacteria, which increases morbidity and death. Biofilm formation is a complicated process that is controlled by several variables. Insights into the processes to target for the therapy have been gained from multiple attempts to dissect the biofilm formation process. Targeting pathogens within a biofilm is profitable because the bacterial pathogens become considerably more resistant to drugs in the biofilm state. Although biofilm-mediated infections can be lessened using the currently available medications, there has been a lot of focus on the development of new approaches, such as bioinformatics tools, for both treating and preventing the production of biofilms. Technologies such as transcriptomics, metabolomics, nanotherapeutics and proteomics are also used to develop novel anti-biofilm agents. These techniques help to identify small compounds that can be used to inhibit important biofilm regulators. The field of appropriate control strategies to avoid biofilm formation is expanding quickly because of this spurred study. As a result, the current article addresses our current knowledge of how biofilms form, the mechanisms by which bacteria in biofilms resist antibiotics, and cutting-edge treatment approaches for infections caused by biofilms. Furthermore, we have showcased current ongoing research utilizing the CRISPR/Cas9 gene editing system to combat bacterial biofilm infections, particularly those brought on by lethal drug-resistant pathogens, concluded the article with a novel hypothesis and aspirations, and acknowledged certain limitations.
Collapse
Affiliation(s)
- Azna Zuberi
- Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO, United States
- Department of Obs & Gynae, Northwestern University, Chicago, IL, United States
| | - Nayeem Ahmad
- Department of Biophysics, All India Institute of Medical Science, New Delhi, India
- Department of Microbiology, Immunology, and Infectious Diseases, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Bahrain
| | - Hafiz Ahmad
- Department of Medical Microbiology & Immunology, Ras Al Khaimah (RAK) College of Medical Sciences, Ras Al Khaimah (RAK) Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates
| | - Mohd Saeed
- Department of Biology, College of Science University of Hail, Hail, Saudi Arabia
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
14
|
Gadhvi JG, Kenee PRM, Lutz KC, Khan F, Li Q, Zimmern PE, De Nisco NJ. Bladder-resident bacteria associated with increased risk of recurrence after electrofulguration in women with antibiotic-recalcitrant urinary tract infection. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.07.03.24309902. [PMID: 39006411 PMCID: PMC11245057 DOI: 10.1101/2024.07.03.24309902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Background Antibiotic-recalcitrant recurrent urinary tract infection (rUTI) is has become increasingly observed in postmenopausal women. Therefore, when standard antibiotic therapies have failed, some elect electrofulguration (EF) of areas of chronic cystitis when detected on office cystoscopy. EF is thought to remove tissue-resident bacteria that have been previously detected in the bladder walls of postmenopausal women with rUTI. We hypothesized that increased bladder bacterial burden may be associated with incomplete rUTI resolution following EF. Methods Following IRB approval, bladder biopsies were obtained from 34 consenting menopausal women electing EF for the advanced management of rUTI. 16S rRNA FISH was performed using both universal and Escherichia probes and tissue-resident bacterial load was quantified. Time to UTI relapse after EF was recorded during a six-month follow-up period and the association of bladder bacterial burden and clinical covariates with UTI relapse was assessed. Results We observed bladder-resident Escherichia in 52% of all participants and in 92% of participants with recent E. coli UTI. Time-to-relapse analysis revealed that women with high bladder bacterial burden as detected by the universal probe had a significantly ( p =0.035) higher risk of UTI within six months of EF (HR=3.15, 95% CI: 1.09-9.11). Interestingly, bladder-resident Escherichia was not significantly associated ( p =0.26) with a higher risk of UTI relapse (HR= 2.14, 95% CI: 0.58-7.90). Conclusions We observed that total bladder bacterial burden was associated with a 3.1x increased risk of rUTI relapse within six months. Continued analysis of the relationship between bladder bacterial burden and rUTI outcomes may provide insight into the management of these challenging patients.
Collapse
|
15
|
Robino L, Sauto R, Morales C, Navarro N, González MJ, Cruz E, Neffa F, Zeballos J, Scavone P. Presence of intracellular bacterial communities in uroepithelial cells, a potential reservoir in symptomatic and non-symptomatic people. BMC Infect Dis 2024; 24:590. [PMID: 38886658 PMCID: PMC11181538 DOI: 10.1186/s12879-024-09489-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 06/10/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND Urinary tract infection is one of the most common infections in humans, affecting women in more proportion. The bladder was considered sterile, but it has a urinary microbiome. Moreover, intracellular bacteria (IB) were observed in uroepithelial cells from children and women with urinary tract infections (UTIs). Here, we evaluated the presence of IB in urine from healthy people and patients with UTI symptoms. METHODS Midstream urine was self-collected from 141 donors, 77 females and 64 males; 72 belonged to the asymptomatic group and 69 were symptomatic. IB was characterized by a culture-dependent technique and visualized by confocal microscopy. Urine was also subjected to the classical uroculture and isolated bacteria were identified by MALDI-TOF. RESULTS One-hundred and fifteen uroculture were positive. A significant association was observed between the presence of symptoms and IB (P = 0.007). Moreover, a significant association between the presence of IB, symptoms and being female was observed (P = 0.03). From the cases with IB, Escherichia coli was the most frequent microorganism identified (34.7%), followed by Stenotrophomonas maltophilia (14.2%), Staphylococcus spp (14.2%), and Enterococcus faecalis (10.7%). Intracellular E. coli was associated with the symptomatic group (P = 0.02). Most of the intracellular Staphylococcus spp. were recovered from the asymptomatic group (P = 0.006). CONCLUSIONS Intracellular bacteria are present in patients with UTI but also in asymptomatic people. Here, we report for the first time, the presence of S. maltophilia, Staphylococcus spp., and Enterobacter cloacae as intracellular bacteria in uroepithelial cells. These findings open new insights into the comprehension of urinary tract infections, urinary microbiome and future therapies. Uroculture as the gold standard could not be enough for an accurate diagnosis in recurrent or complicated cases.
Collapse
Affiliation(s)
- Luciana Robino
- Unidad Academica de Bacteriología y Virología, Instituto de Higiene, Facultad de Medicina, UdelaR, Av. Dr. Navarro 3051, Montevideo, Uruguay
| | - Rafael Sauto
- Unidad Academica de Bacteriología y Virología, Instituto de Higiene, Facultad de Medicina, UdelaR, Av. Dr. Navarro 3051, Montevideo, Uruguay
- Laboratorio de Biofilms Microbianos, Departamento de Microbiología, Instituto de Investigaciones Biológicas Clemente Estable, Av. Italia 3318, Montevideo, Uruguay
| | - Cecilia Morales
- Unidad Academica de Bacteriología y Virología, Instituto de Higiene, Facultad de Medicina, UdelaR, Av. Dr. Navarro 3051, Montevideo, Uruguay
| | - Nicolás Navarro
- Laboratorio de Biofilms Microbianos, Departamento de Microbiología, Instituto de Investigaciones Biológicas Clemente Estable, Av. Italia 3318, Montevideo, Uruguay
| | - María José González
- Laboratorio de Biofilms Microbianos, Departamento de Microbiología, Instituto de Investigaciones Biológicas Clemente Estable, Av. Italia 3318, Montevideo, Uruguay
| | - Erlen Cruz
- Laboratorio de Biofilms Microbianos, Departamento de Microbiología, Instituto de Investigaciones Biológicas Clemente Estable, Av. Italia 3318, Montevideo, Uruguay
| | - Florencia Neffa
- Servicio de Urología, Hospital Maciel, Montevideo, Administración de Servicios de Salud del Estado, 25 de mayo 174, Montevideo, Uruguay
| | - Javier Zeballos
- Servicio de Urología, Hospital Maciel, Montevideo, Administración de Servicios de Salud del Estado, 25 de mayo 174, Montevideo, Uruguay
| | - Paola Scavone
- Laboratorio de Biofilms Microbianos, Departamento de Microbiología, Instituto de Investigaciones Biológicas Clemente Estable, Av. Italia 3318, Montevideo, Uruguay.
| |
Collapse
|
16
|
Amoura A, Pistien C, Chaligné C, Dion S, Magnan M, Bridier-Nahmias A, Baron A, Chau F, Bourgogne E, Le M, Denamur E, Ingersoll MA, Fantin B, Lefort A, El Meouche I. Variability in cell division among anatomical sites shapes Escherichia coli antibiotic survival in a urinary tract infection mouse model. Cell Host Microbe 2024; 32:900-912.e4. [PMID: 38759643 DOI: 10.1016/j.chom.2024.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 04/06/2024] [Accepted: 04/23/2024] [Indexed: 05/19/2024]
Abstract
Urinary tract infection (UTI), mainly caused by Escherichia coli, are frequent and have a recurrent nature even after antibiotic treatment. Potential bacterial escape mechanisms include growth defects, but probing bacterial division in vivo and establishing its relation to the antibiotic response remain challenging. Using a synthetic reporter of cell division, we follow the temporal dynamics of cell division for different E. coli clinical strains in a UTI mouse model with and without antibiotics. We show that more bacteria are actively dividing in the kidneys and urine compared with the bladder. Bacteria that survive antibiotic treatment are consistently non-dividing in three sites of infection. Additionally, we demonstrate how both the strain in vitro persistence profile and the microenvironment impact infection and treatment dynamics. Understanding the relative contribution of the host environment, growth heterogeneity, non-dividing bacteria, and antibiotic persistence is crucial to improve therapies for recurrent infections.
Collapse
Affiliation(s)
- Ariane Amoura
- Université Paris Cité, Université Sorbonne Paris Nord, Inserm, IAME, 75018 Paris, France
| | - Claire Pistien
- Université Paris Cité, Université Sorbonne Paris Nord, Inserm, IAME, 75018 Paris, France
| | - Camille Chaligné
- Université Paris Cité, Université Sorbonne Paris Nord, Inserm, IAME, 75018 Paris, France
| | - Sara Dion
- Université Paris Cité, Université Sorbonne Paris Nord, Inserm, IAME, 75018 Paris, France
| | - Mélanie Magnan
- Université Paris Cité, Université Sorbonne Paris Nord, Inserm, IAME, 75018 Paris, France
| | | | - Alexandra Baron
- Université Paris Cité, Université Sorbonne Paris Nord, Inserm, IAME, 75018 Paris, France
| | - Françoise Chau
- Université Paris Cité, Université Sorbonne Paris Nord, Inserm, IAME, 75018 Paris, France
| | - Emmanuel Bourgogne
- AP-HP, Hôpital Bichat, Laboratoire de Toxicologie Pharmacocinétique, 75018 Paris, France; Université Paris Cité, Faculté de Santé, Pharmacie, Laboratoire de Toxicologie, 75018 Paris, France
| | - Minh Le
- Université Paris Cité, Université Sorbonne Paris Nord, Inserm, IAME, 75018 Paris, France; AP-HP, Hôpital Bichat, Laboratoire de Toxicologie Pharmacocinétique, 75018 Paris, France
| | - Erick Denamur
- Université Paris Cité, Université Sorbonne Paris Nord, Inserm, IAME, 75018 Paris, France; AP-HP, Hôpital Bichat, Laboratoire de Génétique Moléculaire, 75018 Paris, France
| | - Molly A Ingersoll
- Université Paris Cité, CNRS, Inserm, Institut Cochin, 75014 Paris, France; Department of Immunology, Institut Pasteur, 75015 Paris, France
| | - Bruno Fantin
- Université Paris Cité, Université Sorbonne Paris Nord, Inserm, IAME, 75018 Paris, France
| | - Agnès Lefort
- Université Paris Cité, Université Sorbonne Paris Nord, Inserm, IAME, 75018 Paris, France; AP-HP, Hôpital Beaujon, Service de Médecine Interne, 92110 Clichy, France
| | - Imane El Meouche
- Université Paris Cité, Université Sorbonne Paris Nord, Inserm, IAME, 75018 Paris, France.
| |
Collapse
|
17
|
Clabots C, Thuras P, Johnson JR. Longitudinal molecular analysis of clinical and fecal Escherichia coli isolates at a Veterans Affairs Medical Center in Minnesota, USA, 2012-2019. Front Microbiol 2024; 15:1409272. [PMID: 38887718 PMCID: PMC11180817 DOI: 10.3389/fmicb.2024.1409272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 04/26/2024] [Indexed: 06/20/2024] Open
Abstract
Introduction Extraintestinal Escherichia coli infections represent a growing public health threat, However, current studies often overlook important factors such as temporal patterns of infection, phylogenetic and clonal background, or the host gut E. coli population, despite their likely significance. Methods In this study, we analyzed >7000 clinical E. coli isolates from patients at the Minneapolis Veterans Affairs Health Care System (2012-2019), and concurrent fecal E. coli from uninfected veterans. We assessed phylogenetic group distribution, membership in selected sequence types (STs), and subsets thereof-including the pandemic, resistance-associated ST131-H30R, and ST1193 lineages-and strain type, as defined by pulsed-field gel electrophoresis. We then analyzed these features alongside the temporal patterns of infection in individual hosts. Results The H30R lineage emerged as the leading lineage, both overall and among fluoroquinolone-resistant isolates, with ST1193 following among fluoroquinolone-resistant isolates. Recurrences were common, occurring in 31% of subjects and 41% of episodes, and often multiple and delayed/prolonged (up to 23 episodes per subject; up to 2655d post-index). Remarkably, these recurrences typically involved the subject's index strain (63% of recurrences), even when affecting extra-urinary sites. ST131, H30R, ST1193, and fluoroquinolone-resistant strains generally caused significantly more recurrences than did other strains, despite similar recurrence intervals. ST131 strain types shifted significantly over the study period. Infection-causing strains were commonly detectable in host feces at times other than during an infection episode; the likelihood of detection varied with surveillance intensity and proximity to the infection. H30R and ST1193 were prominent causes of fecal-clinical clonal overlap. Discussion These findings provide novel insights into the temporal and clonal characteristics of E. coli infections in veterans and support efforts to develop anti-colonization interventions.
Collapse
Affiliation(s)
- Connie Clabots
- Minneapolis VA Health Care System, Minneapolis, MN, United States
| | - Paul Thuras
- Minneapolis VA Health Care System, Minneapolis, MN, United States
- Department of Psychiatry, University of Minnesota, Minneapolis, MN, United States
| | - James R. Johnson
- Minneapolis VA Health Care System, Minneapolis, MN, United States
- Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
18
|
Young MG, Straub TJ, Worby CJ, Metsky HC, Gnirke A, Bronson RA, van Dijk LR, Desjardins CA, Matranga C, Qu J, Villicana JB, Azimzadeh P, Kau A, Dodson KW, Schreiber HL, Manson AL, Hultgren SJ, Earl AM. Distinct Escherichia coli transcriptional profiles in the guts of recurrent UTI sufferers revealed by pangenome hybrid selection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.29.582780. [PMID: 38463963 PMCID: PMC10925322 DOI: 10.1101/2024.02.29.582780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Low-abundance members of microbial communities are difficult to study in their native habitats. This includes Escherichia coli, a minor, but common inhabitant of the gastrointestinal tract and opportunistic pathogen, including of the urinary tract, where it is the primary pathogen. While multi-omic analyses have detailed critical interactions between uropathogenic Escherichia coli (UPEC) and the bladder that mediate UTI outcome, comparatively little is known about UPEC in its pre-infection reservoir, partly due to its low abundance there (<1% relative abundance). To accurately and sensitively explore the genomes and transcriptomes of diverse E. coli in gastrointestinal communities, we developed E. coli PanSelect which uses a set of probes designed to specifically recognize and capture E. coli's broad pangenome from sequencing libraries. We demonstrated the ability of E. coli PanSelect to enrich, by orders of magnitude, sequencing data from diverse E. coli using a mock community and a set of human stool samples collected as part of a cohort study investigating drivers of recurrent urinary tract infections (rUTI). Comparisons of genomes and transcriptomes between E. coli residing in the gastrointestinal tracts of women with and without a history of rUTI suggest that rUTI gut E. coli are responding to increased levels of oxygen and nitrate, suggestive of mucosal inflammation, which may have implications for recurrent disease. E. coli PanSelect is well suited for investigations of native in vivo biology of E. coli in other environments where it is at low relative abundance, and the framework described here has broad applicability to other highly diverse, low abundance organisms.
Collapse
Affiliation(s)
- Mark G Young
- Infectious Disease & Microbiome Program, Broad Institute, Cambridge, MA 02142, USA
| | - Timothy J Straub
- Infectious Disease & Microbiome Program, Broad Institute, Cambridge, MA 02142, USA
| | - Colin J Worby
- Infectious Disease & Microbiome Program, Broad Institute, Cambridge, MA 02142, USA
| | - Hayden C Metsky
- Infectious Disease & Microbiome Program, Broad Institute, Cambridge, MA 02142, USA
| | - Andreas Gnirke
- Infectious Disease & Microbiome Program, Broad Institute, Cambridge, MA 02142, USA
| | - Ryan A Bronson
- Infectious Disease & Microbiome Program, Broad Institute, Cambridge, MA 02142, USA
| | - Lucas R van Dijk
- Infectious Disease & Microbiome Program, Broad Institute, Cambridge, MA 02142, USA
- Delft Bioinformatics Lab, Delft University of Technology, Van Mourik Broekmanweg 6, Delft, 2628 XE, The Netherlands
| | | | - Christian Matranga
- Infectious Disease & Microbiome Program, Broad Institute, Cambridge, MA 02142, USA
| | - James Qu
- Infectious Disease & Microbiome Program, Broad Institute, Cambridge, MA 02142, USA
| | - Jesús Bazan Villicana
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Philippe Azimzadeh
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Andrew Kau
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
- Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO, USA
- Division of Allergy and Immunology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Karen W Dodson
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
- Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Henry L Schreiber
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
- Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Abigail L Manson
- Infectious Disease & Microbiome Program, Broad Institute, Cambridge, MA 02142, USA
| | - Scott J Hultgren
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
- Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Ashlee M Earl
- Infectious Disease & Microbiome Program, Broad Institute, Cambridge, MA 02142, USA
| |
Collapse
|
19
|
Li X, Zhou J, Liu X, Jin C, Liu L, Sun H, Wang Q, Wang Q, Liu R, Zheng X, Liu Y, Pang Y. Nucleoside-diphosphate kinase of uropathogenic Escherichia coli inhibits caspase-1-dependent pyroptosis facilitating urinary tract infection. Cell Rep 2024; 43:114051. [PMID: 38564334 DOI: 10.1016/j.celrep.2024.114051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/19/2024] [Accepted: 03/19/2024] [Indexed: 04/04/2024] Open
Abstract
Uropathogenic Escherichia coli (UPEC) is the most common causative agent of urinary tract infection (UTI). UPEC invades bladder epithelial cells (BECs) via fusiform vesicles, escapes into the cytosol, and establishes biofilm-like intracellular bacterial communities (IBCs). Nucleoside-diphosphate kinase (NDK) is secreted by pathogenic bacteria to enhance virulence. However, whether NDK is involved in UPEC pathogenesis remains unclear. Here, we find that the lack of ndk impairs the colonization of UPEC CFT073 in mouse bladders and kidneys owing to the impaired ability of UPEC to form IBCs. Furthermore, we demonstrate that NDK inhibits caspase-1-dependent pyroptosis by consuming extracellular ATP, preventing superficial BEC exfoliation, and promoting IBC formation. UPEC utilizes the reactive oxygen species (ROS) sensor OxyR to indirectly activate the regulator integration host factor, which then directly activates ndk expression in response to intracellular ROS. Here, we reveal a signaling transduction pathway that UPEC employs to inhibit superficial BEC exfoliation, thus facilitating acute UTI.
Collapse
Affiliation(s)
- Xueping Li
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, P.R. China; The Key Laboratory of Molecular Microbiology and Technology, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Ministry of Education, Tianjin 300457, P.R. China
| | - Jiarui Zhou
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, P.R. China; The Key Laboratory of Molecular Microbiology and Technology, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Ministry of Education, Tianjin 300457, P.R. China
| | - Xingmei Liu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, P.R. China; The Key Laboratory of Molecular Microbiology and Technology, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Ministry of Education, Tianjin 300457, P.R. China
| | - Chen Jin
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, P.R. China; The Key Laboratory of Molecular Microbiology and Technology, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Ministry of Education, Tianjin 300457, P.R. China
| | - Le Liu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, P.R. China; The Key Laboratory of Molecular Microbiology and Technology, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Ministry of Education, Tianjin 300457, P.R. China
| | - Hongmin Sun
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, P.R. China; The Key Laboratory of Molecular Microbiology and Technology, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Ministry of Education, Tianjin 300457, P.R. China
| | - Qian Wang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, P.R. China; The Key Laboratory of Molecular Microbiology and Technology, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Ministry of Education, Tianjin 300457, P.R. China
| | - Qiushi Wang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, P.R. China; The Key Laboratory of Molecular Microbiology and Technology, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Ministry of Education, Tianjin 300457, P.R. China
| | - Ruiying Liu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, P.R. China; The Key Laboratory of Molecular Microbiology and Technology, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Ministry of Education, Tianjin 300457, P.R. China
| | - Xiaoyu Zheng
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, P.R. China; The Key Laboratory of Molecular Microbiology and Technology, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Ministry of Education, Tianjin 300457, P.R. China
| | - Yutao Liu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, P.R. China; The Key Laboratory of Molecular Microbiology and Technology, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Ministry of Education, Tianjin 300457, P.R. China.
| | - Yu Pang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, P.R. China; The Key Laboratory of Molecular Microbiology and Technology, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Ministry of Education, Tianjin 300457, P.R. China.
| |
Collapse
|
20
|
Carnes MU, Siddiqui NY, Karstens L, Gantz MG, Dinwiddie DL, Sung VW, Bradley M, Brubaker L, Ferrando CA, Mazloomdoost D, Richter HE, Rogers RG, Smith AL, Komesu YM. Urinary microbiome community types associated with urinary incontinence severity in women. Am J Obstet Gynecol 2024; 230:344.e1-344.e20. [PMID: 38937257 PMCID: PMC11211640 DOI: 10.1016/j.ajog.2023.10.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/22/2023] [Accepted: 10/23/2023] [Indexed: 06/29/2024]
Abstract
BACKGROUND Urinary microbiome (urobiome) studies have previously reported on specific taxa and community differences in women with mixed urinary incontinence compared with controls. Therefore, a hypothesis was made that higher urinary and vaginal microbiome diversity would be associated with increased urinary incontinence severity. OBJECTIVE This study aimed to test whether specific urinary or vaginal microbiome community types are associated with urinary incontinence severity in a population of women with mixed urinary incontinence. STUDY DESIGN This planned secondary, cross-sectional analysis evaluated associations between the urinary and vaginal microbiomes and urinary incontinence severity in a subset of Effects of Surgical Treatment Enhanced With Exercise for Mixed Urinary Incontinence trial participants with urinary incontinence. Incontinence severity was measured using bladder diaries and Urinary Distress Inventory questionnaires collected at baseline. Catheterized urine samples and vaginal swabs were concurrently collected before treatment at baseline to assess the urinary and vaginal microbiomes. Of note, 16S rRNA V4 to V6 variable regions were sequenced, characterizing bacterial taxa to the genus level using the DADA2 pipeline and SILVA database. Using Dirichlet multinomial mixtures methods, samples were clustered into community types based on core taxa. Associations between community types and severity measures (Urinary Distress Inventory total scores, Urinary Distress Inventory subscale scores, and the number of urinary incontinence episodes [total, urgency, and stress] from the bladder diary) were evaluated using linear regression models adjusted for age and body mass index. In addition, alpha diversity measures for richness (total taxa numbers) and evenness (proportional distribution of taxa abundance) were analyzed for associations with urinary incontinence episodes and community type. RESULTS Overall, 6 urinary microbiome community types were identified, characterized by varying levels of common genera (Lactobacillus, Gardnerella, Prevotella, Tepidimonas, Acidovorax, Escherichia, and others). The analysis of urinary incontinence severity in 126 participants with mixed urinary incontinence identified a Lactobacillus-dominated reference group with the highest abundance of Lactobacillus (mean relative abundance of 76%). A community characterized by fewer Lactobacilli (mean relative abundance of 19%) and greater alpha diversity was associated with higher total urinary incontinence episodes (2.67 daily leaks; 95% confidence interval, 0.76-4.59; P=.007) and urgency urinary incontinence episodes (1.75 daily leaks; 95% confidence interval, 0.24-3.27; P=.02) than the reference group. No significant association was observed between community type and stress urinary incontinence episodes or Urogenital Distress Inventory total or subscores. The composition of vaginal community types and urinary community types were similar but composed of slightly different bacterial taxa. Vaginal community types were not associated with urinary incontinence severity, as measured by bladder diary or Urogenital Distress Inventory total and subscale scores. Alpha diversity indicated that greater sample richness was associated with more incontinence episodes (observed genera P=.01) in urine. Measures of evenness (Shannon and Pielou) were not associated with incontinence severity in the urinary or vaginal microbiomes. CONCLUSION In the urobiome of women with mixed urinary incontinence, a community type with fewer Lactobacilli and more diverse bacteria was associated with more severe urinary incontinence episodes (total and urgency) compared with a community type with high predominance of a single genus, Lactobacillus. Whether mixed urinary incontinence severity is due to lesser predominance of Lactobacillus, greater presence of other non-Lactobacillus genera, or the complement of bacteria consisting of urobiome community types remains to be determined.
Collapse
Affiliation(s)
- Megan U Carnes
- Social, Statistical, and Environmental Sciences, RTI International, Research Triangle Park, NC.
| | - Nazema Y Siddiqui
- Division of Urogynecology and Reconstructive Pelvic Surgery, Department of Obstetrics and Gynecology, Duke University, Durham, NC
| | - Lisa Karstens
- Division of Bioinformatics and Computational Biomedicine; Division of Urogynecology, Oregon Health & Science University, Portland, OR
| | - Marie G Gantz
- Social, Statistical, and Environmental Sciences, RTI International, Research Triangle Park, NC
| | - Darrell L Dinwiddie
- Division of Genetics, Department of Pediatrics, University of New Mexico Health Sciences Center, Albuquerque, NM
| | - Vivian W Sung
- Division of Urogynecology, Department of Obstetrics and Gynecology, Warren Alpert Medical School of Brown University, Providence, RI
| | - Megan Bradley
- Division of Urogynecology, Department of Obstetrics and Gynecology, University of Pittsburgh, Pittsburgh, PA
| | - Linda Brubaker
- Division of Female Pelvic Medicine and Reconstructive Surgery, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Diego, San Diego, CA
| | - Cecile A Ferrando
- Center for Urogynecology and Pelvic Reconstructive Surgery, Women's Health Institute, Cleveland Clinic, Cleveland, OH
| | - Donna Mazloomdoost
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD
| | - Holly E Richter
- Division of Urogynecology and Reconstructive Pelvic Surgery, Department of Obstetrics and Gynecology, University of Alabama at Birmingham, Birmingham, AL
| | - Rebecca G Rogers
- Division of Urology, Department of Obstetrics and Gynecology, Albany Medical Center, Albany, NY
| | - Ariana L Smith
- Division of Urology, Department of Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Yuko M Komesu
- Division of Urogynecology, Department of Obstetrics and Gynecology, University of New Mexico Health Sciences and Services Building, Albuquerque, NM
| |
Collapse
|
21
|
Hayes BW, Choi HW, Rathore APS, Bao C, Shi J, Huh Y, Kim MW, Mencarelli A, Bist P, Ng LG, Shi C, Nho JH, Kim A, Yoon H, Lim D, Hannan JL, Purves JT, Hughes FM, Ji RR, Abraham SN. Recurrent infections drive persistent bladder dysfunction and pain via sensory nerve sprouting and mast cell activity. Sci Immunol 2024; 9:eadi5578. [PMID: 38427717 PMCID: PMC11149582 DOI: 10.1126/sciimmunol.adi5578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 02/07/2024] [Indexed: 03/03/2024]
Abstract
Urinary tract infections (UTIs) account for almost 25% of infections in women. Many are recurrent (rUTI), with patients frequently experiencing chronic pelvic pain and urinary frequency despite clearance of bacteriuria after antibiotics. To elucidate the basis for these bacteria-independent bladder symptoms, we examined the bladders of patients with rUTI. We noticed a notable increase in neuropeptide content in the lamina propria and indications of enhanced nociceptive activity. In mice subjected to rUTI, we observed sensory nerve sprouting that was associated with nerve growth factor (NGF) produced by recruited monocytes and tissue-resident mast cells. Treatment of rUTI mice with an NGF-neutralizing antibody prevented sprouting and alleviated pelvic sensitivity, whereas instillation of native NGF into naïve mice bladders mimicked nerve sprouting and pain behavior. Nerve activation, pain, and urinary frequency were each linked to the presence of proximal mast cells, because mast cell deficiency or treatment with antagonists against receptors of several direct or indirect mast cell products was each effective therapeutically. Thus, our findings suggest that NGF-driven sensory sprouting in the bladder coupled with chronic mast cell activation represents an underlying mechanism driving bacteria-independent pain and voiding defects experienced by patients with rUTI.
Collapse
Affiliation(s)
- Byron W Hayes
- Department of Pathology, Duke University Medical Center, Durham, NC, USA
| | - Hae Woong Choi
- Division of Life Sciences, Korea University, Seoul 02841, South Korea
| | - Abhay P S Rathore
- Department of Pathology, Duke University Medical Center, Durham, NC, USA
- Program in Emerging Infectious Diseases, Duke-National University of Singapore, Singapore 169857, Singapore
| | - Chunjing Bao
- Department of Pathology, Duke University Medical Center, Durham, NC, USA
| | - Jianling Shi
- Department of Pathology, Duke University Medical Center, Durham, NC, USA
| | - Yul Huh
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Michael W Kim
- Department of Pathology, Duke University Medical Center, Durham, NC, USA
| | - Andrea Mencarelli
- Program in Emerging Infectious Diseases, Duke-National University of Singapore, Singapore 169857, Singapore
| | - Pradeep Bist
- Program in Emerging Infectious Diseases, Duke-National University of Singapore, Singapore 169857, Singapore
| | - Lai Guan Ng
- Singapore Immunology Network, Agency for Science, Technology and Research, Immunos, Biopolis Singapore 138648, Singapore
- Shanghai Immune Therapy Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Changming Shi
- Shanghai Immune Therapy Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Joo Hwan Nho
- Division of Life Sciences, Korea University, Seoul 02841, South Korea
| | - Aram Kim
- Department of Urology, Konkuk University Hospital, Konkuk University School of Medicine, Seoul 05029, South Korea
| | - Hana Yoon
- Department of Urology, Ewha Womans University, College of Medicine, Seoul 07804, South Korea
| | - Donghoon Lim
- Department of Urology, Chosun University School of Medicine, Gwangju, South Korea
| | - Johanna L Hannan
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - J Todd Purves
- Department of Surgery, Division of Urology, Duke University Medical Center, Durham, NC, USA
| | - Francis M Hughes
- Department of Surgery, Division of Urology, Duke University Medical Center, Durham, NC, USA
| | - Ru-Rong Ji
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
- Department of Neurobiology, Duke University Medical Center, Durham, NC, USA
| | - Soman N Abraham
- Department of Pathology, Duke University Medical Center, Durham, NC, USA
- Program in Emerging Infectious Diseases, Duke-National University of Singapore, Singapore 169857, Singapore
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
- Department of Immunology, Duke University Medical Center, Durham, NC, USA
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
22
|
Kwak Y, Kim HG, Seok J, Kim S, Kim EM, Kim A. The Critical Role of Intracellular Bacterial Communities in Uncomplicated Recurrent Urinary Cystitis: A Comprehensive Review of Detection Methods and Diagnostic Potential. Int Neurourol J 2024; 28:4-10. [PMID: 38569615 PMCID: PMC10990762 DOI: 10.5213/inj.2448066.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 03/06/2024] [Indexed: 04/05/2024] Open
Abstract
Urinary tract infections (UTIs) are among the most common bacterial infections worldwide and are particularly prevalent in women. Recurrent UTIs significantly diminish quality of life due to their symptoms and frequent relapses. Patients often experience immediate relapse following slightly strenuous activities or intense psychological stress. In this review, we explore why infections persist despite the advent of various treatments and suggest strategies to manage recurrent cystitis by targeting the mechanisms of adhesion and infection. Vitamin D levels and the expression of neutrophil gelatinase-associated lipocalin are linked to the recurrence of UTIs. During a UTI, bacteria employ adhesins to invade the urinary tract, adhere to urothelial cells, and then penetrate these cells, where they rapidly multiply to establish intracellular bacterial communities. Bacteria can also form quiescent intracellular reservoirs that escape immune responses and antibiotic treatments, leading to recurrence under certain conditions. The surface proteins of bacteria and D-mannose are crucial in the adhesion of bacteria to the urothelium. Understanding these processes provides valuable insights into potential therapeutic approaches that focus on preventing bacterial attachment and cluster formation. By disrupting the ability of bacteria to adhere to and form clusters on cells, we can better manage recurrent UTIs and improve patient outcomes.
Collapse
Affiliation(s)
- Yeonjoo Kwak
- Department of Stem Cell & Regenerative Biotechnology, Institute of Advanced Regenerative Science, Konkuk University, Seoul, Korea
| | - Hyeong Gon Kim
- Department of Urology, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, Korea
| | - Jaekwon Seok
- Department of Stem Cell & Regenerative Biotechnology, Institute of Advanced Regenerative Science, Konkuk University, Seoul, Korea
| | - Sehwan Kim
- Department of Biomedical Engineering, School of Medicine, Dankook University, Cheonan, Korea
| | - Eun-Mee Kim
- Department of Paramedicine, Korea Nazarene University, Cheonan, Korea
| | - Aram Kim
- Department of Urology, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, Korea
- University of California, Irvine, Beckman Laser Institute and Medical Clinic, Irvine, CA, USA
| |
Collapse
|
23
|
Abell-King C, Pokhrel A, Rice SA, Duggin IG, Söderström B. Multispecies bacterial invasion of human host cells. Pathog Dis 2024; 82:ftae012. [PMID: 38794885 PMCID: PMC11180983 DOI: 10.1093/femspd/ftae012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/05/2024] [Accepted: 05/23/2024] [Indexed: 05/26/2024] Open
Abstract
Urinary tract infection (UTI), one of the most common bacterial infections worldwide, is a typical example of an infection that is often polymicrobial in nature. While the overall infection course is known on a macroscale, bacterial behavior is not fully understood at the cellular level and bacterial pathophysiology during multispecies infection is not well characterized. Here, using clinically relevant bacteria, human epithelial bladder cells and human urine, we establish co-infection models combined with high resolution imaging to compare single- and multi-species bladder cell invasion events in three common uropathogens: uropathogenic Escherichia coli (UPEC), Klebsiella pneumoniae and Enterococcus faecalis. While all three species invaded the bladder cells, under flow conditions the Gram-positive E. faecalis was significantly less invasive compared to the Gram-negative UPEC and K. pneumoniae. When introduced simultaneously during an infection experiment, all three bacterial species sometimes invaded the same bladder cell, at differing frequencies suggesting complex interactions between bacterial species and bladder cells. Inside host cells, we observed encasement of E. faecalis colonies specifically by UPEC. During subsequent dispersal from the host cells, only the Gram-negative bacteria underwent infection-related filamentation (IRF). Taken together, our data suggest that bacterial multispecies invasions of single bladder cells are frequent and support earlier studies showing intraspecies cooperation on a biochemical level during UTI.
Collapse
Affiliation(s)
- Charlotte Abell-King
- Australian Institute for Microbiology and Infection, University of Technology, Sydney, Ultimo, NSW, 2007, Australia
| | - Alaska Pokhrel
- Australian Institute for Microbiology and Infection, University of Technology, Sydney, Ultimo, NSW, 2007, Australia
| | - Scott A Rice
- Australian Institute for Microbiology and Infection, University of Technology, Sydney, Ultimo, NSW, 2007, Australia
- Microbiomes for One Systems Health and Agriculture and Food, CSIRO, Westmead NSW, 2145 Sydney, Australia
| | - Iain G Duggin
- Australian Institute for Microbiology and Infection, University of Technology, Sydney, Ultimo, NSW, 2007, Australia
| | - Bill Söderström
- Australian Institute for Microbiology and Infection, University of Technology, Sydney, Ultimo, NSW, 2007, Australia
| |
Collapse
|
24
|
Poletajew S, Brzózka MM, Krajewski W, Kamecki H, Nyk Ł, Kryst P. Glycosaminoglycan Replacement Therapy with Intravesical Instillations of Combined Hyaluronic Acid and Chondroitin Sulfate in Patients with Recurrent Cystitis, Post-radiation Cystitis and Bladder Pain Syndrome: A Narrative Review. Pain Ther 2024; 13:1-22. [PMID: 37917298 PMCID: PMC10796878 DOI: 10.1007/s40122-023-00559-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/18/2023] [Indexed: 11/04/2023] Open
Abstract
Defects in the glycosaminoglycan layer (GAG) of the bladder mucosa have been identified as a significant contributor to the pathogenesis and clinical progression of chronic inflammatory diseases of the bladder, such as post-radiation cystitis, bladder pain syndrome and recurrent urinary tract infections. This narrative review aims to explore the contemporary evidence on the role of GAG reconstitution with intravesical installations of hyaluronic acid and chondroitin sulfate in the management of those patients, with a goal to provide valuable insights for clinical practice. The reviewed studies consistently demonstrate that GAG reconstitution can result in varying degrees of clinical improvement in patients with post-radiation cystitis, bladder pain syndrome and recurrent urinary tract infections, and is associated with a very favorable safety profile. While the available evidence is growing, its level is still limited, mainly by relatively low number of randomized controlled trials, with small sample sizes. Further research with larger, well-designed trials is needed to solidify the findings and optimize the clinical application of GAG reconstitution.
Collapse
Affiliation(s)
- Sławomir Poletajew
- Second Department of Urology, Medical Centre of Postgraduate Education, Warsaw, Poland.
| | | | - Wojciech Krajewski
- Department of Minimally Invasive and Robotic Urology, Wroclaw Medical University, Wroclaw, Poland
| | - Hubert Kamecki
- Second Department of Urology, Medical Centre of Postgraduate Education, Warsaw, Poland
| | - Łukasz Nyk
- Second Department of Urology, Medical Centre of Postgraduate Education, Warsaw, Poland
| | - Piotr Kryst
- Second Department of Urology, Medical Centre of Postgraduate Education, Warsaw, Poland
| |
Collapse
|
25
|
Gunathilaka GADKK, Dewasmika WAPM, Sandaruwan UM, Neelawala NGDAK, Madhumali GED, Dissanayake BN, Priyantha MAR, Prasada DVP, Dissanayake DRA. Biofilm-forming ability, antibiotic resistance and phylogeny of Escherichia coli isolated from extra intestinal infections of humans, dogs, and chickens. Comp Immunol Microbiol Infect Dis 2024; 105:102123. [PMID: 38217950 DOI: 10.1016/j.cimid.2023.102123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 12/29/2023] [Accepted: 12/30/2023] [Indexed: 01/15/2024]
Abstract
Escherichia coli (E. coli) causes various infections in humans and animals. The biofilm-forming ability of E. coli has increased antimicrobial resistance and capacity to cause recurrent and chronic infections. This study determined the biofilm-forming ability of E. coli isolated from extraintestinal infections of humans, chickens, and dogs in relation to the phylogroup, type of infection, and antibiotic resistance. Isolates from chickens showed significantly higher biofilm-forming ability compared to those causing urinary tract infections in humans (p = 0.0001). Further, isolates belonging to phylogroup B1 displayed a higher likelihood to form biofilms. Resistance to ciprofloxacin and trimethoprim-sulfamethoxazole was positively correlated with biofilm-forming ability. Harbouring plasmid-mediated quinolone resistance gene, qnrS was also positively correlated with biofilm formation. This study provides insight into factors such as phylogroup and the type of infections that could enhance biofilm formation, as well as genotypic and phenotypic antibiotic resistance that could correlate with the ability to form biofilms.
Collapse
Affiliation(s)
- G A D K K Gunathilaka
- Department of Veterinary Clinical Sciences, Faculty of Veterinary Medicine and Animal Science, University of Peradeniya, Peradeniya, Sri Lanka
| | - W A P M Dewasmika
- Department of Veterinary Clinical Sciences, Faculty of Veterinary Medicine and Animal Science, University of Peradeniya, Peradeniya, Sri Lanka
| | - U M Sandaruwan
- Department of Veterinary Clinical Sciences, Faculty of Veterinary Medicine and Animal Science, University of Peradeniya, Peradeniya, Sri Lanka
| | - N G D A K Neelawala
- Department of Basic Sciences, Faculty of Allied Health Science, University of Peradeniya, Peradeniya, Sri Lanka
| | - G E D Madhumali
- Department of Veterinary Clinical Sciences, Faculty of Veterinary Medicine and Animal Science, University of Peradeniya, Peradeniya, Sri Lanka
| | - B N Dissanayake
- Department of Microbiology, Faculty of Medicine, University of Peradeniya, Peradeniya, Sri Lanka
| | | | - D V P Prasada
- Faculty of Agriculture, University of Peradeniya, Peradeniya, Sri Lanka
| | - D R A Dissanayake
- Department of Veterinary Clinical Sciences, Faculty of Veterinary Medicine and Animal Science, University of Peradeniya, Peradeniya, Sri Lanka.
| |
Collapse
|
26
|
Brambilla L, Frangione V, Meloni M. Non Clinical Model to Assess the Mechanism of Action of a Combined Hyaluronic Acid, Chondroitin Sulfate and Calcium Chloride: HA+CS+CaCl 2 Solution on a 3D Human Reconstructed Bladder Epithelium. MEDICAL DEVICES-EVIDENCE AND RESEARCH 2024; 17:47-58. [PMID: 38312113 PMCID: PMC10838052 DOI: 10.2147/mder.s433261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 01/10/2024] [Indexed: 02/06/2024] Open
Abstract
Purpose Medical Device Regulation (EU) 2017/745 requires the principal mode of action (MoA) to be demonstrated by experimental data. The MoA of Ialuril® Prefill (combined as HA+CS+CaCl2: sodium hyaluronate 1.6%, sodium chondroitin sulphate 2% w/v and calcium chloride 0.87%) Class III medical device, indicated for intravesical instillation to reduce urinary tract infections, has been evaluated on a 3D reconstructed human bladder epithelium (HBE). Methods Three experimental designs; i) E. coli strain selection (DSM 103538, DSM 1103) to investigate the HA+CS+CaCl2 properties in modifying bacterial growth in liquid broth (CFU 4h and 24h) at 80%, 50% and 25% concentrations; ii) evaluation of film forming properties on HBE after 15 min exposure by quantifying caffeine permeation across the epithelium; iii) capacity to counteract E. coli adhesion and biofilm formation on colonized HBE by viable counts and ultrastructural analysis by scanning electron microscopy (SEM) using ciprofloxacin as the reference antimicrobial molecule. Results No significant differences were observed in bacterial viability for both the E. coli strains. HA+CS+CaCl2 reduced caffeine permeation of 51.7% and 38.1% at 1h and 2h, respectively and determined a significant decrease in caffeine permeation rate at both timepoints supporting HA+CS+CaCl2 capacity to firmly adhere to the bladder epithelium creating a physical barrier on the surface. The viable counts in HBE treated tissues then infected with E. coli resulted not different from the negative control suggesting that the device did not inhibit E. coli growth. SEM images showed homogenous product distribution over the HBE surface and confirmed the capacity of HA+CS+CaCl2 to adhere to the bladder epithelium, counteracting biofilm formation. Conclusion The results support the capacity of HA+CS+CaCl2 to counteract bacterial invasion by using a physico-mechanical mode of action: this medical device represents a valid alternative to antibiotics in the treatment of recurrent UTIs.
Collapse
Affiliation(s)
| | | | - Marisa Meloni
- VitroScreen, in vitro Research Laboratory, Milan, Italy
| |
Collapse
|
27
|
Dickson K, Zhou J, Lehmann C. Lower Urinary Tract Inflammation and Infection: Key Microbiological and Immunological Aspects. J Clin Med 2024; 13:315. [PMID: 38256450 PMCID: PMC10816374 DOI: 10.3390/jcm13020315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/13/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
The urinary system, primarily responsible for the filtration of blood and waste, is affected by several infectious and inflammatory conditions. Focusing on the lower tract, this review outlines the physiological and immune landscape of the urethra and bladder, addressing key immunological and microbiological aspects of important infectious/inflammatory conditions. The conditions addressed include urethritis, interstitial cystitis/bladder pain syndrome, urinary tract infections, and urosepsis. Key aspects of each condition are addressed, including epidemiology, pathophysiology, and clinical considerations. Finally, therapeutic options are outlined, highlighting gaps in the knowledge and novel therapeutic approaches.
Collapse
Affiliation(s)
- Kayle Dickson
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada;
| | - Juan Zhou
- Department of Anesthesiology, Pain Management and Perioperative Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada;
| | - Christian Lehmann
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada;
- Department of Anesthesiology, Pain Management and Perioperative Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada;
- Department of Pharmacology, Dalhousie University, Halifax, NS B3H 4R2, Canada
- Department of Physiology and Biophysics, Dalhousie University, Halifax, NS B3H 4R2, Canada
| |
Collapse
|
28
|
LeCuyer TE, Sellon RK, Byrne BA, Daniels JB, Diaz-Campos DV, Hendrix GK, Burbick CR, Besser TE, Davis MA. Multicenter molecular investigation of recurrent Escherichia coli bacteriuria in dogs. Vet Microbiol 2024; 288:109914. [PMID: 38113575 DOI: 10.1016/j.vetmic.2023.109914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 11/09/2023] [Accepted: 11/12/2023] [Indexed: 12/21/2023]
Abstract
Escherichia coli is the most common cause of recurrent urinary tract infection (UTI) in dogs. UTI recurrence comprises of persistent, unresolved E. coli infection or reinfection with a different strain of E. coli. Differentiating between these processes is clinically important but is often impossible with routine diagnostics. We tested the hypothesis that most recurrent canine E. coli bacteriuria is due to recurrence of the same E. coli strain involved in the initial infection. Molecular typing was performed on 98 urinary E. coli isolated from dogs with recurrent bacteriuria from five veterinary diagnostic laboratories in the United States. Of the 42 dogs in this study with multiple E. coli bacteriuria observations, a single strain of E. coli caused recurrent bacteriuria in 26 (62 %) dogs, in some cases on multiple occasions for prolonged periods of time (up to eight months). A single E. coli strain was detected during both subclinical bacteriuria and clinically-apparent UTI in three dogs. Isolates with the P-fimbrial adhesin genes papA and papC were associated with recurrence by the same strain of E. coli. Multiple isolations of a single strain of E. coli associated with recurrent bacteriuria suggests that E. coli may be maintained within the urinary tract of some dogs for prolonged periods of time. In some patients, the same strain can cause both clinical UTI and subclinical bacteriuria. This indicates that in dogs, the urinary bladder may serve as a subclinical, long-term reservoir of E. coli that may cause clinical UTI in the future.
Collapse
Affiliation(s)
- Tessa E LeCuyer
- Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, USA; Washington Animal Disease Diagnostic Laboratory, Washington State University, Pullman, WA, USA.
| | - Rance K Sellon
- Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | - Barbara A Byrne
- Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Joshua B Daniels
- Veterinary Clinical Sciences, College of Veterinary Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - Dubraska V Diaz-Campos
- Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, USA; Washington Animal Disease Diagnostic Laboratory, Washington State University, Pullman, WA, USA
| | - G Kenitra Hendrix
- Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA; Indiana Animal Disease Diagnostic Laboratory, West Lafayette, IN, USA
| | - Claire R Burbick
- Veterinary Diagnostic Laboratory, North Dakota State University, Fargo, ND, USA
| | - Thomas E Besser
- Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | - Margaret A Davis
- Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, WA, USA; Paul G. Allen School for Global Animal Health, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| |
Collapse
|
29
|
Reyes-Gualito A, Macías AE, Reyes-Escogido L, Mendoza-Macías CL, Álvarez-Canales JA. Association between phenotypic characteristics of Escherichia coli and UTI recurrence in immunocompromised patients: A case-control study. Am J Infect Control 2024; 52:61-65. [PMID: 37625546 DOI: 10.1016/j.ajic.2023.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023]
Abstract
BACKGROUND Urinary tract infection (UTI) recurrence is important in immunocompromised patients. There is a trend to study genotypically and phenotypically the role of certain virulence factors of Escherichia coli in the diagnosis of recurrent UTI. The main objective of this study was to determine if there is an association between phenotypic characteristics of E coli and UTI recurrence in immunocompromised patients. METHODS A case-control study was performed on immunocompromised patients from Hospital Regional de Alta Especialidad del Bajío, Mexico. E coli strains isolated from these patients were identificated and antimicrobial susceptibility test were performed. Strains with filamented cell morphology, mucoid colonial phenotype, or biofilm production were considered cases. Strains without the characteristics were considered controls. UTI recurrence was identified based on clinical records. The odds ratio (OR) was calculated to quantify the magnitude of the association. RESULTS An association between filamented cell morphology and UTI recurrence was found (OR = 2.19 95% CI 1.06-4.51; P = .031). No association was found between mucoid colony morphology (P>.05) or biofilm production (P>.05) and UTI recurrence. An association between mucoid colony morphology and extended-spectrum β-lactamase production was found (OR = 3.09 95% 1.59-5.99; P<.001). CONCLUSIONS Filamented cell morphology and mucoid colonial phenotype may have a possible diagnostic value for the detection of UTI recurrence and antimicrobial resistance. Further diagnostic test studies are needed to fully assess their clinical utility.
Collapse
Affiliation(s)
- Arturo Reyes-Gualito
- Hospital Regional de Alta Especialidad del Bajío, Departamento de investigación. Secretaría de Salud, Leon, Guanajuato, Mexico; Universidad de Guanajuato, Departamento de Medicina y Nutrición, Leon, Guanajuato, Mexico
| | - Alejandro E Macías
- Universidad de Guanajuato, Departamento de Medicina y Nutrición, Leon, Guanajuato, Mexico
| | - Lourdes Reyes-Escogido
- Universidad de Guanajuato, Departamento de Medicina y Nutrición, Leon, Guanajuato, Mexico
| | | | - José A Álvarez-Canales
- Hospital Regional de Alta Especialidad del Bajío, Departamento de investigación. Secretaría de Salud, Leon, Guanajuato, Mexico; Universidad de Guanajuato, Departamento de Medicina y Nutrición, Leon, Guanajuato, Mexico.
| |
Collapse
|
30
|
Flores C, Ling J, Loh A, Maset RG, Aw A, White IJ, Fernando R, Rohn JL. A human urothelial microtissue model reveals shared colonization and survival strategies between uropathogens and commensals. SCIENCE ADVANCES 2023; 9:eadi9834. [PMID: 37939183 PMCID: PMC10631729 DOI: 10.1126/sciadv.adi9834] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 10/05/2023] [Indexed: 11/10/2023]
Abstract
Urinary tract infection is among the most common infections worldwide, typically studied in animals and cell lines with limited uropathogenic strains. Here, we assessed diverse bacterial species in a human urothelial microtissue model exhibiting full stratification, differentiation, innate epithelial responses, and urine tolerance. Several uropathogens invaded intracellularly, but also commensal Escherichia coli, suggesting that invasion is a shared survival strategy, not solely a virulence hallmark. The E. coli adhesin FimH was required for intracellular bacterial community formation, but not for invasion. Other shared lifestyles included filamentation (Gram-negatives), chaining (Gram-positives), and hijacking of exfoliating cells, while biofilm-like aggregates were formed mainly with Pseudomonas and Proteus. Urothelial cells expelled invasive bacteria in Rab-/LC3-decorated structures, while highly cytotoxic/invasive uropathogens, but not commensals, disrupted host barrier function and strongly induced exfoliation and cytokine production. Overall, this work highlights diverse species-/strain-specific infection strategies and corresponding host responses in a human urothelial microenvironment, providing insights at the microtissue, cell, and molecular level.
Collapse
Affiliation(s)
- Carlos Flores
- Centre for Urological Biology, Division of Medicine, University College London, WC1E 6BT London, UK
| | - Jefferson Ling
- Centre for Urological Biology, Division of Medicine, University College London, WC1E 6BT London, UK
| | - Amanda Loh
- Centre for Urological Biology, Division of Medicine, University College London, WC1E 6BT London, UK
| | - Ramón G. Maset
- Centre for Urological Biology, Division of Medicine, University College London, WC1E 6BT London, UK
| | - Angeline Aw
- Centre for Urological Biology, Division of Medicine, University College London, WC1E 6BT London, UK
| | - Ian J. White
- Laboratory for Molecular Cell Biology, University College London, WC1E 6BT London, UK
| | - Raymond Fernando
- Centre for Urological Biology, Division of Medicine, University College London, WC1E 6BT London, UK
- Royal Free London NHS Foundation Trust & Anthony Nolan Laboratories, NW3 2QG London, UK
| | - Jennifer L. Rohn
- Centre for Urological Biology, Division of Medicine, University College London, WC1E 6BT London, UK
| |
Collapse
|
31
|
Kashouris E, Joseph A, Lewis T. Nitrofurantoin: what is the evidence for current UK guidance? J Antimicrob Chemother 2023; 78:2605-2611. [PMID: 37738416 PMCID: PMC10631823 DOI: 10.1093/jac/dkad287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/24/2023] Open
Abstract
Three days of nitrofurantoin at 100 mg twice daily is recommended as first-line treatment for uncomplicated urinary tract infection (UTI) in evidence-based guidelines across the UK. A review of international guidelines shows that the evidence base has been interpreted in very different ways. UK guidelines are unusual in promoting short (3 day) courses, and we find little direct evidence to support this. Although 'short' courses of antibiotics for other agents may provide optimum balance between providing effective treatment whilst reducing selective pressure driving resistance amongst colonizing microbial flora, it remains unclear that course lengths can be extrapolated to nitrofurantoin. Three days of nitrofurantoin may indeed be a useful intervention in a large group of patients. However, without supporting evidence and because clinical response should be expected to vary widely, it is unclear that establishing and promoting an antibiotic duration for UTI is the best approach to optimizing prescribing in this important area.
Collapse
Affiliation(s)
- Eleanor Kashouris
- Department of Sociology and Criminology, University of Sussex, Falmer, Freeman Building, Brighton, BN1 9RH, UK
| | - Amelia Joseph
- Department of Clinical Microbiology, Nottingham University Hospitals NHS Trust, Nottingham, NG7 2UH, UK
| | - Tom Lewis
- Department of Microbiology, Royal Devon University Hospital, Barnstaple, EX31 4JB, UK
| |
Collapse
|
32
|
Hawas S, Qin J, Wiedbrauk S, Fairfull-Smith K, Totsika M. Preclinical Evaluation of Nitroxide-Functionalised Ciprofloxacin as a Novel Antibiofilm Drug Hybrid for Urinary Tract Infections. Antibiotics (Basel) 2023; 12:1479. [PMID: 37887180 PMCID: PMC10604439 DOI: 10.3390/antibiotics12101479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 10/28/2023] Open
Abstract
Urinary tract infections (UTIs) are the second most common bacterial infection with high recurrence rates and can involve biofilm formation on patient catheters. Biofilms are inherently tolerant to antimicrobials, making them difficult to eradicate. Many antibiofilm agents alone do not have bactericidal activity; therefore, linking them to antibiotics is a promising antibiofilm strategy. However, many of these hybrid agents have not been tested in relevant preclinical settings, limiting their potential for clinical translation. Here, we evaluate a ciprofloxacin di-nitroxide hybrid (CDN11), previously reported to have antibiofilm activity against uropathogenic Escherichia coli (UPEC) strain UTI89 in vitro, as a potential UTI therapeutic using multiple preclinical models that reflect various aspects of UTI pathogenesis. We report improved in vitro activity over the parent drug ciprofloxacin against mature UTI89 biofilms formed inside polyethylene catheters. In bladder cell monolayers infected with UTI89, treatment with CDN11 afforded significant reduction in bacterial titers, including intracellular UPEC. Infected mouse bladders containing biofilm-like intracellular reservoirs of UPEC UTI89 showed decreased bacterial loads after ex vivo bladder treatment with CDN11. Activity for CDN11 was reported across different models of UTI, showcasing nitroxide-antibiotic hybridization as a promising antibiofilm approach. The pipeline we described here could be readily used in testing other new therapeutic compounds, fast-tracking the development of novel antibiofilm therapeutics.
Collapse
Affiliation(s)
- Sophia Hawas
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD 4006, Australia; (S.H.); (J.Q.)
- Max Planck Queensland Centre, Queensland University of Technology, Brisbane, QLD 4059, Australia
| | - Jilong Qin
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD 4006, Australia; (S.H.); (J.Q.)
| | - Sandra Wiedbrauk
- School of Chemistry and Physics, Faculty of Science, Queensland University of Technology, Brisbane, QLD 4000, Australia; (S.W.); (K.F.-S.)
- Centre for Materials Science, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Kathryn Fairfull-Smith
- School of Chemistry and Physics, Faculty of Science, Queensland University of Technology, Brisbane, QLD 4000, Australia; (S.W.); (K.F.-S.)
- Centre for Materials Science, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Makrina Totsika
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD 4006, Australia; (S.H.); (J.Q.)
- Max Planck Queensland Centre, Queensland University of Technology, Brisbane, QLD 4059, Australia
| |
Collapse
|
33
|
Hao X, Cognetti M, Patel C, Jean-Charles N, Tumati A, Burch-Smith R, Holton M, Kapoor DA. The Essential Role of PCR and PCR Panel Size in Comparison with Urine Culture in Identification of Polymicrobial and Fastidious Organisms in Patients with Complicated Urinary Tract Infections. Int J Mol Sci 2023; 24:14269. [PMID: 37762570 PMCID: PMC10531650 DOI: 10.3390/ijms241814269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 09/11/2023] [Accepted: 09/16/2023] [Indexed: 09/29/2023] Open
Abstract
Complicated urinary tract infections (cUTIs) are difficult to treat, consume substantial resources, and cause increased patient morbidity. Data suggest that cUTI may be caused by polymicrobial and fastidious organisms (PMOs and FOs, respectively); as such, urine culture (UC) may be an unreliable diagnostic tool for detecting cUTIs. We sought to determine the utility of PCR testing for patients presumed to have a cUTI and determine the impact of PCR panel size on organism detection. We reviewed 36,586 specimens from patients with presumptive cUTIs who received both UC and PCR testing. Overall positivity rate for PCR and UC was 52.3% and 33.9%, respectively (p < 0.01). PCR detected more PMO and FO than UC (PMO: 46.2% vs. 3.6%; FO: 31.3% vs. 0.7%, respectively, both p < 0.01). Line-item concordance showed that PCR detected 90.2% of organisms identified by UC whereas UC discovered 31.9% of organisms detected by PCR (p < 0.01). Organism detection increased with expansion in PCR panel size from 5-25 organisms (p < 0.01). Our data show that overall positivity rate and the detection of individual organisms, PMO and FO are significantly with PCR testing and that these advantages are ideally realized with a PCR panel size of 25 or greater.
Collapse
Affiliation(s)
- Xingpei Hao
- P4 Diagnostix, Pine Brook, NJ 07058, USA; (M.C.); (C.P.); (N.J.-C.); (A.T.); (R.B.-S.)
| | - Marcus Cognetti
- P4 Diagnostix, Pine Brook, NJ 07058, USA; (M.C.); (C.P.); (N.J.-C.); (A.T.); (R.B.-S.)
| | - Chiraag Patel
- P4 Diagnostix, Pine Brook, NJ 07058, USA; (M.C.); (C.P.); (N.J.-C.); (A.T.); (R.B.-S.)
| | - Nathalie Jean-Charles
- P4 Diagnostix, Pine Brook, NJ 07058, USA; (M.C.); (C.P.); (N.J.-C.); (A.T.); (R.B.-S.)
| | - Arun Tumati
- P4 Diagnostix, Pine Brook, NJ 07058, USA; (M.C.); (C.P.); (N.J.-C.); (A.T.); (R.B.-S.)
| | - Rhonda Burch-Smith
- P4 Diagnostix, Pine Brook, NJ 07058, USA; (M.C.); (C.P.); (N.J.-C.); (A.T.); (R.B.-S.)
| | - Mara Holton
- Anne Arundel Urology, Annapolis, MD 21401, USA;
| | - Deepak A. Kapoor
- Solaris Health Holdings, LLC, Fort Lauderdale, FL 33394, USA
- The Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
34
|
Perry EK, Tan MW. Bacterial biofilms in the human body: prevalence and impacts on health and disease. Front Cell Infect Microbiol 2023; 13:1237164. [PMID: 37712058 PMCID: PMC10499362 DOI: 10.3389/fcimb.2023.1237164] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/11/2023] [Indexed: 09/16/2023] Open
Abstract
Bacterial biofilms can be found in most environments on our planet, and the human body is no exception. Consisting of microbial cells encased in a matrix of extracellular polymers, biofilms enable bacteria to sequester themselves in favorable niches, while also increasing their ability to resist numerous stresses and survive under hostile circumstances. In recent decades, biofilms have increasingly been recognized as a major contributor to the pathogenesis of chronic infections. However, biofilms also occur in or on certain tissues in healthy individuals, and their constituent species are not restricted to canonical pathogens. In this review, we discuss the evidence for where, when, and what types of biofilms occur in the human body, as well as the diverse ways in which they can impact host health under homeostatic and dysbiotic states.
Collapse
Affiliation(s)
| | - Man-Wah Tan
- Department of Infectious Diseases, Genentech, South San Francisco, CA, United States
| |
Collapse
|
35
|
Zhou Y, Zhou Z, Zheng L, Gong Z, Li Y, Jin Y, Huang Y, Chi M. Urinary Tract Infections Caused by Uropathogenic Escherichia coli: Mechanisms of Infection and Treatment Options. Int J Mol Sci 2023; 24:10537. [PMID: 37445714 DOI: 10.3390/ijms241310537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Urinary tract infections (UTIs) are common bacterial infections that represent a severe public health problem. They are often caused by Escherichia coli (E. coli), Klebsiella pneumoniae (K. pneumonia), Proteus mirabilis (P. mirabilis), Enterococcus faecalis (E. faecalis), and Staphylococcus saprophyticus (S. saprophyticus). Among these, uropathogenic E. coli (UPEC) are the most common causative agent in both uncomplicated and complicated UTIs. The adaptive evolution of UPEC has been observed in several ways, including changes in colonization, attachment, invasion, and intracellular replication to invade the urothelium and survive intracellularly. While antibiotic therapy has historically been very successful in controlling UTIs, high recurrence rates and increasing antimicrobial resistance among uropathogens threaten to greatly reduce the efficacy of these treatments. Furthermore, the gradual global emergence of multidrug-resistant UPEC has highlighted the need to further explore its pathogenesis and seek alternative therapeutic and preventative strategies. Therefore, a thorough understanding of the clinical status and pathogenesis of UTIs and the advantages and disadvantages of antibiotics as a conventional treatment option could spark a surge in the search for alternative treatment options, especially vaccines and medicinal plants. Such options targeting multiple pathogenic mechanisms of UPEC are expected to be a focus of UTI management in the future to help combat antibiotic resistance.
Collapse
Affiliation(s)
- Yang Zhou
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, 4 Beijing Road, Guiyang 550004, China
- School of Pharmaceutical Sciences, Guizhou Medical University, 4 Beijing Road, Guiyang 550004, China
| | - Zuying Zhou
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, 4 Beijing Road, Guiyang 550004, China
- School of Pharmaceutical Sciences, Guizhou Medical University, 4 Beijing Road, Guiyang 550004, China
| | - Lin Zheng
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, 4 Beijing Road, Guiyang 550004, China
- School of Pharmaceutical Sciences, Guizhou Medical University, 4 Beijing Road, Guiyang 550004, China
| | - Zipeng Gong
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, 4 Beijing Road, Guiyang 550004, China
| | - Yueting Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, 4 Beijing Road, Guiyang 550004, China
| | - Yang Jin
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, 4 Beijing Road, Guiyang 550004, China
| | - Yong Huang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, 4 Beijing Road, Guiyang 550004, China
- School of Pharmaceutical Sciences, Guizhou Medical University, 4 Beijing Road, Guiyang 550004, China
| | - Mingyan Chi
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, 4 Beijing Road, Guiyang 550004, China
- School of Pharmaceutical Sciences, Guizhou Medical University, 4 Beijing Road, Guiyang 550004, China
| |
Collapse
|
36
|
Kim DS, Lee JW. Urinary Tract Infection and Microbiome. Diagnostics (Basel) 2023; 13:diagnostics13111921. [PMID: 37296773 DOI: 10.3390/diagnostics13111921] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/23/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
Urinary tract infection is one of the most common bacterial infections and can cause major burdens, not only to individuals but also to an entire society. Current knowledge of the microbial communities in the urinary tract has increased exponentially due to next-generation sequencing and expanded quantitative urine culture. We now acknowledge a dynamic urinary tract microbiome that we once thought was sterile. Taxonomic studies have identified the normal core microbiota of the urinary tract, and studies on the changes in microbiome due to sexuality and age have set the foundation for microbiome studies in pathologic states. Urinary tract infection is not only caused by invading uropathogenic bacteria but also by changes to the uromicrobiome milieu, and interactions with other microbial communities can also contribute. Recent studies have provided insights into the pathogenesis of recurrent urinary tract infections and antimicrobial resistance. New therapeutic options for urinary tract infections also show promise; however, further research is needed to fully understand the implications of the urinary microbiome in urinary tract infections.
Collapse
Affiliation(s)
- Dong Soo Kim
- Department of Urology, Kyung Hee University College of Medicine, Kyung Hee University Hospital, Seoul 02447, Republic of Korea
| | - Jeong Woo Lee
- Department of Urology, Kyung Hee University College of Medicine, Kyung Hee University Hospital, Seoul 02447, Republic of Korea
| |
Collapse
|
37
|
Morris CJ, Rohn JL, Glickman S, Mansfield KJ. Effective Treatments of UTI—Is Intravesical Therapy the Future? Pathogens 2023; 12:pathogens12030417. [PMID: 36986339 PMCID: PMC10058863 DOI: 10.3390/pathogens12030417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/27/2023] [Accepted: 03/02/2023] [Indexed: 03/09/2023] Open
Abstract
Urinary tract infection (UTI) afflicts millions of patients globally each year. While the majority of UTIs are successfully treated with orally administered antibiotics, the impact of oral antibiotics on the host microbiota is under close research scrutiny and the potential for dysbiosis is a cause for concern. Optimal treatment of UTI relies upon the selection of an agent which displays appropriate pharmacokinetic-pharmacodynamic (PK-PD) properties that will deliver appropriately high concentrations in the urinary tract after oral administration. Alternatively, high local concentrations of antibiotic at the urothelial surface can be achieved by direct instillation into the urinary tract. For antibiotics with the appropriate physicochemical properties, this can be of critical importance in cases for which an intracellular urothelial bacterial reservoir is suspected. In this review, we summarise the underpinning biopharmaceutical barriers to effective treatment of UTI and provide an overview of the evidence for the deployment of the intravesical administration route for antibiotics.
Collapse
Affiliation(s)
- Chris J. Morris
- School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Jennifer L. Rohn
- Division of Medicine, University College London, Royal Free Hospital Campus, Rowland Hill Street, London NW3 2PF, UK
| | | | - Kylie J. Mansfield
- Graduate School of Medicine, University of Wollongong, Wollongong, NSW 2522, Australia
- Correspondence: ; Tel.: +61-242-215-851
| |
Collapse
|
38
|
Microbiota Ecosystem in Recurrent Cystitis and the Immunological Microenvironment of Urothelium. Healthcare (Basel) 2023; 11:healthcare11040525. [PMID: 36833059 PMCID: PMC9956625 DOI: 10.3390/healthcare11040525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/31/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
Urinary tract infections (UTIs) represent one of the most frequent low genital tract diseases in the female population. When UTIs occur with a frequency of at least three times per year or two times in the last six month, we speak of recurrent UTI (rUTI) and up to 70% of women will have rUTI within 1 year. It was previously thought that antibiotic resistance was principally responsible for the recurrence of UTIs, but nowadays new diagnostic technologies have shown the role of microbiota in the pathophysiology of these diseases. Much research has been conducted on the role of gut microbiome in the development of rUTI, while little is known yet about vaginal and urinary microbiome and the possible immunological and microscopical mechanisms through which they trigger symptoms. New discoveries and clinical perspectives are arising, and they all agree that a personalized, multi-modal approach, treating vaginal and urinary dysbiosis, may reduce rUTIs more successfully.
Collapse
|
39
|
Chieng CCY, Kong Q, Liou NSY, Khasriya R, Horsley H. The clinical implications of bacterial pathogenesis and mucosal immunity in chronic urinary tract infection. Mucosal Immunol 2023; 16:61-71. [PMID: 36642381 DOI: 10.1016/j.mucimm.2022.12.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 12/21/2022] [Indexed: 01/15/2023]
Abstract
Urinary tract infections (UTIs) exert a significant health and economic cost globally. Approximately one in four people with a previous history of UTI continue to develop recurrent or chronic infections. Research on UTI has primarily concentrated on pathogen behavior, with the focus gradually shifting to encompass the host immune response. However, these are centered on mouse models of Escherichia coli infection, which may not fully recapitulate the infective etiology and immune responses seen in humans. The emerging field of the urobiome also inadvertently confounds the discrimination of true UTI-causing pathogens from commensals. This review aims to present a novel perspective on chronic UTI by linking microbiology with immunology, which is commonly divergent in this field of research. It also describes the challenges in understanding chronic UTI pathogenesis and the human bladder immune response, largely conjectured from murine studies. Lastly, it outlines the shortcomings of current diagnostic methods in identifying individuals with chronic UTI and consequently treating them, potentially aggravating their disease due to mismanagement of prior episodes. This discourse highlights the need to consider these knowledge gaps and encourages more relevant studies of UTIs in humans.
Collapse
Affiliation(s)
| | - Qingyang Kong
- Department of Microbial Diseases, Eastman Dental Institute, University College London, London, United Kingdom
| | - Natasha S Y Liou
- Department of Renal Medicine, University College London, London, United Kingdom; EGA Institute for Women's Health, University College London, London, United Kingdom
| | - Rajvinder Khasriya
- Department of Microbial Diseases, Eastman Dental Institute, University College London, London, United Kingdom
| | - Harry Horsley
- Department of Renal Medicine, University College London, London, United Kingdom.
| |
Collapse
|
40
|
Uropathogenic Escherichia coli in Mexico, an Overview of Virulence and Resistance Determinants: Systematic Review and Meta-analysis. Arch Med Res 2023; 54:247-260. [PMID: 36725379 DOI: 10.1016/j.arcmed.2023.01.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/03/2022] [Accepted: 01/12/2023] [Indexed: 01/31/2023]
Abstract
BACKGROUND Urinary tract infections (UTI) are one of the most common pathologies in Mexico and the majority are caused by uropathogenic Escherichia coli (UPEC). UPEC possesses virulence and resistance determinants that promote UTI development and affect diagnosis and treatment. This study aims to systematically review published reports of virulence genes, antibiotic resistance, and phylogenetic groups prevalent in clinical isolates of UPEC in the Mexican population. METHODS Systematic review with meta-analysis was performed following PRISMA guidelines. Articles in both English and Spanish were included. Total prevalence with a 95% confidence interval of each characteristic was calculated. Heterogeneity between studies and geographical areas was assessed by the Cochran Q test (Q), I-square (I2), and H-square (H2). Egger's test was used for risk of bias in publications and asymmetry evaluations. RESULTS Forty-two articles were analyzed. The most prevalent virulence genes were ecp (97.25%; n = 364) and fimH (82.34%; n = 1,422), which are associated with lower UTI, followed by papGII (40.98%; n = 810), fliC (38.87%; n = 319), hlyA (23.55%; n = 1,521), responsible for with upper UTI. More than 78.13% (n = 1,893) of the isolates were classified as multidrug-resistant, with a higher prevalence of resistance to those antibiotics that are implemented in the basic regimen in Mexico. The most frequently reported Extended Spectrum β-Lactamase (ESBL) was CTX-M-1 (55.61%; n = 392), and the predominant phylogroup was B2 (35.94%; n = 1,725). CONCLUSION UPEC strains are responsible for a large portion of both lower and upper UTI in Mexico, and their multi-drug resistance drastically reduces the number of therapeutic options available.
Collapse
|
41
|
Handa VL, Brotman RM, Ravel J, Tuddenham S. Does Bacterial Vaginosis Contribute to Urinary Tract Infection? Curr Infect Dis Rep 2023. [DOI: 10.1007/s11908-022-00795-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
42
|
In Vivo Role of Two-Component Regulatory Systems in Models of Urinary Tract Infections. Pathogens 2023; 12:pathogens12010119. [PMID: 36678467 PMCID: PMC9861413 DOI: 10.3390/pathogens12010119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/23/2022] [Accepted: 01/08/2023] [Indexed: 01/12/2023] Open
Abstract
Two-component signaling systems (TCSs) are finely regulated mechanisms by which bacteria adapt to environmental conditions by modifying the expression of target genes. In bacterial pathogenesis, TCSs play important roles in modulating adhesion to mucosal surfaces, resistance to antibiotics, and metabolic adaptation. In the context of urinary tract infections (UTI), one of the most common types infections causing significant health problems worldwide, uropathogens use TCSs for adaptation, survival, and establishment of pathogenicity. For example, uropathogens can exploit TCSs to survive inside bladder epithelial cells, sense osmolar variations in urine, promote their ascension along the urinary tract or even produce lytic enzymes resulting in exfoliation of the urothelium. Despite the usefulness of studying the function of TCSs in in vitro experimental models, it is of primary necessity to study bacterial gene regulation also in the context of host niches, each displaying its own biological, chemical, and physical features. In light of this, the aim of this review is to provide a concise description of several bacterial TCSs, whose activity has been described in mouse models of UTI.
Collapse
|
43
|
Choudhary MI, Römling U, Nadeem F, Bilal HM, Zafar M, Jahan H, ur-Rahman A. Innovative Strategies to Overcome Antimicrobial Resistance and Tolerance. Microorganisms 2022; 11:microorganisms11010016. [PMID: 36677308 PMCID: PMC9863313 DOI: 10.3390/microorganisms11010016] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Antimicrobial resistance and tolerance are natural phenomena that arose due to evolutionary adaptation of microorganisms against various xenobiotic agents. These adaptation mechanisms make the current treatment options challenging as it is increasingly difficult to treat a broad range of infections, associated biofilm formation, intracellular and host adapted microbes, as well as persister cells and microbes in protected niches. Therefore, novel strategies are needed to identify the most promising drug targets to overcome the existing hurdles in the treatment of infectious diseases. Furthermore, discovery of novel drug candidates is also much needed, as few novel antimicrobial drugs have been introduced in the last two decades. In this review, we focus on the strategies that may help in the development of innovative small molecules which can interfere with microbial resistance mechanisms. We also highlight the recent advances in optimization of growth media which mimic host conditions and genome scale molecular analyses of microbial response against antimicrobial agents. Furthermore, we discuss the identification of antibiofilm molecules and their mechanisms of action in the light of the distinct physiology and metabolism of biofilm cells. This review thus provides the most recent advances in host mimicking growth media for effective drug discovery and development of antimicrobial and antibiofilm agents.
Collapse
Affiliation(s)
- M. Iqbal Choudhary
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Ute Römling
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 65 Stockholm, Sweden
- Correspondence: (U.R.); (H.J.); Tel.: +46-8-5248-7319 (U.R.); +92-21-111-232-292 (ext. 301) (H.J.)
| | - Faiza Nadeem
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Hafiz Muhammad Bilal
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Munirah Zafar
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Humera Jahan
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
- Correspondence: (U.R.); (H.J.); Tel.: +46-8-5248-7319 (U.R.); +92-21-111-232-292 (ext. 301) (H.J.)
| | - Atta ur-Rahman
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| |
Collapse
|
44
|
The Clinical Trial Outcomes of Cranberry, D-Mannose and NSAIDs in the Prevention or Management of Uncomplicated Urinary Tract Infections in Women: A Systematic Review. Pathogens 2022; 11:pathogens11121471. [PMID: 36558804 PMCID: PMC9788503 DOI: 10.3390/pathogens11121471] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/21/2022] [Accepted: 11/30/2022] [Indexed: 12/09/2022] Open
Abstract
The use of antibiotics in the treatment of UTIs is contributing to resistance. Hence, the outcome of human clinical trials of nonantibiotic remedies for preventing or treating UTI is of significant interest. This systematic review aimed to identify, summarise and evaluate the evidence for the outcomes of different nonantibiotic options including cranberry, D-mannose and non-steroidal anti-inflammatory drugs (NSAIDs). PubMed, Embase and Scopus were searched for manuscripts relating to nonantibiotic treatment of UTI including cranberry, mannose and NSAIDs. After title and abstract screening, data were extracted from 21 papers that were published in English and related to the treatment or prevention of uncomplicated UTI in adult women. We identified twelve papers examining the effects of cranberry, two papers examining D-mannose, two papers examining combination treatments (cranberry and D-mannose) and five manuscripts investigating the effects of NSAIDs. There is low-level evidence, from a small number of studies, supporting the use of D-mannose or combination treatments for potentially preventing UTIs in adult women without producing burdening side effects. However, larger and more randomised double-blinded trials are needed to confirm this. In comparison, the multiple studies of cranberry and NSAIDs produced conflicting evidence regarding their effectiveness.
Collapse
|
45
|
Stærk K, Grønnemose RB, Palarasah Y, Lund L, Andersen TE. Intracellular uropathogenic Escherichia coli are undetectable in urinary bladders after oral mecillinam treatment: An experimental study in a pig model of cystitis. Microb Pathog 2022; 173:105817. [DOI: 10.1016/j.micpath.2022.105817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/26/2022] [Accepted: 10/04/2022] [Indexed: 11/05/2022]
|
46
|
Abell-King C, Costas A, Duggin IG, Söderström B. Bacterial filamentation during urinary tract infections. PLoS Pathog 2022; 18:e1010950. [PMID: 36454736 PMCID: PMC9714745 DOI: 10.1371/journal.ppat.1010950] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Affiliation(s)
- Charlotte Abell-King
- Australian Institute for Microbiology and Infection, University of Technology Sydney, ULTIMO, Australia
| | - Ariana Costas
- Australian Institute for Microbiology and Infection, University of Technology Sydney, ULTIMO, Australia
| | - Iain G. Duggin
- Australian Institute for Microbiology and Infection, University of Technology Sydney, ULTIMO, Australia
| | - Bill Söderström
- Australian Institute for Microbiology and Infection, University of Technology Sydney, ULTIMO, Australia
- * E-mail:
| |
Collapse
|
47
|
Barrios-Villa E, Mendez-Pfeiffer P, Valencia D, Caporal-Hernandez L, Ballesteros-Monrreal MG. Intracellular bacterial communities in patient with recurrent urinary tract infection caused by Staphylococcus spp and Streptococcus agalactiae: a case report and literature review. AFRICAN JOURNAL OF UROLOGY 2022. [DOI: 10.1186/s12301-022-00314-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Urinary tract infections (UTI) are among the most frequent pathologies worldwide. Uropathogenic Escherichia coli (UPEC) is the leading etiological agent; however, depending on the patient's characteristics, the etiology may include some atypical pathogens. Some pathogenic bacteria can internalize in the urothelial and phagocytic cells complicating treatment and timely diagnosis.
Case presentation
We present a clinical case of a married female patient with urological alteration, constant catheterization, and urethral dilation with recurrent UTI for ten years, with five episodes per year and reports of negative urine culture. The microscopic analysis revealed intracellular bacterial communities (IBC) and pyocytes with active bacteria. A protocol was designed for the release of intracellular bacteria in urine samples; without the proposed treatment, the urine culture was negative. However, upon releasing the internalized bacteria, we obtained a polymicrobial urine culture. We isolated and identified Staphylococcus aureus, Staphylococcus epidermidis, Staphylococcus simulans, and Streptococcus agalactiae. All microorganisms were sensitive to nitrofurans and sulfas. The patient is under treatment with nitrofurantoin and continuous follow-up by our workgroup.
Conclusions
It is essential to look for IBC and pyocytes with active bacteria in patients with recurrent UTIs to avoid false-negative urine culture results and provide timely treatment. Polymicrobial culture must be considered depending on the patient and clinical history.
Collapse
|
48
|
Qualitative Analysis of a Twitter-Disseminated Survey Reveals New Patient Perspectives on the Impact of Urinary Tract Infection. Antibiotics (Basel) 2022; 11:antibiotics11121687. [PMID: 36551344 PMCID: PMC9774672 DOI: 10.3390/antibiotics11121687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/04/2022] [Accepted: 11/17/2022] [Indexed: 11/24/2022] Open
Abstract
Few studies have harnessed social media to explore patients' experiences with urinary tract infection (UTI); therefore, we captured UTI experiences and future research suggestions through a Twitter-disseminated survey. The survey posed three qualitative questions inquiring about the impact of UTIs, greatest UTI management hurdle, and research suggestions. We also asked participants to rate how seriously others perceive UTIs and the importance of UTIs in their life (scale: 1-100 (highest)). The study period spanned from January to June 2021. Coding was performed in duplicate, followed by thematic analysis. Of 466 participants from 22 countries, 128 considered their UTIs recurrent (n = 43) or chronic (n = 85). Six major themes emerged: UTIs drastically impact (1) physical and (2) mental health and (3) cause severe limitations in life activities. Patients reported (4) negative clinician interactions and perceived inadequate care, (5) a lack of knowledge and awareness surrounding UTIs, and (6) research gaps in UTI diagnostics and treatment. The participants considered UTIs extremely important (median: 100, IQR: 90-100), but characterized others' perceptions of them as less serious (median: 20, IQR: 10-30). Our survey revealed a patient population struggling with UTIs, particularly chronic UTIs. Our findings highlight perceived shortcomings in current UTI treatment and diagnostics.
Collapse
|
49
|
Abstract
Escherichia coli arbitrarily encompasses facultative anaerobic, rod-shaped bacteria with defined respiratory and fermentative types of metabolism. The species diversification has been further advanced by atypical strains whose features deviate from the essential species-specific morphological and metabolic cutoff. The morphological cutoff is exemplified by bacterial filamentation. E. coli filamentation has been studied from two different perspectives: the first considers filamentation as a result of adaptive strategies and response to stress, while the second is based on findings from the cell division of E. coli's conditional mutants. Another cutoff is represented by E. coli's inability to use citrate as a sole carbon and energy source. In this study, we compared two atypical E. coli strains that belong to the same neuroinvasive ecovar but exhibit either of the two phenotypes that deviate from the species' features. While E. coli RS218 exists in the form of filaments incapable of growth on citrate, strain IHE3034 is represented as normal-sized bacteria able to ferment citrate under oxic conditions in the presence of glucose; in this paper, we show that these two phenotypes result from a bona fide trade-off. With the help of comparative proteomics and metabolomics, we discovered the proteome required for the upkeep of these phenotypes. The metabolic profiles of both strains reveal that under aerobic conditions, RS218 undergoes oxidative metabolism, while IHE3034 undergoes anaerobic respiration. Finally, we show that the use of citrate and filament formation are both linked in a trade-off occurring via a c-di-GMP-dependent phase variation event. IMPORTANCE Aerobic use of citrate and filamentous growth are arbitrary cutoffs for the Escherichia coli species. The strains that exhibit them as stable phenotypes are called atypical. In this study, we compare two atypical neuroinvasive E. coli strains, which alternatively display either of these phenotypes. We present the proteome and metabolome required for the maintenance of filamentous growth and show that anaerobic nitrate respiration is the main requirement for the use of citrate. The fact that the two phenotypes are differentially expressed by each strain prompted us to check if they are part of a trade-off. Indeed, these atypical characters are reversible and result from a c-di-GMP phase variation event. Thus, we revealed hidden links between stable morphological and metabolic phenotypes and provided information about alternative evolutionary pathways for the survival of E. coli strains in various host niches.
Collapse
|
50
|
Abstract
The morphogenesis of two-dimensional bacterial colonies has been well studied. However, little is known about the colony morphologies of bacteria growing in three dimensions, despite the prevalence of three-dimensional environments (e.g., soil, inside hosts) as natural bacterial habitats. Using experiments on bacteria in granular hydrogel matrices, we find that dense multicellular colonies growing in three dimensions undergo a common morphological instability and roughen, adopting a characteristic broccoli-like morphology when they exceed a critical size. Analysis of a continuum “active fluid” model of the expanding colony reveals that this behavior originates from an interplay of competition for nutrients with growth-driven colony expansion, both of which vary spatially. These results shed light on the fundamental biophysical principles underlying growth in three dimensions. How do growing bacterial colonies get their shapes? While colony morphogenesis is well studied in two dimensions, many bacteria grow as large colonies in three-dimensional (3D) environments, such as gels and tissues in the body or subsurface soils and sediments. Here, we describe the morphodynamics of large colonies of bacteria growing in three dimensions. Using experiments in transparent 3D granular hydrogel matrices, we show that dense colonies of four different species of bacteria generically become morphologically unstable and roughen as they consume nutrients and grow beyond a critical size—eventually adopting a characteristic branched, broccoli-like morphology independent of variations in the cell type and environmental conditions. This behavior reflects a key difference between two-dimensional (2D) and 3D colonies; while a 2D colony may access the nutrients needed for growth from the third dimension, a 3D colony inevitably becomes nutrient limited in its interior, driving a transition to unstable growth at its surface. We elucidate the onset of the instability using linear stability analysis and numerical simulations of a continuum model that treats the colony as an “active fluid” whose dynamics are driven by nutrient-dependent cellular growth. We find that when all dimensions of the colony substantially exceed the nutrient penetration length, nutrient-limited growth drives a 3D morphological instability that recapitulates essential features of the experimental observations. Our work thus provides a framework to predict and control the organization of growing colonies—as well as other forms of growing active matter, such as tumors and engineered living materials—in 3D environments.
Collapse
|