1
|
Yarlett N, Jarroll EL, Morada M, Lloyd D. Protists: Eukaryotic single-celled organisms and the functioning of their organelles. Adv Microb Physiol 2024; 84:243-307. [PMID: 38821633 DOI: 10.1016/bs.ampbs.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
Abstract
Organelles are membrane bound structures that compartmentalize biochemical and molecular functions. With improved molecular, biochemical and microscopy tools the diversity and function of protistan organelles has increased in recent years, providing a complex panoply of structure/function relationships. This is particularly noticeable with the description of hydrogenosomes, and the diverse array of structures that followed, having hybrid hydrogenosome/mitochondria attributes. These diverse organelles have lost the major, at one time, definitive components of the mitochondrion (tricarboxylic cycle enzymes and cytochromes), however they all contain the machinery for the assembly of Fe-S clusters, which is the single unifying feature they share. The plasticity of organelles, like the mitochondrion, is therefore evident from its ability to lose its identity as an aerobic energy generating powerhouse while retaining key ancestral functions common to both aerobes and anaerobes. It is interesting to note that the apicoplast, a non-photosynthetic plastid that is present in all apicomplexan protozoa, apart from Cryptosporidium and possibly the gregarines, is also the site of Fe-S cluster assembly proteins. It turns out that in Cryptosporidium proteins involved in Fe-S cluster biosynthesis are localized in the mitochondrial remnant organelle termed the mitosome. Hence, different organisms have solved the same problem of packaging a life-requiring set of reactions in different ways, using different ancestral organelles, discarding what is not needed and keeping what is essential. Don't judge an organelle by its cover, more by the things it does, and always be prepared for surprises.
Collapse
Affiliation(s)
- Nigel Yarlett
- Haskins Laboratories, Pace University, New York, NY, United States; The Department of Chemistry and Physical Sciences, Pace University, New York, NY, United States.
| | - Edward L Jarroll
- Department of Biological Sciences, CUNY-Lehman College, Bronx, NY, United States
| | - Mary Morada
- Haskins Laboratories, Pace University, New York, NY, United States
| | - David Lloyd
- Schools of Biosciences and Engineering, Cardiff University, Wales, United Kingdom
| |
Collapse
|
2
|
Giardia intestinalis coiled-coil cytolinker protein 259 interacts with actin and tubulin. Parasitol Res 2021; 120:1067-1076. [PMID: 33515065 DOI: 10.1007/s00436-021-07062-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 01/18/2021] [Indexed: 01/06/2023]
Abstract
Giardia intestinalis is a human parasite that causes a diarrheal disease in developing countries. G. intestinalis has a cytoskeleton (CSK) composed of microtubules and microfilaments, and the Giardia genome does not code for the canonical CSK-binding proteins described in other eukaryotic cells. To identify candidate actin and tubulin cross-linking proteins, we performed a BLAST analysis of the Giardia genome using a spectraplakins consensus sequence as a query. Based on the highest BLAST score, we selected a 259-kDa sequence designated as a cytoskeleton linker protein (CLP259). The sequence was cloned in three fragments and characterized by immunoprecipitation, confocal microscopy, and mass spectrometry (MS). CLP259 was located in the cytoplasm in the form of clusters of thick rods and colocalized with actin at numerous sites and with tubulin in the median body. Immunoprecipitation followed by mass spectrometry revealed that CLP259 interacts with structural proteins such as giardins, SALP-1, axonemal, and eight coiled-coils. The vesicular traffic proteins detected were Mu adaptin, Vacuolar ATP synthase subunit B, Bip, Sec61 alpha, NSF, AP complex subunit beta, and dynamin. These results indicate that CLP259 in trophozoites is a CSK linker protein for actin and tubulin and could act as a scaffold protein driving vesicular traffic.
Collapse
|
3
|
Guevara RB, Fox BA, Bzik DJ. Succinylated Wheat Germ Agglutinin Colocalizes with the Toxoplasma gondii Cyst Wall Glycoprotein CST1. mSphere 2020; 5:e00031-20. [PMID: 32132158 PMCID: PMC7056803 DOI: 10.1128/msphere.00031-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 02/16/2020] [Indexed: 11/20/2022] Open
Abstract
The glycosylated mucin domain of the Toxoplasma gondii cyst wall glycoprotein CST1 is heavily stained by Dolichos biflorus agglutinin, a lectin that binds to N-acetylgalactosamine. The cyst wall is also heavily stained by the chitin binding lectin succinylated wheat germ agglutinin (s-WGA), which selectively binds to N-acetylglucosamine-decorated structures. Here, we tracked the localization of N-acetylglucosamine-decorated structures that bind to s-WGA in immature and mature in vitro cysts. s-WGA localization was observed at the cyst periphery 6 h after the differentiation of the tachyzoite-stage parasitophorous vacuole. By day 1 and at all later times after differentiation, s-WGA was localized in a continuous staining pattern at the cyst wall. Coinciding with the maturation of the cyst matrix by day 3 of cyst development, s-WGA also localized in a continuous matrix pattern inside the cyst. s-WGA localized in both the outer and inner layer regions of the cyst wall and in a continuous matrix pattern inside mature 7- and 10-day-old cysts. In addition, s-WGA colocalized in the cyst wall with CST1, suggesting that N-acetylglucosamine- and N-acetylgalactosamine-decorated molecules colocalized in the cyst wall. In contrast to CST1, GRA4, and GRA6, the relative accumulation of the molecules that bind s-WGA in the cyst wall was not dependent on the expression of GRA2. Our results suggest that GRA2-dependent and GRA2-independent mechanisms regulate the trafficking and accumulation of glycosylated molecules that colocalize in the cyst wall.IMPORTANCE Chronic Toxoplasma gondii infection is maintained in the central nervous system by thick-walled cysts. If host immunity wanes, cysts recrudesce and cause severe and often lethal toxoplasmic encephalitis. Currently, there are no therapies to eliminate cysts, and little biological information is available regarding cyst structure(s). Here, we investigated cyst wall molecules recognized by succinylated wheat germ agglutinin (s-WGA), a lectin that specifically binds to N-acetylglucosamine-decorated structures. N-Acetylglucosamine regulates cell signaling and plays structural roles at the cell surface in many organisms. The cyst wall and cyst matrix were heavily stained by s-WGA in mature cysts and were differentially stained during cyst development. The relative accumulation of molecules that bind to s-WGA in the cyst wall was not dependent on the expression of GRA2. Our findings suggest that glycosylated cyst wall molecules gain access to the cyst wall via GRA2-dependent and GRA2-independent mechanisms and colocalize in the cyst wall.
Collapse
Affiliation(s)
- Rebekah B Guevara
- Department of Microbiology and Immunology, The Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - Barbara A Fox
- Department of Microbiology and Immunology, The Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - David J Bzik
- Department of Microbiology and Immunology, The Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| |
Collapse
|
4
|
Matadamas-Martínez F, Nogueda-Torres B, Castillo R, Hernández-Campos A, Barrera-Valdes MDLL, León-Ávila G, Hernández JM, Yépez-Mulia L. Characterisation of the in vitro activity of a Nitazoxanide-N-methyl-1H-benzimidazole hybrid molecule against albendazole and nitazoxanide susceptible and resistant strains of Giardia intestinalis and its in vivo giardicidal activity. Mem Inst Oswaldo Cruz 2020; 115:e190348. [PMID: 32049098 PMCID: PMC7012584 DOI: 10.1590/0074-02760190348] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 01/02/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND It was previously demonstrated that CMC-20, a nitazoxanide and N-methyl-1H-benzimidazole hybrid molecule, had higher in vitro activity against Giardia intestinalis WB strain than metronidazole and albendazole and similar to nitazoxanide. OBJETIVES To evaluate the in vitro activity of CMC-20 against G. intestinalis strains with different susceptibility/resistance to albendazole and nitazoxanide and evaluate its effect on the distribution of parasite cytoskeletal proteins and its in vivo giardicidal activity. METHODS CMC-20 activity was tested against two isolates from patients with chronic and acute giardiasis, an experimentally induced albendazole resistant strain and a nitazoxanide resistant clinical isolate. CMC-20 effect on the distribution of parasite cytoskeletal proteins was analysed by indirect immunofluorescence and its activity was evaluated in a murine model of giardiasis. FINDINGS CMC-20 showed broad activity against susceptible and resistant strains to albendazole and nitaxozanide. It affected the parasite microtubule reservoir and triggered the parasite encystation. In this process, alpha-7.2 giardin co-localised with CWP-1 protein. CMC-20 reduced the infection time and cyst load in feces of G. muris infected mice similar to albendazole. MAIN CONCLUSIONS The in vitro and in vivo giardicidal activity of CMC-20 suggests its potential use in the treatment of giardiasis.
Collapse
Affiliation(s)
- Félix Matadamas-Martínez
- Universidad Nacional Autónoma de México, Facultad de Química, Departamento de Farmacia, Mexico City, Mexico
- Instituto Mexicano del Seguro Social, Centro Médico Siglo XXI, Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatría, Mexico City, Mexico
| | - Benjamín Nogueda-Torres
- Escuela Nacional de Ciencias Biológicas-Instituto Politécnico Nacional, Departamento de Parasitología, Mexico City, Mexico
| | - Rafael Castillo
- Universidad Nacional Autónoma de México, Facultad de Química, Departamento de Farmacia, Mexico City, Mexico
| | - Alicia Hernández-Campos
- Universidad Nacional Autónoma de México, Facultad de Química, Departamento de Farmacia, Mexico City, Mexico
| | - María de la Luz Barrera-Valdes
- Escuela Nacional de Ciencias Biológicas-Instituto Politécnico Nacional, Departamento de Parasitología, Mexico City, Mexico
- Instituto Mexicano del Seguro Social, Centro Médico Siglo XXI, Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatría, Mexico City, Mexico
| | - Gloria León-Ávila
- Escuela Nacional de Ciencias Biológicas-Instituto Politécnico Nacional, Departamento de Zoología, Laboratorio de Genética, Mexico City, Mexico
| | - José Manuel Hernández
- >Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Departamento de Biología Celular, Mexico City, Mexico
| | - Lilián Yépez-Mulia
- Instituto Mexicano del Seguro Social, Centro Médico Siglo XXI, Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatría, Mexico City, Mexico
| |
Collapse
|
5
|
Exosome Biogenesis in the Protozoa Parasite Giardia lamblia: A Model of Reduced Interorganellar Crosstalk. Cells 2019; 8:cells8121600. [PMID: 31835439 PMCID: PMC6953089 DOI: 10.3390/cells8121600] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/19/2019] [Accepted: 11/20/2019] [Indexed: 11/17/2022] Open
Abstract
: Extracellular vesicles (EVs) facilitate intercellular communication and are considered a promising therapeutic tool for the treatment of infectious diseases. These vesicles involve microvesicles (MVs) and exosomes and selectively transfer proteins, lipids, mRNAs, and microRNAs from one cell to another. While MVs are formed by extrusion of the plasma membrane, exosomes are a population of vesicles of endosomal origin that are stored inside the multivesicular bodies (MVBs) as intraluminal vesicles (ILVs) and are released when the MVBs fuse with the plasma membrane. Biogenesis of exosomes may be driven by the endosomal sorting complex required for transport (ESCRT) machinery or may be ESCRT independent, and it is still debated whether these are entirely separate pathways. In this manuscript, we report that the protozoan parasite, Giardia lamblia, although lacking a classical endo-lysosomal pathway, is able to produce and release exosome-like vesicles (ElV). By using a combination of biochemical and cell biology analyses, we found that the ElVs have the same size, shape, and protein and lipid composition as exosomes described for other eukaryotic cells. Moreover, we established that some endosome/lysosome peripheral vacuoles (PVs) contain ILV during the stationary phase. Our results indicate that ILV formation and ElV release depend on the ESCRT-associated AAA+-ATPase Vps4a, Rab11, and ceramide in this parasite. Interestingly, EIV biogenesis and release seems to occur in Giardia despite the fact that this parasite has lost most of the ESCRT machinery components during evolution and is unable to produce ceramide de novo. The differences in protozoa parasite EV composition, origin, and release may reveal functional and structural properties of EVs and, thus, may provide information on cell-to-cell communication and on survival mechanisms.
Collapse
|
6
|
Javier-Reyna R, Montaño S, García-Rivera G, Rodríguez MA, González-Robles A, Orozco E. EhRabB mobilises the EhCPADH complex through the actin cytoskeleton during phagocytosis of Entamoeba histolytica. Cell Microbiol 2019; 21:e13071. [PMID: 31219662 DOI: 10.1111/cmi.13071] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 05/15/2019] [Accepted: 06/11/2019] [Indexed: 12/30/2022]
Abstract
Movement and phagocytosis are clue events in colonisation and invasion of tissues by Entamoeba histolytica, the protozoan causative of human amoebiasis. During phagocytosis, EhRab proteins interact with other functional molecules, conducting them to the precise cellular site. The gene encoding EhrabB is located in the complementary chain of the DNA fragment containing Ehcp112 and Ehadh genes, which encode for the proteins of the EhCPADH complex, involved in phagocytosis. This particular genetic organisation suggests that the three corresponding proteins may be functionally related. Here, we studied the relationship of EhRabB with EhCPADH and actin during phagocytosis. First, we obtained the EhRabB 3D structure to carry out docking analysis to predict the interaction sites involved in the EhRabB protein and the EhCPADH complex contact. By confocal microscopy, transmission electron microscopy, and immunoprecipitation assays, we revealed the interaction among these proteins when they move through different vesicles formed during phagocytosis. The role of the actin cytoskeleton in this event was also confirmed using Latrunculin A to interfere with actin polymerisation. This affected the movement of EhRabB and EhCPADH, as well as the rate of phagocytosis. Mutant trophozoites, silenced in EhrabB gene, evidenced the interaction of this molecule with EhCPADH and strengthened the role of actin during erythrophagocytosis.
Collapse
Affiliation(s)
- Rosario Javier-Reyna
- Departamento de Infectómica y Patogénesis Molecular, CINVESTAV-IPN, Mexico City, Mexico
| | - Sarita Montaño
- Laboratorio de Bioinformática, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Sinaloa (FCQB-UAS), Culiacán, Sinaloa, México
| | | | | | | | - Esther Orozco
- Departamento de Infectómica y Patogénesis Molecular, CINVESTAV-IPN, Mexico City, Mexico
| |
Collapse
|
7
|
Zhu S, Bhat S, Syan S, Kuchitsu Y, Fukuda M, Zurzolo C. Rab11a-Rab8a cascade regulates the formation of tunneling nanotubes through vesicle recycling. J Cell Sci 2018; 131:jcs.215889. [PMID: 30209134 DOI: 10.1242/jcs.215889] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 08/29/2018] [Indexed: 01/02/2023] Open
Abstract
Tunneling nanotubes (TNTs) are actin-enriched membranous channels enabling cells to communicate over long distances. TNT-like structures form between various cell types and mediate the exchange of different cargos, such as ions, vesicles, organelles and pathogens; thus, they may play a role in physiological conditions and diseases (e.g. cancer and infection). TNTs also allow the intercellular passage of protein aggregates related to neurodegenerative diseases, thus propagating protein misfolding. Understanding the mechanism of TNT formation is mandatory in order to reveal the mechanism of disease propagation and to uncover their physiological function. Vesicular transport controlled by the small GTPases Rab11a and Rab8a can promote the formation of different plasma membrane protrusions (filopodia, cilia and neurites). Here, we report that inhibiting membrane recycling reduces the number of TNT-connected cells and that overexpression of Rab11a and Rab8a increases the number of TNT-connected cells and the propagation of vesicles between cells in co-culture. We demonstrate that these two Rab GTPases act in a cascade in which Rab11a activation of Rab8a is independent of Rabin8. We also show that VAMP3 acts downstream of Rab8a to regulate TNT formation.
Collapse
Affiliation(s)
- Seng Zhu
- Unit of Membrane Trafficking and Pathogenesis, Department of Cell Biology and Infection, Pasteur Institute, Paris 75015, France
| | - Shaarvari Bhat
- Unit of Membrane Trafficking and Pathogenesis, Department of Cell Biology and Infection, Pasteur Institute, Paris 75015, France
| | - Sylvie Syan
- Unit of Membrane Trafficking and Pathogenesis, Department of Cell Biology and Infection, Pasteur Institute, Paris 75015, France
| | - Yoshihiko Kuchitsu
- Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Mitsunori Fukuda
- Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Chiara Zurzolo
- Unit of Membrane Trafficking and Pathogenesis, Department of Cell Biology and Infection, Pasteur Institute, Paris 75015, France
| |
Collapse
|
8
|
Touz MC, Zamponi N. Sorting without a Golgi complex. Traffic 2017; 18:637-645. [DOI: 10.1111/tra.12500] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 07/01/2017] [Accepted: 07/06/2017] [Indexed: 12/22/2022]
Affiliation(s)
- Maria C. Touz
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC - CONICET; Universidad Nacional de Córdoba; Córdoba Argentina
| | - Nahuel Zamponi
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC - CONICET; Universidad Nacional de Córdoba; Córdoba Argentina
| |
Collapse
|
9
|
Klinger CM, Ramirez-Macias I, Herman EK, Turkewitz AP, Field MC, Dacks JB. Resolving the homology-function relationship through comparative genomics of membrane-trafficking machinery and parasite cell biology. Mol Biochem Parasitol 2016; 209:88-103. [PMID: 27444378 PMCID: PMC5140719 DOI: 10.1016/j.molbiopara.2016.07.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 07/12/2016] [Accepted: 07/16/2016] [Indexed: 10/21/2022]
Abstract
With advances in DNA sequencing technology, it is increasingly common and tractable to informatically look for genes of interest in the genomic databases of parasitic organisms and infer cellular states. Assignment of a putative gene function based on homology to functionally characterized genes in other organisms, though powerful, relies on the implicit assumption of functional homology, i.e. that orthology indicates conserved function. Eukaryotes reveal a dazzling array of cellular features and structural organization, suggesting a concomitant diversity in their underlying molecular machinery. Significantly, examples of novel functions for pre-existing or new paralogues are not uncommon. Do these examples undermine the basic assumption of functional homology, especially in parasitic protists, which are often highly derived? Here we examine the extent to which functional homology exists between organisms spanning the eukaryotic lineage. By comparing membrane trafficking proteins between parasitic protists and traditional model organisms, where direct functional evidence is available, we find that function is indeed largely conserved between orthologues, albeit with significant adaptation arising from the unique biological features within each lineage.
Collapse
Affiliation(s)
- Christen M Klinger
- Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada
| | | | - Emily K Herman
- Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada
| | - Aaron P Turkewitz
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL, USA
| | - Mark C Field
- School of Life Sciences, University of Dundee, Dundee, UK
| | - Joel B Dacks
- Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
10
|
The Critical Role of the Cytoskeleton in the Pathogenesis of Giardia. CURRENT CLINICAL MICROBIOLOGY REPORTS 2015; 2:155-162. [PMID: 27347476 DOI: 10.1007/s40588-015-0026-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Giardia lamblia is a flagellated parasite of the gut and causes significant morbidity worldwide. Novel druggable targets are sorely needed due to Giardia's prevalence and the growing threat of antibiotic resistance. Giardia's conserved and unique cytoskeletal features, such as its eight flagella and ventral disc, are required for host colonization by facilitating motility, attachment, and cell division. Therapies that target these processes could interfere with trophozoite colonization, reduce the time or severity of the infection, and reduce the number of infectious cysts shed into the environment. This requires vetting and prioritizing critical cellular processes and identifying specific Giardia proteins in those processes as targets. It is time to leverage the wealth of data gathered through genome sequencing and proteomic studies, and new insights on the cytoskeleton of Giardia to design effective new drugs to treat giardiasis.
Collapse
|
11
|
The generation gap: Proteome changes and strain variation during encystation in Giardia duodenalis. Mol Biochem Parasitol 2015; 201:47-56. [DOI: 10.1016/j.molbiopara.2015.05.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 05/26/2015] [Accepted: 05/28/2015] [Indexed: 12/26/2022]
|
12
|
Abstract
SUMMARYTo determine the involvement of the actin cytoskeleton in macrogametocyte growth and oocyst wall formation, freshly purified macrogametocytes and oocysts were stained with Oregon Green 514 conjugated phalloidin to visualize F-actin microfilaments, while Evans blue staining was used to detect type 1 wall forming bodies (WFB1s) and the outer oocyst wall. The double-labelled parasites were then analysed at various stages of sexual development using three-dimensional confocal microscopy. The results showed F-actin filaments were distributed throughout the entire cytoplasm of mature Eimeria maxima macrogametocytes forming a web-like meshwork of actin filaments linking the type 1 WFBs together into structures resembling ‘beads on a string’. At the early stages of oocyst wall formation, F-actin localization changed in alignment with the egg-shaped morphology of the forming oocysts with F-actin microfilaments making direct contact with the WFB1s. In tissue oocysts, the labelled actin cytoskeleton was situated underneath the forming outer layer of the oocyst wall. Treatment of macrogametocytes in vitro with the actin depolymerizing agents, Cytochalasin D and Latrunculin, led to a reduction in the numbers of mature WFB1s in the cytoplasm of the developing macrogametocytes, indicating that the actin plays an important role in WFB1 transport and oocyst wall formation in E. maxima.
Collapse
|
13
|
Liang P, He L, Yu J, Xie Z, Chen X, Mao Q, Liang C, Huang Y, Lu G, Yu X. Identification and characterization of a member of Rab subfamily, Rab8, from Clonorchis sinensis. Parasitol Res 2015; 114:1857-64. [PMID: 25773178 DOI: 10.1007/s00436-015-4372-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Accepted: 02/04/2015] [Indexed: 10/23/2022]
Abstract
The Rabs act as a binary molecular switch that utilizes the conformational changes associated with the GTP/GDP cycle to elicit responses from target proteins. It regulates a broad spectrum of cellular processes including cell proliferation, cytoskeletal assembly, and intracellular membrane trafficking in eukaryotes. The Rab8 from Clonorchis sinensis (CsRab8) was composed of 199 amino acids. The deduced amino acid sequence shared above 50% identities with other species from trematode, tapeworm, mammal, insecta, nematode, and reptile, respectively. The homologous analysis of sequences showed the conservative domains: G1 box (GDSGVGKS), G2 box (T), G3 box (DTAG), G4 box (GNKCDL), and G5 box. In addition, the structure modeling had also shown other functional domains: GTP/Mg(2+) binding sites, switch I region, and switch II region. A phylogenic tree analysis indicated that the CsRab8 was clustered with the Rab from Schistosoma japonicum, and trematode and tapeworm came from the same branch, which was different from an evolutional branch built by other species, such as mammal animal, insecta, nematode, and reptile. The recombinant CsRab8 protein was expressed in Escherichia coli and the purified protein was a soluble molecule by 12% sodium dodecyl sulfate polyacrylamide gel electrophoresis analysis. CsRab8 was identified as a component of excretory/secretory products of C. sinensis by western blot analysis. The transcriptional level of CsRab8 at metacercaria stage was the highest at the four stages and higher by 56.49-folds than that at adult worm, 1.23-folds than that at excysted metacercaria, and 2.69-folds than that at egg stage. Immunohistochemical localization analysis showed that CsRab8 was specifically distributed in the tegument, vitellarium, eggs, and testicle of adult worms, and detected on the vitellarium and tegument of metacercaria. Combined with the results, CsRab8 is indispensable for survival and development of parasites, especially for regulating excretory/secretory products secretion.
Collapse
Affiliation(s)
- Pei Liang
- Department of Pathogen Biology, Hainan Medical College, Haikou, Hainan, 571199, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Wampfler PB, Faso C, Hehl AB. The Cre/loxP system in Giardia lamblia: genetic manipulations in a binucleate tetraploid protozoan. Int J Parasitol 2014; 44:497-506. [PMID: 24747534 DOI: 10.1016/j.ijpara.2014.03.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 03/11/2014] [Accepted: 03/16/2014] [Indexed: 11/16/2022]
Abstract
The bacteriophage-derived Cre/loxP system is a valuable tool that has revolutionised genetic and cell biological research in many organisms. We implemented this system in the intestinal parasite Giardia lamblia, an evolutionarily diverged protozoan whose binucleate and tetraploid genome organisation severely limits the application of reverse genetic approaches. We show that Cre-recombinase is functionally expressed in G. lamblia and demonstrate "recycling" of selectable markers. Providing the means for more complex and versatile genetic modifications, this technique massively increases the scope of functional investigations in G. lamblia and other protozoa with similar limitations with respect to genetic manipulation.
Collapse
Affiliation(s)
- Petra B Wampfler
- Laboratory of Molecular Parasitology, Institute of Parasitology-University of Zurich, Winterthurerstrasse 266a, CH-8057 Zürich, Switzerland
| | - Carmen Faso
- Laboratory of Molecular Parasitology, Institute of Parasitology-University of Zurich, Winterthurerstrasse 266a, CH-8057 Zürich, Switzerland
| | - Adrian B Hehl
- Laboratory of Molecular Parasitology, Institute of Parasitology-University of Zurich, Winterthurerstrasse 266a, CH-8057 Zürich, Switzerland.
| |
Collapse
|
15
|
Wampfler PB, Tosevski V, Nanni P, Spycher C, Hehl AB. Proteomics of secretory and endocytic organelles in Giardia lamblia. PLoS One 2014; 9:e94089. [PMID: 24732305 PMCID: PMC3986054 DOI: 10.1371/journal.pone.0094089] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 03/10/2014] [Indexed: 11/20/2022] Open
Abstract
Giardia lamblia is a flagellated protozoan enteroparasite transmitted as an environmentally resistant cyst. Trophozoites attach to the small intestine of vertebrate hosts and proliferate by binary fission. They access nutrients directly via uptake of bulk fluid phase material into specialized endocytic organelles termed peripheral vesicles (PVs), mainly on the exposed dorsal side. When trophozoites reach the G2/M restriction point in the cell cycle they can begin another round of cell division or encyst if they encounter specific environmental cues. They induce neogenesis of Golgi-like organelles, encystation-specific vesicles (ESVs), for regulated secretion of cyst wall material. PVs and ESVs are highly simplified and thus evolutionary diverged endocytic and exocytic organelle systems with key roles in proliferation and transmission to a new host, respectively. Both organelle systems physically and functionally intersect at the endoplasmic reticulum (ER) which has catabolic as well as anabolic functions. However, the unusually high degree of sequence divergence in Giardia rapidly exhausts phylogenomic strategies to identify and characterize the molecular underpinnings of these streamlined organelles. To define the first proteome of ESVs and PVs we used a novel strategy combining flow cytometry-based organelle sorting with in silico filtration of mass spectrometry data. From the limited size datasets we retrieved many hypothetical but also known organelle-specific factors. In contrast to PVs, ESVs appear to maintain a strong physical and functional link to the ER including recruitment of ribosomes to organelle membranes. Overall the data provide further evidence for the formation of a cyst extracellular matrix with minimal complexity. The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium with the dataset identifier PXD000694.
Collapse
Affiliation(s)
- Petra B. Wampfler
- Institute of Parasitology, University of Zurich, Zurich, Switzerland
| | - Vinko Tosevski
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Paolo Nanni
- Functional Genomics Center Zurich, Zurich, Switzerland
| | - Cornelia Spycher
- Institute of Parasitology, University of Zurich, Zurich, Switzerland
- Institute of Parasitology, University of Bern, Bern, Switzerland
- * E-mail: (ABH); (CS)
| | - Adrian B. Hehl
- Institute of Parasitology, University of Zurich, Zurich, Switzerland
- * E-mail: (ABH); (CS)
| |
Collapse
|
16
|
Sogame Y, Kojima K, Takeshita T, Kinoshita E, Matsuoka T. Identification of Differentially Expressed Water-insoluble Proteins in the Encystment Process of Colpoda cucullus
by Two-dimensional Electrophoresis and LC-MS/MS Analysis. J Eukaryot Microbiol 2013; 61:51-60. [DOI: 10.1111/jeu.12086] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 09/01/2013] [Accepted: 09/18/2013] [Indexed: 10/26/2022]
Affiliation(s)
- Yoichiro Sogame
- Department of Biological Science; Faculty of Science; Kochi University; Kochi 780-8520 Japan
| | - Katsuhiko Kojima
- Department of Microbiology and Immunology; Shinshu University School of Medicine; 3-1-1 Asahi Matsumoto Nagano 390-8621 Japan
| | - Toshikazu Takeshita
- Department of Microbiology and Immunology; Shinshu University School of Medicine; 3-1-1 Asahi Matsumoto Nagano 390-8621 Japan
| | - Eiji Kinoshita
- Department of Functional Molecular Science; Graduate School of Biomedical Sciences; Hiroshima University; Kasumi 1-2-3 Hiroshima 734-8553 Japan
| | - Tatsuomi Matsuoka
- Department of Biological Science; Faculty of Science; Kochi University; Kochi 780-8520 Japan
| |
Collapse
|
17
|
Actin, RhoA, and Rab11 participation during encystment in Entamoeba invadens. BIOMED RESEARCH INTERNATIONAL 2013; 2013:919345. [PMID: 24175308 PMCID: PMC3794519 DOI: 10.1155/2013/919345] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2013] [Revised: 08/09/2013] [Accepted: 08/09/2013] [Indexed: 11/17/2022]
Abstract
In the genus Entamoeba, actin reorganization is necessary for cyst differentiation; however, its role is still unknown. The aim of this work was to investigate the role of actin and encystation-related proteins during Entamoeba invadens encystation. Studied proteins were actin, RhoA, a small GTPase involved through its effectors in the rearrangement of the actin cytoskeleton; Rab11, a protein involved in the transport of encystation vesicles; and enolase, as an encystment vesicles marker. Results showed a high level of polymerized actin accompanied by increased levels of RhoA-GTP during cell rounding and loss of vacuoles. Cytochalasin D, an actin polymerization inhibitor, and Y27632, an inhibitor of RhoA activity, reduced encystment in 80%. These inhibitors also blocked cell rounding, disposal of vacuoles, and the proper formation of the cysts wall. At later times, F-actin and Rab11 colocalized with enolase, suggesting that Rab11 could participate in the transport of the cyst wall components through the F-actin cytoskeleton. These results suggest that actin cytoskeleton rearrangement is playing a decisive role in determining cell morphology changes and helping with the transport of cell wall components to the cell surface during encystment of E. invadens.
Collapse
|
18
|
Albendazole and its derivative JVG9 induce encystation on Giardia intestinalis trophozoites. Parasitol Res 2013; 112:3251-7. [DOI: 10.1007/s00436-013-3521-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 06/13/2013] [Indexed: 10/26/2022]
|
19
|
Acanthamoeba castellanii cysts: new ultrastructural findings. Parasitol Res 2013; 112:1125-30. [PMID: 23319266 DOI: 10.1007/s00436-012-3261-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Accepted: 12/07/2012] [Indexed: 10/27/2022]
Abstract
During Acanthamoeba castellanii trophozoite-cysts differentiation, four morphological stages were identified by scanning electron microscopy: trophozoite, precyst, immature cysts, and mature cysts. Fluorescence microscopy reveals the presence of small cumulus of actin in the cytoplasm of precysts after treatment with rhodamine phalloidin. By the contrary, in mature cysts, fluorescence was not observed. However, when excystation was induced, large fluorescent patches were present. By transmission electron microscopy, encysting amebas showed small cytoplasmic vesicles containing fibrillar material, surrounded by a narrow area of thin fibrils. Similar appearance was observed in pseudopods and phagocytic invaginations. In addition, large aggregates of rod-shape elements, similar to the chromatoid bodies, described in other amebas, were present in the cytoplasm. These cysts presented large areas with orange fluorescence after treatment with acridine orange.
Collapse
|
20
|
Lingdan L, Pengtao G, Wenchao L, Jianhua L, Ju Y, Chengwu L, He L, Guocai Z, Wenzhi R, Yujiang C, Xichen Z. Differential dissolved protein expression throughout the life cycle of Giardia lamblia. Exp Parasitol 2012; 132:465-9. [PMID: 23058231 DOI: 10.1016/j.exppara.2012.09.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2012] [Accepted: 09/20/2012] [Indexed: 02/02/2023]
Abstract
Giardia lamblia (G. lamblia) has a simple life cycle that alternates between a cyst and a trophozoite, and this parasite is an important human and animal pathogen. To increase our understanding of the molecular basis of the G. lamblia encystment, we have analyzed the soluble proteins expressed by trophozoites and cysts extracted from feces by quantitative proteomic analysis. A total of 63 proteins were identified by isobaric tags for relative and absolute quantitation (iTRAQ) labeling, and were categorized as cytoskeletal proteins, a cell-cycle-specific kinase, metabolic enzymes and stress resistance proteins. Importantly, we demonstrated that the expression of seven proteins differed significantly between trophozoites and cysts. In cysts, the expression of three proteins (one variable surface protein (VSP), ornithine carbamoyltransferase (OTC), β-tubulin) increased, whereas the expression of four proteins (14-3-3 protein, α-tubulin, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), protein disulfide isomerase 2 (PDI-2)) decreased significantly when compared with the levels of these proteins in trophozoites. The mRNA expression patterns of four of these proteins (OTC, α-tubulin, GAPDH, VSP) were similar to the expression levels of the proteins. These seven proteins appear to play an important role in the completion of the life cycle of G. lamblia.
Collapse
Affiliation(s)
- Li Lingdan
- College of Animal Science and Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun 130062, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Lalle M, Camerini S, Cecchetti S, Sayadi A, Crescenzi M, Pozio E. Interaction Network of the 14-3-3 Protein in the Ancient Protozoan Parasite Giardia duodenalis. J Proteome Res 2012; 11:2666-83. [DOI: 10.1021/pr3000199] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Marco Lalle
- Department of Infectious, Parasitic
and Immunomediated Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Serena Camerini
- Department
of Cell Biology and
Neurosciences, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Serena Cecchetti
- Department
of Cell Biology and
Neurosciences, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Ahmed Sayadi
- Department
of Biochemical Sciences
“A. Rossi-Fanelli”, University of Rome “Sapienza”, 00185 Rome, Italy
| | - Marco Crescenzi
- Department
of Cell Biology and
Neurosciences, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Edoardo Pozio
- Department of Infectious, Parasitic
and Immunomediated Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy
| |
Collapse
|
22
|
Faso C, Hehl AB. Membrane trafficking and organelle biogenesis in Giardia lamblia: use it or lose it. Int J Parasitol 2011; 41:471-80. [PMID: 21296082 DOI: 10.1016/j.ijpara.2010.12.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Revised: 12/23/2010] [Accepted: 12/24/2010] [Indexed: 01/06/2023]
Abstract
The secretory transport capacity of Giardia trophozoites is perfectly adapted to the changing environment in the small intestine of the host and is able to deploy essential protective surface coats as well as molecules which act on epithelia. These lumen-dwelling parasites take up nutrients by bulk endocytosis through peripheral vesicles or by receptor-mediated transport. The environmentally-resistant cyst form is quiescent but poised for activation following stomach passage. Its versatility and fidelity notwithstanding, the giardial trafficking systems appear to be the product of a general secondary reduction process geared towards minimization of all components and machineries identified to date. Since membrane transport is directly linked to organelle biogenesis and maintenance, less complexity also means loss of organelle structures and functions. A case in point is the Golgi apparatus which is missing as a steady-state organelle system. Only a few basic Golgi functions have been experimentally demonstrated in trophozoites undergoing encystation. Similarly, mitochondrial remnants have reached a terminally minimized state and appear to be functionally restricted to essential iron-sulfur protein maturation processes. Giardia's minimized organization combined with its genetic tractability provides unique opportunities to study basic principles of secretory transport in an uncluttered cellular environment. Not surprisingly, Giardia is gaining increasing attention as a model for the investigation of gene regulation, organelle biogenesis, and export of simple but highly protective cell wall biopolymers, a hallmark of all perorally transmitted protozoan and metazoan parasites.
Collapse
Affiliation(s)
- Carmen Faso
- Institute of Parasitology, University of Zurich, Winterthurerstrasse 266a, 8057 Zurich, Switzerland
| | | |
Collapse
|
23
|
Giardia intestinalis: Expression of ubiquitin, glucosamine-6-phosphate and cyst wall protein genes during the encystment process. Exp Parasitol 2011; 127:382-6. [DOI: 10.1016/j.exppara.2010.08.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Revised: 08/16/2010] [Accepted: 08/19/2010] [Indexed: 11/23/2022]
|