1
|
You Y, Chen X, Huo L, Chen L, Chen G, Gu M, Yi C, Wang J, Hu W. An improved medium for in vitro studies of female reproduction and oviposition in Schistosoma japonicum. Parasit Vectors 2024; 17:116. [PMID: 38454463 PMCID: PMC10918852 DOI: 10.1186/s13071-024-06191-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 02/11/2024] [Indexed: 03/09/2024] Open
Abstract
BACKGROUND Schistosomiasis is a disease primarily caused by eggs laid by pathogens called schistosomes. Among the schistosome species infecting humans, Schistosoma japonicum possesses the largest fecundity; each adult female produces an average of 3500 eggs per day. The lack of proper culture conditions supporting continuous oviposition in vitro has precluded detailed investigation of mechanisms regulating sexual maturation and egg production in Schistosoma japonicum. METHODS We optimized in vitro culture conditions by replacing reagents that are part of the classical ABC169 medium. Fast Blue BB staining and 4',6-diamidino-2-phenylindole (DAPI) labeling were applied to observe the sexual development status of the females. In vitro RNA interference (RNAi) technology was used to validate the capability of the modified medium. The detection of male β-alanyl-tryptamine (BATT) was conducted using liquid chromatography-mass spectrometry (LC-MS). RESULTS Both m-AB169 (1640) and AB169 (1640) media are capable of facilitating the sexual development of paired virgin female S. japonicum, as well as sustaining the mature reproductive organs and egg production of adult S. japonicum for at least 22 days in vitro. M-AB169 (1640) provided a more stable condition for supporting the sexual maturity of female S. japonicum, as evidenced by the consistent initiation of egg production compared with AB169 (1640). Through a comparative analysis of S. japonicum and S. mansoni in diverse media, we demonstrated that these closely related species display distinct demands for their sexual development and egg production, suggesting a potential influence of nutritional factors on the observed variations in host ranges among different schistosome species. Importantly, we successfully identified the presence of the pheromone β-alanyl-tryptamine (BATT) in S. japonicum, previously identified in S. mansoni, highlighting its conserved role in schistosome reproductive development. Through the employment of double-stranded RNA (dsRNA) treatment to silence two genes that are involved in either the male (gli1, glioma-associated oncogene homolog 1) or female (vf1, vitellogenic factor 1) side in male-induced female reproductive development of S. mansoni, we confirmed that the combination of m-AB169 (1640) and RNAi technology has the capacity to facilitate in vitro studies of S. japonicum's reproductive and oviposition processes. CONCLUSIONS We developed a novel medium, m-AB169 (1640), that not only maintains the mature reproductive organs and continuous oviposition of adult female Schistosoma japonicum for up to 22 days but also supports the reproductive development and subsequent egg-laying of virgin females after pairing with male worms. This study provides a valuable in vitro platform for functional studies of the mechanisms underlying the fascinating biology of the female sexual development and egg production of S. japonicum, which may accelerate the development of new strategies targeting schistosome egg production.
Collapse
Affiliation(s)
- Yanmin You
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Xu Chen
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Lele Huo
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Center for Tropical Diseases, National Center for International Research On Tropical Diseases, Shanghai, China
| | - Longlong Chen
- Metabonomics and Systems Biology Laboratory at Shanghai International Centre for Molecular Phenomics, Fudan University, Shanghai, China
| | - Gongwen Chen
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Mengjie Gu
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Cun Yi
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Jipeng Wang
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China.
| | - Wei Hu
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China.
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Center for Tropical Diseases, National Center for International Research On Tropical Diseases, Shanghai, China.
| |
Collapse
|
2
|
Schiedel M, McArdle DJB, Padalino G, Chan AKN, Forde-Thomas J, McDonough M, Whiteland H, Beckmann M, Cookson R, Hoffmann KF, Conway SJ. Small Molecule Ligands of the BET-like Bromodomain, SmBRD3, Affect Schistosoma mansoni Survival, Oviposition, and Development. J Med Chem 2023; 66:15801-15822. [PMID: 38048437 PMCID: PMC10726355 DOI: 10.1021/acs.jmedchem.3c01321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/15/2023] [Accepted: 11/01/2023] [Indexed: 12/06/2023]
Abstract
Schistosomiasis is a disease affecting >200 million people worldwide, but its treatment relies on a single agent, praziquantel. To investigate new avenues for schistosomiasis control, we have conducted the first systematic analysis of bromodomain-containing proteins (BCPs) in a causative species, Schistosoma mansoni. Having identified 29 putative bromodomains (BRDs) in 22 S. mansoni proteins, we selected SmBRD3, a tandem BRD-containing BCP that shows high similarity to the human bromodomain and extra terminal domain (BET) family, for further studies. Screening 697 small molecules identified the human BET BRD inhibitor I-BET726 as a ligand for SmBRD3. An X-ray crystal structure of I-BET726 bound to the second BRD of SmBRD3 [SmBRD3(2)] enabled rational design of a quinoline-based ligand (15) with an ITC Kd = 364 ± 26.3 nM for SmBRD3(2). The ethyl ester pro-drug of compound 15 (compound 22) shows substantial effects on sexually immature larval schistosomula, sexually mature adult worms, and snail-infective miracidia in ex vivo assays.
Collapse
Affiliation(s)
- Matthias Schiedel
- Department
of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K.
| | - Darius J. B. McArdle
- Department
of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K.
| | - Gilda Padalino
- The
Department of Life Sciences (DLS), Aberystwyth
University, Wales SY23 3DA, U.K.
| | - Anthony K. N. Chan
- Department
of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K.
| | | | - Michael McDonough
- Department
of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K.
| | - Helen Whiteland
- The
Department of Life Sciences (DLS), Aberystwyth
University, Wales SY23 3DA, U.K.
| | - Manfred Beckmann
- The
Department of Life Sciences (DLS), Aberystwyth
University, Wales SY23 3DA, U.K.
| | - Rosa Cookson
- GlaxoSmithKline
R&D, Stevenage, Hertfordshire SG1 2NY, U.K.
| | - Karl F. Hoffmann
- The
Department of Life Sciences (DLS), Aberystwyth
University, Wales SY23 3DA, U.K.
| | - Stuart J. Conway
- Department
of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K.
- Department
of Chemistry & Biochemistry, University
of California Los Angeles, 607 Charles E. Young Drive East, P.O. Box 951569, Los Angeles, California 90095-1569, United States
| |
Collapse
|
3
|
Caldwell N, Afshar R, Baragaña B, Bustinduy AL, Caffrey CR, Collins JJ, Fusco D, Garba A, Gardner M, Gomes M, Hoffmann KF, Hsieh M, Lo NC, McNamara CW, Nono JK, Padalino G, Read KD, Roestenberg M, Spangenberg T, Specht S, Gilbert IH. Perspective on Schistosomiasis Drug Discovery: Highlights from a Schistosomiasis Drug Discovery Workshop at Wellcome Collection, London, September 2022. ACS Infect Dis 2023; 9:1046-1055. [PMID: 37083395 PMCID: PMC10186373 DOI: 10.1021/acsinfecdis.3c00081] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Indexed: 04/22/2023]
Abstract
In September 2022, the Drug Discovery Unit at the University of Dundee, UK, organised an international meeting at the Wellcome Collection in London to explore the current clinical situation and challenges associated with treating schistosomiasis. The aim of this meeting was to discuss the need for new treatments in view of the clinical situation and to ascertain what the key requirements would be for any potential new anti-schistosomals. This information will be essential to inform ongoing drug discovery efforts for schistosomiasis. We also discussed the potential drug discovery pathway and associated criteria for progressing compounds to the clinic. To date, praziquantel (PZQ) is the only drug available to treat all species causing schistosomiasis, but it is often unable to completely clear parasites from an infected patient, partially due to its inactivity against juvenile worms. PZQ-mediated mass drug administration campaigns conducted in endemic areas (e.g., sub-Saharan Africa, where schistosomiasis is primarily prevalent) have contributed to reducing the burden of disease but will not eliminate the disease as a public health problem. The potential for Schistosoma to develop resistance towards PZQ, as the sole treatment available, could become a concern. Consequently, new anthelmintic medications are urgently needed, and this Perspective aims to capture some of the learnings from our discussions on the key criteria for new treatments.
Collapse
Affiliation(s)
- Nicola Caldwell
- Wellcome
Centre for Anti-Infectives Research, Drug Discovery Unit, Division
of Biological Chemistry and Drug Discovery, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Rana Afshar
- Global
Health Institute of Merck, a subsidiary of Merck KGaA, Darmstadt,
Germany, Ares Trading
S.A., Route de Crassier 1, 1262 Eysins, Switzerland
| | - Beatriz Baragaña
- Wellcome
Centre for Anti-Infectives Research, Drug Discovery Unit, Division
of Biological Chemistry and Drug Discovery, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Amaya L. Bustinduy
- Department
of Clinical Research, London School of Hygiene
& Tropical Medicine, Keppel Street, London WC1E 7HT, United Kingdom
| | - Conor R. Caffrey
- Center
for Discovery and Innovation in Parasitic Diseases, Skaggs School
of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive, MC0657, La Jolla, California 92093, United States
| | - James J. Collins
- Department
of Pharmacology, UT Southwestern Medical
Center, Forest Park Road, Dallas, Texas 75235, United States
| | - Daniela Fusco
- Department
of Infectious Disease Epidemiology, Bernhard
Nocht Institute of Tropical Medicine, 20359 Hamburg, Germany
- German
Center for Infection Research (DZIF), Hamburg-Borstel-Lübeck-Riems, 38124 Brunswick, Germany
| | - Amadou Garba
- Department
of Control of Neglected Tropical Diseases, World Health Organization, 1202 Geneva, Switzerland
| | - Mark Gardner
- Salvensis
Ltd., 27 New Dover Rd., Canterbury, Kent CT1 3DN, United Kingdom
| | - Mireille Gomes
- Global
Health Institute of Merck, a subsidiary of Merck KGaA, Darmstadt,
Germany, Ares Trading
S.A., Route de Crassier 1, 1262 Eysins, Switzerland
| | - Karl F. Hoffmann
- Department
of Life Sciences (DLS), Aberystwyth University, Edward Llwyd Building, Aberystwyth SY23 3DA, United Kingdom
| | - Michael Hsieh
- Division
of Urology, Children’s National Hospital, and Department of
Urology, George Washington University, Washington, D.C. 20010, United States
| | - Nathan C. Lo
- Division
of HIV, Infectious Diseases, and Global Medicine, University of California San Francisco, San Francisco, California 94110, United States
| | - Case W. McNamara
- Calibr,
a division of Scripps Research, North Torrey Pines Road, La Jolla, California 92037, United States
| | - Justin Komguep Nono
- Unit
of Immunobiology and Helminth Infections, Institute of Medical Research
and Medicinal Plant Studies (IMPM), Ministry
of Scientific Research and Innovation, Yaoundé 13033, Cameroon
| | - Gilda Padalino
- School
of Pharmacy and Pharmaceutical Sciences, Cardiff University, Redwood Building, King Edward VII Avenue, Cardiff CF10 3NB, United
Kingdom
| | - Kevin D. Read
- Wellcome
Centre for Anti-Infectives Research, Drug Discovery Unit, Division
of Biological Chemistry and Drug Discovery, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Meta Roestenberg
- Department
of Parasitology and Department of Infectious Diseases, Leiden University Medical Centre, 2333 ZA Leiden, The Netherlands
| | - Thomas Spangenberg
- Global
Health Institute of Merck, a subsidiary of Merck KGaA, Darmstadt,
Germany, Ares Trading
S.A., Route de Crassier 1, 1262 Eysins, Switzerland
| | - Sabine Specht
- Drugs for Neglected Diseases Initiative, 1202 Geneva, Switzerland
| | - Ian H. Gilbert
- Wellcome
Centre for Anti-Infectives Research, Drug Discovery Unit, Division
of Biological Chemistry and Drug Discovery, University of Dundee, Dundee DD1 5EH, United Kingdom
| |
Collapse
|
4
|
Padalino G, Coghlan A, Pagliuca G, Forde-Thomas JE, Berriman M, Hoffmann KF. Using ChEMBL to Complement Schistosome Drug Discovery. Pharmaceutics 2023; 15:1359. [PMID: 37242601 PMCID: PMC10220823 DOI: 10.3390/pharmaceutics15051359] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
Schistosomiasis is one of the most important neglected tropical diseases. Until an effective vaccine is registered for use, the cornerstone of schistosomiasis control remains chemotherapy with praziquantel. The sustainability of this strategy is at substantial risk due to the possibility of praziquantel insensitive/resistant schistosomes developing. Considerable time and effort could be saved in the schistosome drug discovery pipeline if available functional genomics, bioinformatics, cheminformatics and phenotypic resources are systematically leveraged. Our approach, described here, outlines how schistosome-specific resources/methodologies, coupled to the open-access drug discovery database ChEMBL, can be cooperatively used to accelerate early-stage, schistosome drug discovery efforts. Our process identified seven compounds (fimepinostat, trichostatin A, NVP-BEP800, luminespib, epoxomicin, CGP60474 and staurosporine) with ex vivo anti-schistosomula potencies in the sub-micromolar range. Three of those compounds (epoxomicin, CGP60474 and staurosporine) also demonstrated potent and fast-acting ex vivo effects on adult schistosomes and completely inhibited egg production. ChEMBL toxicity data were also leveraged to provide further support for progressing CGP60474 (as well as luminespib and TAE684) as a novel anti-schistosomal compound. As very few compounds are currently at the advanced stages of the anti-schistosomal pipeline, our approaches highlight a strategy by which new chemical matter can be identified and quickly progressed through preclinical development.
Collapse
Affiliation(s)
- Gilda Padalino
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Redwood Building, King Edward VII Avenue, Cardiff CF10 3NB, UK
| | - Avril Coghlan
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK;
| | | | | | - Matthew Berriman
- Wellcome Centre for Integrative Parasitology, School of Infection and Immunity, University of Glasgow, 120 University Place, Glasgow G12 8TA, UK;
| | - Karl F. Hoffmann
- The Department of Life Sciences (DLS), Aberystwyth University, Aberystwyth SY23 3DA, UK;
| |
Collapse
|
5
|
Padalino G, Celatka CA, Rienhoff Jr. HY, Kalin JH, Cole PA, Lassalle D, Forde-Thomas J, Chalmers IW, Brancale A, Grunau C, Hoffmann KF. Chemical modulation of Schistosoma mansoni lysine specific demethylase 1 (SmLSD1) induces wide-scale biological and epigenomic changes. Wellcome Open Res 2023; 8:146. [PMID: 37520936 PMCID: PMC10375057 DOI: 10.12688/wellcomeopenres.18826.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2023] [Indexed: 08/01/2023] Open
Abstract
Background: Schistosoma mansoni, a parasitic worm species responsible for the neglected tropical disease schistosomiasis, undergoes strict developmental regulation of gene expression that is carefully controlled by both genetic and epigenetic processes. As inhibition of S. mansoni epigenetic machinery components impairs key transitions throughout the parasite's digenetic lifecycle, a greater understanding of how epi-drugs affect molecular processes in schistosomes could lead to the development of new anthelmintics. Methods: In vitro whole organism assays were used to assess the anti-schistosomal activity of 39 Homo sapiens Lysine Specific Demethylase 1 (HsLSD1) inhibitors on different parasite life cycle stages. Moreover, tissue-specific stains and genomic analysis shed light on the effect of these small molecules on the parasite biology. Results: Amongst this collection of small molecules, compound 33 was the most potent in reducing ex vivo viabilities of schistosomula, juveniles, miracidia and adults. At its sub-lethal concentration to adults (3.13 µM), compound 33 also significantly impacted oviposition, ovarian as well as vitellarian architecture and gonadal/neoblast stem cell proliferation. ATAC-seq analysis of adults demonstrated that compound 33 significantly affected chromatin structure (intragenic regions > intergenic regions), especially in genes differentially expressed in cell populations (e.g., germinal stem cells, hes2 + stem cell progeny, S1 cells and late female germinal cells) associated with these ex vivo phenotypes. KEGG analyses further highlighted that chromatin structure of genes associated with sugar metabolism as well as TGF-beta and Wnt signalling were also significantly perturbed by compound 33 treatment. Conclusions: This work confirms the importance of histone methylation in S. mansoni lifecycle transitions, suggesting that evaluation of LSD1 - targeting epi-drugs may facilitate the search for next-generation anti-schistosomal drugs. The ability of compound 33 to modulate chromatin structure as well as inhibit parasite survival, oviposition and stem cell proliferation warrants further investigations of this compound and its epigenetic target SmLSD1.
Collapse
Affiliation(s)
- Gilda Padalino
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, Wales, CF10 3NB, UK
| | | | | | - Jay H. Kalin
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Philip A. Cole
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | | | - Josephine Forde-Thomas
- Department of Life Sciences (DLS), Aberystwyth University, Aberystwyth, Wales, SY23 3DA, UK
| | - Iain W. Chalmers
- Department of Life Sciences (DLS), Aberystwyth University, Aberystwyth, Wales, SY23 3DA, UK
| | - Andrea Brancale
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, Wales, CF10 3NB, UK
| | | | - Karl F. Hoffmann
- Department of Life Sciences (DLS), Aberystwyth University, Aberystwyth, Wales, SY23 3DA, UK
| |
Collapse
|
6
|
Wheeler NJ, Gallo KJ, Rehborg EJG, Ryan KT, Chan JD, Zamanian M. wrmXpress: A modular package for high-throughput image analysis of parasitic and free-living worms. PLoS Negl Trop Dis 2022; 16:e0010937. [PMID: 36399491 PMCID: PMC9718391 DOI: 10.1371/journal.pntd.0010937] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 12/02/2022] [Accepted: 11/08/2022] [Indexed: 11/19/2022] Open
Abstract
Advances in high-throughput and high-content imaging technologies require concomitant development of analytical software capable of handling large datasets and generating relevant phenotypic measurements. Several tools have been developed to analyze drug response phenotypes in parasitic and free-living worms, but these are siloed and often limited to specific instrumentation, worm species, and single phenotypes. No unified tool exists to analyze diverse high-content phenotypic imaging data of worms and provide a platform for future extensibility. We have developed wrmXpress, a unified framework for analyzing a variety of phenotypes matched to high-content experimental assays of free-living and parasitic nematodes and flatworms. We demonstrate its utility for analyzing a suite of phenotypes, including motility, development/size, fecundity, and feeding, and establish the package as a platform upon which to build future custom phenotypic modules. We show that wrmXpress can serve as an analytical workhorse for anthelmintic screening efforts across schistosomes, filarial nematodes, and free-living model nematodes and holds promise for enabling collaboration among investigators with diverse interests.
Collapse
Affiliation(s)
- Nicolas J. Wheeler
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin United States of America
| | - Kendra J. Gallo
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin United States of America
| | - Elena J. G. Rehborg
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin United States of America
| | - Kaetlyn T. Ryan
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin United States of America
| | - John D. Chan
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin United States of America
- Department of Chemistry, University of Wisconsin-Oshkosh, Oshkosh, Wisconsin United States of America
| | - Mostafa Zamanian
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin United States of America
| |
Collapse
|
7
|
Girod V, Houssier R, Sahmer K, Ghoris MJ, Caby S, Melnyk O, Dissous C, Senez V, Vicogne J. A self-purifying microfluidic system for identifying drugs acting against adult schistosomes. ROYAL SOCIETY OPEN SCIENCE 2022; 9:220648. [PMID: 36465675 PMCID: PMC9709518 DOI: 10.1098/rsos.220648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 11/09/2022] [Indexed: 06/17/2023]
Abstract
The discovery of novel antihelmintic molecules to combat the development and spread of schistosomiasis, a disease caused by several Schistosoma flatworm species, mobilizes significant research efforts worldwide. With a limited number of biochemical assays for measuring the viability of adult worms, the antischistosomicidal activity of molecules is usually evaluated by a microscopic observation of worm mobility and/or integrity upon drug exposure. Even if these phenotypical assays enable multiple parameters analysis, they are often conducted during several days and need to be associated with image-based analysis to minimized subjectivity. We describe here a self-purifying microfluidic system enabling the selection of healthy adult worms and the identification of molecules acting instantly on the parasite. The worms are assayed in a dynamic environment that eliminates unhealthy worms that cannot attach firmly to the chip walls prior to being exposed to the drug. The detachment of the worms is also used as second step readout for identifying active compounds. We have validated this new fluidic screening approach using the two major antihelmintic drugs, praziquantel and artemisinin. The reported dynamic system is simple to produce and to parallelize. Importantly, it enables a quick and sensitive detection of antischistosomal compounds in no more than one hour.
Collapse
Affiliation(s)
- Vincent Girod
- University of Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277 – CANTHER – Cancer Heterogeneity Plasticity and Resistance to Therapies, Lille F-59000, France
- CNRS, University of Tokyo, IRL2820 – LIMMS, Lille F-59000, France
- University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR9017 – Center for Infection and Immunity of Lille, F-59000 Lille, France
- University of Lille, CNRS, UPHF, JUNIA, CLI, UMR 8520 – IEMN – Institut d'Electronique, de Microélectronique et de Nanotechnologie, Villeneuve d'Ascq F-59650, France
| | - Robin Houssier
- University of Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277 – CANTHER – Cancer Heterogeneity Plasticity and Resistance to Therapies, Lille F-59000, France
- University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR9017 – Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Karin Sahmer
- University of Lille, IMT Lille Douai, University of Artois, JUNIA, ULR 4515 – LGCgE, Laboratoire de Génie Civil et géo-Environnement, F-59000 Lille, France
| | - Marie-José Ghoris
- University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR9017 – Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Stéphanie Caby
- University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR9017 – Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Oleg Melnyk
- University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR9017 – Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Colette Dissous
- University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR9017 – Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Vincent Senez
- University of Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277 – CANTHER – Cancer Heterogeneity Plasticity and Resistance to Therapies, Lille F-59000, France
- CNRS, University of Tokyo, IRL2820 – LIMMS, Lille F-59000, France
| | - Jérôme Vicogne
- University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR9017 – Center for Infection and Immunity of Lille, F-59000 Lille, France
| |
Collapse
|
8
|
Ravaynia PS, Biendl S, Grassi F, Keiser J, Hierlemann A, Modena MM. Real-time and automated monitoring of antischistosomal drug activity profiles for screening of compound libraries. iScience 2022; 25:104087. [PMID: 35378863 PMCID: PMC8976133 DOI: 10.1016/j.isci.2022.104087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 02/02/2022] [Accepted: 03/14/2022] [Indexed: 11/26/2022] Open
Abstract
Schistosomiasis is a neglected tropical disease that affects over 200 million people annually. As the antischistosomal drug pipeline is currently empty, repurposing of compound libraries has become a source for accelerating drug development, which demands the implementation of high-throughput and efficient screening strategies. Here, we present a parallelized impedance-based platform for continuous and automated viability evaluation of Schistosoma mansoni schistosomula in 128 microwells during 72 h to identify antischistosomal hits in vitro. By initially screening 57 repurposed compounds against larvae, five drugs are identified, which reduce parasite viability by more than 70%. The activity profiles of the selected drugs are then investigated via real-time dose-response monitoring, and four compounds reveal high potency and rapid action, which renders them suitable candidates for follow-up tests against adult parasites. The study shows that our device is a reliable tool for real-time drug screening analysis of libraries to identify new promising therapeutics against schistosomiasis. Scalable, plastic microwell chip with integrated platinum electrodes Automated impedance-based recording of 128 microwell units in parallel Continuous monitoring of in vitro drug library efficacy on schistosomula for 72 h Identification of four fast-acting antischistosomal drugs for in vivo testing
Collapse
Affiliation(s)
- Paolo S Ravaynia
- Bioengineering Laboratory, Department of Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Stefan Biendl
- Swiss Tropical and Public Health Institute, Department of Medical Parasitology and Infection Biology, University of Basel, Socinstrasse 57, 4051 Basel, Switzerland
| | - Francesco Grassi
- Centre for Microsystems Technology, Department of Electronics and Information Systems, Ghent University, Technologiepark-Zwijnaarde 126, 9052 Gent, Belgium
| | - Jennifer Keiser
- Swiss Tropical and Public Health Institute, Department of Medical Parasitology and Infection Biology, University of Basel, Socinstrasse 57, 4051 Basel, Switzerland
| | - Andreas Hierlemann
- Bioengineering Laboratory, Department of Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Mario M Modena
- Bioengineering Laboratory, Department of Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 26, 4058 Basel, Switzerland
| |
Collapse
|
9
|
Herath HMPD, Taki AC, Rostami A, Jabbar A, Keiser J, Geary TG, Gasser RB. Whole-organism phenotypic screening methods used in early-phase anthelmintic drug discovery. Biotechnol Adv 2022; 57:107937. [PMID: 35271946 DOI: 10.1016/j.biotechadv.2022.107937] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/24/2022] [Accepted: 03/03/2022] [Indexed: 01/17/2023]
Abstract
Diseases caused by parasitic helminths (worms) represent a major global health burden in both humans and animals. As vaccines against helminths have yet to achieve a prominent role in worm control, anthelmintics are the primary tool to limit production losses and disease due to helminth infections in both human and veterinary medicine. However, the excessive and often uncontrolled use of these drugs has led to widespread anthelmintic resistance in these worms - particularly of animals - to almost all commercially available anthelmintics, severely compromising control. Thus, there is a major demand for the discovery and development of new classes of anthelmintics. A key component of the discovery process is screening libraries of compounds for anthelmintic activity. Given the need for, and major interest by the pharmaceutical industry in, novel anthelmintics, we considered it both timely and appropriate to re-examine screening methods used for anthelmintic discovery. Thus, we reviewed current literature (1977-2021) on whole-worm phenotypic screening assays developed and used in academic laboratories, with a particular focus on those employed to discover nematocides. This review reveals that at least 50 distinct phenotypic assays with low-, medium- or high-throughput capacity were developed over this period, with more recently developed methods being quantitative, semi-automated and higher throughput. The main features assessed or measured in these assays include worm motility, growth/development, morphological changes, viability/lethality, pharyngeal pumping, egg hatching, larval migration, CO2- or ATP-production and/or enzyme activity. Recent progress in assay development has led to the routine application of practical, cost-effective, medium- to high-throughput whole-worm screening assays in academic or public-private partnership (PPP) contexts, and major potential for novel high-content, high-throughput platforms in the near future. Complementing this progress are major advances in the molecular data sciences, computational biology and informatics, which are likely to further enable and accelerate anthelmintic drug discovery and development.
Collapse
Affiliation(s)
- H M P Dilrukshi Herath
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria, Australia
| | - Aya C Taki
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria, Australia
| | - Ali Rostami
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Abdul Jabbar
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria, Australia
| | - Jennifer Keiser
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, CH-4051 Basel, Switzerland
| | - Timothy G Geary
- Institute of Parasitology, McGill University, Sainte Anne-de-Bellevue, Quebec H9X3V9, Canada; School of Biological Sciences, Queen's University-Belfast, Belfast, Ireland
| | - Robin B Gasser
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
10
|
Padalino G, El-Sakkary N, Liu LJ, Liu C, Harte DSG, Barnes RE, Sayers E, Forde-Thomas J, Whiteland H, Bassetto M, Ferla S, Johnson G, Jones AT, Caffrey CR, Chalmers I, Brancale A, Hoffmann KF. Anti-schistosomal activities of quinoxaline-containing compounds: From hit identification to lead optimisation. Eur J Med Chem 2021; 226:113823. [PMID: 34536671 PMCID: PMC8626775 DOI: 10.1016/j.ejmech.2021.113823] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/13/2021] [Accepted: 08/27/2021] [Indexed: 12/18/2022]
Abstract
Schistosomiasis is a neglected disease of poverty that is caused by infection with blood fluke species contained within the genus Schistosoma. For the last 40 years, control of schistosomiasis in endemic regions has predominantly been facilitated by administration of a single drug, praziquantel. Due to limitations in this mono-chemotherapeutic approach for sustaining schistosomiasis control into the future, alternative anti-schistosomal compounds are increasingly being sought by the drug discovery community. Herein, we describe a multi-pronged, integrated strategy that led to the identification and further exploration of the quinoxaline core as a promising anti-schistosomal scaffold. Firstly, phenotypic screening of commercially available small molecules resulted in the identification of a moderately active hit compound against Schistosoma mansoni (1, EC50 = 4.59 μM on schistosomula). Secondary exploration of the chemical space around compound 1 led to the identification of a quinoxaline-core containing, non-genotoxic lead (compound 22). Compound 22 demonstrated substantially improved activities on both intra-mammalian (EC50 = 0.44 μM, 0.20 μM and 84.7 nM, on schistosomula, juvenile and adult worms, respectively) and intra-molluscan (sporocyst) S. mansoni lifecycle stages. Further medicinal chemistry optimisation of compound 22, resulting in the generation of 20 additional analogues, improved our understanding of the structure-activity relationship and resulted in considerable improvements in both anti-schistosome potency and selectivity (e.g. compound 30; EC50 = 2.59 nM on adult worms; selectivity index compared to the HepG2 cell line = 348). Some derivatives of compound 22 (e.g. 31 and 33) also demonstrated significant activity against the two other medically important species, Schistosoma haematobium and Schistosoma japonicum. Further optimisation of this class of anti-schistosomal is ongoing and could lead to the development of an urgently needed alternative to praziquantel for assisting in schistosomiasis elimination strategies. Lead compound 22 was identified with EC50 of 0.44 µM and 84.7 nM for schistosomula and adult worms. 20 analogues of the lead compound 22 were synthesised. Compounds 25, 30 and 32 showed the best selectivity profile. Compounds 31 and 33 are the most active on three medically important schistosome species.
Collapse
Affiliation(s)
- Gilda Padalino
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, SY23 3DA, United Kingdom
| | - Nelly El-Sakkary
- Center for Discovery and Innovation in Parasitic Diseases (CDIPD), Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Lawrence J Liu
- Center for Discovery and Innovation in Parasitic Diseases (CDIPD), Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Chenxi Liu
- Center for Discovery and Innovation in Parasitic Diseases (CDIPD), Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Danielle S G Harte
- Swansea University Medical School, Swansea University, Swansea, SA2 8PP, United Kingdom
| | - Rachel E Barnes
- Swansea University Medical School, Swansea University, Swansea, SA2 8PP, United Kingdom
| | - Edward Sayers
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Redwood Building, King Edward VII Avenue, Cardiff, CF10 3NB, United Kingdom
| | - Josephine Forde-Thomas
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, SY23 3DA, United Kingdom
| | - Helen Whiteland
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, SY23 3DA, United Kingdom
| | - Marcella Bassetto
- Department of Chemistry, College of Science and Engineering, Swansea University, Swansea, SA2 8PP, United Kingdom
| | - Salvatore Ferla
- Swansea University Medical School, Swansea University, Swansea, SA2 8PP, United Kingdom
| | - George Johnson
- Swansea University Medical School, Swansea University, Swansea, SA2 8PP, United Kingdom
| | - Arwyn T Jones
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Redwood Building, King Edward VII Avenue, Cardiff, CF10 3NB, United Kingdom
| | - Conor R Caffrey
- Center for Discovery and Innovation in Parasitic Diseases (CDIPD), Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Iain Chalmers
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, SY23 3DA, United Kingdom
| | - Andrea Brancale
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Redwood Building, King Edward VII Avenue, Cardiff, CF10 3NB, United Kingdom
| | - Karl F Hoffmann
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, SY23 3DA, United Kingdom.
| |
Collapse
|
11
|
Adegboye O, Field MA, Kupz A, Pai S, Sharma D, Smout MJ, Wangchuk P, Wong Y, Loiseau C. Natural-Product-Based Solutions for Tropical Infectious Diseases. Clin Microbiol Rev 2021; 34:e0034820. [PMID: 34494873 PMCID: PMC8673330 DOI: 10.1128/cmr.00348-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
About half of the world's population and 80% of the world's biodiversity can be found in the tropics. Many diseases are specific to the tropics, with at least 41 diseases caused by endemic bacteria, viruses, parasites, and fungi. Such diseases are of increasing concern, as the geographic range of tropical diseases is expanding due to climate change, urbanization, change in agricultural practices, deforestation, and loss of biodiversity. While traditional medicines have been used for centuries in the treatment of tropical diseases, the active natural compounds within these medicines remain largely unknown. In this review, we describe infectious diseases specific to the tropics, including their causative pathogens, modes of transmission, recent major outbreaks, and geographic locations. We further review current treatments for these tropical diseases, carefully consider the biodiscovery potential of the tropical biome, and discuss a range of technologies being used for drug development from natural resources. We provide a list of natural products with antimicrobial activity, detailing the source organisms and their effectiveness as treatment. We discuss how technological advancements, such as next-generation sequencing, are driving high-throughput natural product screening pipelines to identify compounds with therapeutic properties. This review demonstrates the impact natural products from the vast tropical biome have in the treatment of tropical infectious diseases and how high-throughput technical capacity will accelerate this discovery process.
Collapse
Affiliation(s)
- Oyelola Adegboye
- Public Health and Tropical Medicine, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, Australia
- World Health Organization Collaborating Center for Vector-Borne and Neglected Tropical Diseases, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Matt A. Field
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Cairns, QLD, Australia
- Centre for Molecular Therapeutics, James Cook University, Cairns, QLD, Australia
- Garvin Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Andreas Kupz
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
- Centre for Molecular Therapeutics, James Cook University, Cairns, QLD, Australia
| | - Saparna Pai
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
- Centre for Molecular Therapeutics, James Cook University, Cairns, QLD, Australia
| | - Dileep Sharma
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
- College of Medicine & Dentistry, James Cook University, Cairns, QLD, Australia
| | - Michael J. Smout
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
- Centre for Molecular Therapeutics, James Cook University, Cairns, QLD, Australia
| | - Phurpa Wangchuk
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
- Centre for Molecular Therapeutics, James Cook University, Cairns, QLD, Australia
| | - Yide Wong
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Cairns, QLD, Australia
- Centre for Molecular Therapeutics, James Cook University, Cairns, QLD, Australia
| | - Claire Loiseau
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
- Centre for Molecular Therapeutics, James Cook University, Cairns, QLD, Australia
| |
Collapse
|
12
|
A journey through 50 years of research relevant to the control of gastrointestinal nematodes in ruminant livestock and thoughts on future directions. Int J Parasitol 2021; 51:1133-1151. [PMID: 34774857 DOI: 10.1016/j.ijpara.2021.10.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 11/20/2022]
Abstract
This review article provides an historical perspective on some of the major research advances of relevance to ruminant livestock gastrointestinal nematode control over the last 50 years. Over this period, gastrointestinal nematode control has been dominated by the use of broad-spectrum anthelmintic drugs. Whilst this has provided unprecedented levels of successful control for many years, this approach has been gradually breaking down for more than two decades and is increasingly unsustainable which is due, at least in part, to the emergence of anthelmintic drug resistance and a number of other factors discussed in this article. We first cover the remarkable success story of the discovery and development of broad-spectrum anthelmintic drugs, the changing face of anthelmintic drug discovery research and the emergence of anthelmintic resistance. This is followed by a review of some of the major advances in the increasingly important area of non-pharmaceutical gastrointestinal nematode control including immunology and vaccine development, epidemiological modelling and some of the alternative control strategies such as breeding for host resistance, refugia-based methods and biological control. The last 50 years have witnessed remarkable innovation and success in research aiming to improve ruminant livestock gastrointestinal nematode control, particularly given the relatively small size of the research community and limited funding. In spite of this, the growing global demand for livestock products, together with the need to maximise production efficiencies, reduce environmental impacts and safeguard animal welfare - as well as specific challenges such as anthelmintic drug resistance and climate change- mean that gastrointestinal nematode researchers will need to be as innovative in the next 50 years as in the last.
Collapse
|
13
|
Gardner JMF, Mansour NR, Bell AS, Helmby H, Bickle Q. The discovery of a novel series of compounds with single-dose efficacy against juvenile and adult Schistosoma species. PLoS Negl Trop Dis 2021; 15:e0009490. [PMID: 34280206 PMCID: PMC8321398 DOI: 10.1371/journal.pntd.0009490] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 07/29/2021] [Accepted: 05/23/2021] [Indexed: 12/23/2022] Open
Abstract
Treatment and control of schistosomiasis depends on a single drug, praziquantel, but this is not ideal for several reasons including lack of potency against the juvenile stage of the parasite, dose size, and risk of resistance. We have optimised the properties of a series of compounds we discovered through high throughput screening and have designed candidates for clinical development. The best compounds demonstrate clearance of both juvenile and adult S. mansoni worms in a mouse model of infection from a single oral dose of < 10 mg/kg. Several compounds in the series are predicted to treat schistosomiasis in humans across a range of species with a single oral dose of less than 5 mg/kg.
Collapse
Affiliation(s)
| | - Nuha R. Mansour
- Department for Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | | | - Helena Helmby
- Department for Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Quentin Bickle
- Department for Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
14
|
Taki AC, Byrne JJ, Wang T, Sleebs BE, Nguyen N, Hall RS, Korhonen PK, Chang BC, Jackson P, Jabbar A, Gasser RB. High-Throughput Phenotypic Assay to Screen for Anthelmintic Activity on Haemonchus contortus. Pharmaceuticals (Basel) 2021; 14:ph14070616. [PMID: 34206910 PMCID: PMC8308562 DOI: 10.3390/ph14070616] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/17/2021] [Accepted: 06/23/2021] [Indexed: 11/17/2022] Open
Abstract
Parasitic worms cause very significant diseases in animals and humans worldwide, and their control is critical to enhance health, well-being and productivity. Due to widespread drug resistance in many parasitic worms of animals globally, there is a major, continuing demand for the discovery and development of anthelmintic drugs for use to control these worms. Here, we established a practical, cost-effective and semi-automated high throughput screening (HTS) assay, which relies on the measurement of motility of larvae of the barber’s pole worm (Haemonchus contortus) using infrared light-interference. Using this assay, we screened 80,500 small molecules and achieved a hit rate of 0.05%. We identified three small molecules that reproducibly inhibited larval motility and/or development (IC50 values of ~4 to 41 µM). Future work will critically assess the potential of selected hits as candidates for subsequent optimisation or repurposing against parasitic nematodes. This HTS assay has a major advantage over most previous assays in that it achieves a ≥ 10-times higher throughput (i.e., 10,000 compounds per week), and is thus suited to the screening of libraries of tens of thousands to hundreds of thousands of compounds for subsequent hit-to-lead optimisation or effective repurposing and development. The current assay should be adaptable to many socioeconomically important parasitic nematodes, including those that cause neglected tropical diseases (NTDs). This aspect is of relevance, given the goals of the World Health Organization (WHO) Roadmap for NTDs 2021–2030, to develop more effective drugs and drug combinations to improve patient outcomes and circumvent the ineffectiveness of some current anthelmintic drugs and possible drug resistance.
Collapse
Affiliation(s)
- Aya C. Taki
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; (A.C.T.); (J.J.B.); (T.W.); (B.E.S.); (R.S.H.); (P.K.K.); (B.C.H.C.); (A.J.)
| | - Joseph J. Byrne
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; (A.C.T.); (J.J.B.); (T.W.); (B.E.S.); (R.S.H.); (P.K.K.); (B.C.H.C.); (A.J.)
| | - Tao Wang
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; (A.C.T.); (J.J.B.); (T.W.); (B.E.S.); (R.S.H.); (P.K.K.); (B.C.H.C.); (A.J.)
| | - Brad E. Sleebs
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; (A.C.T.); (J.J.B.); (T.W.); (B.E.S.); (R.S.H.); (P.K.K.); (B.C.H.C.); (A.J.)
- Chemical Biology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia;
- Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Nghi Nguyen
- Chemical Biology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia;
- Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Ross S. Hall
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; (A.C.T.); (J.J.B.); (T.W.); (B.E.S.); (R.S.H.); (P.K.K.); (B.C.H.C.); (A.J.)
| | - Pasi K. Korhonen
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; (A.C.T.); (J.J.B.); (T.W.); (B.E.S.); (R.S.H.); (P.K.K.); (B.C.H.C.); (A.J.)
| | - Bill C.H. Chang
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; (A.C.T.); (J.J.B.); (T.W.); (B.E.S.); (R.S.H.); (P.K.K.); (B.C.H.C.); (A.J.)
| | - Paul Jackson
- Johnson & Johnson, Global Public Health, Janssen Research and Development, San Diego, CA 92121, USA;
| | - Abdul Jabbar
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; (A.C.T.); (J.J.B.); (T.W.); (B.E.S.); (R.S.H.); (P.K.K.); (B.C.H.C.); (A.J.)
| | - Robin B. Gasser
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; (A.C.T.); (J.J.B.); (T.W.); (B.E.S.); (R.S.H.); (P.K.K.); (B.C.H.C.); (A.J.)
- Correspondence:
| |
Collapse
|
15
|
Moreira-Filho JT, Silva AC, Dantas RF, Gomes BF, Souza Neto LR, Brandao-Neto J, Owens RJ, Furnham N, Neves BJ, Silva-Junior FP, Andrade CH. Schistosomiasis Drug Discovery in the Era of Automation and Artificial Intelligence. Front Immunol 2021; 12:642383. [PMID: 34135888 PMCID: PMC8203334 DOI: 10.3389/fimmu.2021.642383] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 04/30/2021] [Indexed: 12/20/2022] Open
Abstract
Schistosomiasis is a parasitic disease caused by trematode worms of the genus Schistosoma and affects over 200 million people worldwide. The control and treatment of this neglected tropical disease is based on a single drug, praziquantel, which raises concerns about the development of drug resistance. This, and the lack of efficacy of praziquantel against juvenile worms, highlights the urgency for new antischistosomal therapies. In this review we focus on innovative approaches to the identification of antischistosomal drug candidates, including the use of automated assays, fragment-based screening, computer-aided and artificial intelligence-based computational methods. We highlight the current developments that may contribute to optimizing research outputs and lead to more effective drugs for this highly prevalent disease, in a more cost-effective drug discovery endeavor.
Collapse
Affiliation(s)
- José T. Moreira-Filho
- LabMol – Laboratory for Molecular Modeling and Drug Design, Faculdade de Farmácia, Universidade Federal de Goiás – UFG, Goiânia, Brazil
| | - Arthur C. Silva
- LabMol – Laboratory for Molecular Modeling and Drug Design, Faculdade de Farmácia, Universidade Federal de Goiás – UFG, Goiânia, Brazil
| | - Rafael F. Dantas
- LaBECFar – Laboratório de Bioquímica Experimental e Computacional de Fármacos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Barbara F. Gomes
- LaBECFar – Laboratório de Bioquímica Experimental e Computacional de Fármacos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Lauro R. Souza Neto
- LaBECFar – Laboratório de Bioquímica Experimental e Computacional de Fármacos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Jose Brandao-Neto
- Diamond Light Source Ltd., Didcot, United Kingdom
- Research Complex at Harwell, Didcot, United Kingdom
| | - Raymond J. Owens
- The Rosalind Franklin Institute, Harwell, United Kingdom
- Division of Structural Biology, The Wellcome Centre for Human Genetic, University of Oxford, Oxford, United Kingdom
| | - Nicholas Furnham
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Bruno J. Neves
- LabMol – Laboratory for Molecular Modeling and Drug Design, Faculdade de Farmácia, Universidade Federal de Goiás – UFG, Goiânia, Brazil
| | - Floriano P. Silva-Junior
- LaBECFar – Laboratório de Bioquímica Experimental e Computacional de Fármacos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Carolina H. Andrade
- LabMol – Laboratory for Molecular Modeling and Drug Design, Faculdade de Farmácia, Universidade Federal de Goiás – UFG, Goiânia, Brazil
| |
Collapse
|
16
|
Vejzagić N, Prodjinotho UF, El-Khafif N, Huang R, Simeonov A, Spangenberg T, Prazeres da Costa C. Identification of hit compounds with anti-schistosomal activity on in vitro generated juvenile worms in cell-free medium. PLoS Negl Trop Dis 2021; 15:e0009432. [PMID: 34033658 PMCID: PMC8191877 DOI: 10.1371/journal.pntd.0009432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 06/10/2021] [Accepted: 05/01/2021] [Indexed: 11/30/2022] Open
Abstract
Background Anthelminthic treatment options against schistosomiasis are limited. The current treatment relies almost exclusively on a single drug, praziquantel (PZQ). As a consequence, the development of resistance to PZQ and limited activity of PZQ against earlier development stages are respectively a risk and a limitation to achieving the goals of the new WHO roadmap towards elimination. For the discovery of new chemical starting points, the in vitro drug screening on Schistosoma mansoni (S. mansoni) against newly transformed schistosomula (NTS) is still the most predominant approach. The use of only NTS in the initial screening limits sensitivity to potential new compounds which are predominantly active in later developmental stages. Using our recently described highly standardized, straightforward and reliable culture method that generates high rates of juvenile worms, we aimed to repurpose a subset of the National Center for Advancing Translational Sciences (NCATS) Pharmaceutical Collection (340 compounds) to identify new hits with an in vitro worm culture assay. Methodology/Principal findings Cercariae were mechanically transformed into skin-stage (SkS) schistosomula and continuously cultured for 3–6 weeks to the liver stage (LiS). A commercial source of serum was identified, and decrease of NTS/well along with optimal drug testing conditions was established to test compounds on early and late LiS worms. The library was screened in 96-well format assays using praziquantel (PZQ) as a positive control. Primary screening allowed a 5.9% hit rate and generated two confirmed hits on adult worms; a prophylactic antianginal agent and an antihistaminic drug. Conclusion With this standardized and reliable in vitro assay, important S. mansoni developmental stages up to LiS worms can be generated and cultured over an extended period. When exposed to a subset of the NCATS Pharmaceutical Collection, 3 compounds yielded a defined anti-schistosomal phenotype on juvenile worms. Translation of activity on perfused adult S. mansoni worms was achieved only for perhexiline (a prophylactic antianginal agent) and astemizole (an antihistaminic drug). Schistosomiasis continues to be a major public health problem, mainly in developing countries. Although there have been some advances in finding new drugs, praziquantel is still the drug of choice. Certainly, one of the most important advances in the search for new treatments was the ability to in vitro transform cercariae and to grow schistosomula in culture. To reduce animal use in future drug discovery efforts (3Rs), we optimized a previously established reliable and robust in vitro cell-free culture system for the generation of liver-stage worms that we applied to the screening of a compound library stemming from the National Center for Advancing Translational Sciences (NCATS) Pharmaceutical Collection.
Collapse
Affiliation(s)
- Nermina Vejzagić
- Institute for Microbiology, Immunology and Hygiene, Technische Universität München, Munich, Germany
- Center for Global Health, TUM School of Medicine, Technische Universität München, Munich, Germany
| | - Ulrich Fabien Prodjinotho
- Institute for Microbiology, Immunology and Hygiene, Technische Universität München, Munich, Germany
- Center for Global Health, TUM School of Medicine, Technische Universität München, Munich, Germany
| | - Nagwa El-Khafif
- Theodor Bilharz Research Institute, Mahad Al Abhas Al Bahari, Warraq Al Arab, El Warraq, Giza Governorate, Egypt
| | - Ruili Huang
- Division of Pre-clinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, United States of America
| | - Anton Simeonov
- Division of Pre-clinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, United States of America
| | - Thomas Spangenberg
- Global Health Institute of Merck, Ares Trading S.A. (a subsidiary of Merck KGaA Darmstadt Germany), Eysins, Switzerland
| | - Clarissa Prazeres da Costa
- Institute for Microbiology, Immunology and Hygiene, Technische Universität München, Munich, Germany
- Center for Global Health, TUM School of Medicine, Technische Universität München, Munich, Germany
- * E-mail:
| |
Collapse
|
17
|
Partridge F, Bataille CJ, Forman R, Marriott AE, Forde-Thomas J, Häberli C, Dinsdale RL, O’Sullivan JD, Willis NJ, Wynne GM, Whiteland H, Archer J, Steven A, Keiser J, Turner JD, Hoffmann KF, Taylor MJ, Else KJ, Russell AJ, Sattelle DB. Structural Requirements for Dihydrobenzoxazepinone Anthelmintics: Actions against Medically Important and Model Parasites: Trichuris muris, Brugia malayi, Heligmosomoides polygyrus, and Schistosoma mansoni. ACS Infect Dis 2021; 7:1260-1274. [PMID: 33797218 PMCID: PMC8154432 DOI: 10.1021/acsinfecdis.1c00025] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Indexed: 02/07/2023]
Abstract
Nine hundred million people are infected with the soil-transmitted helminths Ascaris lumbricoides (roundworm), hookworm, and Trichuris trichiura (whipworm). However, low single-dose cure rates of the benzimidazole drugs, the mainstay of preventative chemotherapy for whipworm, together with parasite drug resistance, mean that current approaches may not be able to eliminate morbidity from trichuriasis. We are seeking to develop new anthelmintic drugs specifically with activity against whipworm as a priority and previously identified a hit series of dihydrobenzoxazepinone (DHB) compounds that block motility of ex vivo Trichuris muris. Here, we report a systematic investigation of the structure-activity relationship of the anthelmintic activity of DHB compounds. We synthesized 47 analogues, which allowed us to define features of the molecules essential for anthelmintic action as well as broadening the chemotype by identification of dihydrobenzoquinolinones (DBQs) with anthelmintic activity. We investigated the activity of these compounds against other parasitic nematodes, identifying DHB compounds with activity against Brugia malayi and Heligmosomoides polygyrus. We also demonstrated activity of DHB compounds against the trematode Schistosoma mansoni, a parasite that causes schistosomiasis. These results demonstrate the potential of DHB and DBQ compounds for further development as broad-spectrum anthelmintics.
Collapse
Affiliation(s)
- Frederick
A. Partridge
- Centre
for Respiratory Biology, UCL Respiratory, Division of Medicine, University College London, London WC1E 6JF, United Kingdom
| | - Carole J.R. Bataille
- Department
of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford OX1 3TA, United Kingdom
| | - Ruth Forman
- Lydia
Becker Institute of Immunology and Inflammation, Faculty of Biology,
Medicine and Health, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Amy E. Marriott
- Centre
for Drugs and Diagnostics, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, United Kingdom
| | - Josephine Forde-Thomas
- Institute
of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, Wales SY23 3DA, United Kingdom
| | - Cécile Häberli
- Department
of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Socinstrasse 57, Basel CH-4002, Switzerland
- University
of Basel, Petersplatz
1, Basel CH-4001, Switzerland
| | - Ria L. Dinsdale
- Department
of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford OX1 3TA, United Kingdom
| | - James D.B. O’Sullivan
- Lydia
Becker Institute of Immunology and Inflammation, Faculty of Biology,
Medicine and Health, University of Manchester, Manchester M13 9PT, United Kingdom
- Henry
Royce Institute, The University of Manchester, Oxford Road, Manchester M13 9PL, United
Kingdom
| | - Nicky J. Willis
- Department
of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford OX1 3TA, United Kingdom
- Alzheimer’s
Research UK UCL Drug Discovery Institute, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Graham M. Wynne
- Department
of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford OX1 3TA, United Kingdom
| | - Helen Whiteland
- Institute
of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, Wales SY23 3DA, United Kingdom
| | - John Archer
- Centre
for Drugs and Diagnostics, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, United Kingdom
| | - Andrew Steven
- Centre
for Drugs and Diagnostics, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, United Kingdom
| | - Jennifer Keiser
- Department
of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Socinstrasse 57, Basel CH-4002, Switzerland
- University
of Basel, Petersplatz
1, Basel CH-4001, Switzerland
| | - Joseph D. Turner
- Centre
for Drugs and Diagnostics, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, United Kingdom
- Centre
for Neglected Tropical Diseases, Liverpool
School of Tropical Medicine, Liverpool L3 5QA, United Kingdom
| | - Karl F. Hoffmann
- Institute
of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, Wales SY23 3DA, United Kingdom
| | - Mark J. Taylor
- Centre
for Drugs and Diagnostics, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, United Kingdom
- Centre
for Neglected Tropical Diseases, Liverpool
School of Tropical Medicine, Liverpool L3 5QA, United Kingdom
| | - Kathryn J. Else
- Lydia
Becker Institute of Immunology and Inflammation, Faculty of Biology,
Medicine and Health, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Angela J. Russell
- Department
of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford OX1 3TA, United Kingdom
- Department
of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, United
Kingdom
| | - David B. Sattelle
- Centre
for Respiratory Biology, UCL Respiratory, Division of Medicine, University College London, London WC1E 6JF, United Kingdom
| |
Collapse
|
18
|
Validation of a human-serum-based in vitro growth method for drug screening on juvenile development stages of Schistosoma mansoni. PLoS Negl Trop Dis 2021; 15:e0009313. [PMID: 33784302 PMCID: PMC8034724 DOI: 10.1371/journal.pntd.0009313] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 04/09/2021] [Accepted: 03/17/2021] [Indexed: 11/19/2022] Open
Abstract
Background Schistosomiasis affects over 200 million people worldwide but only praziquantel is available for treatment and control. Drug discovery is often based on phenotypic drug screening, involving different parasite stages retrieved from infected mice. Aiming to reduce animal use, we validated an in vitro growth method for juvenile Schistosoma mansoni for the purpose of drug sensitivity assays. Methodology/Principal findings We compared inter–batch variability of serum, worm size and organ development, gender distribution, and drug sensitivity between in vitro and in vivo grown worms over different life stages. In vitro developed S. mansoni in Hybridoma medium supplemented with 20% human serum were similar in size as in vivo worms until 28 days of incubation (males 1.4 ± 0.2 mm, females 1.1 ± 0.5 mm long). qPCR analysis revealed similar gender distribution both on newly transformed schistosomula and worms grown for 21 days. Worms developed in vitro and in vivo were similarly sensitive to praziquantel from 7 to 35 days of development with the exception of 21 days of development, where a slightly lower activity was observed for the in vitro grown worms (IC50: 0.54 μM in vitro, 0.14 μM in vivo 72 hours post-incubation). The evaluation of five additional drugs revealed a similar sensitivity on worms developed for 21 days, with the exception of mefloquine, where we observed a 10-fold lower sensitivity on in vitro developed schistosomes when compared to in vivo grown (IC50: 4.43 μM in vitro, 0.48 μM in vivo). Conclusion A large number of juvenile S. mansoni worms can be grown in vitro, which show similar drug sensitivity, gender distribution, size and morphology as the worms recovered from rodents, supporting the use of this method in drug screening efforts. Schistosomiasis is a water-borne disease affecting over 200 million people worldwide and praziquantel is the only drug available for treatment. Although this drug is effective on all Schistosoma species on the adult stage of development, its activity is only partial against early infection stages. In addition, this has been the only drug in use for over 40 years, a situation that poses selective pressure towards resistant worms and highlights the urgent need of new drugs. The discovery and development of new drugs is often based on drug screenings, performed on worms collected from infected mammals. In line with animal welfare recommendations and aiming to increase throughput and reduce the assay costs, we validated a recently established in vitro method to grow juvenile S. mansoni as a drug screening tool. The in vitro established worms have similar gender distribution, size and drug sensitivity as worms collected from mice.
Collapse
|
19
|
Maharjan S, Kirk RS, Lawton SP, Walker AJ. Further evaluation and validation of HybridoMed Diff 1000 and its comparison to Basch medium for the cell-free culture of Schistosoma mansoni juvenile worm stages. Int J Parasitol 2021; 51:613-619. [PMID: 33771520 DOI: 10.1016/j.ijpara.2020.12.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 12/23/2020] [Accepted: 12/30/2020] [Indexed: 11/27/2022]
Abstract
Schistosomules of the human parasite Schistosoma mansoni are vital for research focusing on the fundamental functional/developmental biology of schistosomes and many anti-schistosomal drug discovery programmes. Through the further evaluation and validation of a recently tested media, HybridoMed Diff 1000 (HM), for the cell-free culture of juvenile schistosomules, we show that while Basch medium was superior to HM for the survival/development of schistosomules, HM represents a viable and attractive alternative for somule culture, particularly to the early liver stage. Adoption of HM for schistosomule culture could facilitate more standardised approaches, which for drug screening should enable improved multi-centre target-hit evaluation.
Collapse
Affiliation(s)
- Shradha Maharjan
- Molecular Parasitology Laboratory, School of Life Sciences, Pharmacy and Chemistry, Kingston University, Penrhyn Road, Kingston upon Thames KT1 2EE, UK
| | - Ruth S Kirk
- Molecular Parasitology Laboratory, School of Life Sciences, Pharmacy and Chemistry, Kingston University, Penrhyn Road, Kingston upon Thames KT1 2EE, UK
| | - Scott P Lawton
- Molecular Parasitology Laboratory, School of Life Sciences, Pharmacy and Chemistry, Kingston University, Penrhyn Road, Kingston upon Thames KT1 2EE, UK; Epidemiology Research Unit, Department of Veterinary and Animal Sciences, Scotland's Rural College (SRUC), An Lòchran, 10 Inverness Campus, Inverness IV2 5NA, UK
| | - Anthony J Walker
- Molecular Parasitology Laboratory, School of Life Sciences, Pharmacy and Chemistry, Kingston University, Penrhyn Road, Kingston upon Thames KT1 2EE, UK.
| |
Collapse
|
20
|
Guidi A, Gimmelli R, Bresciani A, Ruberti G. Luminescence-Based, Low- and Medium-Throughput Assays for Drug Screening in Schistosoma mansoni Larval Stage. Methods Mol Biol 2021; 2151:219-227. [PMID: 32452008 DOI: 10.1007/978-1-0716-0635-3_18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Schistosomiasis is one of the major parasitic diseases with more than 200 million people infected worldwide every year. Praziquantel is the drug of choice against the schistosomiasis although the use of a single drug to treat such a large amount of infected people appears particularly worrisome. For this reason, the search of new schistosomicidal compounds is viewed as an urgent goal and a number of screening campaigns have been carried out in the past years. The larval stage of Schistosoma (schistosomula) has been widely used in order to identify new compounds against the parasite. Here we describe detailed practical procedures for a luminescence-based assay proven to be highly effective for the selection of schistosomicidal compounds on small and medium-high scale. The assay is based on the quantitation of the parasite ATP, a good indicator of metabolically active cells, as measure of schistosomula viability. This assay is fast and reproducible, and it is suitable either for manual or for semiautomated screenings.
Collapse
Affiliation(s)
- Alessandra Guidi
- National Research Council, Institute of Biochemistry and Cell Biology, Rome, Italy
| | - Roberto Gimmelli
- National Research Council, Institute of Biochemistry and Cell Biology, Rome, Italy
| | | | - Giovina Ruberti
- National Research Council, Institute of Biochemistry and Cell Biology, Rome, Italy.
| |
Collapse
|
21
|
Chen S, Suzuki BM, Dohrmann J, Singh R, Arkin MR, Caffrey CR. A multi-dimensional, time-lapse, high content screening platform applied to schistosomiasis drug discovery. Commun Biol 2020; 3:747. [PMID: 33349640 PMCID: PMC7752906 DOI: 10.1038/s42003-020-01402-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 10/02/2020] [Indexed: 12/29/2022] Open
Abstract
Approximately 10% of the world's population is at risk of schistosomiasis, a disease of poverty caused by the Schistosoma parasite. To facilitate drug discovery for this complex flatworm, we developed an automated high-content screen to quantify the multidimensional responses of Schistosoma mansoni post-infective larvae (somules) to chemical insult. We describe an integrated platform to process worms at scale, collect time-lapsed, bright-field images, segment highly variable and touching worms, and then store, visualize, and query dynamic phenotypes. To demonstrate the methodology, we treated somules with seven drugs that generated diverse responses and evaluated 45 static and kinetic response descriptors relative to concentration and time. For compound screening, we used the Mahalanobis distance to compare multidimensional phenotypic effects induced by 1323 approved drugs. Overall, we characterize both known anti-schistosomals and identify new bioactives. Apart from facilitating drug discovery, the multidimensional quantification provided by this platform will allow mapping of chemistry to phenotype.
Collapse
Affiliation(s)
- Steven Chen
- Department of Pharmaceutical Chemistry and Small Molecule Discovery Center, University of California, San Francisco, CA, 94143, USA
| | - Brian M Suzuki
- Center for Discovery and Innovation in Parasitic Diseases, Department of Pathology, University of California, San Francisco, CA, 94158, USA
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Jakob Dohrmann
- Department of Computer Science, San Francisco State University, San Francisco, CA, 94132, USA
| | - Rahul Singh
- Department of Computer Science, San Francisco State University, San Francisco, CA, 94132, USA.
| | - Michelle R Arkin
- Department of Pharmaceutical Chemistry and Small Molecule Discovery Center, University of California, San Francisco, CA, 94143, USA.
| | - Conor R Caffrey
- Center for Discovery and Innovation in Parasitic Diseases, Department of Pathology, University of California, San Francisco, CA, 94158, USA.
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
22
|
Padalino G, Chalmers IW, Brancale A, Hoffmann KF. Identification of 6-(piperazin-1-yl)-1,3,5-triazine as a chemical scaffold with broad anti-schistosomal activities. Wellcome Open Res 2020; 5:169. [PMID: 32904763 PMCID: PMC7459852 DOI: 10.12688/wellcomeopenres.16069.2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2020] [Indexed: 12/21/2022] Open
Abstract
Background: Schistosomiasis, caused by infection with blood fluke schistosomes, is a neglected tropical disease of considerable importance in resource-poor communities throughout the developing world. In the absence of an immunoprophylactic vaccine and due to over-reliance on a single chemotherapy (praziquantel), schistosomiasis control is at risk should drug insensitive schistosomes develop. In this context, application of in silico virtual screening on validated schistosome targets has proven successful in the identification of novel small molecules with anti-schistosomal activity. Methods: Focusing on the Schistosoma mansoni histone methylation machinery, we herein have used RNA interference (RNAi), ELISA-mediated detection of H3K4 methylation, homology modelling and in silico virtual screening to identify a small collection of small molecules for anti-schistosomal testing. A combination of low to high-throughput whole organism assays were subsequently used to assess these compounds' activities on miracidia to sporocyst transformation, schistosomula phenotype/motility metrics and adult worm motility/oviposition readouts. Results: RNAi-mediated knockdown of smp_138030/smmll-1 (encoding a histone methyltransferase, HMT) in adult worms (~60%) reduced parasite motility and egg production. Moreover, in silico docking of compounds into Smp_138030/SmMLL-1's homology model highlighted competitive substrate pocket inhibitors, some of which demonstrated significant activity on miracidia, schistosomula and adult worm lifecycle stages together with variable effects on HepG2 cells. Particularly, the effect of compounds containing a 6-(piperazin-1-yl)-1,3,5-triazine core on adult schistosomes recapitulated the results of the smp_138030/smmll-1 RNAi screens. Conclusions: The biological data and the structure-activity relationship presented in this study define the 6-(piperazin-1-yl)-1,3,5-triazine core as a promising starting point in ongoing efforts to develop new urgently needed schistosomicides.
Collapse
Affiliation(s)
- Gilda Padalino
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, Wales, SY23 3DA, UK
| | - Iain W. Chalmers
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, Wales, SY23 3DA, UK
| | - Andrea Brancale
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, Wales, CF10 3NB, UK
| | - Karl F. Hoffmann
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, Wales, SY23 3DA, UK
| |
Collapse
|
23
|
Padalino G, Chalmers IW, Brancale A, Hoffmann KF. Identification of 6-(piperazin-1-yl)-1,3,5-triazine as a chemical scaffold with broad anti-schistosomal activities. Wellcome Open Res 2020; 5:169. [PMID: 32904763 PMCID: PMC7459852 DOI: 10.12688/wellcomeopenres.16069.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/09/2020] [Indexed: 12/13/2022] Open
Abstract
Background: Schistosomiasis, caused by infection with blood fluke schistosomes, is a neglected tropical disease of considerable importance in resource-poor communities throughout the developing world. In the absence of an immunoprophylactic vaccine and due to over-reliance on a single chemotherapy (praziquantel), schistosomiasis control is at risk should drug insensitive schistosomes develop. In this context, application of in silico virtual screening on validated schistosome targets has proven successful in the identification of novel small molecules with anti-schistosomal activity. Methods: Focusing on the Schistosoma mansoni histone methylation machinery, we herein have used RNA interference (RNAi), ELISA-mediated detection of H3K4 methylation, homology modelling and in silico virtual screening to identify a small collection of small molecules for anti-schistosomal testing. A combination of low to high-throughput whole organism assays were subsequently used to assess these compounds' activities on miracidia to sporocyst transformation, schistosomula phenotype/motility metrics and adult worm motility/oviposition readouts. Results: RNAi-mediated knockdown of smp_138030/smmll-1 (encoding a histone methyltransferase, HMT) in adult worms (~60%) reduced parasite motility and egg production. Moreover, in silico docking of compounds into Smp_138030/SmMLL-1's homology model highlighted competitive substrate pocket inhibitors, some of which demonstrated significant activity on miracidia, schistosomula and adult worm lifecycle stages together with variable effects on HepG2 cells. Particularly, the effect of compounds containing a 6-(piperazin-1-yl)-1,3,5-triazine core on adult schistosomes recapitulated the results of the smp_138030/smmll-1 RNAi screens. Conclusions: The biological data and the structure-activity relationship presented in this study define the 6-(piperazin-1-yl)-1,3,5-triazine core as a promising starting point in ongoing efforts to develop new urgently needed schistosomicides.
Collapse
Affiliation(s)
- Gilda Padalino
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, Wales, SY23 3DA, UK
| | - Iain W. Chalmers
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, Wales, SY23 3DA, UK
| | - Andrea Brancale
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, Wales, CF10 3NB, UK
| | - Karl F. Hoffmann
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, Wales, SY23 3DA, UK
| |
Collapse
|
24
|
Ravaynia PS, Lombardo FC, Biendl S, Dupuch MA, Keiser J, Hierlemann A, Modena MM. Parallelized Impedance-Based Platform for Continuous Dose-Response Characterization of Antischistosomal Drugs. ACTA ACUST UNITED AC 2020; 4:e1900304. [PMID: 32510834 DOI: 10.1002/adbi.201900304] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 05/19/2020] [Indexed: 11/11/2022]
Abstract
Schistosomiasis is an acute and chronic disease caused by tropical parasitic worms of the genus Schistosoma, which parasitizes annually over 200 million people worldwide. Screening of antischistosomal compounds is hampered by the low throughput and potential subjectivity of the visual evaluation of the parasite phenotypes, which affects the current drug assays. Here, an impedance-based platform, capable of assessing the viability of Schistosoma mansoni schistosomula exposed to drugs, is presented. This automated and parallelized platform enables unbiased and continuous measurements of dose-response relationships for more than 48 h. The platform performance is established by exposure of schistosomula to three test compounds, praziquantel, oxethazaine, and mefloquine, which are known to affect the larvae phenotypes. The system is thereafter used to investigate the response of schistosomula to methiothepine, an antipsychotic compound, which causes complex drug-induced effects. Continuous monitoring of the parasites reveals transient behavioral phenotypes and allows for extracting temporal characteristics of dose-response curves, which are essential for selecting drugs that feature high activity and fast kinetics of action. These measurements demonstrate that impedance-based detection provides a wealth of information for the in vitro characterization of candidate antischistosomals and, represents a promising tool for the identification of new lead compounds.
Collapse
Affiliation(s)
- Paolo S Ravaynia
- Bioengineering Laboratory, Department of Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 26, Basel, 4058, Switzerland
| | - Flavio C Lombardo
- Swiss Tropical and Public Health Institute, Department of Medical Parasitology and Infection Biology, University of Basel, Socinstrasse 57, Basel, 4051, Switzerland
| | - Stefan Biendl
- Swiss Tropical and Public Health Institute, Department of Medical Parasitology and Infection Biology, University of Basel, Socinstrasse 57, Basel, 4051, Switzerland
| | - Matthias A Dupuch
- Micro and Nanosystems, Department of Mechanical and Process Engineering, ETH Zürich, Tannenstrasse 3, Zurich, 8092, Switzerland
| | - Jennifer Keiser
- Swiss Tropical and Public Health Institute, Department of Medical Parasitology and Infection Biology, University of Basel, Socinstrasse 57, Basel, 4051, Switzerland
| | - Andreas Hierlemann
- Bioengineering Laboratory, Department of Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 26, Basel, 4058, Switzerland
| | - Mario M Modena
- Bioengineering Laboratory, Department of Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 26, Basel, 4058, Switzerland
| |
Collapse
|
25
|
Duguet TB, Glebov A, Hussain A, Kulkarni S, Mochalkin I, Geary TG, Rashid M, Spangenberg T, Ribeiro P. Identification of annotated bioactive molecules that impair motility of the blood fluke Schistosoma mansoni. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2020; 13:73-88. [PMID: 32531750 PMCID: PMC7284125 DOI: 10.1016/j.ijpddr.2020.05.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 05/14/2020] [Accepted: 05/14/2020] [Indexed: 01/21/2023]
Abstract
Neglected tropical diseases are of growing worldwide concern and schistosomiasis, caused by parasitic flatworms, continues to be a major threat with more than 200 million people requiring preventive treatment. As praziquantel (PZQ) remains the treatment of choice, an urgent need for alternative treatments motivates research to identify new lead compounds that would complement PZQ by filling the therapeutic gaps associated with this treatment. Because impairing parasite neurotransmission remains a core strategy for control of parasitic helminths, we screened a library of 708 compounds with validated biological activity in humans on the blood fluke Schistosoma mansoni, measuring their effect on the motility on schistosomulae and adult worms. The primary phenotypic screen performed on schistosomulae identified 70 compounds that induced changes in viability and/or motility. Screening different concentrations and incubation times identified molecules with fast onset of activity on both life stages at low concentration (1 μM). To complement this study, similar assays were performed with chemical analogs of the cholinomimetic drug arecoline and the calcilytic molecule NPS-2143, two compounds that rapidly inhibited schistosome motility; 17 arecoline and 302 NPS-2143 analogs were tested to enlarge the pool of schistosomicidal molecules. Finally, validated hit compounds were tested on three functionally-validated neuroregulatory S. mansoni G-protein coupled receptors (GPCRs): Sm5HTR (serotonin-sensitive), SmGPR2 (histamine) and SmD2 (dopamine), revealing NPS-2143 and analogs as potent inhibitors of dopamine/epinine responses on both human and S. mansoni GPCRs. This study highlights the potential for repurposing known human therapeutic agents for potential schistosomicidal effects and expands the list of hits for further progression.
Collapse
Affiliation(s)
- Thomas B Duguet
- Institute of Parasitology, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada.
| | - Anastasia Glebov
- Institute of Parasitology, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| | - Asimah Hussain
- Institute of Parasitology, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| | | | - Igor Mochalkin
- EMD Serono Research and Development Institute, Billerica, MA, USA
| | - Timothy G Geary
- Institute of Parasitology, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| | - Mohammed Rashid
- Institute of Parasitology, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| | - Thomas Spangenberg
- Global Health Institute of Merck, Ares Trading S.A., a subsidiary of Merck KGaA (Darmstadt, Germany), Eysins, Switzerland.
| | - Paula Ribeiro
- Institute of Parasitology, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| |
Collapse
|
26
|
Lobo-Silva J, Cabral FJ, Amaral MS, Miyasato PA, de Freitas RP, Pereira ASA, Khouri MI, Barbosa MMF, Ramos PIP, Leite LCC, Asojo OA, Nakano E, Verjovski-Almeida S, Farias LP. The antischistosomal potential of GSK-J4, an H3K27 demethylase inhibitor: insights from molecular modeling, transcriptomics and in vitro assays. Parasit Vectors 2020; 13:140. [PMID: 32178714 PMCID: PMC7077139 DOI: 10.1186/s13071-020-4000-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 02/26/2020] [Indexed: 12/20/2022] Open
Abstract
Background Schistosomiasis chemotherapy is largely based on praziquantel (PZQ). Although PZQ is very safe and tolerable, it does not prevent reinfection and emerging resistance is a primary concern. Recent studies have shown that the targeting of epigenetic machinery in Schistosoma mansoni may result in severe alterations in parasite development, leading to death. This new route for drug discovery in schistosomiasis has focused on classes of histone deacetylases (HDACs) and histone acetyltransferases (HATs) as epigenetic drug targets. Schistosoma histone demethylases also seem to be important in the transition of cercariae into schistosomula, as well as sexual differentiation in adult worms. Methods The Target-Pathogen database and molecular docking assays were used to prioritize the druggability of S. mansoni histone demethylases. The transcription profile of Smp_03400 was re-analyzed using available databases. The effect of GSK-J4 inhibitor in schistosomula and adult worms’ motility/viability/oviposition was assessed by in vitro assays. Ultrastructural analysis was performed on adult worms exposed to GSK-J4 by scanning electron microscopy, while internal structures and muscle fiber integrity was investigated by confocal microscopy after Langeronʼs carmine or phalloidin staining. Results The present evaluation of the potential druggability of 14 annotated S. mansoni demethylase enzymes identified the S. mansoni ortholog of human KDM6A/UTX (Smp_034000) as the most suitable druggable target. In silico analysis and molecular modeling indicated the potential for cofactor displacement by the chemical probe GSK-J4. Our re-analysis of transcriptomic data revealed that Smp_034000 expression peaks at 24 h in newly transformed schistosomula and 5-week-old adult worms. Moreover, this gene was highly expressed in the testes of mature male worms compared to the rest of the parasite body. In in vitro schistosome cultures, treatment with GSK-J4 produced striking effects on schistosomula mortality and adult worm motility and mortality, as well as egg oviposition, in a dose- and time-dependent manner. Unexpectedly, western blot assays did not demonstrate overall modulation of H3K27me3 levels in response to GSK-J4. Confocal and scanning electron microscopy revealed the loss of original features in muscle fibers and alterations in cell-cell contact following GSK-J4 treatment. Conclusions GSK-J4 presents promising potential for antischistosomal control; however, the underlying mechanisms warrant further investigation.![]()
Collapse
Affiliation(s)
- Jessica Lobo-Silva
- Laboratório de Biomarcadores e Inflamação, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Bahia, Brazil
| | - Fernanda J Cabral
- Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Murilo S Amaral
- Laboratório de Expressão Gênica em Eucariotos, Instituto Butantan, São Paulo, SP, Brazil
| | | | | | - Adriana S A Pereira
- Laboratório de Expressão Gênica em Eucariotos, Instituto Butantan, São Paulo, SP, Brazil.,Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Mariana I Khouri
- Laboratório de Biomarcadores e Inflamação, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Bahia, Brazil
| | - Mayra M F Barbosa
- Laboratório Especial de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, SP, Brazil
| | - Pablo I P Ramos
- Centro de Integração de Dados e Conhecimentos para Saúde (CIDACS), Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Bahia, Brazil
| | - Luciana C C Leite
- Laboratório Especial de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, SP, Brazil
| | - Oluwatoyin A Asojo
- Department of Chemistry and Biochemistry, Hampton University, Hampton, VA, USA
| | - Eliana Nakano
- Laboratório de Parasitologia, Instituto Butantan, São Paulo, SP, Brazil
| | - Sergio Verjovski-Almeida
- Laboratório de Expressão Gênica em Eucariotos, Instituto Butantan, São Paulo, SP, Brazil.,Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Leonardo P Farias
- Laboratório de Biomarcadores e Inflamação, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Bahia, Brazil.
| |
Collapse
|
27
|
Sepúlveda-Crespo D, Reguera RM, Rojo-Vázquez F, Balaña-Fouce R, Martínez-Valladares M. Drug discovery technologies: Caenorhabditis elegans as a model for anthelmintic therapeutics. Med Res Rev 2020; 40:1715-1753. [PMID: 32166776 DOI: 10.1002/med.21668] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 12/10/2019] [Accepted: 02/26/2020] [Indexed: 12/16/2022]
Abstract
Helminthiasis is one of the gravest problems worldwide. There is a growing concern on less available anthelmintics and the emergence of resistance creating a major threat to human and livestock health resources. Novel and broad-spectrum anthelmintics are urgently needed. The free-living nematode Caenorhabditis elegans could address this issue through automated high-throughput technologies for the screening of large chemical libraries. This review discusses the strong advantages and limitations for using C elegans as a screening method for anthelmintic drug discovery. C elegans is the best model available for the validation of novel effective drugs in treating most, if not all, helminth infections, and for the elucidation the mode of action of anthelmintic candidates. This review also focuses on available technologies in the discovery of anthelmintics published over the last 15 years with particular attention to high-throughput technologies over conventional screens. On the other hand, this review highlights how combinatorial and nanomedicine strategies could prolong the use of anthelmintics and control resistance problems.
Collapse
Affiliation(s)
- Daniel Sepúlveda-Crespo
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria, Universidad de León, León, Spain
| | - Rosa M Reguera
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria, Universidad de León, León, Spain
| | - Francisco Rojo-Vázquez
- Instituto de Ganadería de Montaña (CSIC-Universidad de León), León, Spain.,Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, León, Spain
| | - Rafael Balaña-Fouce
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria, Universidad de León, León, Spain
| | - María Martínez-Valladares
- Instituto de Ganadería de Montaña (CSIC-Universidad de León), León, Spain.,Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, León, Spain
| |
Collapse
|
28
|
Braun L, Hazell L, Webb AJ, Allan F, Emery AM, Templeton MR. Determining the viability of Schistosoma mansoni cercariae using fluorescence assays: An application for water treatment. PLoS Negl Trop Dis 2020; 14:e0008176. [PMID: 32214320 PMCID: PMC7138324 DOI: 10.1371/journal.pntd.0008176] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 04/07/2020] [Accepted: 02/27/2020] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Schistosome cercariae are the human-infectious stage of the Schistosoma parasite. They are shed by snail intermediate hosts living in freshwater, and penetrate the skin of the human host to develop into schistosomes, resulting in schistosomiasis infection. Water treatment (e.g. filtration or chlorination) is one way of cutting disease transmission; it kills or removes cercariae to provide safe water for people to use for activities such as bathing or laundry as an alternative to infested lakes or rivers. At present, there is no standard method for assessing the effectiveness of water treatment processes on cercariae. Examining cercarial movement under a microscope is the most common method, yet it is subjective and time-consuming. Hence, there is a need to develop and verify accurate, high-throughput assays for quantifying cercarial viability. METHOD We tested two fluorescence assays for their ability to accurately determine cercarial viability in water samples, using S. mansoni cercariae released from infected snails in the Schistosomiasis Collection at the Natural History Museum, London. These assays consist of dual stains, namely a vital and non-vital dye; fluorescein diacetate (FDA) and Hoechst, and FDA and Propidium Iodide. We also compared the results of the fluorescence assays to the viability determined by microscopy. CONCLUSION Both fluorescence assays can detect the viability of cercariae to an accuracy of at least 92.2% ± 6.3%. Comparing the assays to microscopy, no statistically significant difference was found between the method's viability results. However, the fluorescence assays are less subjective and less time-consuming than microscopy, and therefore present a promising method for quantifying the viability of schistosome cercariae in water samples.
Collapse
Affiliation(s)
- Laura Braun
- Department of Civil and Environmental Engineering, Imperial College London, London, United Kingdom
| | - Lucinda Hazell
- Department of Civil and Environmental Engineering, Imperial College London, London, United Kingdom
| | - Alexander J Webb
- Section of Structural and Synthetic Biology, Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Fiona Allan
- Wolfson Wellcome Biomedical Laboratories, Department of Life Sciences, Natural History Museum, London, United Kingdom
| | - Aidan M Emery
- Wolfson Wellcome Biomedical Laboratories, Department of Life Sciences, Natural History Museum, London, United Kingdom
| | - Michael R Templeton
- Department of Civil and Environmental Engineering, Imperial College London, London, United Kingdom
| |
Collapse
|
29
|
Whatley KCL, Padalino G, Whiteland H, Geyer KK, Hulme BJ, Chalmers IW, Forde-Thomas J, Ferla S, Brancale A, Hoffmann KF. The repositioning of epigenetic probes/inhibitors identifies new anti-schistosomal lead compounds and chemotherapeutic targets. PLoS Negl Trop Dis 2019; 13:e0007693. [PMID: 31730617 PMCID: PMC6881072 DOI: 10.1371/journal.pntd.0007693] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 11/27/2019] [Accepted: 10/30/2019] [Indexed: 01/13/2023] Open
Abstract
Background Praziquantel represents the frontline chemotherapy used to treat schistosomiasis, a neglected tropical disease (NTD) caused by infection with macro-parasitic blood fluke schistosomes. While this drug is safe, its inability to kill all schistosome lifecycle stages within the human host often requires repeat treatments. This limitation, amongst others, has led to the search for novel anti-schistosome replacement or combinatorial chemotherapies. Here, we describe a repositioning strategy to assess the anthelmintic activity of epigenetic probes/inhibitors obtained from the Structural Genomics Consortium. Methodology/Principle findings Thirty-seven epigenetic probes/inhibitors targeting histone readers, writers and erasers were initially screened against Schistosoma mansoni schistosomula using the high-throughput Roboworm platform. At 10 μM, 14 of these 37 compounds (38%) negatively affected schistosomula motility and phenotype after 72 hours of continuous co-incubation. Subsequent dose-response titrations against schistosomula and adult worms revealed epigenetic probes targeting one reader (NVS-CECR2-1), one writer (LLY-507 and BAY-598) and one eraser (GSK-J4) to be particularly active. As LLY-507/BAY-598 (SMYD2 histone methyltransferase inhibitors) and GSK-J4 (a JMJD3 histone demethylase inhibitor) regulate an epigenetic process (protein methylation) known to be critical for schistosome development, further characterisation of these compounds/putative targets was performed. RNA interference (RNAi) of one putative LLY-507/BAY-598 S. mansoni target (Smp_000700) in adult worms replicated the compound-mediated motility and egg production defects. Furthermore, H3K36me2, a known product catalysed by SMYD2 activity, was also reduced by LLY-507 (25%), BAY-598 (23%) and siSmp_000700 (15%) treatment of adult worms. Oviposition and packaging of vitelline cells into in vitro laid eggs was also significantly affected by GSK-J4 (putative cell permeable prodrug inhibitor of Smp_034000), but not by the related structural analogue GSK-J1 (cell impermeable inhibitor). Conclusion/Significance Collectively, these results provide further support for the development of next-generation drugs targeting schistosome epigenetic pathway components. In particular, the progression of histone methylation/demethylation modulators presents a tractable strategy for anti-schistosomal control. Human schistosomiasis is caused by infection with parasitic blood fluke worms. Global control of this NTD is currently facilitated by administration of a single drug, praziquantel (PZQ). This mono-chemotherapeutic strategy of schistosomiasis control presents challenges as PZQ is not active against all human-dwelling schistosome lifecycle stages and the evolution of PZQ resistant parasites remains a threat. Therefore, new drugs to be used in combination with or in replacement of PZQ are urgently needed. Here, continuing our studies on Schistosoma mansoni epigenetic processes, we performed anthelmintic screening of 37 epigenetic probes/epigenetic inhibitors obtained from the Structural Genomics Consortium (SGC). The results of these studies highlighted that schistosome protein methylation/demethylation processes are acutely vulnerable. In particular, compounds affecting schistosome SMYD (LLY-507, BAY-598) or JMJD (GSK-J4) homologues are especially active on schistosomula and adult worms during in vitro phenotypic drug screens. The active epigenetic probes identified here as well as their corresponding S. mansoni protein targets offers new starting points for the development of next-generation anti-schistosomals.
Collapse
Affiliation(s)
- Kezia C. L. Whatley
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, United Kingdom
| | - Gilda Padalino
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, United Kingdom
| | - Helen Whiteland
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, United Kingdom
| | - Kathrin K. Geyer
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, United Kingdom
| | - Benjamin J. Hulme
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, United Kingdom
| | - Iain W. Chalmers
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, United Kingdom
| | - Josephine Forde-Thomas
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, United Kingdom
| | - Salvatore Ferla
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, King Edward VII Avenue, Cardiff, United Kingdom
| | - Andrea Brancale
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, King Edward VII Avenue, Cardiff, United Kingdom
| | - Karl F. Hoffmann
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, United Kingdom
- * E-mail:
| |
Collapse
|
30
|
Maccesi M, Aguiar PHN, Pasche V, Padilla M, Suzuki BM, Montefusco S, Abagyan R, Keiser J, Mourão MM, Caffrey CR. Multi-center screening of the Pathogen Box collection for schistosomiasis drug discovery. Parasit Vectors 2019; 12:493. [PMID: 31640761 PMCID: PMC6805474 DOI: 10.1186/s13071-019-3747-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 10/11/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Over the past five years, as a public service to encourage and accelerate drug discovery for diseases of poverty, the Medicines for Malaria Venture (MMV) has released box sets of 400 compounds named the Malaria, Pathogen and Stasis Boxes. Here, we screened the Pathogen Box against the post-infective larvae (schistosomula) of Schistosoma mansoni using assays particular to the three contributing institutions, namely, the University of California San Diego (UCSD) in the USA, the Swiss Tropical and Public Health Institute (Swiss TPH) in Switzerland, and the Fundação Oswaldo Cruz (FIOCRUZ) in Brazil. With the same set of compounds, the goal was to determine the degree of inter-assay variability and identify a core set of active compounds common to all three assays. New drugs for schistosomiasis would be welcome given that current treatment and control strategies rely on chemotherapy with just one drug, praziquantel. METHODS Both the UCSD and Swiss TPH assays utilize daily observational scoring methodologies over 72 h, whereas the FIOCRUZ assay employs XTT (2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-5-[(phenylamino)carbonyl]-2H-tetrazolium hydroxide) at 72 h to measure viability as a function of NAD+/NADH redox state. Raw and transformed data arising from each assay were assembled for comparative analysis. RESULTS For the UCSD and Swiss TPH assays, there was strong concordance of at least 87% in identifying active and inactive compounds on one or more of the three days. When all three assays were compared at 72 h, concordance remained a robust 74%. Further, robust Pearson's correlations (0.48-0.68) were measured between the assays. Of those actives at 72 h, the UCSD, Swiss TPH and FIOCRUZ assays identified 86, 103 and 66 compounds, respectively, of which 35 were common. Assay idiosyncrasies included the identification of unique compounds, the differential ability to identify known antischistosomal compounds and the concept that compounds of interest might include those that increase metabolic activity above baseline. CONCLUSIONS The inter-assay data generated were in good agreement, including with previously reported data. A common set of antischistosomal molecules for further exploration has been identified .
Collapse
Affiliation(s)
- Martina Maccesi
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Pedro H N Aguiar
- Laboratório de Helmintologia e Malacologia Médica, René Rachou Institute, FIOCRUZ, Belo Horizonte, Minas Gerais, Brazil
| | - Valérian Pasche
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, P.O. Box, 4002, Basel, Switzerland.,University of Basel, P.O. Box, 4003, Basel, Switzerland
| | - Melody Padilla
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Brian M Suzuki
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Sandro Montefusco
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA.,Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, NA, Italy
| | - Ruben Abagyan
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Jennifer Keiser
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, P.O. Box, 4002, Basel, Switzerland. .,University of Basel, P.O. Box, 4003, Basel, Switzerland.
| | - Marina M Mourão
- Laboratório de Helmintologia e Malacologia Médica, René Rachou Institute, FIOCRUZ, Belo Horizonte, Minas Gerais, Brazil.
| | - Conor R Caffrey
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
31
|
Crusco A, Whiteland H, Baptista R, Forde-Thomas JE, Beckmann M, Mur LAJ, Nash RJ, Westwell AD, Hoffmann KF. Antischistosomal Properties of Sclareol and Its Heck-Coupled Derivatives: Design, Synthesis, Biological Evaluation, and Untargeted Metabolomics. ACS Infect Dis 2019; 5:1188-1199. [PMID: 31083889 DOI: 10.1021/acsinfecdis.9b00034] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Sclareol, a plant-derived diterpenoid widely used as a fragrance and flavoring substance, is well-known for its promising antimicrobial and anticancer properties. However, its activity on helminth parasites has not been previously reported. Here, we show that sclareol is active against larval (IC50 ≈ 13 μM), juvenile (IC50 = 5.0 μM), and adult (IC50 = 19.3 μM) stages of Schistosoma mansoni, a parasitic trematode responsible for the neglected tropical disease schistosomiasis. Microwave-assisted synthesis of Heck-coupled derivatives improved activity, with the substituents choice guided by the Matsy decision tree. The most active derivative 12 showed improved potency and selectivity on larval (IC50 ≈ 2.2 μM, selectivity index (SI) ≈ 22 in comparison to HepG2 cells), juvenile (IC50 = 1.7 μM, SI = 28.8), and adult schistosomes (IC50 = 9.4 μM, SI = 5.2). Scanning electron microscopy studies revealed that compound 12 induced blebbing of the adult worm surface at sublethal concentration (12.5 μM); moreover, the compound inhibited egg production at the lowest concentration tested (3.13 μM). The observed phenotype and data obtained by untargeted metabolomics suggested that compound 12 affects membrane lipid homeostasis by interfering with arachidonic acid metabolism. The same methodology applied to praziquantel (PZQ)-treated worms revealed sugar metabolism alterations that could be ascribed to the previously reported action of PZQ on serotonin signaling and/or effects on glycolysis. Importantly, our data suggest that compound 12 and PZQ exert different antischistosomal activities. More studies will be necessary to confirm the generated hypothesis and to progress the development of more potent antischistosomal sclareol derivatives.
Collapse
Affiliation(s)
- Alessandra Crusco
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Penglais Campus, Aberystwyth SY23 3DA, United Kingdom
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff CF10 3NB, United Kingdom
| | - Helen Whiteland
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Penglais Campus, Aberystwyth SY23 3DA, United Kingdom
| | - Rafael Baptista
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Penglais Campus, Aberystwyth SY23 3DA, United Kingdom
| | - Josephine E. Forde-Thomas
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Penglais Campus, Aberystwyth SY23 3DA, United Kingdom
| | - Manfred Beckmann
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Penglais Campus, Aberystwyth SY23 3DA, United Kingdom
| | - Luis A. J. Mur
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Penglais Campus, Aberystwyth SY23 3DA, United Kingdom
| | - Robert J. Nash
- PhytoQuest Limited, Plas Gogerddan, Aberystwyth, Ceredigion SY23 3EB, Wales, United Kingdom
| | - Andrew D. Westwell
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff CF10 3NB, United Kingdom
| | - Karl F. Hoffmann
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Penglais Campus, Aberystwyth SY23 3DA, United Kingdom
| |
Collapse
|
32
|
Lombardo FC, Pasche V, Panic G, Endriss Y, Keiser J. Life cycle maintenance and drug-sensitivity assays for early drug discovery in Schistosoma mansoni. Nat Protoc 2019; 14:461-481. [PMID: 30610241 DOI: 10.1038/s41596-018-0101-y] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Drug discovery for schistosomiasis is still limited to a handful of academic laboratories worldwide, with only a few novel antischistosomal lead compounds being actively researched. Despite recent international mobilization against the disease to stimulate and promote antischistosomal drug discovery, setting up a drug-screening flow with schistosome parasites remains challenging. Whereas numerous different protocols to obtain and cultivate schistosomes have been published, those describing the drug-screening process are scarce, and none gather together parasite cultivation and early drug discovery procedures. To help overcome this hurdle, we provide here a set of integrated methods either adapted from already-published protocols or based on our long-term experience in schistosomiasis research. Specifically, we detail the establishment and maintenance of the complex and several-week-long Schistosoma mansoni life cycle in a laboratory setting, as well as the means of retrieving and culturing the parasites at their relevant life stages. The in vitro and in vivo assays that are performed along the drug-screening cascade are also described. In these assays, which can be performed within 5 d, the effect of a drug is determined by phenotypic assessment of the parasites' viability and morphology, for which stage-specific scoring scales are proposed. Finally, the modalities for testing and evaluating a compound in vivo, constituting a procedure lasting up to 10 weeks, are presented in order to go from in vitro hit identification to the selection of early lead candidates.
Collapse
Affiliation(s)
- Flavio C Lombardo
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Valérian Pasche
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Gordana Panic
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Yvette Endriss
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Jennifer Keiser
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland. .,University of Basel, Basel, Switzerland.
| |
Collapse
|
33
|
Frahm S, Anisuzzaman A, Prodjinotho UF, Vejzagić N, Verschoor A, Prazeres da Costa C. A novel cell-free method to culture Schistosoma mansoni from cercariae to juvenile worm stages for in vitro drug testing. PLoS Negl Trop Dis 2019; 13:e0006590. [PMID: 30689639 PMCID: PMC6375649 DOI: 10.1371/journal.pntd.0006590] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 02/14/2019] [Accepted: 11/16/2018] [Indexed: 01/01/2023] Open
Abstract
Background The arsenal in anthelminthic treatment against schistosomiasis is limited and relies almost exclusively on a single drug, praziquantel (PZQ). Thus, resistance to PZQ could constitute a major threat. Even though PZQ is potent in killing adult worms, its activity against earlier stages is limited. Current in vitro drug screening strategies depend on newly transformed schistosomula (NTS) for initial hit identification, thereby limiting sensitivity to new compounds predominantly active in later developmental stages. Therefore, the aim of this study was to establish a highly standardized, straightforward and reliable culture method to generate and maintain advanced larval stages in vitro. We present here how this method can be a valuable tool to test drug efficacy at each intermediate larval stage, reducing the reliance on animal use (3Rs). Methodology/Principal findings Cercariae were mechanically transformed into skin-stage (SkS) schistosomula and successfully cultured for up to four weeks with no loss in viability in a commercially available medium. Under these serum- and cell-free conditions, development halted at the lung-stage (LuS). However, the addition of human serum (HSe) propelled further development into liver stage (LiS) worms within eight weeks. Skin and lung stages, as well as LiS, were submitted to 96-well drug screening assays using known anti-schistosomal compounds such as PZQ, oxamniquine (OXM), mefloquine (MFQ) and artemether (ART). Our findings showed stage-dependent differences in larval susceptibility to these compounds. Conclusion With this robust and highly standardized in vitro assay, important developmental stages of S. mansoni up to LiS worms can be generated and maintained over prolonged periods of time. The phenotype of LiS worms, when exposed to reference drugs, was comparable to most previously published works for ex vivo harvested adult worms. Therefore, this in vitro assay can help reduce reliance on animal experiments in search for new anti-schistosomal drugs. Schistosomiasis remains a major health threat, predominantly in developing countries. Even though there has been some progress in search of new drugs, praziquantel remains the only available drug. Probably the most important advance in the search for new drugs was in vitro transformation of cercariae and their subsequent culture. However, hit identification in compound screenings is exclusively tested in skin stage parasites and is only confirmed for more mature worms in a subsequent step. This is in part due to the lack of an easy culture system for advance-stage parasites. We present here a reliable and highly standardized way to generate LiS worms in vitro in a cell-free culture system. The inclusion of in vitro drug tests on advanced-stage parasites in initial hit identification will help to identify compounds that might otherwise be overlooked. Furthermore, the ability to continuously observe the parasite’s development in vitro will provide an important platform for a better understanding of its maturation in the human host. Taken together, this opens up new avenues to investigate the influence of specific cell types or host proteins on the development of Schistosoma mansoni and provides an additional tool to reduce animal use in future drug discovery efforts (3Rs).
Collapse
Affiliation(s)
- Sören Frahm
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München, Munich, Germany
| | - Anisuzzaman Anisuzzaman
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München, Munich, Germany
- Department of Parasitology, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Ulrich Fabien Prodjinotho
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München, Munich, Germany
| | - Nermina Vejzagić
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München, Munich, Germany
| | - Admar Verschoor
- Institute for Systemic Inflammation Research, Universität zu Lübeck, Lübeck, Germany
| | - Clarissa Prazeres da Costa
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München, Munich, Germany
- * E-mail:
| |
Collapse
|
34
|
Chawla K, Modena MM, Ravaynia PS, Lombardo FC, Leonhardt M, Panic G, Bürgel SC, Keiser J, Hierlemann A. Impedance-Based Microfluidic Assay for Automated Antischistosomal Drug Screening. ACS Sens 2018; 3:2613-2620. [PMID: 30426744 PMCID: PMC6396876 DOI: 10.1021/acssensors.8b01027] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Schistosomiasis is a neglected tropical disease, caused by parasitic worms, which affects almost 200 million people worldwide. For over 40 years, chemotherapeutic treatment has relied on the administration of praziquantel, an efficacious drug against schistosomiasis. However, concerns about developing drug resistance require the discovery of novel drug compounds. Currently, the drug-screening process is mostly based on the visual evaluation of drug effects on worm larvae in vitro by a trained operator. This manual process is extremely labor-intensive, has limited throughput, and may be affected by subjectivity of the operator evaluation. In this paper, we introduce a microfluidic platform with integrated electrodes for the automated detection of worm larvae viability using an impedance-based approach. The microfluidic analysis unit consists of two sets of electrodes and a channel of variable geometry to enable counting and size detection of single parasite larvae and the collective evaluation of the motility of the larvae as an unbiased estimator for their viability. The current platform also allows for multiplexing of the analysis units resulting in increased throughput. We used our platform to record size and motility variations of Schistosoma mansoni larvae exposed to different concentrations of mefloquine, a drug with established in vitro antischistosomal properties. The developed platform demonstrates the potential of integrated microfluidic platforms for high-throughput antischistosomal drug screening.
Collapse
Affiliation(s)
- Ketki Chawla
- ETH Zurich, Dept. of Biosystems Science and Engineering, Bio Engineering Laboratory, Basel, Switzerland
| | - Mario M. Modena
- ETH Zurich, Dept. of Biosystems Science and Engineering, Bio Engineering Laboratory, Basel, Switzerland
| | - Paolo S. Ravaynia
- ETH Zurich, Dept. of Biosystems Science and Engineering, Bio Engineering Laboratory, Basel, Switzerland
| | - Flavio C. Lombardo
- Swiss Tropical and Public Health Institute, Department of Medical Parasitology and Infection Biology, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Martin Leonhardt
- ETH Zurich, Dept. of Biosystems Science and Engineering, Bio Engineering Laboratory, Basel, Switzerland
| | - Gordana Panic
- Swiss Tropical and Public Health Institute, Department of Medical Parasitology and Infection Biology, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Sebastian C. Bürgel
- ETH Zurich, Dept. of Biosystems Science and Engineering, Bio Engineering Laboratory, Basel, Switzerland
| | - Jennifer Keiser
- Swiss Tropical and Public Health Institute, Department of Medical Parasitology and Infection Biology, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Andreas Hierlemann
- ETH Zurich, Dept. of Biosystems Science and Engineering, Bio Engineering Laboratory, Basel, Switzerland
| |
Collapse
|
35
|
Hernandez HW, Soeung M, Zorn KM, Ashoura N, Mottin M, Andrade CH, Caffrey CR, de Siqueira-Neto JL, Ekins S. High Throughput and Computational Repurposing for Neglected Diseases. Pharm Res 2018; 36:27. [PMID: 30560386 PMCID: PMC6792295 DOI: 10.1007/s11095-018-2558-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 12/09/2018] [Indexed: 12/21/2022]
Abstract
Purpose Neglected tropical diseases (NTDs) represent are a heterogeneous group of communicable diseases that are found within the poorest populations of the world. There are 23 NTDs that have been prioritized by the World Health Organization, which are endemic in 149 countries and affect more than 1.4 billion people, costing these developing economies billions of dollars annually. The NTDs result from four different causative pathogens: protozoa, bacteria, helminth and virus. The majority of the diseases lack effective treatments. Therefore, new therapeutics for NTDs are desperately needed. Methods We describe various high throughput screening and computational approaches that have been performed in recent years. We have collated the molecules identified in these studies and calculated molecular properties. Results Numerous global repurposing efforts have yielded some promising compounds for various neglected tropical diseases. These compounds when analyzed as one would expect appear drug-like. Several large datasets are also now in the public domain and this enables machine learning models to be constructed that then facilitate the discovery of new molecules for these pathogens. Conclusions In the space of a few years many groups have either performed experimental or computational repurposing high throughput screens against neglected diseases. These have identified compounds which in many cases are already approved drugs. Such approaches perhaps offer a more efficient way to develop treatments which are generally not a focus for global pharmaceutical companies because of the economics or the lack of a viable market. Other diseases could perhaps benefit from these repurposing approaches. Electronic supplementary material The online version of this article (10.1007/s11095-018-2558-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Melinda Soeung
- MD Anderson Cancer Center, University of Texas, Houston, Texas, USA
| | - Kimberley M Zorn
- Collaborations Pharmaceuticals Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina, 27606, USA
| | | | - Melina Mottin
- LabMol - Laboratory for Molecular Modeling and Drug Design Faculdade de Farmacia, Universidade Federal de Goias - UFG, Goiânia, GO, 74605-170, Brazil
| | - Carolina Horta Andrade
- LabMol - Laboratory for Molecular Modeling and Drug Design Faculdade de Farmacia, Universidade Federal de Goias - UFG, Goiânia, GO, 74605-170, Brazil
| | - Conor R Caffrey
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, California, 92093, USA
| | - Jair Lage de Siqueira-Neto
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, California, 92093, USA
| | - Sean Ekins
- Collaborations Pharmaceuticals Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina, 27606, USA.
| |
Collapse
|
36
|
An Abies procera-derived tetracyclic triterpene containing a steroid-like nucleus core and a lactone side chain attenuates in vitro survival of both Fasciola hepatica and Schistosoma mansoni. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2018; 8:465-474. [PMID: 30399512 PMCID: PMC6216039 DOI: 10.1016/j.ijpddr.2018.10.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 10/22/2018] [Accepted: 10/25/2018] [Indexed: 11/24/2022]
Abstract
Two economically and biomedically important platyhelminth species, Fasciola hepatica (liver fluke) and Schistosoma mansoni (blood fluke), are responsible for the neglected tropical diseases (NTDs) fasciolosis and schistosomiasis. Due to the absence of prophylactic vaccines, these NTDs are principally managed by the single class chemotherapies triclabendazole (F. hepatica) and praziquantel (S. mansoni). Unfortunately, liver fluke resistance to triclabendazole has been widely reported and blood fluke insensitivity/resistance to praziquantel has been observed in both laboratory settings as well as in endemic communities. Therefore, the identification of new anthelmintics is necessary for the sustainable control of these NTDs in both animal and human populations. Here, continuing our work with phytochemicals, we isolated ten triterpenoids from the mature bark of Abies species and assessed their anthelmintic activities against F. hepatica and S. mansoni larval and adult lifecycle stages. Full 1H and 13C NMR-mediated structural elucidation of the two most active triterpenoids revealed that a tetracyclic steroid-like nucleus core and a lactone side chain are associated with the observed anthelmintic effects. When compared to representative mammalian cell lines (MDBK and HepG2), the most potent triterpenoid (700015; anthelmintic EC50s range from 0.7 μM–15.6 μM) displayed anthelmintic selectivity (selectivity indices for F. hepatica: 13 for newly excysted juveniles, 46 for immature flukes, 2 for mature flukes; selectivity indices for S. mansoni: 14 for schistosomula, 9 for immature flukes, 4 for adult males and 3 for adult females) and induced severe disruption of surface membranes in both liver and blood flukes. S. mansoni egg production, a process responsible for pathology in schistosomiasis, was also severely inhibited by 700015. Together, our results describe the structural elucidation of a novel broad acting anthelmintic triterpenoid and support further investigations developing this compound into more potent analogues for the control of both fasciolosis and schistosomiasis. Abies species contain anthelmintic phytochemical triterpenoids. The triterpenoid 700015 affects larval, juvenile and adult fluke viabilities. 700015 is moderately selective against both fluke species.
Collapse
|
37
|
Computationally-guided drug repurposing enables the discovery of kinase targets and inhibitors as new schistosomicidal agents. PLoS Comput Biol 2018; 14:e1006515. [PMID: 30346968 PMCID: PMC6211772 DOI: 10.1371/journal.pcbi.1006515] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 11/01/2018] [Accepted: 09/15/2018] [Indexed: 01/31/2023] Open
Abstract
The development of novel therapeutics is urgently required for diseases where existing treatments are failing due to the emergence of resistance. This is particularly pertinent for parasitic infections of the tropics and sub-tropics, referred to collectively as neglected tropical diseases, where the commercial incentives to develop new drugs are weak. One such disease is schistosomiasis, a highly prevalent acute and chronic condition caused by a parasitic helminth infection, with three species of the genus Schistosoma infecting humans. Currently, a single 40-year old drug, praziquantel, is available to treat all infective species, but its use in mass drug administration is leading to signs of drug-resistance emerging. To meet the challenge of developing new therapeutics against this disease, we developed an innovative computational drug repurposing pipeline supported by phenotypic screening. The approach highlighted several protein kinases as interesting new biological targets for schistosomiasis as they play an essential role in many parasite’s biological processes. Focusing on this target class, we also report the first elucidation of the kinome of Schistosoma japonicum, as well as updated kinomes of S. mansoni and S. haematobium. In comparison with the human kinome, we explored these kinomes to identify potential targets of existing inhibitors which are unique to Schistosoma species, allowing us to identify novel targets and suggest approved drugs that might inhibit them. These include previously suggested schistosomicidal agents such as bosutinib, dasatinib, and imatinib as well as new inhibitors such as vandetanib, saracatinib, tideglusib, alvocidib, dinaciclib, and 22 newly identified targets such as CHK1, CDC2, WEE, PAKA, MEK1. Additionally, the primary and secondary targets in Schistosoma of those approved drugs are also suggested, allowing for the development of novel therapeutics against this important yet neglected disease. The rise of resistance through the intensive use of drugs targeted to treat specific infectious diseases means that new therapeutics are continually required. Diseases common in the tropics and sub-tropics, classified as neglected tropical diseases, suffer from a lack of new drug treatments due to the difficulty in developing new drugs and the lack of market incentive. One such disease is schistosomiasis, a major human helminth disease caused by worms from the genus Schistosoma. It is currently treated by a 40-year old drug, praziquantel, but its widespread use has led to signs of drug-resistance emerging, with no alternative effective treatments available. To meet this challenge, we have developed an innovative computational drug repurposing pipeline supported by experimental phenotypic screening. Protein kinases emerged from our pipeline as interesting new biological targets. Given that many human kinase inhibitors have been successfully applied specially in cancer therapy and kinases have conserved structures and functions, we also undertook a detailed analysis of the kinases present in all infective Schistosoma species and human host. This allowed identification of new Schistosoma-specific kinase targets and suggest approved drugs to be used for treating schistosomiasis as well as opening new avenues to treat this neglected disease.
Collapse
|
38
|
Weng HB, Chen HX, Wang MW. Innovation in neglected tropical disease drug discovery and development. Infect Dis Poverty 2018; 7:67. [PMID: 29950174 PMCID: PMC6022351 DOI: 10.1186/s40249-018-0444-1] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 05/23/2018] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Neglected tropical diseases (NTDs) are closely related to poverty and affect over a billion people in developing countries. The unmet treatment needs cause high mortality and disability thereby imposing a huge burden with severe social and economic consequences. Although coordinated by the World Health Organization, various philanthropic organizations, national governments and the pharmaceutical industry have been making efforts in improving the situation, the control of NTDs is still inadequate and extremely difficult today. The lack of safe, effective and affordable medicines is a key contributing factor. This paper reviews the recent advances and some of the challenges that we are facing in the fight against NTDs. MAIN BODY In recent years, a number of innovations have demonstrated propensity to promote drug discovery and development for NTDs. Implementation of multilateral collaborations leads to continued efforts and plays a crucial role in drug discovery. Proactive approaches and advanced technologies are urgently needed in drug innovation for NTDs. However, the control and elimination of NTDs remain a formidable task as it requires persistent international cooperation to make sustainable progresses for a long period of time. Some currently employed strategies were proposed and verified to be successful, which involve both mechanisms of 'Push' which aims at cutting the cost of research and development for industry and 'Pull' which aims at increasing market attractiveness. Coupled to this effort should be the exercise of shared responsibility globally to reduce risks, overcome obstacles and maximize benefits. Since NTDs are closely associated with poverty, it is absolutely essential that the stakeholders take concerted and long-term measures to meet multifaceted challenges by alleviating extreme poverty, strengthening social intervention, adapting climate changes, providing effective monitoring and ensuring timely delivery. CONCLUSIONS The ongoing endeavor at the global scale will ultimately benefit the patients, the countries they are living and, hopefully, the manufacturers who provide new preventive, diagnostic and therapeutic products.
Collapse
Affiliation(s)
- Hong-Bo Weng
- School of Pharmacy, Fudan University, 826 Zhangheng Road, Pudong New District, Shanghai, 201203 China
| | - Hai-Xia Chen
- School of Pharmacy, Fudan University, 826 Zhangheng Road, Pudong New District, Shanghai, 201203 China
| | - Ming-Wei Wang
- School of Pharmacy, Fudan University, 826 Zhangheng Road, Pudong New District, Shanghai, 201203 China
- The National Center for Drug Screening and the CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), 189 Guoshoujing Road, Pudong New District, Shanghai, 201203 China
- School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Pudong New District, Shanghai, 201210 China
| |
Collapse
|
39
|
Crusco A, Bordoni C, Chakroborty A, Whatley KCL, Whiteland H, Westwell AD, Hoffmann KF. Design, synthesis and anthelmintic activity of 7-keto-sempervirol analogues. Eur J Med Chem 2018; 152:87-100. [PMID: 29698860 DOI: 10.1016/j.ejmech.2018.04.032] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 04/08/2018] [Accepted: 04/15/2018] [Indexed: 10/17/2022]
Abstract
The plant-derived, diterpenoid 7-keto-sempervirol was recently reported to display moderate activity against larval stages of Schistosoma mansoni (IC50 = 19.1 μM) and Fasciola hepatica (IC50 = 17.7 μM), two related parasitic blood and liver flukes responsible for the neglected tropical diseases schistosomiasis and fascioliasis, respectively. Here, we aimed to increase the potency of 7-keto-sempervirol by total synthesis of 30 structural analogues. Subsequent screening of these new diterpenoids against juvenile and adult lifecycle stages of both parasites as well as the human HepG2 liver cell line and the bovine MDBK kidney cell line revealed structure-activity relationship trends. The most active analogue, 7d, displayed improved dual anthelmintic activity over 7-keto-sempervirol (IC50 ≈ 6 μM for larval blood flukes; IC50 ≈ 3 μM for juvenile liver flukes) and moderate selectivity (SI ≈ 4-5 for blood flukes, 8-13 for liver flukes compared to HepG2 and MDBK cells, respectively). Phenotypic studies using scanning electron microscopy revealed substantial tegumental alterations in both helminth species, supporting the hypothesis that the parasite surface is one of the main targets of this family of molecules. Further modifications of 7d could lead to greater potency and selectivity metrics resulting in a new class of broad-spectrum anthelmintic.
Collapse
Affiliation(s)
- Alessandra Crusco
- Institute of Biological, Environmental and Rural Sciences (IBERS), Penglais Campus, Aberystwyth University, Aberystwyth SY23 3DA, United Kingdom; School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff CF10 3NB, United Kingdom
| | - Cinzia Bordoni
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff CF10 3NB, United Kingdom
| | - Anand Chakroborty
- Institute of Biological, Environmental and Rural Sciences (IBERS), Penglais Campus, Aberystwyth University, Aberystwyth SY23 3DA, United Kingdom
| | - Kezia C L Whatley
- Institute of Biological, Environmental and Rural Sciences (IBERS), Penglais Campus, Aberystwyth University, Aberystwyth SY23 3DA, United Kingdom
| | - Helen Whiteland
- Institute of Biological, Environmental and Rural Sciences (IBERS), Penglais Campus, Aberystwyth University, Aberystwyth SY23 3DA, United Kingdom
| | - Andrew D Westwell
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff CF10 3NB, United Kingdom.
| | - Karl F Hoffmann
- Institute of Biological, Environmental and Rural Sciences (IBERS), Penglais Campus, Aberystwyth University, Aberystwyth SY23 3DA, United Kingdom.
| |
Collapse
|
40
|
Singh R, Beasley R, Long T, Caffrey CR. Algorithmic Mapping and Characterization of the Drug-Induced Phenotypic-Response Space of Parasites Causing Schistosomiasis. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2018; 15:469-481. [PMID: 27071187 PMCID: PMC5915339 DOI: 10.1109/tcbb.2016.2550444] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Neglected tropical diseases, especially those caused by helminths, constitute some of the most common infections of the world's poorest people. Amongst these, schistosomiasis (bilharzia or 'snail fever'), caused by blood flukes of the genus Schistosoma, ranks second only to malaria in terms of human impact: two hundred million people are infected and close to 800 million are at risk of infection. Drug screening against helminths poses unique challenges: the parasite cannot be cloned and is difficult to target using gene knockouts or RNAi. Consequently, both lead identification and validation involve phenotypic screening, where parasites are exposed to compounds whose effects are determined through the analysis of the ensuing phenotypic responses. The efficacy of leads thus identified derives from one or more or even unknown molecular mechanisms of action. The two most immediate and significant challenges that confront the state-of-the-art in this area are: the development of automated and quantitative phenotypic screening techniques and the mapping and quantitative characterization of the totality of phenotypic responses of the parasite. In this paper, we investigate and propose solutions for the latter problem in terms of the following: (1) mathematical formulation and algorithms that allow rigorous representation of the phenotypic response space of the parasite, (2) application of graph-theoretic and network analysis techniques for quantitative modeling and characterization of the phenotypic space, and (3) application of the aforementioned methodology to analyze the phenotypic space of S. mansoni - one of the etiological agents of schistosomiasis, induced by compounds that target its polo-like kinase 1 (PLK 1) gene - a recently validated drug target. In our approach, first, bio-image analysis algorithms are used to quantify the phenotypic responses of different drugs. Next, these responses are linearly mapped into a low- dimensional space using Principle Component Analysis (PCA). The phenotype space is modeled using neighborhood graphs which are used to represent the similarity amongst the phenotypes. These graphs are characterized and explored using network analysis algorithms. We present a number of results related to both the nature of the phenotypic space of the S. mansoni parasite as well as algorithmic issues encountered in constructing and analyzing the phenotypic-response space. In particular, the phenotype distribution of the parasite was found to have a distinct shape and topology. We have also quantitatively characterized the phenotypic space by varying critical model parameters. Finally, these maps of the phenotype space allows visualization and reasoning about complex relationships between putative drugs and their system-wide effects and can serve as a highly efficient paradigm for assimilating and unifying information from phenotypic screens both during lead identification and lead optimization.
Collapse
|
41
|
Abstract
In the last 2 decades, renewed attention to neglected tropical diseases (NTDs) has spurred the development of antiparasitic agents, especially in light of emerging drug resistance. The need for new drugs has required in vitro screening methods using parasite culture. Furthermore, clinical laboratories sought to correlate in vitro susceptibility methods with treatment outcomes, most notably with malaria. Parasites with their various life cycles present greater complexity than bacteria, for which standardized susceptibility methods exist. This review catalogs the state-of-the-art methodologies used to evaluate the effects of drugs on key human parasites from the point of view of drug discovery as well as the need for laboratory methods that correlate with clinical outcomes.
Collapse
|
42
|
Nur-E-Alam M, Yousaf M, Ahmed S, Al-Sheddi ES, Parveen I, Fazakerley DM, Bari A, Ghabbour HA, Threadgill MD, Whatley KCL, Hoffmann KF, Al-Rehaily AJ. Neoclerodane Diterpenoids from Reehal Fatima, Teucrium yemense. JOURNAL OF NATURAL PRODUCTS 2017; 80:1900-1908. [PMID: 28581290 DOI: 10.1021/acs.jnatprod.7b00188] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Teucrium yemense (Defl), locally known as Reehal Fatima, is a medicinal plant commonly grown in Saudi Arabia and Yemen. Phytochemical investigation of the aerial parts of T. yemense yielded six new neoclerodane diterpenoids, namely fatimanol A-E (1, 2, 3, 5, and 6) and fatimanone (4), and the known teulepicephin (7). As both the Teucrium genus and the related Lamiaceae family have previously been widely reported to possess anthelmintic and antimicrobial activities, the structural and biological characterization of the seven diterpenoids was pursued. The structures of the new compounds were elucidated from their 2D NMR and MS profiles and by comparison to related compounds. The structure of fatimanol D (5) was confirmed by X-ray crystallographic analysis. The new structures contribute to the breadth of knowledge of secondary metabolites in this genus.
Collapse
Affiliation(s)
| | | | | | | | - Ifat Parveen
- Institute of Biological, Environmental & Rural Sciences (IBERS), Aberystwyth University , Aberystwyth SY23 3DA, United Kingdom
| | - David M Fazakerley
- Institute of Biological, Environmental & Rural Sciences (IBERS), Aberystwyth University , Aberystwyth SY23 3DA, United Kingdom
| | | | | | - Michael D Threadgill
- Drug & Target Discovery, Department of Pharmacy and Pharmacology, University of Bath , Claverton Down, Bath BA2 7AY, United Kingdom
| | - Kezia C L Whatley
- Institute of Biological, Environmental & Rural Sciences (IBERS), Aberystwyth University , Aberystwyth SY23 3DA, United Kingdom
| | - Karl F Hoffmann
- Institute of Biological, Environmental & Rural Sciences (IBERS), Aberystwyth University , Aberystwyth SY23 3DA, United Kingdom
| | | |
Collapse
|
43
|
Aguiar PHN, Fernandes NMGS, Zani CL, Mourão MM. A high-throughput colorimetric assay for detection of Schistosoma mansoni viability based on the tetrazolium salt XTT. Parasit Vectors 2017; 10:300. [PMID: 28637488 PMCID: PMC5480175 DOI: 10.1186/s13071-017-2240-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 06/11/2017] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Schistosoma mansoni is a trematode parasite that causes schistosomiasis, one of the most prevalent neglected tropical diseases, leading to the loss of 2.6 million disability-adjusted life years. Praziquantel is the only drug available, and new drugs are required. The most common strategy in schistosomiasis drug discovery is the use of the schistosomula larval-stage for a pre-screen in drug sensitivity assays. However, assessing schistosomula viability by microscopy has always been a limitation to the throughput of such assays. Hence, the development of validated, robust high-throughput in vitro assays for Schistosoma with simple readouts is needed. Here, we present a simple and affordable alternative to assess schistosomula viability. The method employed is based on the hydrosoluble tetrazolium salt XTT which has been widely used in other organisms but has never been used to drug screen in schistosomes. RESULTS We showed that schistosomula reduce XTT salt to a coloured formazan product and that absorbance levels reflected the viability and parasites number. This XTT viability assay was validated for high throughput screening of compounds in schistosomula, and dose-response curves of compounds could be reproduced. CONCLUSIONS We conclude that the XTT viability assay could be applied for the screening of large compounds collections in S. mansoni and accelerate the identification of novel antischistosomal compounds.
Collapse
Affiliation(s)
| | | | - Carlos Leomar Zani
- Laboratório de Química dos Produtos Naturais, René Rachou Research Center, FIOCRUZ, Belo Horizonte, Minas Gerais Brazil
| | - Marina Moraes Mourão
- Laboratório de Helmintologia e Malacologia Médica, René Rachou Research Center, FIOCRUZ, Belo Horizonte, Minas Gerais Brazil
| |
Collapse
|
44
|
Lundstrom K. Cell-impedance-based label-free technology for the identification of new drugs. Expert Opin Drug Discov 2017; 12:335-343. [PMID: 28276704 DOI: 10.1080/17460441.2017.1297419] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Drug discovery has progressed from relatively simple binding or activity screening assays to high-throughput screening of sophisticated compound libraries with emphasis on miniaturization and automation. The development of functional assays has enhanced the success rate in discovering novel drug molecules. Many technologies, originally based on radioactive labeling, have sequentially been replaced by methods based on fluorescence labeling. Recently, the focus has switched to label-free technologies in cell-based screening assays. Areas covered: Label-free, cell-impedance-based methods comprise of different technologies including surface plasmon resonance, mass spectrometry and biosensors applied for screening of anticancer drugs, G protein-coupled receptors, receptor tyrosine kinase and virus inhibitors, drug and nanoparticle cytotoxicity. Many of the developed methods have been used for high-throughput screening in cell lines. Cell viability and morphological damage prediction have been monitored in three-dimensional spheroid human HT-29 carcinoma cells and whole Schistosomula larvae. Expert opinion: Progress in label-free, cell-impedance-based technologies has facilitated drug screening and may enhance the discovery of potential novel drug molecules through, and improve target molecule identification in, alternative signal pathways. The variety of technologies to measure cellular responses through label-free cell-impedance based approaches all support future drug development and should provide excellent assets for finding better medicines.
Collapse
|
45
|
Whisson SC, Boevink PC, Wang S, Birch PR. The cell biology of late blight disease. Curr Opin Microbiol 2016; 34:127-135. [PMID: 27723513 PMCID: PMC5340842 DOI: 10.1016/j.mib.2016.09.002] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 09/01/2016] [Accepted: 09/08/2016] [Indexed: 11/12/2022]
Abstract
The Phytophthora haustorium is a major site of secretion during infection. The host endocytic cycle contributes to biogenesis of the Extra-Haustorial Membrane. RXLR effectors manipulate host processes at diverse subcellular locations. They directly manipulate the activity or location of immune proteins. They also promote the activity of endogenous negative regulators of immunity.
Late blight, caused by the oomycete Phytophthora infestans, is a major global disease of potato and tomato. Cell biology is teaching us much about the developmental stages associated with infection, especially the haustorium, which is a site of intimate interaction and molecular exchange between pathogen and host. Recent observations suggest a role for the plant endocytic cycle in specific recruitment of host proteins to the Extra-Haustorial Membrane, emphasising the unique nature of this membrane compartment. In addition, there has been a strong focus on the activities of RXLR effectors, which are delivered into plant cells to modulate and manipulate host processes. RXLR effectors interact directly with diverse plant proteins at a range of subcellular locations to promote disease.
Collapse
Affiliation(s)
- Stephen C Whisson
- Cell and Molecular Sciences, James Hutton Institute, Errol Road, Invergowrie, Dundee DD2 5DA, UK
| | - Petra C Boevink
- Cell and Molecular Sciences, James Hutton Institute, Errol Road, Invergowrie, Dundee DD2 5DA, UK
| | - Shumei Wang
- Division of Plant Sciences, University of Dundee, James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Paul Rj Birch
- Cell and Molecular Sciences, James Hutton Institute, Errol Road, Invergowrie, Dundee DD2 5DA, UK; Division of Plant Sciences, University of Dundee, James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK.
| |
Collapse
|
46
|
Discovery of Novel Antischistosomal Agents by Molecular Modeling Approaches. Trends Parasitol 2016; 32:874-886. [PMID: 27593339 DOI: 10.1016/j.pt.2016.08.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 06/20/2016] [Accepted: 08/05/2016] [Indexed: 02/07/2023]
Abstract
Schistosomiasis, a chronic neglected tropical disease caused by Schistosoma worms, is reported in nearly 80 countries. Although the disease affects approximately 260 million people, the treatment relies exclusively on praziquantel, a drug discovered in the mid-1970s that lacks efficacy against the larval stages of the parasite. In addition, the dependence on a single treatment has raised concerns about drug resistance, and reduced susceptibility has already been found in laboratory and field isolates. Therefore, novel therapies for schistosomiasis are needed, and several approaches have been used to that end. One of these strategies, molecular modeling, has been increasingly integrated with experimental techniques, resulting in the discovery of novel antischistosomal agents.
Collapse
|
47
|
Neves BJ, Dantas RF, Senger MR, Melo-Filho CC, Valente WCG, de Almeida ACM, Rezende-Neto JM, Lima EFC, Paveley R, Furnham N, Muratov E, Kamentsky L, Carpenter AE, Braga RC, Silva-Junior FP, Andrade CH. Discovery of New Anti-Schistosomal Hits by Integration of QSAR-Based Virtual Screening and High Content Screening. J Med Chem 2016; 59:7075-88. [PMID: 27396732 PMCID: PMC5844225 DOI: 10.1021/acs.jmedchem.5b02038] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Schistosomiasis is a debilitating neglected tropical disease, caused by flatworms of Schistosoma genus. The treatment relies on a single drug, praziquantel (PZQ), making the discovery of new compounds extremely urgent. In this work, we integrated QSAR-based virtual screening (VS) of Schistosoma mansoni thioredoxin glutathione reductase (SmTGR) inhibitors and high content screening (HCS) aiming to discover new antischistosomal agents. Initially, binary QSAR models for inhibition of SmTGR were developed and validated using the Organization for Economic Co-operation and Development (OECD) guidance. Using these models, we prioritized 29 compounds for further testing in two HCS platforms based on image analysis of assay plates. Among them, 2-[2-(3-methyl-4-nitro-5-isoxazolyl)vinyl]pyridine and 2-(benzylsulfonyl)-1,3-benzothiazole, two compounds representing new chemical scaffolds have activity against schistosomula and adult worms at low micromolar concentrations and therefore represent promising antischistosomal hits for further hit-to-lead optimization.
Collapse
Affiliation(s)
- Bruno J. Neves
- LabMol—Laboratory for Molecular Modeling and Drug Design, Faculdade de Farmácia, Universidade Federal de Goiás, Rua 240, Qd.87, Setor Leste Universitário, Goiânia 74605-510, Brazil
| | - Rafael F. Dantas
- LaBECFar—Laboratório de Bioquímica Experimental e Computacional de Fármacos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Av. Brasil, 4365, Rio de Janeiro 21040-900, Rio de Janeiro, Brazil
| | - Mario R. Senger
- LaBECFar—Laboratório de Bioquímica Experimental e Computacional de Fármacos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Av. Brasil, 4365, Rio de Janeiro 21040-900, Rio de Janeiro, Brazil
| | - Cleber C. Melo-Filho
- LabMol—Laboratory for Molecular Modeling and Drug Design, Faculdade de Farmácia, Universidade Federal de Goiás, Rua 240, Qd.87, Setor Leste Universitário, Goiânia 74605-510, Brazil
| | - Walter C. G. Valente
- LaBECFar—Laboratório de Bioquímica Experimental e Computacional de Fármacos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Av. Brasil, 4365, Rio de Janeiro 21040-900, Rio de Janeiro, Brazil
| | - Ana C. M. de Almeida
- LaBECFar—Laboratório de Bioquímica Experimental e Computacional de Fármacos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Av. Brasil, 4365, Rio de Janeiro 21040-900, Rio de Janeiro, Brazil
| | - João M. Rezende-Neto
- LaBECFar—Laboratório de Bioquímica Experimental e Computacional de Fármacos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Av. Brasil, 4365, Rio de Janeiro 21040-900, Rio de Janeiro, Brazil
| | - Elid F. C. Lima
- LaBECFar—Laboratório de Bioquímica Experimental e Computacional de Fármacos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Av. Brasil, 4365, Rio de Janeiro 21040-900, Rio de Janeiro, Brazil
| | - Ross Paveley
- Department of Infection and Immunity, London School of Hygiene and Tropical Medicine, London WC1E 7HT, United Kingdom
| | - Nicholas Furnham
- Department of Infection and Immunity, London School of Hygiene and Tropical Medicine, London WC1E 7HT, United Kingdom
| | - Eugene Muratov
- Laboratory for Molecular Modeling, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill North Carolina 27955-7568, United States
| | - Lee Kamentsky
- Imaging Platform, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts 02142, United States
| | - Anne E. Carpenter
- Imaging Platform, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts 02142, United States
| | - Rodolpho C. Braga
- LabMol—Laboratory for Molecular Modeling and Drug Design, Faculdade de Farmácia, Universidade Federal de Goiás, Rua 240, Qd.87, Setor Leste Universitário, Goiânia 74605-510, Brazil
| | - Floriano P. Silva-Junior
- LaBECFar—Laboratório de Bioquímica Experimental e Computacional de Fármacos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Av. Brasil, 4365, Rio de Janeiro 21040-900, Rio de Janeiro, Brazil
| | - Carolina Horta Andrade
- LabMol—Laboratory for Molecular Modeling and Drug Design, Faculdade de Farmácia, Universidade Federal de Goiás, Rua 240, Qd.87, Setor Leste Universitário, Goiânia 74605-510, Brazil
| |
Collapse
|
48
|
Keiser J, Panic G, Adelfio R, Cowan N, Vargas M, Scandale I. Evaluation of an FDA approved library against laboratory models of human intestinal nematode infections. Parasit Vectors 2016; 9:376. [PMID: 27363703 PMCID: PMC4929775 DOI: 10.1186/s13071-016-1616-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 06/01/2016] [Indexed: 01/13/2023] Open
Abstract
Background Treatment options for infections with soil-transmitted helminths (STH) - Ascaris lumbricoides, Trichuris trichiura and the two hookworm species, Ancylostoma duodenale and Necator americanus - are limited despite their considerable global health burden. The aim of the present study was to test the activity of an openly available FDA library against laboratory models of human intestinal nematode infections. Methods All 1,600 drugs were first screened against Ancylostoma ceylanicum third-stage larvae (L3). Active compounds were scrutinized and toxic compounds, drugs indicated solely for topical use, and already well-studied anthelmintics were excluded. The remaining hit compounds were tested in parallel against Trichuris muris first-stage larvae (L1), Heligmosomoides polygyrus third-stage larvae (L3), and adult stages of the three species in vitro. In vivo studies were performed in the H. polygyrus and T. muris mice models. Results Fifty-four of the 1,600 compounds tested revealed an activity of > 60 % against A. ceylanicum L3 (hit rate of 3.4 %), following incubation at 200 μM for 72 h. Twelve compounds progressed into further screens. Adult A. ceylanicum were the least affected (1/12 compounds active at 50 μM), while eight of the 12 test compounds revealed activity against T. muris L1 (100 μM) and adults (50 μM), and H. polygyrus L3 (200 μM). Trichlorfon was the only compound active against all stages of A. ceylanicum, H. polygyrus and T. muris. In addition, trichlorfon achieved high worm burden reductions of 80.1 and 98.9 %, following a single oral dose of 200 mg/kg in the T. muris and H. polygyrus mouse model, respectively. Conclusion Drug screening on the larval stages of intestinal parasitic nematodes is feasible using small libraries and important given the empty drug discovery and development pipeline for STH infections. Differences and commonalities in drug activities across the different STH species and stages were confirmed. Hits identified might serve as a starting point for drug discovery for STH. Electronic supplementary material The online version of this article (doi:10.1186/s13071-016-1616-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jennifer Keiser
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland. .,University of Basel, Basel, Switzerland.
| | - Gordana Panic
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Roberto Adelfio
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Noemi Cowan
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Mireille Vargas
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Ivan Scandale
- Drugs for Neglected Disease initiative, Chemin Louis-Dunant 15, 1202, Genève, Switzerland
| |
Collapse
|
49
|
Pharmacological profiling an abundantly expressed schistosome serotonergic GPCR identifies nuciferine as a potent antagonist. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2016; 6:364-370. [PMID: 27397763 PMCID: PMC5196489 DOI: 10.1016/j.ijpddr.2016.06.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 06/20/2016] [Indexed: 12/22/2022]
Abstract
5-hydroxytryptamine (5-HT) is a key regulator of muscle contraction in parasitic flatworms. In Schistosoma mansoni, the myoexcitatory action of 5-HT is effected through activation of a serotonergic GPCR (Sm.5HTRL), prioritizing pharmacological characterization of this target for anthelmintic drug discovery. Here, we have examined the effects of several aporphine alkaloids on the signaling activity of a heterologously expressed Sm.5HTRL construct using a cAMP biosensor assay. Four structurally related natural products - nuciferine, D-glaucine, boldine and bulbocapnine - were demonstrated to block Sm.5HTRL evoked cAMP generation with the potency of GPCR blockade correlating well with the ability of each drug to inhibit contractility of schistosomule larvae. Nuciferine was also effective at inhibiting both basal and 5-HT evoked motility of adult schistosomes. These data advance our understanding of structure-affinity relationships at Sm.5HTRL, and demonstrate the effectiveness of Sm.5HTRL antagonists as hypomotility-evoking drugs across different parasite life cycle stages.
Collapse
|
50
|
Melo-Filho CC, Dantas RF, Braga RC, Neves BJ, Senger MR, Valente WCG, Rezende-Neto JM, Chaves WT, Muratov EN, Paveley RA, Furnham N, Kamentsky L, Carpenter AE, Silva-Junior FP, Andrade CH. QSAR-Driven Discovery of Novel Chemical Scaffolds Active against Schistosoma mansoni. J Chem Inf Model 2016; 56:1357-72. [PMID: 27253773 DOI: 10.1021/acs.jcim.6b00055] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Schistosomiasis is a neglected tropical disease that affects millions of people worldwide. Thioredoxin glutathione reductase of Schistosoma mansoni (SmTGR) is a validated drug target that plays a crucial role in the redox homeostasis of the parasite. We report the discovery of new chemical scaffolds against S. mansoni using a combi-QSAR approach followed by virtual screening of a commercial database and confirmation of top ranking compounds by in vitro experimental evaluation with automated imaging of schistosomula and adult worms. We constructed 2D and 3D quantitative structure-activity relationship (QSAR) models using a series of oxadiazoles-2-oxides reported in the literature as SmTGR inhibitors and combined the best models in a consensus QSAR model. This model was used for a virtual screening of Hit2Lead set of ChemBridge database and allowed the identification of ten new potential SmTGR inhibitors. Further experimental testing on both shistosomula and adult worms showed that 4-nitro-3,5-bis(1-nitro-1H-pyrazol-4-yl)-1H-pyrazole (LabMol-17) and 3-nitro-4-{[(4-nitro-1,2,5-oxadiazol-3-yl)oxy]methyl}-1,2,5-oxadiazole (LabMol-19), two compounds representing new chemical scaffolds, have high activity in both systems. These compounds will be the subjects for additional testing and, if necessary, modification to serve as new schistosomicidal agents.
Collapse
Affiliation(s)
- Cleber C Melo-Filho
- LabMol-Laboratory for Molecular Modeling and Drug Design, Faculty of Pharmacy, Federal University of Goias , Rua 240, Qd.87, Goiania, GO 74605-510, Brazil
| | - Rafael F Dantas
- Laboratory of Experimental and Computational Biochemistry of Drugs, Oswaldo Cruz Institute , Av. Brasil, 4365, Rio de Janeiro, RJ 21040-900, Brazil
| | - Rodolpho C Braga
- LabMol-Laboratory for Molecular Modeling and Drug Design, Faculty of Pharmacy, Federal University of Goias , Rua 240, Qd.87, Goiania, GO 74605-510, Brazil
| | - Bruno J Neves
- LabMol-Laboratory for Molecular Modeling and Drug Design, Faculty of Pharmacy, Federal University of Goias , Rua 240, Qd.87, Goiania, GO 74605-510, Brazil
| | - Mario R Senger
- Laboratory of Experimental and Computational Biochemistry of Drugs, Oswaldo Cruz Institute , Av. Brasil, 4365, Rio de Janeiro, RJ 21040-900, Brazil
| | - Walter C G Valente
- Laboratory of Experimental and Computational Biochemistry of Drugs, Oswaldo Cruz Institute , Av. Brasil, 4365, Rio de Janeiro, RJ 21040-900, Brazil
| | - João M Rezende-Neto
- Laboratory of Experimental and Computational Biochemistry of Drugs, Oswaldo Cruz Institute , Av. Brasil, 4365, Rio de Janeiro, RJ 21040-900, Brazil
| | - Willian T Chaves
- Laboratory of Experimental and Computational Biochemistry of Drugs, Oswaldo Cruz Institute , Av. Brasil, 4365, Rio de Janeiro, RJ 21040-900, Brazil
| | - Eugene N Muratov
- Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina , Chapel Hill, North Carolina 27599, United States.,Department of Chemical Technology, Odessa National Polytechnic University , 1. Shevchenko Ave., Odessa, 65000, Ukraine
| | - Ross A Paveley
- Department of Pathogen Molecular Biology & Department of Infection and Immunity, London School of Hygiene and Tropical Medicine , London WC1E 7HT, United Kingdom
| | - Nicholas Furnham
- Department of Pathogen Molecular Biology & Department of Infection and Immunity, London School of Hygiene and Tropical Medicine , London WC1E 7HT, United Kingdom
| | - Lee Kamentsky
- Imaging Platform, Broad Institute of Massachusetts Institute of Technology and Harvard , Cambridge, Massachusetts 02142, United States
| | - Anne E Carpenter
- Imaging Platform, Broad Institute of Massachusetts Institute of Technology and Harvard , Cambridge, Massachusetts 02142, United States
| | - Floriano P Silva-Junior
- Laboratory of Experimental and Computational Biochemistry of Drugs, Oswaldo Cruz Institute , Av. Brasil, 4365, Rio de Janeiro, RJ 21040-900, Brazil
| | - Carolina H Andrade
- LabMol-Laboratory for Molecular Modeling and Drug Design, Faculty of Pharmacy, Federal University of Goias , Rua 240, Qd.87, Goiania, GO 74605-510, Brazil
| |
Collapse
|