1
|
Platt RN, Enabulele EE, Adeyemi E, Agbugui MO, Ajakaye OG, Amaechi EC, Ejikeugwu CE, Igbeneghu C, Njom VS, Dlamini P, Arya GA, Diaz R, Rabone M, Allan F, Webster B, Emery A, Rollinson D, Anderson TJC. Genomic data reveal a north-south split and introgression history of blood fluke ( Schistosoma haematobium) populations from across Africa. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.06.606828. [PMID: 39149400 PMCID: PMC11326172 DOI: 10.1101/2024.08.06.606828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
The human parasitic fluke, Schistosoma haematobium hybridizes with the livestock parasite S. bovis in the laboratory, but the extent of hybridization in nature is unclear. We analyzed 34.6 million single nucleotide variants in 162 samples from 18 African countries, revealing a sharp genetic discontinuity between northern and southern S. haematobium. We found no evidence for recent hybridization. Instead the data reveal admixture events that occurred 257-879 generations ago in northern S. haematobium populations. Fifteen introgressed S. bovis genes are approaching fixation in northern S. haematobium with four genes potentially driving adaptation. We identified 19 regions that were resistant to introgression; these were enriched on the sex chromosomes. These results (i) demonstrate strong barriers to gene flow between these species, (ii) indicate that hybridization may be less common than currently envisaged, but (iii) reveal profound genomic consequences of interspecific hybridization between schistosomes of medical and veterinary importance.
Collapse
Affiliation(s)
- Roy N Platt
- Texas Biomedical Research Institute, San Antonio TX, United States
| | - Egie E Enabulele
- Texas Biomedical Research Institute, San Antonio TX, United States
| | - Ehizogie Adeyemi
- Department of Pathology, University of Benin Teaching Hospital, Edo State, Nigeria
| | - Marian O Agbugui
- Department of Biological Sciences, Edo State University, Uzairue, Nigeria
| | | | - Ebube C Amaechi
- Department of Zoology, University of Ilorin, Kwara State, Nigeria
| | | | - Christopher Igbeneghu
- Department of Medical Laboratory Science, Ladoke Akintola University of Technology, Nigeria
| | - Victor S Njom
- Department of Applied Biology and Biotechnology, Enugu State University of Science and Technology, Nigeria
| | | | - Grace A Arya
- Texas Biomedical Research Institute, San Antonio TX, United States
| | - Robbie Diaz
- Texas Biomedical Research Institute, San Antonio TX, United States
| | - Muriel Rabone
- Science Department, Natural History Museum, London, United Kingdom
| | - Fiona Allan
- Science Department, Natural History Museum, London, United Kingdom
| | - Bonnie Webster
- Science Department, Natural History Museum, London, United Kingdom
| | - Aidan Emery
- Science Department, Natural History Museum, London, United Kingdom
| | - David Rollinson
- Science Department, Natural History Museum, London, United Kingdom
- Global Schistosomiasis Alliance, London, United Kingdom
| | | |
Collapse
|
2
|
Suwannahitatorn P, Mungthin M, Subrungruang I, Charoensuk L, Aksorn N, Buathong S. Study of the population genetic structure of Opisthorchis-like eggs in northern Thailand using mitochondrial genes. PLoS Negl Trop Dis 2024; 18:e0012445. [PMID: 39178314 PMCID: PMC11376514 DOI: 10.1371/journal.pntd.0012445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 09/05/2024] [Accepted: 08/08/2024] [Indexed: 08/25/2024] Open
Abstract
BACKGROUND Opisthorchis-like eggs are a public health problem in northern and northeastern Thailand. However, the genetic epidemiology and structure of these parasites in northern Thailand are unknown. Thus, this study investigated their population genetic structure using cytochrome c oxidase subunit 1 (cox1) and NADH dehydrogenase subunit 1 (nad1) nucleotide sequences. METHODOLOGY/PRINCIPAL FINDINGS A study was conducted in the hill tribe regions of Chiang Mai Province, northern Thailand. Internal transcribed spacer 2 polymerase chain reaction and restriction fragment length polymorphism were used to distinguish 205 positive feces samples for Opisthorchis-like eggs. The results showed that the prevalence of O. viverrini and Haplorchis taichui was 10.5% and 38.2%, respectively, and the co-infection rate was 37.2%. To determine the genetic structure of O. viverrini and H. taichui using cox1 and nad1 genes, genetic analysis was performed using 30 randomly chosen fecal samples for Opisthorchis-like eggs. Pairwise FST analysis indicated that O. viverrini and H. taichui displayed nonsignificant genetic differentiation within Chiang Mai Province and between interpopulations from different geographic areas. Moreover, within the intrapopulation in Chiang Mai Province, cox1 presented higher gene flow than nad1 in O. viverrini, while nad1 demonstrated higher gene flow than cox1 in H. taichui. The neutrality tests based on Fu's Fs indicated population expansion and selective sweep from bottleneck or hitchhiking in O. viverrini and H. taichui populations, supported by haplotype network patterns. Phylogenetic tree analysis based on cox1 and nad1 revealed the monophyly of O. viverrini and H. taichui and genetic relationships with other isolates collected from Thailand, Lao People's Democratic Republic (PDR), and Vietnam. CONCLUSIONS/SIGNIFICANCE This study investigated the molecular discrimination and genetic structure of Opisthorchis-like eggs in northern Thailand. The genetic information derived from this study could be associated with the background, molecular epidemiology, and disease severity of these parasites.
Collapse
Affiliation(s)
- Picha Suwannahitatorn
- Department of Parasitology, Phramongkutklao College of Medicine, Ratchathewi, Bangkok, Thailand
| | - Mathirut Mungthin
- Department of Parasitology, Phramongkutklao College of Medicine, Ratchathewi, Bangkok, Thailand
| | - Ittisak Subrungruang
- Department of Clinical Pathology, Faculty of Medicine Vajira Hospital, Navamindradhiraj University, Dusit, Bangkok, Thailand
| | - Lakhanawan Charoensuk
- Department of Clinical Pathology, Faculty of Medicine Vajira Hospital, Navamindradhiraj University, Dusit, Bangkok, Thailand
| | - Nithikoon Aksorn
- Department of Clinical Pathology, Faculty of Medicine Vajira Hospital, Navamindradhiraj University, Dusit, Bangkok, Thailand
| | - Saiwasan Buathong
- Department of Clinical Pathology, Faculty of Medicine Vajira Hospital, Navamindradhiraj University, Dusit, Bangkok, Thailand
| |
Collapse
|
3
|
Tembo R, Muleya W, Zulu M, Mwaba F, Monde N, Mukubesa AN, Ndebe J, Moonga L, Phiri AM. Genetic diversity and population genetics of Schistosoma haematobium isolated from children in Lusaka and Siavonga districts, Zambia. Parasitol Res 2024; 123:272. [PMID: 39012570 DOI: 10.1007/s00436-024-08297-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 07/09/2024] [Indexed: 07/17/2024]
Abstract
Urogenital schistosomiasis remains a pervasive health challenge in rural Zambian communities. This study explores the molecular epidemiology and genetic diversity of Schistosoma haematobium using mitochondrial genes (cox1 and nadh1). Urine samples from 421 children in Siavonga and Lusaka districts, Zambia, were collected between December 2020 and February 2022. Microscopy and DNA extraction facilitated the identification of S. haematobium, followed by amplification, sequencing, and phylogenetic analysis of cox1 and nadh1 genes. Phylogenetic analysis revealed clustering with samples from mainland African countries, emphasizing shared haplotypes. Both mitochondrial genes exhibited substantial diversity, with 5 haplotypes from 37 cox1 sequences and 12 haplotypes from 23 nadh1 sequences. High haplotype diversity (0.621-0.808) and low nucleotide diversity (0.00181-0.03288) were observed. Siavonga and Lusaka districts shared the majority of S. haematobium haplotypes. Molecular variance and genetic differentiation analysis indicated variations within populations rather than between populations (cox1: -0.025, nadh1: 0.01646). These findings suggest a limited differentiation between S. haematobium populations in Siavonga and Lusaka, potentially indicating gene flow. Tajima's test revealed negative values, indicating a departure from neutrality, introduction of rare alleles, and recent population expansion. This study contributes essential insights into S. haematobium population genetics, crucial for effective urogenital schistosomiasis control in Zambia.
Collapse
Affiliation(s)
- Rabecca Tembo
- Department of Pathology and Microbiology, School of Medicine, University of Zambia, P.O. Box, 50110, Lusaka, Zambia.
- Department of Clinical Studies, School of Veterinary Medicine, University of Zambia, P.O. Box 32379, Lusaka, Zambia.
- Africa Centre of Excellence for Infectious Diseases of Humans and Animals, University of Zambia, P.O. Box 32379, Lusaka, Zambia.
| | - Walter Muleya
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Zambia, P.O. Box 32379, Lusaka, Zambia
| | - Mildred Zulu
- Department of Pathology and Microbiology, School of Medicine, University of Zambia, P.O. Box, 50110, Lusaka, Zambia
- Africa Centre of Excellence for Infectious Diseases of Humans and Animals, University of Zambia, P.O. Box 32379, Lusaka, Zambia
| | - Florence Mwaba
- Department of Pathology and Microbiology, School of Medicine, University of Zambia, P.O. Box, 50110, Lusaka, Zambia
- Africa Centre of Excellence for Infectious Diseases of Humans and Animals, University of Zambia, P.O. Box 32379, Lusaka, Zambia
| | - Ngula Monde
- Department of Biomedical Sciences, Tropical Diseases Research Centre, P.O. Box 71769, Ndola, Zambia
- Africa Centre of Excellence for Infectious Diseases of Humans and Animals, University of Zambia, P.O. Box 32379, Lusaka, Zambia
| | - Andrew N Mukubesa
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, P.O. Box 32379, Lusaka, Zambia
| | - Joseph Ndebe
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, P.O. Box 32379, Lusaka, Zambia
| | - Ladslav Moonga
- Department of Paraclinical Studies, School of Veterinary Medicine, University of Zambia, P.O Box 32379, Lusaka, Zambia
| | - Andrew M Phiri
- Department of Clinical Studies, School of Veterinary Medicine, University of Zambia, P.O. Box 32379, Lusaka, Zambia
- Africa Centre of Excellence for Infectious Diseases of Humans and Animals, University of Zambia, P.O. Box 32379, Lusaka, Zambia
| |
Collapse
|
4
|
Ajakaye OG, Enabulele EE, Balogun JB, Oyeyemi OT, Grigg ME. Extant interspecific hybridization among trematodes within the Schistosoma haematobium species complex in Nigeria. PLoS Negl Trop Dis 2024; 18:e0011472. [PMID: 38620029 PMCID: PMC11045100 DOI: 10.1371/journal.pntd.0011472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 04/25/2024] [Accepted: 03/22/2024] [Indexed: 04/17/2024] Open
Abstract
BACKGROUND Natural interspecific hybridization between the human parasite (Schistosoma haematobium [Sh]) and bovine parasites (Schistosoma bovis [Sb], Schistosoma curassoni [Sc]) is increasingly reported in Africa. We developed a multi-locus PCR DNA-Seq strategy that amplifies two unlinked nuclear (transITS, BF) and two linked organellar genome markers (CO1, ND5) to genotype S. haematobium eggs collected from infected people in Ile Oluji/Oke Igbo, Ondo State (an agrarian community) and Kachi, Jigawa State (a pastoral community) in Southwestern and Northern Nigeria, respectively. PRINCIPAL FINDINGS Out of a total of 219 urine samples collected, 57 were positive for schistosomes. All patients from Jigawa state possessed an Sh mitochondrial genome and were infected with a genetic profile consistent with an Sh x Sb hybrid based on sequences obtained at CO1, ND5, transITS and BF nuclear markers. Whereas samples collected from Ondo state were more varied. Mitonuclear discordance was observed in all 17 patients, worms possessed an Sb mitochondrial genome but one of four different genetic profiles at the nuclear markers, either admixed (heterozygous between Sh x Sc or Sh x Sb) at both markers (n = 10), Sh at BF and admixed at transITS (Sh x Sc) (n = 5), admixed (Sh x Sc) at BF and homozygous Sc at transITS (n = 1) or homozygous Sh at BF and homozygous Sc at transITS (n = 1). SIGNIFICANCE Previous work suggested that zoonotic transmission of S. bovis in pastoral communities, where humans and animals share a common water source, is a driving factor facilitating interspecific hybridization. However, our data showed that all samples were hybrids, with greater diversity identified in Southwestern Nigeria, a non-pastoral site. Further, one patient possessed an S. bovis mitochondrial genome but was homozygous for S. haematobium at BF and homozygous for S. curassoni at transITS supporting at least two separate backcrosses in its origin, suggesting that interspecific hybridization may be an ongoing process.
Collapse
Affiliation(s)
- Oluwaremilekun G. Ajakaye
- Molecular Parasitology Section, Laboratory of Parasitic Diseases, NIAID, National Institutes of Health, Bethesda Maryland, United States of America
- Department of Animal and Environmental Biology, Adekunle Ajasin University, Akungba Akoko, Nigeria
| | - Elisha E. Enabulele
- Disease Intervention and Prevention Program, Biomedical Research Institute, San Antonio, Texas, United States of America
| | - Joshua B. Balogun
- Department of Biological Sciences Federal University, Dutse, Nigeria
| | - Oyetunde T. Oyeyemi
- Department of Biosciences and Biotechnology, University of Medical Sciences, Ondo, Nigeria
| | - Michael E. Grigg
- Molecular Parasitology Section, Laboratory of Parasitic Diseases, NIAID, National Institutes of Health, Bethesda Maryland, United States of America
| |
Collapse
|
5
|
Archer J, Yeo SM, Gadd G, Pennance T, Cunningham LJ, Juhàsz A, Jones S, Chammudzi P, Kapira DR, Lally D, Namacha G, Mainga B, Makaula P, LaCourse JE, Kayuni SA, Musaya J, Stothard JR, Webster BL. Development, validation, and pilot application of a high throughput molecular xenomonitoring assay to detect Schistosoma mansoni and other trematode species within Biomphalaria freshwater snail hosts. CURRENT RESEARCH IN PARASITOLOGY & VECTOR-BORNE DISEASES 2024; 5:100174. [PMID: 38618156 PMCID: PMC11010794 DOI: 10.1016/j.crpvbd.2024.100174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/27/2024] [Accepted: 03/14/2024] [Indexed: 04/16/2024]
Abstract
Schistosomiasis is a neglected tropical disease (NTD) caused by infection with parasitic trematodes of the genus Schistosoma that can lead to debilitating morbidity and mortality. The World Health Organization recommend molecular xenomonitoring of Biomphalaria spp. freshwater snail intermediate hosts of Schistosoma mansoni to identify highly focal intestinal schistosomiasis transmission sites and monitor disease transmission, particularly in low-endemicity areas. A standardised protocol to do this, however, is needed. Here, two previously published primer sets were selected to develop and validate a multiplex molecular xenomonitoring end-point PCR assay capable of detecting S. mansoni infections within individual Biomphalaria spp. missed by cercarial shedding. The assay proved highly sensitive and highly specific in detecting and amplifying S. mansoni DNA and also proved highly sensitive in detecting and amplifying non-S. mansoni trematode DNA. The optimised assay was then used to screen Biomphalaria spp. collected from a S. mansoni-endemic area for infection and successfully detected S. mansoni infections missed by cercarial shedding as well as infections with non-S. mansoni trematodes. The continued development and use of molecular xenomonitoring assays such as this will aid in improving disease control efforts, significantly reducing disease-related morbidities experienced by those in schistosomiasis-endemic areas.
Collapse
Affiliation(s)
- John Archer
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
- Wolfson Wellcome Biomedical Laboratories, Department of Zoology, Natural History Museum, Cromwell Road, London, SW7 5HD, UK
| | - Shi Min Yeo
- Wolfson Wellcome Biomedical Laboratories, Department of Zoology, Natural History Museum, Cromwell Road, London, SW7 5HD, UK
- Department of Clinical Research, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Grace Gadd
- Wolfson Wellcome Biomedical Laboratories, Department of Zoology, Natural History Museum, Cromwell Road, London, SW7 5HD, UK
- Department of Clinical Research, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Tom Pennance
- Wolfson Wellcome Biomedical Laboratories, Department of Zoology, Natural History Museum, Cromwell Road, London, SW7 5HD, UK
- College of Osteopathic Medicine of the Pacific – Northwest, Western University of Health Sciences, Lebanon, OR, 97355, USA
| | - Lucas J. Cunningham
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Alexandra Juhàsz
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
- Institute of Medical Microbiology, Semmelweis University, Budapest, H-1089, Hungary
| | - Sam Jones
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Priscilla Chammudzi
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Queen Elizabeth Central Hospital, Blantyre, P.O. Box 30096, Malawi
- Department of Pathology, School of Medicine and Oral Health, Kamuzu University of Health Sciences (KUHeS), Blantyre, 360, Malawi
| | - Donales R. Kapira
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Queen Elizabeth Central Hospital, Blantyre, P.O. Box 30096, Malawi
- Department of Pathology, School of Medicine and Oral Health, Kamuzu University of Health Sciences (KUHeS), Blantyre, 360, Malawi
| | - David Lally
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Queen Elizabeth Central Hospital, Blantyre, P.O. Box 30096, Malawi
- Department of Pathology, School of Medicine and Oral Health, Kamuzu University of Health Sciences (KUHeS), Blantyre, 360, Malawi
| | - Gladys Namacha
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Queen Elizabeth Central Hospital, Blantyre, P.O. Box 30096, Malawi
- Department of Pathology, School of Medicine and Oral Health, Kamuzu University of Health Sciences (KUHeS), Blantyre, 360, Malawi
| | - Bright Mainga
- Laboratory Department, Mangochi District Hospital, Mangochi, P.O. Box 42, Malawi
| | - Peter Makaula
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Queen Elizabeth Central Hospital, Blantyre, P.O. Box 30096, Malawi
| | - James E. LaCourse
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Sekeleghe A. Kayuni
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Queen Elizabeth Central Hospital, Blantyre, P.O. Box 30096, Malawi
- Department of Pathology, School of Medicine and Oral Health, Kamuzu University of Health Sciences (KUHeS), Blantyre, 360, Malawi
| | - Janelisa Musaya
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Queen Elizabeth Central Hospital, Blantyre, P.O. Box 30096, Malawi
- Department of Pathology, School of Medicine and Oral Health, Kamuzu University of Health Sciences (KUHeS), Blantyre, 360, Malawi
| | - J. Russell Stothard
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Bonnie L. Webster
- Wolfson Wellcome Biomedical Laboratories, Department of Zoology, Natural History Museum, Cromwell Road, London, SW7 5HD, UK
| |
Collapse
|
6
|
Zhao S, Zhang Q, Wang X, Li W, Juma S, Berquist R, Zhang J, Yang K. Development and performance of recombinase-aided amplification (RAA) assay for detecting Schistosoma haematobium DNA in urine samples. Heliyon 2023; 9:e23031. [PMID: 38144328 PMCID: PMC10746445 DOI: 10.1016/j.heliyon.2023.e23031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 11/17/2023] [Accepted: 11/24/2023] [Indexed: 12/26/2023] Open
Abstract
Rapid diagnosis of urogenital schistosomiasis caused by Schistosoma haematobium requires an accurate and timely assay, especially for low-intensity S. haematobium infection cases and in non-endemic areas. The mitochondrial cytochrome c oxidase 1 (cox1) gene fragment of S. haematobium was selected as detection target as this short fragment, which can be rapidly sequenced and yet possess good diagnostic resolution. A pair of primers and a fluorescent probe were designed according to the principle of recombinase-aided amplification (RAA), which was subsequently optimized and applied as an S. haematobium-specific RAA assay. Its diagnostic performance was validated for sensitivity and specificity in comparison to microscopy-based egg counting after urine filtration. The RAA assay could detect as little as 10 copies/μL of S. haematobium recombinant plasmid, and no cross-reactions were observed with S. mansoni, S. japonicum, Ancylostoma duodenale, Clonorchis sinensis, Echinococcus granulosus, or Ascaris lumbricoides. This test can be conducted at 39 °C and the whole RAA reaction can be completed within 20 min. The validation of the RAA assay showed that it had 100 % consistency with urine-egg microscopy, as it does not require an elaborate reading tool, is simple to use, and should be useful for field diagnostics and point-of-care applications.
Collapse
Affiliation(s)
- Song Zhao
- Jiangsu Institute of Parasitic Diseases, Key Laboratory on Technology for Parasitic Disease Prevention and Control, Ministry of Health, Jiangsu Provincial Key Laboratory on the Molecular Biology of Parasites, Wuxi, Jiangsu, China
- Jiangnan University, Wuxi, Jiangsu, China
| | - Qiaoqiao Zhang
- Jiangsu Institute of Parasitic Diseases, Key Laboratory on Technology for Parasitic Disease Prevention and Control, Ministry of Health, Jiangsu Provincial Key Laboratory on the Molecular Biology of Parasites, Wuxi, Jiangsu, China
- Department of Clinical Laboratory, The 904th Hospital of Joint Logistic Support Force of PLA, Wuxi, Jiangsu, 214044, China
| | - Xinyao Wang
- Jiangsu Institute of Parasitic Diseases, Key Laboratory on Technology for Parasitic Disease Prevention and Control, Ministry of Health, Jiangsu Provincial Key Laboratory on the Molecular Biology of Parasites, Wuxi, Jiangsu, China
| | - Wei Li
- Jiangsu Institute of Parasitic Diseases, Key Laboratory on Technology for Parasitic Disease Prevention and Control, Ministry of Health, Jiangsu Provincial Key Laboratory on the Molecular Biology of Parasites, Wuxi, Jiangsu, China
| | - Saleh Juma
- Ministry of Health of Zanzibar, P.O. Box 236, Zanzibar, United Republic of Tanzania
| | - Robert Berquist
- Ingerod, Brastad, Sweden (formerly with the UNICEF/UNDP/World Bank/WHO Special Programme for Research and Training in Tropical Diseases, World Health Organization, Geneva, Switzerland
| | - Jianfeng Zhang
- Jiangsu Institute of Parasitic Diseases, Key Laboratory on Technology for Parasitic Disease Prevention and Control, Ministry of Health, Jiangsu Provincial Key Laboratory on the Molecular Biology of Parasites, Wuxi, Jiangsu, China
| | - Kun Yang
- Jiangsu Institute of Parasitic Diseases, Key Laboratory on Technology for Parasitic Disease Prevention and Control, Ministry of Health, Jiangsu Provincial Key Laboratory on the Molecular Biology of Parasites, Wuxi, Jiangsu, China
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
- Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
7
|
Schols R, Vanoverberghe I, Huyse T, Decaestecker E. Host-bacteriome transplants of the schistosome snail host Biomphalaria glabrata reflect species-specific associations. FEMS Microbiol Ecol 2023; 99:fiad101. [PMID: 37632232 PMCID: PMC10481996 DOI: 10.1093/femsec/fiad101] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 08/09/2023] [Accepted: 08/23/2023] [Indexed: 08/27/2023] Open
Abstract
Microbial symbionts can affect host phenotypes and, thereby, ecosystem functioning. The microbiome is increasingly being recognized as an important player in the tripartite interaction between parasitic flatworms, snail intermediate hosts, and the snail microbiome. In order to better understand these interactions, transplant experiments are needed, which rely on the development of a reliable and reproducible protocol to obtain microbiome-disturbed snails. Here, we report on the first successful snail bacteriome transplants, which indicate that Biomphalaria glabrata can accrue novel bacterial assemblies depending on the available environmental bacteria obtained from donor snails. Moreover, the phylogenetic relatedness of the donor host significantly affected recipients' survival probability, corroborating the phylosymbiosis pattern in freshwater snails. The transplant technique described here, complemented by field-based studies, could facilitate future research endeavors to investigate the role of specific bacteria or bacterial communities in parasitic flatworm resistance of B. glabrata and might ultimately pave the way for microbiome-mediated control of snail-borne diseases.
Collapse
Affiliation(s)
- Ruben Schols
- Department of Biology, Royal Museum for Central Africa, 3080 Tervuren, Belgium
- Laboratory of Aquatic Biology, KU Leuven, Campus Kortrijk, 8500 Kortrijk, Belgium
| | - Isabel Vanoverberghe
- Laboratory of Aquatic Biology, KU Leuven, Campus Kortrijk, 8500 Kortrijk, Belgium
| | - Tine Huyse
- Department of Biology, Royal Museum for Central Africa, 3080 Tervuren, Belgium
| | - Ellen Decaestecker
- Laboratory of Aquatic Biology, KU Leuven, Campus Kortrijk, 8500 Kortrijk, Belgium
| |
Collapse
|
8
|
Trippler L, Knopp S, Welsche S, Webster BL, Stothard JR, Blair L, Allan F, Ame SM, Juma S, Kabole F, Ali SM, Rollinson D, Pennance T. The long road to schistosomiasis elimination in Zanzibar: A systematic review covering 100 years of research, interventions and control milestones. ADVANCES IN PARASITOLOGY 2023; 122:71-191. [PMID: 37657854 DOI: 10.1016/bs.apar.2023.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/03/2023]
Abstract
Zanzibar is among the few places in sub-Saharan Africa where interruption of Schistosoma transmission seems an achievable goal. Our systematic review identifies and discusses milestones in schistosomiasis research, control and elimination efforts in Zanzibar over the past 100 years. The search in online databases, libraries, and the World Health Organization Archives revealed 153 records published between May 1928 and August 2022. The content of records was summarised to highlight the pivotal work leading towards urogenital schistosomiasis elimination and remaining research gaps. The greatest achievement following 100 years of schistosomiasis interventions and research is undoubtedly the improved health of Zanzibaris, exemplified by the reduction in Schistosoma haematobium prevalence from>50% historically down to<5% in 2020, and the absence of severe morbidities. Experiences from Zanzibar have contributed to global schistosomiasis guidelines, whilst also revealing challenges that impede progression towards elimination. Challenges include: transmission heterogeneity requiring micro-targeting of interventions, post-treatment recrudescence of infections in transmission hotspots, biological complexity of intermediate host snails, emergence of livestock Schistosoma species complicating surveillance whilst creating the risk for interspecies hybridisation, insufficient diagnostics performance for light intensity infections and female genital schistosomiasis, and a lack of acceptable sanitary alternatives to freshwater bodies. Our analysis of the past revealed that much can be achieved in the future with practical implementation of integrated interventions, alongside operational research. With continuing national and international commitments, interruption of S. haematobium transmission across both islands is within reach by 2030, signposting the future demise of urogenital schistosomiasis across other parts of sub-Saharan Africa.
Collapse
Affiliation(s)
- Lydia Trippler
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland.
| | - Stefanie Knopp
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland
| | | | - Bonnie L Webster
- Natural History Museum, London, United Kingdom; London Centre for Neglected Tropical Disease Research, London, United Kingdom
| | | | | | - Fiona Allan
- Natural History Museum, London, United Kingdom; London Centre for Neglected Tropical Disease Research, London, United Kingdom; University of St Andrews, St Andrews, United Kingdom
| | - Shaali Makame Ame
- Neglected Diseases Programme, Zanzibar Ministry of Health, Lumumba, Unguja, United Republic of Tanzania
| | - Saleh Juma
- Neglected Diseases Programme, Zanzibar Ministry of Health, Mkoroshoni, Pemba, United Republic of Tanzania
| | - Fatma Kabole
- Neglected Diseases Programme, Zanzibar Ministry of Health, Lumumba, Unguja, United Republic of Tanzania
| | - Said Mohammed Ali
- Public Health Laboratory - Ivo de Carneri, Wawi, Chake Chake, Pemba, United Republic of Tanzania
| | - David Rollinson
- Natural History Museum, London, United Kingdom; London Centre for Neglected Tropical Disease Research, London, United Kingdom; Global Schistosomiasis Alliance, London, United Kingdom
| | - Tom Pennance
- Natural History Museum, London, United Kingdom; London Centre for Neglected Tropical Disease Research, London, United Kingdom; Western University of Health Sciences, Lebanon, OR, United States.
| |
Collapse
|
9
|
Geographical Influence on Morphometric Variability of Genetically “Pure” Schistosoma haematobium Eggs from Sub-Saharan Migrants in Spain. Trop Med Infect Dis 2023; 8:tropicalmed8030144. [PMID: 36977146 PMCID: PMC10054267 DOI: 10.3390/tropicalmed8030144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/14/2023] [Accepted: 02/21/2023] [Indexed: 03/02/2023] Open
Abstract
Schistosome eggs play a key role in schistosomiasis diagnosis and research. The aim of this work is to morphogenetically study the eggs of Schistosoma haematobium found in sub-Saharan migrants present in Spain, analyzing their morphometric variation in relation to the geographical origin of the parasite (Mali, Mauritania and Senegal). Only eggs considered “pure” S. haematobium by genetic characterization (rDNA ITS-2 and mtDNA cox1) have been used. A total of 162 eggs obtained from 20 migrants from Mali, Mauritania and Senegal were included in the study. Analyses were made by the Computer Image Analysis System (CIAS). Following a previously standardized methodology, seventeen measurements were carried out on each egg. The morphometric analysis of the three morphotypes detected (round, elongated and spindle) and the biometric variations in relation to the country of origin of the parasite on the egg phenotype were carried out by canonical variate analysis. Mahalanobis distances, when all egg measurements were analyzed, showed differences between: (i) Mali-Mauritania, Mali-Senegal and Mauritania-Senegal in the round morphotype; (ii) Mali-Mauritania and Mauritania-Senegal in the elongated morphotype; and (iii) Mauritania-Senegal in the spindle morphotype. Mahalanobis distances, when spine variables were analyzed, showed differences between Mali-Senegal in the round morphotype. In conclusion, this is the first phenotypic study performed on individually genotyped “pure” S. haematobium eggs, allowing the assessment of the intraspecific morphological variations associated with the geographical origin of the schistosome eggs.
Collapse
|
10
|
Senghor B, Webster B, Pennance T, Sène M, Doucouré S, Sow D, Sokhna C. Molecular characterization of schistosome cercariae and their Bulinus snail hosts from Niakhar, a seasonal transmission focus in central Senegal. CURRENT RESEARCH IN PARASITOLOGY & VECTOR-BORNE DISEASES 2023; 3:100114. [PMID: 36824299 PMCID: PMC9941053 DOI: 10.1016/j.crpvbd.2023.100114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/11/2023] [Accepted: 01/18/2023] [Indexed: 01/25/2023]
Abstract
Bulinus senegalensis and Bulinus umbilicatus, two sympatric freshwater snails found in temporal ponds in Senegal, were thought to be involved in the transmission of Schistosoma haematobium and/or Schistosoma curassoni. To better understand the role of these Bulinus species in the transmission of human and animal Schistosoma species, B. senegalensis and B. umbilicatus were collected in 2015, during a malacological survey, from a temporal pond in Niakhar, central Senegal. Snails were induced to shed cercariae on two consecutive days. Individual cercariae from each snail were collected and preserved for molecular identification. Infected snails were identified by analysis of a partial region of the cytochrome c oxidase subunit 1 (cox1) gene. Six individual cercariae shed from each infected snail were identified by analyses of the cox1, nuclear ITS and partial 18S rDNA regions. Of the 98 snails collected, one B. senegalensis had a mixed infection shedding S. haematobium, S. bovis and S. haematobium-S. bovis hybrid cercariae and one B. umbilicatus was found to be shedding only S. haematobium. These data provide molecular confirmation for B. senegalensis transmitting S. bovis and S. haematobium-S. bovis hybrids in Senegal. The multiple Bulinus species involved in the human urogenital schistosomiasis in Senegal provides a high force of transmission warranting detailed mapping, surveillance and regular treatment of at-risk populations.
Collapse
Affiliation(s)
- Bruno Senghor
- VITROME, Campus International IRD-UCAD de Hann, 1386, Dakar, Senegal
| | - Bonnie Webster
- Natural History Museum, Wolfson Wellcome Biomedical Laboratories, Department of Science, Cromwell Road, London, SW7 5BD, UK
- London Centre for Neglected Tropical Disease Research, Imperial College London, School of Public Health, Norfolk Pl, Paddington, London, W21PG, UK
| | - Tom Pennance
- Natural History Museum, Wolfson Wellcome Biomedical Laboratories, Department of Science, Cromwell Road, London, SW7 5BD, UK
- London Centre for Neglected Tropical Disease Research, Imperial College London, School of Public Health, Norfolk Pl, Paddington, London, W21PG, UK
- Department of Basic Medical Sciences, Western University of Health Sciences, Lebanon, OR, 97355, USA
| | - Mariama Sène
- Laboratoire des Sciences Biologiques, Agronomiques et de Modélisation des Systems Complexes, UFRS2ATA, Université Gaston Berger de Saint-Louis, Saint-Louis, Senegal
| | | | - Doudou Sow
- Department of Parasitology-Mycology, UFR Sciences de la Santé, Université Gaston Berger, 234, Saint-Louis, Senegal
| | - Cheikh Sokhna
- VITROME, Campus International IRD-UCAD de Hann, 1386, Dakar, Senegal
- VITROME, Aix-Marseille Univ, IRD, SSA, AP-HM, IHU-Mediterranean Infection, Marseille, France
| |
Collapse
|
11
|
Marascio N, Loria MT, Lamberti AG, Pavia G, Adams NJ, Quirino A, Divenuto F, Mazzitelli M, Greco G, Trecarichi EM, Perandin F, Bisoffi Z, Webster BL, Liberto MC, Torti C, Matera G. Molecular characterization of Schistosoma infections in African migrants: identification of a Schistosoma haematobium-bovis hybrid in bladder biopsies. J Travel Med 2022; 29:6485185. [PMID: 34962994 DOI: 10.1093/jtm/taab194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/09/2021] [Indexed: 11/13/2022]
Abstract
Atypical Schistosoma haematobium eggs were found in a bladder biopsy from an African migrant with severe Schistosomiasis.
Amplification of mitochondrial (cox 1) and genomic (ITS2) DNA identified the presence of a S. haematobium-Schistosoma bovis hybrid.
Phylogenetic analysis clustered the hybrid sequence with other sequences from western Africa.
Collapse
Affiliation(s)
- Nadia Marascio
- Department of Health Sciences, Unit of Microbiology, University "Magna Graecia" of Catanzaro, Viale Europa, Catanzaro 88100, Italy
| | - Maria Teresa Loria
- Department of Health Sciences, Unit of Microbiology, University "Magna Graecia" of Catanzaro, Viale Europa, Catanzaro 88100, Italy
| | - Angelo Giuseppe Lamberti
- Department of Health Sciences, Unit of Microbiology, University "Magna Graecia" of Catanzaro, Viale Europa, Catanzaro 88100, Italy
| | - Grazia Pavia
- Department of Health Sciences, Unit of Microbiology, University "Magna Graecia" of Catanzaro, Viale Europa, Catanzaro 88100, Italy
| | - Neill James Adams
- Department of Health Sciences, Unit of Microbiology, University "Magna Graecia" of Catanzaro, Viale Europa, Catanzaro 88100, Italy
| | - Angela Quirino
- Department of Health Sciences, Unit of Microbiology, University "Magna Graecia" of Catanzaro, Viale Europa, Catanzaro 88100, Italy
| | - Francesca Divenuto
- Department of Health Sciences, Unit of Microbiology, University "Magna Graecia" of Catanzaro, Viale Europa, Catanzaro 88100, Italy
| | - Maria Mazzitelli
- Department of Medical and Surgical Sciences, Unit of Infectious and Tropical Diseases, "Magna Graecia" University of Catanzaro, Viale Europa, Catanzaro 88100, Italy
| | - Giuseppe Greco
- Department of Medical and Surgical Sciences, Unit of Infectious and Tropical Diseases, "Magna Graecia" University of Catanzaro, Viale Europa, Catanzaro 88100, Italy
| | - Enrico Maria Trecarichi
- Department of Medical and Surgical Sciences, Unit of Infectious and Tropical Diseases, "Magna Graecia" University of Catanzaro, Viale Europa, Catanzaro 88100, Italy
| | - Francesca Perandin
- Department of Infectious Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, via Don A. Sempreboni 5, Negrar di Valpolicella, Verona 37024, Italy
| | - Zeno Bisoffi
- Department of Infectious Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, via Don A. Sempreboni 5, Negrar di Valpolicella, Verona 37024, Italy.,Department of Diagnostics and Public Health, University of Verona, Via S. Francesco 22, Verona 37129, Italy
| | - Bonnie L Webster
- Wolfson Wellcome Biomedical Laboratories, Department of Life Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | - Maria Carla Liberto
- Department of Health Sciences, Unit of Microbiology, University "Magna Graecia" of Catanzaro, Viale Europa, Catanzaro 88100, Italy
| | - Carlo Torti
- Department of Medical and Surgical Sciences, Unit of Infectious and Tropical Diseases, "Magna Graecia" University of Catanzaro, Viale Europa, Catanzaro 88100, Italy
| | - Giovanni Matera
- Department of Health Sciences, Unit of Microbiology, University "Magna Graecia" of Catanzaro, Viale Europa, Catanzaro 88100, Italy
| |
Collapse
|
12
|
Pennance T, Neves MI, Webster BL, Gower CM, Knopp S, Khamis IS, Ame SM, Ali SM, Rabone M, Emery A, Allan F, Muhsin MA, Suleiman KR, Kabole F, Walker M, Rollinson D, Webster JP. Potential drivers for schistosomiasis persistence: Population genetic analyses from a cluster-randomized urogenital schistosomiasis elimination trial across the Zanzibar islands. PLoS Negl Trop Dis 2022; 16:e0010419. [PMID: 36215334 PMCID: PMC9584424 DOI: 10.1371/journal.pntd.0010419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 10/20/2022] [Accepted: 09/13/2022] [Indexed: 11/08/2022] Open
Abstract
The World Health Organization's revised NTD Roadmap and the newly launched Guidelines target elimination of schistosomiasis as a public health problem in all endemic areas by 2030. Key to meeting this goal is elucidating how selective pressures imposed by interventions shape parasite populations. Our aim was to identify any differential impact of a unique cluster-randomized tri-armed elimination intervention (biannual mass drug administration (MDA) applied alone or in association with either mollusciciding (snail control) or behavioural change interventions) across two Zanzibarian islands (Pemba and Unguja) on the population genetic composition of Schistosoma haematobium over space and time. Fifteen microsatellite loci were used to analyse individual miracidia collected from infected individuals across islands and intervention arms at the start (2012 baseline: 1,522 miracidia from 176 children; 303 from 43 adults; age-range 6-75, mean 12.7 years) and at year 5 (2016: 1,486 miracidia from 146 children; 214 from 25 adults; age-range 9-46, mean 12.4 years). Measures of genetic diversity included allelic richness (Ar), Expected (He) and Observed heterozygosity (Ho), inbreeding coefficient (FST), parentage analysis, estimated worm burden, worm fecundity, and genetic sub-structuring. There was little evidence of differential selective pressures on population genetic diversity, inbreeding or estimated worm burdens by treatment arm, with only the MDA+snail control arm within Unguja showing trends towards reduced diversity and altered inbreeding over time. The greatest differences overall, both in terms of parasite fecundity and genetic sub-structuring, were observed between the islands, consistent with Pemba's persistently higher mean infection intensities compared to neighbouring Unguja, and within islands in terms of infection hotspots (across three definitions). These findings highlight the important contribution of population genetic analyses to elucidate extensive genetic diversity and biological drivers, including potential gene-environmental factors, that may override short term selective pressures imposed by differential disease control strategies. Trial Registration: ClinicalTrials.gov ISRCTN48837681.
Collapse
Affiliation(s)
- Tom Pennance
- Wolfson Wellcome Biomedical Laboratories, Department of Life Sciences, The Natural History Museum, London, United Kingdom
- London Centre for Neglected Tropical Disease Research (LCNTDR), London, United Kingdom
| | - M. Inês Neves
- London Centre for Neglected Tropical Disease Research (LCNTDR), London, United Kingdom
- Department of Pathobiology and Population Sciences, Royal Veterinary College, University of London, London, United Kingdom
| | - Bonnie L. Webster
- Wolfson Wellcome Biomedical Laboratories, Department of Life Sciences, The Natural History Museum, London, United Kingdom
- London Centre for Neglected Tropical Disease Research (LCNTDR), London, United Kingdom
| | - Charlotte M. Gower
- London Centre for Neglected Tropical Disease Research (LCNTDR), London, United Kingdom
- Department of Pathobiology and Population Sciences, Royal Veterinary College, University of London, London, United Kingdom
| | - Stefanie Knopp
- Wolfson Wellcome Biomedical Laboratories, Department of Life Sciences, The Natural History Museum, London, United Kingdom
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Iddi Simba Khamis
- Neglected Diseases Programme, Ministry of Health, Zanzibar, United Republic of Tanzania
| | - Shaali M. Ame
- Public Health Laboratory—Ivo de Carneri, Pemba, United Republic of Tanzania
| | - Said M. Ali
- Public Health Laboratory—Ivo de Carneri, Pemba, United Republic of Tanzania
| | - Muriel Rabone
- Wolfson Wellcome Biomedical Laboratories, Department of Life Sciences, The Natural History Museum, London, United Kingdom
- London Centre for Neglected Tropical Disease Research (LCNTDR), London, United Kingdom
| | - Aidan Emery
- Wolfson Wellcome Biomedical Laboratories, Department of Life Sciences, The Natural History Museum, London, United Kingdom
- London Centre for Neglected Tropical Disease Research (LCNTDR), London, United Kingdom
| | - Fiona Allan
- Wolfson Wellcome Biomedical Laboratories, Department of Life Sciences, The Natural History Museum, London, United Kingdom
- London Centre for Neglected Tropical Disease Research (LCNTDR), London, United Kingdom
| | - Mtumweni Ali Muhsin
- Neglected Diseases Programme, Ministry of Health, Zanzibar, United Republic of Tanzania
| | | | - Fatama Kabole
- Neglected Diseases Programme, Ministry of Health, Zanzibar, United Republic of Tanzania
| | - Martin Walker
- London Centre for Neglected Tropical Disease Research (LCNTDR), London, United Kingdom
- Department of Pathobiology and Population Sciences, Royal Veterinary College, University of London, London, United Kingdom
| | - David Rollinson
- Wolfson Wellcome Biomedical Laboratories, Department of Life Sciences, The Natural History Museum, London, United Kingdom
- London Centre for Neglected Tropical Disease Research (LCNTDR), London, United Kingdom
| | - Joanne P. Webster
- London Centre for Neglected Tropical Disease Research (LCNTDR), London, United Kingdom
- Department of Pathobiology and Population Sciences, Royal Veterinary College, University of London, London, United Kingdom
- * E-mail:
| |
Collapse
|
13
|
Tembo R, Muleya W, Yabe J, Kainga H, Nalubamba KS, Zulu M, Mwaba F, Saad SA, Kamwela M, Mukubesa AN, Monde N, Kallu SA, Mbewe N, Phiri AM. Prevalence and Molecular Identification of Schistosoma haematobium among Children in Lusaka and Siavonga Districts, Zambia. Trop Med Infect Dis 2022; 7:tropicalmed7090239. [PMID: 36136650 PMCID: PMC9505432 DOI: 10.3390/tropicalmed7090239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/04/2022] [Accepted: 09/05/2022] [Indexed: 11/25/2022] Open
Abstract
Schistosomiasis remains a public health concern in Zambia. Urinary schistosomiasis caused by Schistosoma haematobium is the most widely distributed infection. The aim of the current study was to determine the prevalence and risk factors of urinary schistosomiasis and identify the strain of S. haematobium among children in the Siavonga and Lusaka districts in Zambia. Urine samples were collected from 421 primary school children and S. haematobium eggs were examined under light microscopy. A semi-structured questionnaire was used to obtain information on the socio-demographic characteristics and the potential risk factors for urinary schistosomiasis. DNA of the parasite eggs was extracted from urine samples and the internal transcribed spacer gene was amplified, sequenced and phylogenetically analysed. The overall prevalence of S. haematobium was 9.7% (41/421) (95% CI: 7.16–13.08), male participants made up 6.2% (26/232) (95% CI: 4.15–9.03), having a higher burden of disease than female participants who made up 3.5% (15/421) (95% CI: 2.01–5.94). The age group of 11–15 years had the highest overall prevalence of 8.3% (35/421) (5.94–11.48). Participants that did not go fishing were 0.008 times less likely to be positive for schistosomiasis while participants whose urine was blood-tinged or cloudy on physical examination and those that lived close to water bodies were 9.98 and 11.66 times more likely to test positive for schistosomiasis, respectively. A phylogenetic tree analysis indicated that S. haematobium isolates were closely related to pure S. haematobium from Zimbabwe and hybrids of S. haematobium × S. bovis from Benin, Senegal and Malawi. The current study shows that urinary schistosomiasis is endemic in the study areas and is associated with water contact, and S. haematobium isolated is closely related to hybrids of S. bovis × S. haematobium strain, indicating the zoonotic potential of this parasite.
Collapse
Affiliation(s)
- Rabecca Tembo
- Department of Pathology and Microbiology, School of Medicine, University of Zambia, Lusaka P.O. Box 50110, Zambia
- Department of Clinical Sciences, School of Veterinary Medicine, University of Zambia, Lusaka P.O. Box 32379, Zambia
- Africa Center of Excellence for Infectious Diseases of Humans, University of Zambia, Lusaka P.O Box 32379, Zambia
- Correspondence: ; Tel.: 26-097-8363-271
| | - Walter Muleya
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Zambia, Lusaka P.O. Box 32379, Zambia
| | - John Yabe
- Department of Para Clinical Studies, School of Veterinary Medicine, University of Zambia, Lusaka P.O. Box 32379, Zambia
- School of Veterinary Medicine, University of Namibia, P.O. Box 13301, Windhoek 1005, Namibia
| | - Henson Kainga
- Department of Veterinary Epidemiology and Public Health, Faculty of Veterinary Medicine, Lilongwe University of Agriculture and Natural Resources, Lilongwe 207203, Malawi or
- Department of Disease Control, School of Veterinary Medicine, Zambia Animals, University of Zambia, Lusaka P.O. Box 32379, Zambia
| | - King S. Nalubamba
- Department of Clinical Sciences, School of Veterinary Medicine, University of Zambia, Lusaka P.O. Box 32379, Zambia
| | - Mildred Zulu
- Department of Pathology and Microbiology, School of Medicine, University of Zambia, Lusaka P.O. Box 50110, Zambia
- Africa Center of Excellence for Infectious Diseases of Humans, University of Zambia, Lusaka P.O Box 32379, Zambia
| | - Florence Mwaba
- Department of Pathology and Microbiology, School of Medicine, University of Zambia, Lusaka P.O. Box 50110, Zambia
- Africa Center of Excellence for Infectious Diseases of Humans, University of Zambia, Lusaka P.O Box 32379, Zambia
| | - Shereen Ahmed Saad
- Africa Center of Excellence for Infectious Diseases of Humans, University of Zambia, Lusaka P.O Box 32379, Zambia
- Department of Para Clinical Studies, School of Veterinary Medicine, University of Zambia, Lusaka P.O. Box 32379, Zambia
- Department of Clinical Studies, College of Veterinary Science, University of Bahr El Ghazal, Wau P.O. Box 10739, South Sudan
| | - Moses Kamwela
- Department of Pharmacology, Faculty of Pharmacy, Lusaka Apex Medical University, Lusaka P.O. Box 31909, Zambia
| | - Andrew N. Mukubesa
- Department of Disease Control, School of Veterinary Medicine, Zambia Animals, University of Zambia, Lusaka P.O. Box 32379, Zambia
| | - Ngula Monde
- Department of Biomedical Sciences, Tropical Diseases Research Centre, Ndola P.O. Box 71769, Zambia
| | - Simegnew Adugna Kallu
- Department of Disease Control, School of Veterinary Medicine, Zambia Animals, University of Zambia, Lusaka P.O. Box 32379, Zambia
- College of Veterinary Medicine, Haramaya University, Dire Dawa P.O. Box 138, Ethiopia
| | - Natalia Mbewe
- Department of Disease Control, School of Veterinary Medicine, Zambia Animals, University of Zambia, Lusaka P.O. Box 32379, Zambia
- Department of Basic and Clinical Nursing Sciences, School of Nursing Sciences, University of Zambia, Lusaka P.O. Box 50110, Zambia
| | - Andrew M. Phiri
- Department of Clinical Sciences, School of Veterinary Medicine, University of Zambia, Lusaka P.O. Box 32379, Zambia
- Africa Center of Excellence for Infectious Diseases of Humans, University of Zambia, Lusaka P.O Box 32379, Zambia
| |
Collapse
|
14
|
Berger DJ, Léger E, Sankaranarayanan G, Sène M, Diouf ND, Rabone M, Emery A, Allan F, Cotton JA, Berriman M, Webster JP. Genomic evidence of contemporary hybridization between Schistosoma species. PLoS Pathog 2022; 18:e1010706. [PMID: 35939508 PMCID: PMC9387932 DOI: 10.1371/journal.ppat.1010706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 08/18/2022] [Accepted: 06/27/2022] [Indexed: 11/19/2022] Open
Abstract
Hybridization between different species of parasites is increasingly being recognised as a major public and veterinary health concern at the interface of infectious diseases biology, evolution, epidemiology and ultimately control. Recent research has revealed that viable hybrids and introgressed lineages between Schistosoma spp. are prevalent across Africa and beyond, including those with zoonotic potential. However, it remains unclear whether these hybrid lineages represent recent hybridization events, suggesting hybridization is ongoing, and/or whether they represent introgressed lineages derived from ancient hybridization events. In human schistosomiasis, investigation is hampered by the inaccessibility of adult-stage worms due to their intravascular location, an issue which can be circumvented by post-mortem of livestock at abattoirs for Schistosoma spp. of known zoonotic potential. To characterise the composition of naturally-occurring schistosome hybrids, we performed whole-genome sequencing of 21 natural livestock infective schistosome isolates. To facilitate this, we also assembled a de novo chromosomal-scale draft assembly of Schistosoma curassoni. Genomic analyses identified isolates of S. bovis, S. curassoni and hybrids between the two species, all of which were early generation hybrids with multiple generations found within the same host. These results show that hybridization is an ongoing process within natural populations with the potential to further challenge elimination efforts against schistosomiasis.
Collapse
Affiliation(s)
- Duncan J. Berger
- Wellcome Sanger Institute, Hinxton, United Kingdom
- Royal Veterinary College, University of London, London, United Kingdom
| | - Elsa Léger
- Royal Veterinary College, University of London, London, United Kingdom
- London Centre for Neglected Tropical Diseases Research, Imperial College Faculty of Medicine, London, United Kingdom
| | | | - Mariama Sène
- Unité de Formation et de Recherche des Sciences Agronomiques, d’Aquaculture et de Technologies Alimentaires, Université Gaston Berger, Saint-Louis, Senegal
| | - Nicolas D. Diouf
- Unité de Formation et de Recherche des Sciences Agronomiques, d’Aquaculture et de Technologies Alimentaires, Université Gaston Berger, Saint-Louis, Senegal
| | - Muriel Rabone
- The Natural History Museum, Department of Life Sciences, Cromwell Road, London, United Kingdom
| | - Aidan Emery
- The Natural History Museum, Department of Life Sciences, Cromwell Road, London, United Kingdom
| | - Fiona Allan
- The Natural History Museum, Department of Life Sciences, Cromwell Road, London, United Kingdom
- Pelagic Ecology Research Group, Scottish Oceans Institute, Gatty Marine Laboratory, School of Biology, University of St Andrews, St Andrews, United Kingdom
| | - James A. Cotton
- Wellcome Sanger Institute, Hinxton, United Kingdom
- London Centre for Neglected Tropical Diseases Research, Imperial College Faculty of Medicine, London, United Kingdom
| | - Matthew Berriman
- Wellcome Sanger Institute, Hinxton, United Kingdom
- London Centre for Neglected Tropical Diseases Research, Imperial College Faculty of Medicine, London, United Kingdom
| | - Joanne P. Webster
- Royal Veterinary College, University of London, London, United Kingdom
- London Centre for Neglected Tropical Diseases Research, Imperial College Faculty of Medicine, London, United Kingdom
| |
Collapse
|
15
|
Pennance T, Ame SM, Amour AK, Suleiman KR, Muhsin MA, Kabole F, Ali SM, Archer J, Allan F, Emery A, Rabone M, Knopp S, Rollinson D, Cable J, Webster BL. Transmission and diversity of Schistosoma haematobium and S. bovis and their freshwater intermediate snail hosts Bulinus globosus and B. nasutus in the Zanzibar Archipelago, United Republic of Tanzania. PLoS Negl Trop Dis 2022; 16:e0010585. [PMID: 35788199 PMCID: PMC9286283 DOI: 10.1371/journal.pntd.0010585] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 07/15/2022] [Accepted: 06/14/2022] [Indexed: 11/17/2022] Open
Abstract
Background The Zanzibar Archipelago (Pemba and Unguja islands) is targeted for the elimination of human urogenital schistosomiasis caused by infection with Schistosoma haematobium where the intermediate snail host is Bulinus globosus. Following multiple studies, it has remained unclear if B. nasutus (a snail species that occupies geographically distinct regions on the Archipelago) is involved in S. haematobium transmission on Zanzibar. Additionally, S. haematobium was thought to be the only Schistosoma species present on the Zanzibar Archipelago until the sympatric transmission of S. bovis, a parasite of ruminants, was recently identified. Here we re-assess the epidemiology of schistosomiasis on Pemba and Unguja together with the role and genetic diversity of the Bulinus spp. involved in transmission. Methodology/Principal findings Malacological and parasitological surveys were conducted between 2016 and 2019. In total, 11,116 Bulinus spp. snails were collected from 65 of 112 freshwater bodies surveyed. Bulinus species identification were determined using mitochondrial cox1 sequences for a representative subset of collected Bulinus (n = 504) and together with archived museum specimens (n = 6), 433 B. globosus and 77 B. nasutus were identified. Phylogenetic analysis of cox1 haplotypes revealed three distinct populations of B. globosus, two with an overlapping distribution on Pemba and one on Unguja. For B. nasutus, only a single clade with matching haplotypes was observed across the islands and included reference sequences from Kenya. Schistosoma haematobium cercariae (n = 158) were identified from 12 infected B. globosus and one B. nasutus collected between 2016 and 2019 in Pemba, and cercariae originating from 69 Bulinus spp. archived in museum collections. Schistosoma bovis cercariae (n = 21) were identified from seven additional B. globosus collected between 2016 and 2019 in Pemba. By analysing a partial mitochondrial cox1 region and the nuclear ITS (1–5.8S-2) rDNA region of Schistosoma cercariae, we identified 18 S. haematobium and three S. bovis haplotypes representing populations associated with mainland Africa and the Indian Ocean Islands (Zanzibar, Madagascar, Mauritius and Mafia). Conclusions/Significance The individual B. nasutus on Pemba infected with S. haematobium demonstrates that B. nasutus could also play a role in the local transmission of S. haematobium. We provide preliminary evidence that intraspecific variability of S. haematobium on Pemba may increase the transmission potential of S. haematobium locally due to the expanded intermediate host range, and that the presence of S. bovis complicates the environmental surveillance of schistosome infections. Schistosomiasis is a snail-borne neglected tropical disease caused by parasitic blood flukes of the genus Schistosoma. Human urogenital schistosomiasis is targeted for elimination on the Zanzibar Archipelago, United Republic of Tanzania, with multiple interventions being implemented to curtail transmission of the parasite to humans on the islands since 2012. Environmental surveillance for schistosomiasis transmission by collecting intermediate host snails, checking snails for Schistosoma infection, and preserving collected snails and Schistosoma parasites offers the possibility for molecular analyses to investigate the evolutionary/genetic relationships of both snails and parasites. Schistosome transmission on Zanzibar was believed to involve a single schistosome species (Schistosoma haematobium) transmitted via a single intermediate host species (Bulinus globosus). However, our findings demonstrate the locally established presence of S. bovis, responsible for bovine intestinal schistosomiasis, and an extended intermediate host compatibility of S. haematobium with the snail B. nasutus on Pemba. Increased parasite diversity and intermediate host species compatibility may increase the transmission of Schistosoma species on Zanzibar and stretch resources for public health interventions with the need for Schistosoma species specific surveillance.
Collapse
Affiliation(s)
- Tom Pennance
- Department of Science, Natural History Museum, London, United Kingdom
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
- London Centre for Neglected Tropical Disease Research, London, United Kingdom
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific–Northwest, Western University of Health Sciences, Lebanon, Oregon, United States of America
- * E-mail:
| | - Shaali Makame Ame
- Public Health Laboratory-Ivo de Carneri, Pemba, United Republic of Tanzania
| | - Amour Khamis Amour
- Public Health Laboratory-Ivo de Carneri, Pemba, United Republic of Tanzania
| | | | - Mtumweni Ali Muhsin
- Neglected Diseases Program, Ministry of Health Zanzibar, United Republic of Tanzania
| | - Fatma Kabole
- Neglected Diseases Program, Ministry of Health Zanzibar, United Republic of Tanzania
| | - Said Mohammed Ali
- Public Health Laboratory-Ivo de Carneri, Pemba, United Republic of Tanzania
| | - John Archer
- Department of Science, Natural History Museum, London, United Kingdom
- London Centre for Neglected Tropical Disease Research, London, United Kingdom
| | - Fiona Allan
- Department of Science, Natural History Museum, London, United Kingdom
- London Centre for Neglected Tropical Disease Research, London, United Kingdom
- The Scottish Oceans Institute, Gatty Marine Laboratory, University of St Andrews, East Sands, St Andrews, United Kingdom
| | - Aidan Emery
- Department of Science, Natural History Museum, London, United Kingdom
- London Centre for Neglected Tropical Disease Research, London, United Kingdom
| | - Muriel Rabone
- Department of Science, Natural History Museum, London, United Kingdom
- London Centre for Neglected Tropical Disease Research, London, United Kingdom
| | - Stefanie Knopp
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - David Rollinson
- Department of Science, Natural History Museum, London, United Kingdom
- London Centre for Neglected Tropical Disease Research, London, United Kingdom
| | - Joanne Cable
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Bonnie L. Webster
- Department of Science, Natural History Museum, London, United Kingdom
- London Centre for Neglected Tropical Disease Research, London, United Kingdom
| |
Collapse
|
16
|
Angora EK, Vangraefschepe A, Allienne JF, Menan H, Coulibaly JT, Meïté A, Raso G, Winkler MS, Yavo W, Touré AO, N'Goran EK, Zinsstag J, Utzinger J, Balmer O, Boissier J. Population genetic structure of Schistosoma haematobium and Schistosoma haematobium × Schistosoma bovis hybrids among school-aged children in Côte d'Ivoire. Parasite 2022; 29:23. [PMID: 35522066 PMCID: PMC9074780 DOI: 10.1051/parasite/2022023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 04/04/2022] [Indexed: 11/29/2022] Open
Abstract
While population genetics of Schistosoma haematobium have been investigated in West Africa, only scant data are available from Côte d’Ivoire. The purpose of this study was to analyze both genetic variability and genetic structure among S. haematobium populations and to quantify the frequency of S. haematobium × S. bovis hybrids in school-aged children in different parts of Côte d’Ivoire. Urine samples were subjected to a filtration method and examined microscopically for Schistosoma eggs in four sites in the western and southern parts of Côte d’Ivoire. A total of 2692 miracidia were collected individually and stored on Whatman® FTA cards. Of these, 2561 miracidia were successfully genotyped for species and hybrid identification using rapid diagnostic multiplex mitochondrial cox1 PCR and PCR Restriction Fragment Length Polymorphism (PCR-RFLP) analysis of the nuclear ITS2 region. From 2164 miracidia, 1966 (90.9%) were successfully genotyped using at least 10 nuclear microsatellite loci to investigate genetic diversity and population structure. Significant differences were found between sites in all genetic diversity indices and genotypic differentiation was observed between the site in the West and the three sites in the East. Analysis at the infrapopulation level revealed clustering of parasite genotypes within individual children, particularly in Duekoué (West) and Sikensi (East). Of the six possible cox1-ITS2 genetic profiles obtained from miracidia, S. bovis cox1 × S. haematobium ITS2 (42.0%) was the most commonly observed in the populations. We identified only 15 miracidia (0.7%) with an S. bovis cox1 × S. bovis ITS2 genotype. Our study provides new insights into the population genetics of S. haematobium and S. haematobium × S. bovis hybrids in humans in Côte d’Ivoire and we advocate for researching hybrid schistosomes in animals such as rodents and cattle in Côte d’Ivoire.
Collapse
Affiliation(s)
- Etienne K Angora
- Swiss Tropical and Public Health Institute, P.O. Box, CH-4002 Basel, Switzerland - University of Basel, Kreuzstrasse 2, CH-4123 Allschwil, Switzerland - Unité de Formation et de Recherche Sciences Pharmaceutiques et Biologiques, Université Félix Houphouët-Boigny, BPV 34 Abidjan, Côte d'Ivoire
| | - Alexane Vangraefschepe
- IHPE, Univ. Montpellier, CNRS, Ifremer, Univ. Perpignan Via Domitia, 66860 Perpignan, France
| | - Jean-François Allienne
- IHPE, Univ. Montpellier, CNRS, Ifremer, Univ. Perpignan Via Domitia, 66860 Perpignan, France
| | - Hervé Menan
- Unité de Formation et de Recherche Sciences Pharmaceutiques et Biologiques, Université Félix Houphouët-Boigny, BPV 34 Abidjan, Côte d'Ivoire
| | - Jean T Coulibaly
- Swiss Tropical and Public Health Institute, P.O. Box, CH-4002 Basel, Switzerland - University of Basel, Kreuzstrasse 2, CH-4123 Allschwil, Switzerland - Unité de Formation et de Recherche Biosciences, Université Félix Houphouët-Boigny, 22 BP 770, Abidjan 22, Côte d'Ivoire - Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, 01 BP 1303, Abidjan 01, Côte d'Ivoire
| | - Aboulaye Meïté
- Programme National de Lutte contre les Maladies Tropicales Négligées à Chimiothérapie Préventive, 06 BP 6394, Abidjan 06, Côte d'Ivoire
| | - Giovanna Raso
- Swiss Tropical and Public Health Institute, P.O. Box, CH-4002 Basel, Switzerland - University of Basel, Kreuzstrasse 2, CH-4123 Allschwil, Switzerland
| | - Mirko S Winkler
- Swiss Tropical and Public Health Institute, P.O. Box, CH-4002 Basel, Switzerland - University of Basel, Kreuzstrasse 2, CH-4123 Allschwil, Switzerland
| | - William Yavo
- Unité de Formation et de Recherche Sciences Pharmaceutiques et Biologiques, Université Félix Houphouët-Boigny, BPV 34 Abidjan, Côte d'Ivoire
| | - André O Touré
- Institut Pasteur de Côte d'Ivoire, BPV 490 Abidjan, Côte d'Ivoire
| | - Eliézer K N'Goran
- Unité de Formation et de Recherche Biosciences, Université Félix Houphouët-Boigny, 22 BP 770, Abidjan 22, Côte d'Ivoire - Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, 01 BP 1303, Abidjan 01, Côte d'Ivoire
| | - Jakob Zinsstag
- Swiss Tropical and Public Health Institute, P.O. Box, CH-4002 Basel, Switzerland - University of Basel, Kreuzstrasse 2, CH-4123 Allschwil, Switzerland
| | - Jürg Utzinger
- Swiss Tropical and Public Health Institute, P.O. Box, CH-4002 Basel, Switzerland - University of Basel, Kreuzstrasse 2, CH-4123 Allschwil, Switzerland
| | - Oliver Balmer
- Swiss Tropical and Public Health Institute, P.O. Box, CH-4002 Basel, Switzerland - University of Basel, Kreuzstrasse 2, CH-4123 Allschwil, Switzerland
| | - Jérôme Boissier
- IHPE, Univ. Montpellier, CNRS, Ifremer, Univ. Perpignan Via Domitia, 66860 Perpignan, France
| |
Collapse
|
17
|
Onyekwere AM, Rey O, Allienne JF, Nwanchor MC, Alo M, Uwa C, Boissier J. Population Genetic Structure and Hybridization of Schistosoma haematobium in Nigeria. Pathogens 2022; 11:425. [PMID: 35456103 PMCID: PMC9026724 DOI: 10.3390/pathogens11040425] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/24/2022] [Accepted: 03/29/2022] [Indexed: 11/21/2022] Open
Abstract
Background: Schistosomiasis is a major poverty-related disease caused by dioecious parasitic flatworms of the genus Schistosoma with a health impact on both humans and animals. Hybrids of human urogenital schistosome and bovine intestinal schistosome have been reported in humans in several of Nigeria’s neighboring West African countries. No empirical studies have been carried out on the genomic diversity of Schistosoma haematobium in Nigeria. Here, we present novel data on the presence and prevalence of hybrids and the population genetic structure of S. haematobium. Methods: 165 Schistosoma-positive urine samples were obtained from 12 sampling sites in Nigeria. Schistosoma haematobium eggs from each sample were hatched and each individual miracidium was picked and preserved in Whatman® FTA cards for genomic analysis. Approximately 1364 parasites were molecularly characterized by rapid diagnostic multiplex polymerase chain reaction (RD-PCR) for mitochondrial DNA gene (Cox1 mtDNA) and a subset of 1136 miracidia were genotyped using a panel of 18 microsatellite markers. Results: No significant difference was observed in the population genetic diversity (p > 0.05), though a significant difference was observed in the allelic richness of the sites except sites 7, 8, and 9 (p < 0.05). Moreover, we observed two clusters of populations: west (populations 1−4) and east (populations 7−12). Of the 1364 miracidia genotyped, 1212 (89%) showed an S. bovis Cox1 profile and 152 (11%) showed an S. haematobium cox1 profile. All parasites showed an S. bovis Cox1 profile except for some at sites 3 and 4. Schistosoma miracidia full genotyping showed 59.3% of the S. bovis ITS2 allele. Conclusions: This study provides novel insight into hybridization and population genetic structure of S. haematobium in Nigeria. Our findings suggest that S. haematobium x S. bovis hybrids are common in Nigeria. More genomic studies on both human- and animal-infecting parasites are needed to ascertain the role of animals in schistosome transmission.
Collapse
Affiliation(s)
- Amos Mathias Onyekwere
- Department of Biology, Alex Ekwueme Federal University, Ndufu-Alike, Abakaliki PMB 1010, Nigeria; (A.M.O.); (C.U.)
- IHPE, University Montpellier, CNRS, Ifremer, University Perpignan Via Domitia, F-66000 Perpignan, France; (O.R.); (J.-F.A.)
| | - Olivier Rey
- IHPE, University Montpellier, CNRS, Ifremer, University Perpignan Via Domitia, F-66000 Perpignan, France; (O.R.); (J.-F.A.)
| | - Jean-François Allienne
- IHPE, University Montpellier, CNRS, Ifremer, University Perpignan Via Domitia, F-66000 Perpignan, France; (O.R.); (J.-F.A.)
| | | | - Moses Alo
- Department of Microbiology, Alex Ekwueme Federal University, Ndufu-Alike, Abakaliki PMB 1010, Nigeria;
| | - Clementina Uwa
- Department of Biology, Alex Ekwueme Federal University, Ndufu-Alike, Abakaliki PMB 1010, Nigeria; (A.M.O.); (C.U.)
| | - Jerome Boissier
- IHPE, University Montpellier, CNRS, Ifremer, University Perpignan Via Domitia, F-66000 Perpignan, France; (O.R.); (J.-F.A.)
| |
Collapse
|
18
|
Stroehlein AJ, Korhonen PK, Lee VV, Ralph SA, Mentink-Kane M, You H, McManus DP, Tchuenté LAT, Stothard JR, Kaur P, Dudchenko O, Aiden EL, Yang B, Yang H, Emery AM, Webster BL, Brindley PJ, Rollinson D, Chang BCH, Gasser RB, Young ND. Chromosome-level genome of Schistosoma haematobium underpins genome-wide explorations of molecular variation. PLoS Pathog 2022; 18:e1010288. [PMID: 35167626 PMCID: PMC8846543 DOI: 10.1371/journal.ppat.1010288] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 01/19/2022] [Indexed: 01/08/2023] Open
Abstract
Urogenital schistosomiasis is caused by the blood fluke Schistosoma haematobium and is one of the most neglected tropical diseases worldwide, afflicting > 100 million people. It is characterised by granulomata, fibrosis and calcification in urogenital tissues, and can lead to increased susceptibility to HIV/AIDS and squamous cell carcinoma of the bladder. To complement available treatment programs and break the transmission of disease, sound knowledge and understanding of the biology and ecology of S. haematobium is required. Hybridisation/introgression events and molecular variation among members of the S. haematobium-group might effect important biological and/or disease traits as well as the morbidity of disease and the effectiveness of control programs including mass drug administration. Here we report the first chromosome-contiguous genome for a well-defined laboratory line of this blood fluke. An exploration of this genome using transcriptomic data for all key developmental stages allowed us to refine gene models (including non-coding elements) and annotations, discover 'new' genes and transcription profiles for these stages, likely linked to development and/or pathogenesis. Molecular variation within S. haematobium among some geographical locations in Africa revealed unique genomic 'signatures' that matched species other than S. haematobium, indicating the occurrence of introgression events. The present reference genome (designated Shae.V3) and the findings from this study solidly underpin future functional genomic and molecular investigations of S. haematobium and accelerate systematic, large-scale population genomics investigations, with a focus on improved and sustained control of urogenital schistosomiasis.
Collapse
Affiliation(s)
- Andreas J. Stroehlein
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Pasi K. Korhonen
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - V. Vern Lee
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Australia
| | - Stuart A. Ralph
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Australia
| | - Margaret Mentink-Kane
- NIH-NIAID Schistosomiasis Resource Center, Biomedical Research Institute, Rockville, Maryland, United States of America
| | - Hong You
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Donald P. McManus
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Louis-Albert Tchuem Tchuenté
- Faculty of Sciences, University of Yaoundé I, Yaoundé, Cameroon
- Department of Parasitology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - J. Russell Stothard
- Department of Parasitology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Parwinder Kaur
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, Western Australia, Australia
| | - Olga Dudchenko
- The Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Center for Theoretical Biological Physics, Rice University, Houston, Texas, United States of America
| | - Erez Lieberman Aiden
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, Western Australia, Australia
- The Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Center for Theoretical Biological Physics, Rice University, Houston, Texas, United States of America
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech, Pudong, China
- Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Bicheng Yang
- BGI Australia, Oceania, BGI Group, CBCRB Building, Herston, Queensland, Australia
| | - Huanming Yang
- BGI-Shenzhen, Shenzhen, China
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI-Shenzhen, Shenzhen, China
| | - Aidan M. Emery
- Parasites and Vectors Division, The Natural History Museum, London, United Kingdom
- London Centre for Neglected Tropical Disease Research (LCNTDR), London, United Kingdom
| | - Bonnie L. Webster
- Parasites and Vectors Division, The Natural History Museum, London, United Kingdom
- London Centre for Neglected Tropical Disease Research (LCNTDR), London, United Kingdom
| | - Paul J. Brindley
- School of Medicine & Health Sciences, Department of Microbiology, Immunology & Tropical Medicine, George Washington University, Washington DC, United States of America
| | - David Rollinson
- Parasites and Vectors Division, The Natural History Museum, London, United Kingdom
- London Centre for Neglected Tropical Disease Research (LCNTDR), London, United Kingdom
| | - Bill C. H. Chang
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Robin B. Gasser
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Neil D. Young
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
19
|
Rey O, Toulza E, Chaparro C, Allienne JF, Kincaid-Smith J, Mathieu-Begné E, Allan F, Rollinson D, Webster BL, Boissier J. Diverging patterns of introgression from Schistosoma bovis across S. haematobium African lineages. PLoS Pathog 2021; 17:e1009313. [PMID: 33544762 PMCID: PMC7891765 DOI: 10.1371/journal.ppat.1009313] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 02/18/2021] [Accepted: 01/13/2021] [Indexed: 12/29/2022] Open
Abstract
Hybridization is a fascinating evolutionary phenomenon that raises the question of how species maintain their integrity. Inter-species hybridization occurs between certain Schistosoma species that can cause important public health and veterinary issues. In particular hybrids between Schistosoma haematobium and S. bovis associated with humans and animals respectively are frequently identified in Africa. Recent genomic evidence indicates that some S. haematobium populations show signatures of genomic introgression from S. bovis. Here, we conducted a genomic comparative study and investigated the genomic relationships between S. haematobium, S. bovis and their hybrids using 19 isolates originating from a wide geographical range over Africa, including samples initially classified as S. haematobium (n = 11), S. bovis (n = 6) and S. haematobium x S. bovis hybrids (n = 2). Based on a whole genomic sequencing approach, we developed 56,181 SNPs that allowed a clear differentiation of S. bovis isolates from a genomic cluster including all S. haematobium isolates and a natural S. haematobium-bovis hybrid. All the isolates from the S. haematobium cluster except the isolate from Madagascar harbored signatures of genomic introgression from S. bovis. Isolates from Corsica, Mali and Egypt harbored the S. bovis-like Invadolysin gene, an introgressed tract that has been previously detected in some introgressed S. haematobium populations from Niger. Together our results highlight the fact that introgression from S. bovis is widespread across S. haematobium and that the observed introgression is unidirectional. Hybridization is a fascinating evolutionary phenomenon that raises the question of how species maintain their integrity. Inter-species hybridization occurs between certain Schistosoma species that can cause important public health and veterinary issues. In particular hybrids between Schistosoma haematobium and S. bovis associated with humans and animals respectively are frequently identified in Africa. Recent genomic evidence indicates that some S. haematobium populations show signatures of genomic introgression from S. bovis. Here we conducted a comparative genomic study to assess the genomic diversity within S. haematobium and S. bovis species and genetic differentation at the genome scale between these two sister species over the African continent. We also investigated traces of possible ancient introgression from one species to another. We found that S. haematobium display low genetic diversity compared to S. bovis. We also found that most S. haematobium samples harbor signature of past introgression with S. bovis at some genomic positions. Our results strongly suggest that introgression occurred long time ago and that such introgression is unidirectional from S. bovis within S. haematobium. Such introgresssion event(s) result in diverging patterns of genomic introgression across S. haematobium lineages.
Collapse
Affiliation(s)
- Olivier Rey
- Univ. Montpellier, CNRS, IFREMER, UPVD, IHPE, Perpignan, France
- * E-mail:
| | - Eve Toulza
- Univ. Montpellier, CNRS, IFREMER, UPVD, IHPE, Perpignan, France
| | | | | | - Julien Kincaid-Smith
- Univ. Montpellier, CNRS, IFREMER, UPVD, IHPE, Perpignan, France
- Centre for Emerging, Endemic and Exotic Diseases (CEEED), Department of Pathobiology and Population Sciences (PPS), Royal Veterinary College, University of London, Hawkshead Campus, Herts, United Kingdom
| | | | - Fiona Allan
- Wolfson Wellcome Biomedical Laboratories, Department of Life Sciences, Natural History Museum, London, United Kingdom
- London Centre for Neglected Tropical Disease Research, Imperial College London School of Public Health, London, United Kingdom
| | - David Rollinson
- Wolfson Wellcome Biomedical Laboratories, Department of Life Sciences, Natural History Museum, London, United Kingdom
- London Centre for Neglected Tropical Disease Research, Imperial College London School of Public Health, London, United Kingdom
| | - Bonnie L. Webster
- Wolfson Wellcome Biomedical Laboratories, Department of Life Sciences, Natural History Museum, London, United Kingdom
- London Centre for Neglected Tropical Disease Research, Imperial College London School of Public Health, London, United Kingdom
| | - Jérôme Boissier
- Univ. Montpellier, CNRS, IFREMER, UPVD, IHPE, Perpignan, France
| |
Collapse
|
20
|
Rey O, Webster BL, Huyse T, Rollinson D, Van den Broeck F, Kincaid-Smith J, Onyekwere A, Boissier J. Population genetics of African Schistosoma species. INFECTION GENETICS AND EVOLUTION 2021; 89:104727. [PMID: 33486128 DOI: 10.1016/j.meegid.2021.104727] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/09/2021] [Accepted: 01/13/2021] [Indexed: 02/06/2023]
Abstract
Blood flukes within the genus Schistosoma (schistosomes) are responsible for the major disease, schistosomiasis, in tropical and sub-tropical areas. This disease is predominantly present on the African continent with more than 85% of the human cases. Schistosomes are also parasites of veterinary importance infecting livestock and wildlife. Schistosoma population genetic structure and diversity are important characteristics that may reflect variations in selection pressures such as those induced by host (mammalian and snail) environments, habitat change, migration and also treatment/control interventions, all of which also shape speciation and evolution of the whole Schistosoma genus. Investigations into schistosome population genetic structure, diversity and evolution has been an area of important debate and research. Supported by advances in molecular techniques with capabilities for multi-locus genetic analyses for single larvae schistosome genetic investigations have greatly progressed in the last decade. This paper aims to review the genetic studies of both animal and human infecting schistosome. Population genetic structures are reviewed at different spatial scales: local, regional or continental (i.e. phylogeography). Within species genetic diversities are discussed compared and the compounding factors discussed, including the effect of mass drug administration. Finally, the ability for intra-species hybridisation questions species integrities and poses many questions in relation to the natural epidemiology of co-endemic species. Here we review molecularly confirmed hybridisation events (in relation to human disease) and discuss the possible impact for ongoing and future control and elimination.
Collapse
Affiliation(s)
- O Rey
- Univ. Montpellier, CNRS, IFREMER, UPVD, IHPE, F-66000 Perpignan, France
| | - B L Webster
- Wolfson Wellcome Biomedical Laboratories, Department of Life Sciences, Natural History Museum, London SW7 5BD, United Kingdom; London Centre for Neglected Tropical Disease Research, Imperial College London School of Public Health, London W2 1PG, United Kingdom
| | - T Huyse
- Department of Biology, Royal Museum for Central Africa, Leuvensesteenweg 13, B-3080 Tervuren, Belgium; Laboratory of Biodiversity and Evolutionary Genomics, Department of Biology, KU Leuven, Ch. Deberiotstraat 32, B-3000 Leuven, Belgium
| | - D Rollinson
- Wolfson Wellcome Biomedical Laboratories, Department of Life Sciences, Natural History Museum, London SW7 5BD, United Kingdom; London Centre for Neglected Tropical Disease Research, Imperial College London School of Public Health, London W2 1PG, United Kingdom
| | - F Van den Broeck
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium; Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - J Kincaid-Smith
- Centre for Emerging, Endemic and Exotic Diseases (CEEED), Department of Pathobiology and Population Sciences (PPS), Royal Veterinary College, University of London, Hawkshead Campus, Herts AL9 7TA, United Kingdom
| | - A Onyekwere
- Univ. Montpellier, CNRS, IFREMER, UPVD, IHPE, F-66000 Perpignan, France
| | - J Boissier
- Univ. Montpellier, CNRS, IFREMER, UPVD, IHPE, F-66000 Perpignan, France.
| |
Collapse
|
21
|
Pennance T, Ame SM, Amour AK, Suleiman KR, Cable J, Webster BL. The detection of Schistosoma bovis in livestock on Pemba Island, Zanzibar: A preliminary study. CURRENT RESEARCH IN PARASITOLOGY & VECTOR-BORNE DISEASES 2021; 1:100056. [PMID: 35284855 PMCID: PMC8906095 DOI: 10.1016/j.crpvbd.2021.100056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/13/2021] [Accepted: 10/15/2021] [Indexed: 11/13/2022]
Abstract
Schistosoma bovis is a parasitic trematode of ungulates transmitted by freshwater snails in Sub-Saharan Africa causing bovine intestinal schistosomiasis that leads to chronic morbidity and significant agricultural economic losses. The recently reported occurrence of Bulinus globosus infected with S. bovis for the first time on Pemba Island (Zanzibar, United Republic of Tanzania) is a cause of concern for livestock/wildlife health and complicates the surveillance of Schistosoma haematobium. To confirm that local cattle are infected with S. bovis, fresh faecal samples were collected from six adult cows surrounding two schistosomiasis transmission sites in Kinyasini, Pemba Island. Schistosome eggs were concentrated, egg hatching stimulated and miracidia were individually captured and identified by analysis of the partial mitochondrial cytochrome c oxidase subunit 1 (cox1) and the partial nuclear internal transcribed spacer region (ITS1+5.8S+ITS2). Two S. bovis miracidia were collected from one faecal sample with two cox1 haplotypes, one matching cox1 data obtained from S. bovis cercariae, collected previously at the same site in Pemba, the other matching S. bovis cox1 data originating from coastal Tanzania. The findings conclude that S. bovis transmission has been established on Pemba Island and is likely to have been imported through livestock trade with East Africa. Increasing the sensitivity of non-invasive diagnostics for bovine schistosomiasis, together with wider sampling, will enable a better assessment on the epidemiology of S. bovis on Pemba Island. The bovine schistosome Schistosoma bovis is detected for the first time from cattle in Zanzibar. Local transmission of S. bovis is confirmed on Pemba Island. Bovine schistosomes complicate the xenomonitoring and surveillance of human urogenital schistosomiasis. Bovine schistosomiasis could lead to chronic morbidity of cattle and agricultural economic losses.
Collapse
|
22
|
El-Kady AM, El-Amir MI, Hassan MH, Allemailem KS, Almatroudi A, Ahmad AA. Genetic Diversity of Schistosoma haematobium in Qena Governorate, Upper Egypt. Infect Drug Resist 2020; 13:3601-3611. [PMID: 33116680 PMCID: PMC7575065 DOI: 10.2147/idr.s266928] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 09/15/2020] [Indexed: 11/23/2022] Open
Abstract
Introduction Schistosomiasis is an important neglected tropical disease (NTD) in several developing countries. Praziquantel is the principle and efficacious chemotherapeutic agent that has been used to treat schistosomiasis for decades. Unfortunately, emerging resistance to praziquantel with accompanying reduced efficacy is reported in some localities. Hence, genetic diversity among parasite populations is of significant interest in assessing the effects of selective pressure generated by praziquantel therapy that might result in encouraging the emergence of new genotypes that are either non-susceptible or drug-resistant. The present study aimed to investigate the genetic diversity of Schistosoma haematobium among human populations using the RAPD technique to help clarify disease epidemiology and transmission. Materials and Methods S. haematobium eggs were isolated from 50 of 134 patients from four different localities in Qena Governorate, Upper Egypt. These patients complained of terminal hematuria and burning micturition. Samples were used for molecular analysis using RAPD-PCR primers (A02, A07, A09, A10). Results Twenty S. haematobium isolates (40%) were amplified using the selected RAPD primers. Amplification patterns of these isolates showed distinct variation in the size and number of amplified fragments, indicating high genetic variation among these isolates. Conclusion To the best of our knowledge, this study is the first to characterize the genetic diversity of S. haematobium in human populations in Upper Egypt. Future studies on a larger geographic scale involving many districts in Upper Egypt should be encouraged. Information from such a study would provide better insight into clonal lineages of S. haematobium in this endemic area. In turn, understanding transmission of the parasite may have a major role in establishing control strategies for urogenital schistosomiasis in Upper Egypt.
Collapse
Affiliation(s)
- Asmaa M El-Kady
- Department of Medical Parasitology, Faculty of Medicine, South Valley University, Qena, Egypt
| | - Mostafa I El-Amir
- Department of Medical Microbiology and Immunology, Faculty of Medicine, South Valley University, Qena, Egypt
| | - Mohammed H Hassan
- Department of Medical Biochemistry, Faculty of Medicine, South Valley University, Qena, Egypt
| | - Khaled S Allemailem
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudia Arabia
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudia Arabia
| | | |
Collapse
|
23
|
Pennance T, Archer J, Lugli EB, Rostron P, Llanwarne F, Ali SM, Amour AK, Suleiman KR, Li S, Rollinson D, Cable J, Knopp S, Allan F, Ame SM, Webster BL. Development of a Molecular Snail Xenomonitoring Assay to Detect Schistosoma haematobium and Schistosoma bovis Infections in their Bulinus Snail Hosts. Molecules 2020; 25:E4011. [PMID: 32887445 PMCID: PMC7116084 DOI: 10.3390/molecules25174011] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/26/2020] [Accepted: 08/26/2020] [Indexed: 12/20/2022] Open
Abstract
Schistosomiasis, a neglected tropical disease of medical and veterinary importance, transmitted through specific freshwater snail intermediate hosts, is targeted for elimination in several endemic regions in sub-Saharan Africa. Multi-disciplinary methods are required for both human and environmental diagnostics to certify schistosomiasis elimination when eventually reached. Molecular xenomonitoring protocols, a DNA-based detection method for screening disease vectors, have been developed and trialed for parasites transmitted by hematophagous insects, such as filarial worms and trypanosomes, yet few have been extensively trialed or proven reliable for the intermediate host snails transmitting schistosomes. Here, previously published universal and Schistosoma-specific internal transcribed spacer (ITS) rDNA primers were adapted into a triplex PCR primer assay that allowed for simple, robust, and rapid detection of Schistosoma haematobium and Schistosoma bovis in Bulinus snails. We showed this two-step protocol could sensitively detect DNA of a single larval schistosome from experimentally infected snails and demonstrate its functionality for detecting S. haematobium infections in wild-caught snails from Zanzibar. Such surveillance tools are a necessity for succeeding in and certifying the 2030 control and elimination goals set by the World Health Organization.
Collapse
Affiliation(s)
- Tom Pennance
- Wolfson Wellcome Biomedical Laboratories, Department of Life Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, UK; (E.B.L.); (P.R.); (F.L.); (D.R.); (F.A.); (B.L.W.)
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK;
- London Centre for Neglected Tropical Disease Research (LCNTDR), London W2 1PG, UK
| | - John Archer
- Wolfson Wellcome Biomedical Laboratories, Department of Life Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, UK; (E.B.L.); (P.R.); (F.L.); (D.R.); (F.A.); (B.L.W.)
- London Centre for Neglected Tropical Disease Research (LCNTDR), London W2 1PG, UK
| | - Elena Birgitta Lugli
- Wolfson Wellcome Biomedical Laboratories, Department of Life Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, UK; (E.B.L.); (P.R.); (F.L.); (D.R.); (F.A.); (B.L.W.)
| | - Penny Rostron
- Wolfson Wellcome Biomedical Laboratories, Department of Life Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, UK; (E.B.L.); (P.R.); (F.L.); (D.R.); (F.A.); (B.L.W.)
| | - Felix Llanwarne
- Wolfson Wellcome Biomedical Laboratories, Department of Life Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, UK; (E.B.L.); (P.R.); (F.L.); (D.R.); (F.A.); (B.L.W.)
- London Centre for Neglected Tropical Disease Research (LCNTDR), London W2 1PG, UK
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Said Mohammed Ali
- Public Health Laboratory–Ivo de Carneri, P.O. Box 122 Chake-Chake, Pemba, Tanzania; (S.M.A.); (A.K.A.); (K.R.S.); (S.M.A.)
| | - Amour Khamis Amour
- Public Health Laboratory–Ivo de Carneri, P.O. Box 122 Chake-Chake, Pemba, Tanzania; (S.M.A.); (A.K.A.); (K.R.S.); (S.M.A.)
| | - Khamis Rashid Suleiman
- Public Health Laboratory–Ivo de Carneri, P.O. Box 122 Chake-Chake, Pemba, Tanzania; (S.M.A.); (A.K.A.); (K.R.S.); (S.M.A.)
| | - Sarah Li
- Schistosomiasis Resource Centre, Biomedical Research Institute, 9410 Key West, Rockville, MD 20850, USA;
| | - David Rollinson
- Wolfson Wellcome Biomedical Laboratories, Department of Life Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, UK; (E.B.L.); (P.R.); (F.L.); (D.R.); (F.A.); (B.L.W.)
- London Centre for Neglected Tropical Disease Research (LCNTDR), London W2 1PG, UK
| | - Jo Cable
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK;
| | - Stefanie Knopp
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4002 Basel, Switzerland;
- University of Basel, Petersplatz 1, 4001 Basel, Switzerland
| | - Fiona Allan
- Wolfson Wellcome Biomedical Laboratories, Department of Life Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, UK; (E.B.L.); (P.R.); (F.L.); (D.R.); (F.A.); (B.L.W.)
- London Centre for Neglected Tropical Disease Research (LCNTDR), London W2 1PG, UK
| | - Shaali Makame Ame
- Public Health Laboratory–Ivo de Carneri, P.O. Box 122 Chake-Chake, Pemba, Tanzania; (S.M.A.); (A.K.A.); (K.R.S.); (S.M.A.)
| | - Bonnie Lee Webster
- Wolfson Wellcome Biomedical Laboratories, Department of Life Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, UK; (E.B.L.); (P.R.); (F.L.); (D.R.); (F.A.); (B.L.W.)
- London Centre for Neglected Tropical Disease Research (LCNTDR), London W2 1PG, UK
| |
Collapse
|
24
|
Allan F, Ame SM, Tian-Bi YNT, Hofkin BV, Webster BL, Diakité NR, N’Goran EK, Kabole F, Khamis IS, Gouvras AN, Emery AM, Pennance T, Rabone M, Kinung’hi S, Hamidou AA, Mkoji GM, McLaughlin JP, Kuris AM, Loker ES, Knopp S, Rollinson D. Snail-Related Contributions from the Schistosomiasis Consortium for Operational Research and Evaluation Program Including Xenomonitoring, Focal Mollusciciding, Biological Control, and Modeling. Am J Trop Med Hyg 2020; 103:66-79. [PMID: 32400353 PMCID: PMC7351297 DOI: 10.4269/ajtmh.19-0831] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 02/14/2020] [Indexed: 01/05/2023] Open
Abstract
The Schistosomiasis Consortium for Operational Research and Evaluation (SCORE) was created in 2008 to answer questions of importance to program managers working to reduce the burden of schistosomiasis in Africa. In the past, intermediate host snail monitoring and control was an important part of integrated schistosomiasis control. However, in Africa, efforts to control snails have declined dramatically over the last 30 years. A resurgence of interest in the control of snails has been prompted by the realization, backed by a World Health Assembly resolution (WHA65.21), that mass drug administration alone may be insufficient to achieve schistosomiasis elimination. SCORE has supported work on snail identification and mapping and investigated how xenomonitoring techniques can aid in the identification of infected snails and thereby identify potential transmission areas. Focal mollusciciding with niclosamide was undertaken in Zanzibar and Côte d'Ivoire as a part of elimination studies. Two studies involving biological control of snails were conducted: one explored the association of freshwater riverine prawns and snail hosts in Côte d'Ivoire and the other assessed the current distribution of Procambarus clarkii, the invasive Louisiana red swamp crayfish, in Kenya and its association with snail hosts and schistosomiasis transmission. SCORE also supported modeling studies on the importance of snail control in achieving elimination and a meta-analysis of the impact of molluscicide-based snail control programs on human schistosomiasis prevalence and incidence. SCORE's snail control studies contributed to increased investment in building capacity, and specimens collected during SCORE research deposited in the Schistosomiasis Collections at the Natural History Museum (SCAN) will provide a valuable resource for the years to come.
Collapse
Affiliation(s)
- Fiona Allan
- Wolfson Wellcome Biomedical Laboratories, Department of Life Sciences, Natural History Museum, London, United Kingdom
| | - Shaali M. Ame
- Public Health Laboratory - Ivo de Carneri, Pemba, United Republic of Tanzania
| | - Yves-Nathan T. Tian-Bi
- Unité de Formation et de Recherche Biosciences, Université Félix Houphouët-Boigny, Abidjan, Côte d’Ivoire
- Centre Suisse de Recherches Scientifiques en Côte d’Ivoire, Abidjan, Côte d’Ivoire
| | - Bruce V. Hofkin
- Department of Biology, University of New Mexico, Albuquerque, New Mexico
| | - Bonnie L. Webster
- Wolfson Wellcome Biomedical Laboratories, Department of Life Sciences, Natural History Museum, London, United Kingdom
| | - Nana R. Diakité
- Unité de Formation et de Recherche Biosciences, Université Félix Houphouët-Boigny, Abidjan, Côte d’Ivoire
- Centre Suisse de Recherches Scientifiques en Côte d’Ivoire, Abidjan, Côte d’Ivoire
| | - Eliezer K. N’Goran
- Unité de Formation et de Recherche Biosciences, Université Félix Houphouët-Boigny, Abidjan, Côte d’Ivoire
- Centre Suisse de Recherches Scientifiques en Côte d’Ivoire, Abidjan, Côte d’Ivoire
| | - Fatma Kabole
- Neglected Tropical Disease Unit, Unguja, Ministry of Health, Zanzibar, United Republic of Tanzania
| | - Iddi S. Khamis
- Neglected Tropical Disease Unit, Unguja, Ministry of Health, Zanzibar, United Republic of Tanzania
| | - Anouk N. Gouvras
- Wolfson Wellcome Biomedical Laboratories, Department of Life Sciences, Natural History Museum, London, United Kingdom
| | - Aidan M. Emery
- Wolfson Wellcome Biomedical Laboratories, Department of Life Sciences, Natural History Museum, London, United Kingdom
| | - Tom Pennance
- Wolfson Wellcome Biomedical Laboratories, Department of Life Sciences, Natural History Museum, London, United Kingdom
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Muriel Rabone
- Wolfson Wellcome Biomedical Laboratories, Department of Life Sciences, Natural History Museum, London, United Kingdom
| | - Safari Kinung’hi
- National Institute of Medical Research (NIMR) Mwanza Centre, Mwanza, United Republic of Tanzania
| | - Amina Amadou Hamidou
- Réseau International Schistosomoses, Environnement, Aménagement et Lutte (RISEAL-Niger), Niamey, Niger
| | - Gerald M. Mkoji
- Center for Biotechnology Research and Development, Kenya Medical Research Institute (KEMRI), Nairobi, Kenya
| | - John P. McLaughlin
- Department of Ecology, Evolution and Marine Biology and Marine Science Institute, University of California, Santa Barbara, California
| | - Armand M. Kuris
- Department of Ecology, Evolution and Marine Biology and Marine Science Institute, University of California, Santa Barbara, California
| | - Eric S. Loker
- Department of Biology, University of New Mexico, Albuquerque, New Mexico
| | - Stefanie Knopp
- Wolfson Wellcome Biomedical Laboratories, Department of Life Sciences, Natural History Museum, London, United Kingdom
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - David Rollinson
- Wolfson Wellcome Biomedical Laboratories, Department of Life Sciences, Natural History Museum, London, United Kingdom
| |
Collapse
|
25
|
Webster JP, Neves MI, Webster BL, Pennance T, Rabone M, Gouvras AN, Allan F, Walker M, Rollinson D. Parasite Population Genetic Contributions to the Schistosomiasis Consortium for Operational Research and Evaluation within Sub-Saharan Africa. Am J Trop Med Hyg 2020; 103:80-91. [PMID: 32400355 PMCID: PMC7351308 DOI: 10.4269/ajtmh.19-0827] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 04/08/2020] [Indexed: 12/27/2022] Open
Abstract
Analyses of the population genetic structure of schistosomes under the "Schistosomiasis Consortium for Operational Research and Evaluation" (SCORE) contrasting treatment pressure scenarios in Tanzania, Niger, and Zanzibar were performed to provide supplementary critical information with which to evaluate the impact of these large-scale control activities and guide how activities could be adjusted. We predicted that population genetic analyses would reveal information on a range of important parameters including, but not exclusive to, recruitment and transmission of genotypes, occurrence of hybridization events, differences in reproductive mode, and degrees of inbreeding, and hence, the evolutionary potential, and responses of parasite populations under contrasting treatment pressures. Key findings revealed that naturally high levels of gene flow and mixing of the parasite populations between neighboring sites were likely to dilute any effects imposed by the SCORE treatment arms. Furthermore, significant inherent differences in parasite fecundity were observed, independent of current treatment arm, but potentially of major impact in terms of maintaining high levels of ongoing transmission in persistent "biological hotspot" sites. Within Niger, naturally occurring Schistosoma haematobium/Schistosoma bovis viable hybrids were found to be abundant, often occurring in significantly higher proportions than that of single-species S. haematobium infections. By examining parasite population genetic structures across hosts, treatment regimens, and the spatial landscape, our results to date illustrate key transmission processes over and above that which could be achieved through standard parasitological monitoring of prevalence and intensity alone, as well as adding to our understanding of Schistosoma spp. life history strategies in general.
Collapse
Affiliation(s)
- Joanne P. Webster
- Department of Pathobiology and Population Sciences, Centre for Emerging, Endemic and Exotic Diseases (CEEED), Royal Veterinary College, University of London, Hawkshead Campus, Herts, United Kingdom
- London Centre for Neglected Tropical Disease Research (LCNTDR), Imperial College Faculty of Medicine, London, United Kingdom
| | - Maria Inês Neves
- Department of Pathobiology and Population Sciences, Centre for Emerging, Endemic and Exotic Diseases (CEEED), Royal Veterinary College, University of London, Hawkshead Campus, Herts, United Kingdom
- London Centre for Neglected Tropical Disease Research (LCNTDR), Imperial College Faculty of Medicine, London, United Kingdom
| | - Bonnie L. Webster
- London Centre for Neglected Tropical Disease Research (LCNTDR), Imperial College Faculty of Medicine, London, United Kingdom
- Department of Life Sciences, Wolfson Wellcome Biomedical Laboratories, The Natural History Museum, London, United Kingdom
| | - Tom Pennance
- London Centre for Neglected Tropical Disease Research (LCNTDR), Imperial College Faculty of Medicine, London, United Kingdom
- Department of Life Sciences, Wolfson Wellcome Biomedical Laboratories, The Natural History Museum, London, United Kingdom
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Muriel Rabone
- London Centre for Neglected Tropical Disease Research (LCNTDR), Imperial College Faculty of Medicine, London, United Kingdom
- Department of Life Sciences, Wolfson Wellcome Biomedical Laboratories, The Natural History Museum, London, United Kingdom
| | - Anouk N. Gouvras
- London Centre for Neglected Tropical Disease Research (LCNTDR), Imperial College Faculty of Medicine, London, United Kingdom
- Department of Life Sciences, Wolfson Wellcome Biomedical Laboratories, The Natural History Museum, London, United Kingdom
| | - Fiona Allan
- London Centre for Neglected Tropical Disease Research (LCNTDR), Imperial College Faculty of Medicine, London, United Kingdom
- Department of Life Sciences, Wolfson Wellcome Biomedical Laboratories, The Natural History Museum, London, United Kingdom
| | - Martin Walker
- Department of Pathobiology and Population Sciences, Centre for Emerging, Endemic and Exotic Diseases (CEEED), Royal Veterinary College, University of London, Hawkshead Campus, Herts, United Kingdom
- London Centre for Neglected Tropical Disease Research (LCNTDR), Imperial College Faculty of Medicine, London, United Kingdom
| | - David Rollinson
- London Centre for Neglected Tropical Disease Research (LCNTDR), Imperial College Faculty of Medicine, London, United Kingdom
- Department of Life Sciences, Wolfson Wellcome Biomedical Laboratories, The Natural History Museum, London, United Kingdom
| |
Collapse
|
26
|
Pennance T, Allan F, Emery A, Rabone M, Cable J, Garba AD, Hamidou AA, Webster JP, Rollinson D, Webster BL. Interactions between Schistosoma haematobium group species and their Bulinus spp. intermediate hosts along the Niger River Valley. Parasit Vectors 2020; 13:268. [PMID: 32448268 PMCID: PMC7247258 DOI: 10.1186/s13071-020-04136-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 05/14/2020] [Indexed: 01/09/2023] Open
Abstract
Background Urogenital schistosomiasis, caused by infection with Schistosoma haematobium, is endemic in Niger but complicated by the presence of Schistosoma bovis, Schistosoma curassoni and S. haematobium group hybrids along with various Bulinus snail intermediate host species. Establishing the schistosomes and snails involved in transmission aids disease surveillance whilst providing insights into snail-schistosome interactions/compatibilities and biology. Methods Infected Bulinus spp. were collected from 16 villages north and south of the Niamey region, Niger, between 2011 and 2015. From each Bulinus spp., 20–52 cercariae shed were analysed using microsatellite markers and a subset identified using the mitochondrial (mt) cox1 and nuclear ITS1 + 2 and 18S DNA regions. Infected Bulinus spp. were identified using both morphological and molecular analysis (partial mt cox1 region). Results A total of 87 infected Bulinus from 24 sites were found, 29 were molecularly confirmed as B. truncatus, three as B. forskalii and four as B. globosus. The remaining samples were morphologically identified as B. truncatus (n = 49) and B. forskalii (n = 2). The microsatellite analysis of 1124 cercariae revealed 186 cercarial multilocus genotypes (MLGs). Identical cercarial genotypes were frequently (60%) identified from the same snail (clonal populations from a single miracidia); however, several (40%) of the snails had cercariae of different genotypes (2–10 MLG’s) indicating multiple miracidial infections. Fifty-seven of the B. truncatus and all of the B. forskalii and B. globosus were shedding the Bovid schistosome S. bovis. The other B. truncatus were shedding the human schistosomes, S. haematobium (n = 6) and the S. haematobium group hybrids (n = 13). Two B. truncatus had co-infections with S. haematobium and S. haematobium group hybrids whilst no co-infections with S. bovis were observed. Conclusions This study has advanced our understanding of human and bovid schistosomiasis transmission in the Niger River Valley region. Human Schistosoma species/forms (S. haematobium and S. haematobium hybrids) were found transmitted only in five villages whereas those causing veterinary schistosomiasis (S. bovis), were found in most villages. Bulinus truncatus was most abundant, transmitting all Schistosoma species, while the less abundant B. forskalii and B. globosus, only transmitted S. bovis. Our data suggest that species-specific biological traits may exist in relation to co-infections, snail-schistosome compatibility and intramolluscan schistosome development. ![]()
Collapse
Affiliation(s)
- Tom Pennance
- Department of Life Sciences, Natural History Museum, Cromwell Road, South Kensington, London, SW7 5BD, UK. .,School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK. .,London Centre for Neglected Tropical Disease Research, Imperial College London, School of Public Health, Norfolk Pl, Paddington, London, W2 1PG, UK.
| | - Fiona Allan
- Department of Life Sciences, Natural History Museum, Cromwell Road, South Kensington, London, SW7 5BD, UK.,London Centre for Neglected Tropical Disease Research, Imperial College London, School of Public Health, Norfolk Pl, Paddington, London, W2 1PG, UK
| | - Aidan Emery
- Department of Life Sciences, Natural History Museum, Cromwell Road, South Kensington, London, SW7 5BD, UK.,London Centre for Neglected Tropical Disease Research, Imperial College London, School of Public Health, Norfolk Pl, Paddington, London, W2 1PG, UK
| | - Muriel Rabone
- Department of Life Sciences, Natural History Museum, Cromwell Road, South Kensington, London, SW7 5BD, UK.,London Centre for Neglected Tropical Disease Research, Imperial College London, School of Public Health, Norfolk Pl, Paddington, London, W2 1PG, UK
| | - Jo Cable
- School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK
| | - Amadou Djirmay Garba
- Réseau International Schistosomoses, Environnement, Aménagement et Lutte (RISEAL-Niger), 333, Avenue des Zarmakoye, B.P. 13724, Niamey, Niger.,World Health Organization, Geneva, Switzerland
| | - Amina Amadou Hamidou
- Réseau International Schistosomoses, Environnement, Aménagement et Lutte (RISEAL-Niger), 333, Avenue des Zarmakoye, B.P. 13724, Niamey, Niger
| | - Joanne P Webster
- London Centre for Neglected Tropical Disease Research, Imperial College London, School of Public Health, Norfolk Pl, Paddington, London, W2 1PG, UK.,Department of Pathology and Pathogen Biology, Centre for Emerging, Endemic and Exotic Diseases (CEEED), Royal Veterinary College, University of London, Hertfordshire, AL9 7TA, UK
| | - David Rollinson
- Department of Life Sciences, Natural History Museum, Cromwell Road, South Kensington, London, SW7 5BD, UK.,London Centre for Neglected Tropical Disease Research, Imperial College London, School of Public Health, Norfolk Pl, Paddington, London, W2 1PG, UK
| | - Bonnie L Webster
- Department of Life Sciences, Natural History Museum, Cromwell Road, South Kensington, London, SW7 5BD, UK. .,London Centre for Neglected Tropical Disease Research, Imperial College London, School of Public Health, Norfolk Pl, Paddington, London, W2 1PG, UK.
| |
Collapse
|
27
|
Schistosoma species detection by environmental DNA assays in African freshwaters. PLoS Negl Trop Dis 2020; 14:e0008129. [PMID: 32203507 PMCID: PMC7117781 DOI: 10.1371/journal.pntd.0008129] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 04/02/2020] [Accepted: 02/10/2020] [Indexed: 12/17/2022] Open
Abstract
Background Schistosomiasis is a neglected tropical parasitic disease associated with severe pathology, mortality and economic loss worldwide. Programs for disease control may benefit from specific and sensitive diagnostic methods to detect Schistosoma trematodes in aquatic environments. Here we report the development of novel environmental DNA (eDNA) qPCR assays for the presence of the human-infecting species Schistosoma mansoni, S. haematobium and S. japonicum. Methodology/Principal findings We first tested the specificity of the assays across the three species using genomic DNA preparations which showed successful amplification of target sequences with no cross amplification between the three focal species. In addition, we evaluated the specificity of the assays using synthetic DNA of multiple Schistosoma species, and demonstrated a high overall specificity; however, S. japonicum and S. haematobium assays showed cross-species amplification with very closely-related species. We next tested the effectiveness of the S. mansoni assay using eDNA samples from aquaria containing infected host gastropods, with the target species revealed as present in all infected aquaria. Finally, we evaluated the effectiveness of the S. mansoni and S. haematobium assays using eDNA samples from eight discrete natural freshwater sites in Tanzania, and demonstrated strong correspondence between infection status established using eDNA and conventional assays of parasite prevalence in host snails. Conclusions/Significance Collectively, our results suggest that eDNA monitoring is able to detect schistosomes in freshwater bodies, but refinement of the field sampling, storage and assay methods are likely to optimise its performance. We anticipate that environmental DNA-based approaches will help to inform epidemiological studies and contribute to efforts to control and eliminate schistosomiasis in endemic areas. Schistosomiasis, otherwise known as bilharzia or snail fever, is a prevalent human disease found across tropical regions of the world and is a major cause of disability. The disease is acquired from exposure to the schistosome infectious larvae released by infected host snails in freshwaters. Programs to restrict the transmission of schistosomiasis would benefit from rapid and reliable diagnostic methods to detect schistosomes. Here we report a study that has developed new diagnostic tools to identify the DNA from three human-infecting Schistosoma species within water samples. This “environmental DNA” (eDNA) approach requires the filtering and laboratory analyses of water samples, and avoids the requirements to locate, identify and individually test the infectious status of host snails. Our results showed that eDNA methods detect the presence of the parasite in freshwater bodies. However, there is need for further refinement for sampling and laboratory techniques to improve the performance of the assays. We anticipate that eDNA approaches will provide information on the distribution and abundance the water-borne parasites, and potentially contribute to the control and elimination of schistosomiasis.
Collapse
|
28
|
High prevalence of Schistosoma haematobium × Schistosoma bovis hybrids in schoolchildren in Côte d'Ivoire. Parasitology 2019; 147:287-294. [PMID: 31727202 DOI: 10.1017/s0031182019001549] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Schistosomiasis is a neglected tropical disease, though it is highly prevalent in many parts of sub-Saharan Africa. While Schistosoma haematobium-bovis hybrids have been reported in West Africa, no data about Schistosoma hybrids in humans are available from Côte d'Ivoire. This study aimed to identify and quantify S. haematobium-bovis hybrids among schoolchildren in four localities of Côte d'Ivoire. Urine samples were collected and examined by filtration to detect Schistosoma eggs. Eggs were hatched and 503 miracidia were individually collected and stored on Whatman® FTA cards for molecular analysis. Individual miracidia were molecularly characterized by analysis of mitochondrial cox1 and nuclear internal transcribed spacer 2 (ITS 2) DNA regions. A mitochondrial cox1-based diagnostic polymerase chain reaction was performed on 459 miracidia, with 239 (52.1%) exhibiting the typical band for S. haematobium and 220 (47.9%) the S. bovis band. The cox1 and ITS 2 amplicons were Sanger sequenced from 40 randomly selected miracidia to confirm species and hybrids status. Among the 33 cox1 sequences analysed, we identified 15 S. haematobium sequences (45.5%) belonging to seven haplotypes and 18 S. bovis sequences (54.5%) belonging to 12 haplotypes. Of 40 ITS 2 sequences analysed, 31 (77.5%) were assigned to pure S. haematobium, four (10.0%) to pure S. bovis and five (12.5%) to S. haematobium-bovis hybrids. Our findings suggest that S. haematobium-bovis hybrids are common in Côte d'Ivoire. Hence, intense prospection of domestic and wild animals is warranted to determine whether zoonotic transmission occurs.
Collapse
|
29
|
Doyle SR, Sankaranarayanan G, Allan F, Berger D, Jimenez Castro PD, Collins JB, Crellen T, Duque-Correa MA, Ellis P, Jaleta TG, Laing R, Maitland K, McCarthy C, Moundai T, Softley B, Thiele E, Ouakou PT, Tushabe JV, Webster JP, Weiss AJ, Lok J, Devaney E, Kaplan RM, Cotton JA, Berriman M, Holroyd N. Evaluation of DNA Extraction Methods on Individual Helminth Egg and Larval Stages for Whole-Genome Sequencing. Front Genet 2019; 10:826. [PMID: 31616465 PMCID: PMC6764475 DOI: 10.3389/fgene.2019.00826] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 08/12/2019] [Indexed: 01/19/2023] Open
Abstract
Whole-genome sequencing is being rapidly applied to the study of helminth genomes, including de novo genome assembly, population genetics, and diagnostic applications. Although late-stage juvenile and adult parasites typically produce sufficient DNA for molecular analyses, these parasitic stages are almost always inaccessible in the live host; immature life stages found in the environment for which samples can be collected non-invasively offer a potential alternative; however, these samples typically yield very low quantities of DNA, can be environmentally resistant, and are susceptible to contamination, often from bacterial or host DNA. Here, we have tested five low-input DNA extraction protocols together with a low-input sequencing library protocol to assess the feasibility of whole-genome sequencing of individual immature helminth samples. These approaches do not use whole-genome amplification, a common but costly approach to increase the yield of low-input samples. We first tested individual parasites from two species spotted onto FTA cards-egg and L1 stages of Haemonchus contortus and miracidia of Schistosoma mansoni-before further testing on an additional five species-Ancylostoma caninum, Ascaridia dissimilis, Dirofilaria immitis, Strongyloides stercoralis, and Trichuris muris-with an optimal protocol. A sixth species-Dracunculus medinensis-was included for comparison. Whole-genome sequencing followed by analyses to determine the proportion of on- and off-target mapping revealed successful sample preparations for six of the eight species tested with variation both between species and between different life stages from some species described. These results demonstrate the feasibility of whole-genome sequencing of individual parasites, and highlight a new avenue toward generating sensitive, specific, and information-rich data for the diagnosis and surveillance of helminths.
Collapse
Affiliation(s)
- Stephen R. Doyle
- Parasites and Microbes, Wellcome Sanger Institute, Hinxton, United Kingdom
| | | | - Fiona Allan
- Department of Life Sciences, Natural History Museum, London, United Kingdom
| | - Duncan Berger
- Parasites and Microbes, Wellcome Sanger Institute, Hinxton, United Kingdom
| | - Pablo D. Jimenez Castro
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
- Grupo de Parasitologia Veterinaria, Universidad Nacional de Colombia, Bogotá, Colombia
| | - James Bryant Collins
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Thomas Crellen
- Parasites and Microbes, Wellcome Sanger Institute, Hinxton, United Kingdom
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | | | - Peter Ellis
- Parasites and Microbes, Wellcome Sanger Institute, Hinxton, United Kingdom
| | - Tegegn G. Jaleta
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Roz Laing
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Kirsty Maitland
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Catherine McCarthy
- Parasites and Microbes, Wellcome Sanger Institute, Hinxton, United Kingdom
| | | | - Ben Softley
- Parasites and Microbes, Wellcome Sanger Institute, Hinxton, United Kingdom
| | - Elizabeth Thiele
- Department of Biology, Vassar College, Poughkeepsie, NY, United States
| | | | - John Vianney Tushabe
- Parasites and Microbes, Wellcome Sanger Institute, Hinxton, United Kingdom
- Medical Research Council/Uganda Virus Research Institute and London School of Hygiene & Tropical Medicine Uganda Research Unit, Entebbe, Uganda
| | - Joanne P. Webster
- Centre for Emerging, Endemic and Exotic Diseases, Department of Pathology and Population Sciences, Royal Veterinary College, University of London, Herts, United Kingdom
| | - Adam J. Weiss
- Guinea Worm Eradication Program, The Carter Center, Atlanta, GA, United States
| | - James Lok
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Eileen Devaney
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Ray M. Kaplan
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - James A. Cotton
- Parasites and Microbes, Wellcome Sanger Institute, Hinxton, United Kingdom
| | - Matthew Berriman
- Parasites and Microbes, Wellcome Sanger Institute, Hinxton, United Kingdom
| | - Nancy Holroyd
- Parasites and Microbes, Wellcome Sanger Institute, Hinxton, United Kingdom
| |
Collapse
|
30
|
Tian-Bi YNT, Webster B, Konan CK, Allan F, Diakité NR, Ouattara M, Salia D, Koné A, Kakou AK, Rabone M, Coulibaly JT, Knopp S, Meïté A, Utzinger J, N'Goran EK, Rollinson D. Molecular characterization and distribution of Schistosoma cercariae collected from naturally infected bulinid snails in northern and central Côte d'Ivoire. Parasit Vectors 2019; 12:117. [PMID: 30890180 PMCID: PMC6423847 DOI: 10.1186/s13071-019-3381-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 03/06/2019] [Indexed: 01/27/2023] Open
Abstract
Background Accurate identification of schistosome species infecting intermediate host snails is important for understanding parasite transmission, schistosomiasis control and elimination. Cercariae emerging from infected snails cannot be precisely identified morphologically to the species level. We used molecular tools to clarify the distribution of the Schistosoma haematobium group species infecting bulinid snails in a large part of Côte d’Ivoire and confirmed the presence of interspecific hybrid schistosomes. Methods Between June 2016 and March 2017, Bulinus snails were sampled in 164 human-water contact sites from 22 villages of the northern and central parts of Côte d’Ivoire. Multi-locus genetic analysis (mitochondrial cox1 and nuclear ITS) was performed on individual schistosome cercariae shed from snails, in the morning and in the afternoon, for species and hybrid identification. Results Overall, 1923 Bulinus truncatus, 255 Bulinus globosus and 1424 Bulinus forskalii were obtained. Among 2417 Bulinus screened, 25 specimens (18 B. truncatus and seven B. globosus) shed schistosomes, with up to 14% infection prevalence per site and time point. Globally, infection rates per time point ranged between 0.6 and 4%. Schistosoma bovis, S. haematobium and S. bovis × S. haematobium hybrids infected 0.5%, 0.2% and 0.4% of the snails screened, respectively. Schistosoma bovis and hybrids were more prevalent in B. truncatus, whereas S. haematobium and hybrid infections were more prevalent in B. globosus. Schistosoma bovis-infected Bulinus were predominantly found in northern sites, while S. haematobium and hybrid infected snails were mainly found in central parts of Côte d’Ivoire. Conclusions The data highlight the necessity of using molecular tools to identify and understand which schistosome species are transmitted by specific intermediate host snails. The study deepens our understanding of the epidemiology and transmission dynamics of S. haematobium and S. bovis in Côte d’Ivoire and provides the first conclusive evidence for the transmission of S. haematobium × S. bovis hybrids in this West African country. Trial registration ISRCTN, ISRCTN10926858. Registered 21 December 2016; retrospectively registered (see: http://www.isrctn.com/ISRCTN10926858) Electronic supplementary material The online version of this article (10.1186/s13071-019-3381-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yves-Nathan T Tian-Bi
- Unité de Formation et de Recherche Biosciences, Université Félix Houphouët-Boigny, 22 BP 770, Abidjan 22, Côte d'Ivoire.,Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, 01 BP 1303, Abidjan 01, Côte d'Ivoire
| | - Bonnie Webster
- Wolfson Wellcome Biomedical Laboratories, Department of Life Sciences, Natural History Museum, Cromwell Road, London, SW7 5BD, UK.
| | - Cyrille K Konan
- Unité de Formation et de Recherche Biosciences, Université Félix Houphouët-Boigny, 22 BP 770, Abidjan 22, Côte d'Ivoire.,Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, 01 BP 1303, Abidjan 01, Côte d'Ivoire
| | - Fiona Allan
- Wolfson Wellcome Biomedical Laboratories, Department of Life Sciences, Natural History Museum, Cromwell Road, London, SW7 5BD, UK
| | - Nana R Diakité
- Unité de Formation et de Recherche Biosciences, Université Félix Houphouët-Boigny, 22 BP 770, Abidjan 22, Côte d'Ivoire.,Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, 01 BP 1303, Abidjan 01, Côte d'Ivoire
| | - Mamadou Ouattara
- Unité de Formation et de Recherche Biosciences, Université Félix Houphouët-Boigny, 22 BP 770, Abidjan 22, Côte d'Ivoire.,Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, 01 BP 1303, Abidjan 01, Côte d'Ivoire
| | - Diabaté Salia
- Centre d'Entomologie Médicale et Vétérinaire, Université Alassane Ouattara de Bouaké, 27 BP 529, Abidjan 27, Côte d'Ivoire
| | - Amani Koné
- Institut National d'Hygiène Publique, Ministère de la Santé et de l'Hygiène Publique, Boulevard Du Port (Chu)-Treichville, Bp V 14, Abidjan, Côte d'Ivoire
| | - Adolphe K Kakou
- Institut National d'Hygiène Publique, Ministère de la Santé et de l'Hygiène Publique, Boulevard Du Port (Chu)-Treichville, Bp V 14, Abidjan, Côte d'Ivoire
| | - Muriel Rabone
- Wolfson Wellcome Biomedical Laboratories, Department of Life Sciences, Natural History Museum, Cromwell Road, London, SW7 5BD, UK
| | - Jean T Coulibaly
- Unité de Formation et de Recherche Biosciences, Université Félix Houphouët-Boigny, 22 BP 770, Abidjan 22, Côte d'Ivoire.,Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, 01 BP 1303, Abidjan 01, Côte d'Ivoire.,Swiss Tropical and Public Health Institute, P.O. Box, CH-4002, Basel, Switzerland.,University of Basel, P.O. Box, CH-4003, Basel, Switzerland
| | - Stefanie Knopp
- Swiss Tropical and Public Health Institute, P.O. Box, CH-4002, Basel, Switzerland.,University of Basel, P.O. Box, CH-4003, Basel, Switzerland
| | - Aboulaye Meïté
- Programme National de Lutte contre les Maladies Tropicales Négligées à Chimiothérapie Préventive (PNLMTN-CP), Ministère de la Santé et de l'Hygiène Publique, 06 BP 6394, Abidjan 06, Côte d'Ivoire
| | - Jürg Utzinger
- Swiss Tropical and Public Health Institute, P.O. Box, CH-4002, Basel, Switzerland.,University of Basel, P.O. Box, CH-4003, Basel, Switzerland
| | - Eliézer K N'Goran
- Unité de Formation et de Recherche Biosciences, Université Félix Houphouët-Boigny, 22 BP 770, Abidjan 22, Côte d'Ivoire.,Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, 01 BP 1303, Abidjan 01, Côte d'Ivoire
| | - David Rollinson
- Wolfson Wellcome Biomedical Laboratories, Department of Life Sciences, Natural History Museum, Cromwell Road, London, SW7 5BD, UK
| |
Collapse
|
31
|
De NV, La T, Minh PN, Dao PTB, Duyet LV. Detection of four patients who were infected by Schistosoma haematobium in Vietnam. Infect Drug Resist 2019; 12:439-445. [PMID: 30863127 PMCID: PMC6388730 DOI: 10.2147/idr.s179746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Introduction Schistosoma lives as a parasite in the portal vein causing intestinal lesions. It also lives in the liver, spleen, and the vein of the urinary bladder causing lesions in the urinary system. Angola is an endemic area of Schistosoma haematobium, which causes lesions in the urinary system, including the urinary bladder. In this study, we aimed to identify and classify the parasites that were collected from four patients from Angola, who currently live in Vietnam, by morphological and molecular methods. Patients and methods The main clinical symptoms of the patients were collected, and Schistosoma eggs were taken from urine by a centrifugal method from the four patients in 2016. Identification of the species by morphological method was taken using a microscope. The DNA of the Schistosoma was also isolated and was identified by cytochrome C oxidase subunit 1 (Cox1) sequence. Results The four Vietnamese patients infected with S. haematobium in Angola returned to Vietnam. All the patients felt strange and had cystalgia and hematuria (blood urine), and one of them was diagnosed with urinary bladder cancer, where surgery was necessary for that patient. Schistosoma eggs, which were collected from the urine of the four patients, were identified as S. haematobium by morphological and molecular methods. These patients were the first reports of Schistosoma in Vietnam. Conclusion Four Vietnamese schistosomiasis patients returned from Angola: three were diagnosed with schistosomiasis and one was diagnosed with urinary bladder cancer. They had similar symptoms including a strange feeling, cystalgia, hematuria, and eosinophilia and were detected with Schistosoma eggs in urine.
Collapse
Affiliation(s)
- Nguyen Van De
- Department of Parasitology, Hanoi Medical University, Hanoi, Vietnam,
| | - Truong La
- Department of Microbiology and Parasitology, The Western Highlands Agriculture and Forestry Science Institute (WASI), Hanoi, Vietnam
| | - Pham Ngoc Minh
- Department of Parasitology, Hanoi Medical University, Hanoi, Vietnam,
| | - Pham Thi Bich Dao
- Department of Parasitology, Hanoi Medical University, Hanoi, Vietnam,
| | - Le Van Duyet
- Department of Molecular Diagnosis, National Hospital for Tropical Diseases, Hanoi, Vietnam
| |
Collapse
|
32
|
Djuikwo-Teukeng FF, Kouam Simo A, Allienne JF, Rey O, Njayou Ngapagna A, Tchuem-Tchuente LA, Boissier J. Population genetic structure of Schistosoma bovis in Cameroon. Parasit Vectors 2019; 12:56. [PMID: 30678712 PMCID: PMC6346511 DOI: 10.1186/s13071-019-3307-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 01/08/2019] [Indexed: 11/24/2022] Open
Abstract
Background Schistosomiasis is neglected tropical parasitic disease affecting both humans and animals. Due to the human health impact, population genetic studies have focused on the three main human-infecting schistosome species: Schistosoma mansoni, S. haematobium and S. japonicum. Here we present novel data on the population genetic structure of Schistosoma bovis, a highly widespread and prevalent schistosome infecting ruminants, and therefore of veterinary importance. Methods Adult S. bovis were sampled in the two main abattoirs of Cameroon (Yaoundé and Douala). Twenty-two cows originating from four distinct localities were sampled and a total of 218 parasites were recovered. All parasites were genotyped using a panel of 14 microsatellite markers and a sub-sample of 91 parasites were sequenced and characterized with the mitochondrial (cox1) and nuclear (ITS) genetic markers. Results No significant difference in allelic richness, heterozygosity, nucleotide diversity and haplotype diversity was observed between the populations. Additionally, no strong genetic structure was observed at the country scale. Our data also show that S. bovis is more polymorphic than its sister species, S. haematobium, and that the haplotype diversity is similar to that of S. mansoni while the nucleotide diversity does not significantly differ from that of S. haematobium. The resulting negative Tajima’s D* and Fu and Li’s D* indices could be a signature of population demographic expansion. No S. haematobium/S. bovis hybrids were observed in our populations, thus all samples were considered as pure S. bovis. Conclusions This study provides novel insights into genetic diversity and population genetic structure of S. bovis. No strong genetic structure was observed at the country scale but some genetic indices could be associated as a signature of population demographic expansion. Electronic supplementary material The online version of this article (10.1186/s13071-019-3307-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Alain Kouam Simo
- Université des Montagnes, Faculty of Heath Science, PO Box: 208, Bangangté, Cameroon
| | - Jean-François Allienne
- Université de Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, Université de Montpellier, F-66860, Perpignan, France
| | - Olivier Rey
- Université de Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, Université de Montpellier, F-66860, Perpignan, France
| | | | - Louis Albert Tchuem-Tchuente
- Centre for Schistosomiasis and Parasitology, Yaoundé, Cameroon.,Laboratory of Parasitology and Ecology, Faculty of Sciences, University of Yaoundé I, Yaoundé, Cameroon
| | - Jérôme Boissier
- Université de Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, Université de Montpellier, F-66860, Perpignan, France.
| |
Collapse
|
33
|
Le Clec’h W, Chevalier FD, McDew-White M, Allan F, Webster BL, Gouvras AN, Kinunghi S, Tchuenté LAT, Garba A, Mohammed KA, Ame SM, Webster JP, Rollinson D, Emery AM, Anderson TJC. Whole genome amplification and exome sequencing of archived schistosome miracidia. Parasitology 2018; 145:1739-1747. [PMID: 29806576 PMCID: PMC6193844 DOI: 10.1017/s0031182018000811] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Adult schistosomes live in the blood vessels and cannot easily be sampled from humans, so archived miracidia larvae hatched from eggs expelled in feces or urine are commonly used for population genetic studies. Large collections of archived miracidia on FTA cards are now available through the Schistosomiasis Collection at the Natural History Museum (SCAN). Here we describe protocols for whole genome amplification of Schistosoma mansoni and Schistosome haematobium miracidia from these cards, as well as real time PCR quantification of amplified schistosome DNA. We used microgram quantities of DNA obtained for exome capture and sequencing of single miracidia, generating dense polymorphism data across the exome. These methods will facilitate the transition from population genetics, using limited numbers of markers to population genomics using genome-wide marker information, maximising the value of collections such as SCAN.
Collapse
Affiliation(s)
- Winka Le Clec’h
- Texas Biomedical Research Institute, Department of Genetics, PO Box 760549, San Antonio, TX 78245-0549, USA
| | - Frédéric D. Chevalier
- Texas Biomedical Research Institute, Department of Genetics, PO Box 760549, San Antonio, TX 78245-0549, USA
| | - Marina McDew-White
- Texas Biomedical Research Institute, Department of Genetics, PO Box 760549, San Antonio, TX 78245-0549, USA
| | - Fiona Allan
- The Natural History Museum, Department of Life Sciences, Cromwell Road, London SW7 5BD, United Kingdom
| | - Bonnie L. Webster
- The Natural History Museum, Department of Life Sciences, Cromwell Road, London SW7 5BD, United Kingdom
| | - Anouk N. Gouvras
- The Natural History Museum, Department of Life Sciences, Cromwell Road, London SW7 5BD, United Kingdom
| | - Safari Kinunghi
- National Institute for Medical Research, Mwanza Research Centre, Mwanza, United Republic of Tanzania
| | - Louis-Albert Tchuem Tchuenté
- Laboratoire de Parasitologie et Ecologie, Université de Yaoundé I, Yaoundé, Cameroon
- Center for Schistosomiasis & Parasitology, P.O. Box 7244, Yaoundé, Cameroon
| | - Amadou Garba
- Réseau International Schistosomoses, Environnement, Aménagement et Lutte (RISEAL-Niger), 333, Avenue des Zarmakoye, B.P. 13724, Niamey, Niger
| | - Khalfan A. Mohammed
- Helminth Control Laboratory Unguja, Ministry of Health, Zanzibar, United Republic of Tanzania
| | - Shaali M. Ame
- Public Health Laboratory - Ivo de Carneri, Pemba, United Republic of Tanzania
| | - Joanne P. Webster
- Centre for Emerging, Endemic and Exotic Diseases, Department of Patholobiology and Population Sciences, Royal Veterinary College, University of London, AL9 7TA, UK United Kingdom
| | - David Rollinson
- The Natural History Museum, Department of Life Sciences, Cromwell Road, London SW7 5BD, United Kingdom
| | - Aidan M. Emery
- The Natural History Museum, Department of Life Sciences, Cromwell Road, London SW7 5BD, United Kingdom
| | - Timothy J. C. Anderson
- Texas Biomedical Research Institute, Department of Genetics, PO Box 760549, San Antonio, TX 78245-0549, USA
| |
Collapse
|
34
|
Urogenital schistosomiasis and hybridization between Schistosoma haematobium and Schistosoma bovis in adults living in Richard-Toll, Senegal. Parasitology 2018; 145:1723-1726. [PMID: 30185248 DOI: 10.1017/s0031182018001415] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Since the construction of the Diama Dam (1985), the epidemiology of schistosomiasis along the Senegal River Basin (SRB) has been extremely dynamic with outbreaks of both intestinal and urogenital schistosomiasis. In the early 2000s, technicians reported cases of suspected urogenital schistosomiasis in adults from the local hospital in Richard-Toll, Lower SRB. The genetic analysis of schistosome miracidia isolated from 11 patients in 2012 from two neighbourhoods (Campement and Gaya) of Richard-Toll confirmed infection with Schistosoma haematobium but also S. haematobium/S. bovis hybrids. Thirty-seven per cent of the miracidia were S. bovis/S. haematobium hybrids and 63% were pure S. haematobium. The data are discussed in relation to the ongoing dynamic epidemiology of the schistosomes in Senegal and the need to treat non-target individuals.
Collapse
|
35
|
Occurrence of Schistosoma bovis on Pemba Island, Zanzibar: implications for urogenital schistosomiasis transmission monitoring. Parasitology 2018; 145:1727-1731. [PMID: 30086805 PMCID: PMC7116046 DOI: 10.1017/s0031182018001154] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The causative agent of urogenital schistosomiasis, Schistosoma haematobium, was thought to be the only schistosome species transmitted through Bulinus snails on Unguja and Pemba Island (Zanzibar, United Republic of Tanzania). For insights into the environmental risk of S. haematobium transmission on Pemba Island, malacological surveys collecting Bulinus globosus and B. nasutus, two closely related potential intermediate hosts of S. haematobium were conducted across the island in November 2016. Of 1317 B. globosus/B. nasutus collected, seven B. globosus, identified through sequencing a DNA region of the mitochondrial cytochrome oxidase subunit 1 (cox1), were observed with patent infections assumed to be S. haematobium. However, when the collected cercariae were identified through sequencing a region of the cox1 and the nuclear internal transcribed spacer (ITS1 + 2), schistosomes from five of these B. globosus collected from a single locality were in fact S. bovis. The identified presence of S. bovis raises concerns for animal health on Pemba, and complicates future transmission monitoring of S. haematobium. These results show the pertinence for not only sensitive, but also species-specific markers to be used when identifying cercariae during transmission monitoring, and also provide the first molecular confirmation for B. globosus transmitting S. bovis in East Africa.
Collapse
|
36
|
Barcoding hybrids: heterogeneous distribution of Schistosoma haematobium × Schistosoma bovis hybrids across the Senegal River Basin. Parasitology 2018; 145:634-645. [PMID: 29667570 DOI: 10.1017/s0031182018000525] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Hybridization events between Schistosoma species (Digenea, Platyhelminthes) are reported with increasing frequency, largely due to improved access to molecular tools. Nevertheless, little is known about the distribution and frequency of hybrid schistosomes in nature. Screening for hybrids on a large scale is complicated by the need for nuclear and mitochondrial sequence information, precluding a 'simple' barcoding approach. Here we aimed to determine and understand the spatiotemporal distribution of Schistosoma haematobium × Schistosoma bovis hybrids in the Senegal River Basin. From ten villages, distributed over the four main water basins, we genotyped a total of 1236 schistosome larvae collected from human urine samples using a partial mitochondrial cox1 fragment; a subset of 268 parasites was also genotyped using ITS rDNA. Hybrid schistosomes were unevenly distributed, with substantially higher numbers in villages bordering Lac de Guiers than in villages from the Lampsar River and the Middle Valley of the Senegal River. The frequency of hybrids per village was not linked with the prevalence of urinary schistosomiasis in that village. However, we did find a significant positive association between the frequency of hybrids per village and the prevalence of Schistosoma mansoni. We discuss the potential consequences of adopting a barcoding approach when studying hybrids in nature.
Collapse
|
37
|
Allan F, Sousa-Figueiredo JC, Emery AM, Paulo R, Mirante C, Sebastião A, Brito M, Rollinson D. Mapping freshwater snails in north-western Angola: distribution, identity and molecular diversity of medically important taxa. Parasit Vectors 2017; 10:460. [PMID: 29017583 PMCID: PMC5634851 DOI: 10.1186/s13071-017-2395-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 09/19/2017] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND This study was designed to determine the distribution and identity of potential intermediate snail hosts of Schistosoma spp. in Bengo, Luanda, Kwanza Norte and Malanje Provinces in north-western Angola. This is an area where infection with Schistosoma haematobium, causing urogenital schistosomiasis, is common but little is yet known about transmission of the disease. Angola has had a varied past with regard to disease control and is revitalising efforts to combat neglected tropical diseases. METHODS Snails were sampled from 60 water-contact points. Specimens of the genera Bulinus, Biomphalaria or Lymnaea were screened for trematode infections by inducing cercarial shedding. Snails were initially identified using shell morphology; subsequently a cytochrome c oxidase subunit 1 (cox1) gene fragment was amplified from a subset of snails from each site, for molecular identification. Cercariae were captured onto FTA cards for molecular analysis. Specimens of Bulinus angolensis collected from the original locality of the type specimen have been characterised and comparisons made with snails collected in 1957 held at the Natural History Museum, London, UK. RESULTS In total snails of nine genera were identified using morphological characteristics: Biomphalaria, Bulinus, Gyraulus, Lanistes, Lentorbis, Lymnaea, Melanoides, Physa and Succinea. Significant for schistosomiasis transmission, was the discovery of Bulinus globosus, B. canescens, B. angolensis, B. crystallinus and Biomphalaria salinarum in their type-localities and elsewhere. Bulinus globosus and B. angolensis occurred in two distinct geographical areas. The cox1 sequence for B. globosus differed markedly from those from specimens of this species collected from other countries. Bulinus angolensis is more closely related to B. globosus than originally documented and should be included in the B. africanus group. Schistosoma haematobium cercariae were recovered from B. globosus from two locations: Cabungo, Bengo (20 snails) and Calandula, Malanje (5 snails). Schistosoma haematobium cercariae were identified as group 1 cox1 corresponding to the type common throughout the African mainland. CONCLUSIONS Various freshwater bodies in north-western Angola harbour potential intermediate snail hosts for urogenital schistosomiasis, highlighting the need to map the rest of the country to identify areas where transmission can occur and where control efforts should be targeted. The molecular phylogeny generated from the samples confirmed that considerable variation exists in B. globosus, which is the primary snail host for S. haematobium in many regions of Africa.
Collapse
Affiliation(s)
- Fiona Allan
- Department of Life Sciences, Natural History Museum, Wolfson Wellcome Biomedical Laboratories, Cromwell Road, London, SW7 5BD, UK. .,London Centre for Neglected Tropical Disease Research, London, UK.
| | - Jose Carlos Sousa-Figueiredo
- Department of Life Sciences, Natural History Museum, Wolfson Wellcome Biomedical Laboratories, Cromwell Road, London, SW7 5BD, UK.,Centro de Investigação em Saúde de Angola (Health Research Center in Angola), Rua direita do Caxito, Hospital Provincial, Bengo, Angola
| | - Aidan M Emery
- Department of Life Sciences, Natural History Museum, Wolfson Wellcome Biomedical Laboratories, Cromwell Road, London, SW7 5BD, UK.,London Centre for Neglected Tropical Disease Research, London, UK
| | - Rossely Paulo
- Centro de Investigação em Saúde de Angola (Health Research Center in Angola), Rua direita do Caxito, Hospital Provincial, Bengo, Angola.,Department of Parasitology, Liverpool School of Tropical Medicine, Pembroke Place, L3 5QA, Liverpool, UK
| | - Clara Mirante
- Centro de Investigação em Saúde de Angola (Health Research Center in Angola), Rua direita do Caxito, Hospital Provincial, Bengo, Angola
| | - Alfredo Sebastião
- Centro de Investigação em Saúde de Angola (Health Research Center in Angola), Rua direita do Caxito, Hospital Provincial, Bengo, Angola
| | - Miguel Brito
- Centro de Investigação em Saúde de Angola (Health Research Center in Angola), Rua direita do Caxito, Hospital Provincial, Bengo, Angola.,Escola Superior de Tecnologia da Saúde de Lisboa, Lisbon, Portugal
| | - David Rollinson
- Department of Life Sciences, Natural History Museum, Wolfson Wellcome Biomedical Laboratories, Cromwell Road, London, SW7 5BD, UK.,London Centre for Neglected Tropical Disease Research, London, UK
| |
Collapse
|
38
|
Vadivalagan C, Karthika P, Murugan K, Panneerselvam C, Del Serrone P, Benelli G. Exploring genetic variation in haplotypes of the filariasis vector Culex quinquefasciatus (Diptera: Culicidae) through DNA barcoding. Acta Trop 2017; 169:43-50. [PMID: 28126462 DOI: 10.1016/j.actatropica.2017.01.020] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Revised: 01/20/2017] [Accepted: 01/21/2017] [Indexed: 12/14/2022]
Abstract
Culex quinquefasciatus (Diptera: Culicidae) is a vector of many pathogens and parasites of humans, as well as domestic and wild animals. In urban and semi-urban Asian countries, Cx. quinquefasciatus is a main vector of nematodes causing lymphatic filariasis. In the African region, it vectors the Rift Valley fever virus, while in the USA it transmits West Nile, St. Louis encephalitis and Western equine encephalitis virus. In this study, DNA barcoding was used to explore the genetic variation of Cx. quinquefasciatus populations from 88 geographical regions. We presented a comprehensive approach analyzing the effectiveness of two gene markers, i.e. CO1 and 16S rRNA. The high threshold genetic divergence of CO1 (0.47%) gene was reported as an ideal marker for molecular identification of this mosquito vector. Furthermore, null substitutions were lower in CO1 if compared to 16S rRNA, which influenced its differentiating potential among Indian haplotypes. NJ tree was well supported with high branch values for CO1 gene than 16S rRNA, indicating ideal genetic differentiation among haplotypes. TCS haplotype network revealed 14 distinct clusters. The intra- and inter-population polymorphism were calculated among the global and Indian Cx. quinquefasciatus lineages. The genetic diversity index Tajima' D showed negative values for all the 4 intra-population clusters (G2-4, G10). Fu's FS showed negative value for G10 cluster, which was significant and indicated recent population expansion. However, the G2-G4 (i.e. Indian lineages) had positive values, suggesting a bottleneck effect. Overall, our research firstly shed light on the genetic differences among the haplotypes of Cx. quinquefasciatus species complex, adding basic knowledge to the molecular ecology of this important mosquito vector.
Collapse
Affiliation(s)
- Chithravel Vadivalagan
- Division of Entomology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore 641 046, Tamil Nadu, India
| | - Pushparaj Karthika
- Department of Zoology, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore 641 043, Tamil Nadu, India
| | - Kadarkarai Murugan
- Division of Entomology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore 641 046, Tamil Nadu, India; Department of Biotechnology, Thiruvalluvar University, Serkkadu, Vellore 632 115, Tamil Nadu, India
| | | | - Paola Del Serrone
- Council for Agricultural Research and Economics (CREA), Animal Production Research Centre, Via Salaria 31, 00016 Monterotondo Scalo, Roma, Italy
| | - Giovanni Benelli
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy.
| |
Collapse
|
39
|
Boissier J, Grech-Angelini S, Webster BL, Allienne JF, Huyse T, Mas-Coma S, Toulza E, Barré-Cardi H, Rollinson D, Kincaid-Smith J, Oleaga A, Galinier R, Foata J, Rognon A, Berry A, Mouahid G, Henneron R, Moné H, Noel H, Mitta G. Outbreak of urogenital schistosomiasis in Corsica (France): an epidemiological case study. THE LANCET. INFECTIOUS DISEASES 2016; 16:971-9. [PMID: 27197551 DOI: 10.1016/s1473-3099(16)00175-4] [Citation(s) in RCA: 183] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Revised: 02/19/2016] [Accepted: 03/10/2016] [Indexed: 01/26/2023]
Abstract
BACKGROUND Schistosomiasis is a snail-borne parasitic disease endemic in several tropical and subtropical countries. However, in the summer of 2013, an unexpected outbreak of urogenital schistosomiasis occurred in Corsica, with more than 120 local people or tourists infected. We used a multidisciplinary approach to investigate the epidemiology of urogenital schistosomiasis in Corsica, aiming to elucidate the origin of the outbreak. METHODS We did parasitological and malacological surveys at nine potential sites of infection. With the snails found, we carried out snail-parasite compatibility experiments by exposing snails to schistosome larvae recovered from the urine of a locally infected Corsican patient. Genetic analysis of both mitochondrial (cox1) and nuclear (internal transcribed spacer) DNA data from the Schistosoma eggs or miracidia recovered from the infected patients was conducted to elucidate the epidemiology of this outbreak. FINDINGS We identified two main infection foci along the Cavu River, with many Bulinus truncatus snails found in both locations. Of the 3544 snails recovered across all sites, none were naturally infected, but laboratory-based experimental infections confirmed their compatibility with the schistosomes isolated from patients. Molecular characterisation of 73 eggs or miracidia isolated from 12 patients showed infection with Schistosoma haematobium, S haematobium-Schistosoma bovis hybrids, and S bovis. Further sequence data analysis also showed that the Corsican schistosomes were closely related to those from Senegal in west Africa. INTERPRETATION The freshwater swimming pools of the Cavu River harbour many B truncatus snails, which are capable of transmitting S haematobium-group schistosomes. Our molecular data suggest that the parasites were imported into Corsica by individuals infected in west Africa, specifically Senegal. Hybridisation between S haematobium and the cattle schistosome S bovis had a putative role in this outbreak, showing how easily and rapidly urogenital schistosomiasis can be introduced and spread into novel areas where Bulinus snails are endemic, and how hybridisation could increase the colonisation potential of schistosomes. Furthermore our results show the potential risk of schistosomiasis outbreaks in other European areas, warranting close monitoring and surveillance of all potential transmission foci. FUNDING WHO, ANSES, RICET, and the Ministry of Health and Consumption.
Collapse
Affiliation(s)
- Jérôme Boissier
- Université de Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, Université de Montpellier, Perpignan, France.
| | | | - Bonnie L Webster
- Department of Life Sciences, Parasites and Vectors Division, Natural History Museum, London, UK; London Centre for Neglected Tropical Disease Research, London, UK
| | - Jean-François Allienne
- Université de Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, Université de Montpellier, Perpignan, France
| | - Tine Huyse
- Department of Biology, Royal Museum for Central Africa, Tervuren, Belgium; Laboratory of Biodiversity and Evolutionary Genomics, Biology, University of Leuven, Leuven, Belgium
| | - Santiago Mas-Coma
- Departamento de Parasitologia, Facultad de Farmacia, Universidad de Valencia, Burjassot, Valencia, Spain
| | - Eve Toulza
- Université de Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, Université de Montpellier, Perpignan, France
| | - Hélène Barré-Cardi
- OCIC, ECOTER, Office de l'Environnement de la Corse, Corte, France; Unité de suivi entomologique et de politique de lutte anti vectorielle, Agence régionale de santé de Corse, Ajaccio, France
| | - David Rollinson
- Department of Life Sciences, Parasites and Vectors Division, Natural History Museum, London, UK; London Centre for Neglected Tropical Disease Research, London, UK
| | - Julien Kincaid-Smith
- Université de Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, Université de Montpellier, Perpignan, France
| | - Ana Oleaga
- Parasitology Laboratory, Instituto de Recursos Naturales y Agrobiología de Salamanca (IRNASA, CSIC), Salamanca, Spain
| | - Richard Galinier
- Université de Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, Université de Montpellier, Perpignan, France
| | - Joséphine Foata
- Equipe parasites et écosystèmes méditerranéens, UMR 6134 CNRS SPE Science pour l'environnement, Université de Corse Pascal Paoli, Corte, France
| | - Anne Rognon
- Université de Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, Université de Montpellier, Perpignan, France
| | - Antoine Berry
- Service de Parasitologie-Mycologie, CHU Toulouse and Centre de Physiopathologie de Toulouse Purpan, INSERM U1043, CNRS UMR5282, Université de Toulouse, Toulouse, France
| | - Gabriel Mouahid
- Université de Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, Université de Montpellier, Perpignan, France
| | - Rémy Henneron
- Hôpital Sainte Marguerite, Hopitaux Sud de Marseille, Marseille, France
| | - Hélène Moné
- Université de Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, Université de Montpellier, Perpignan, France
| | - Harold Noel
- French Institute for Public Health Surveillance (Institut de Veille Sanitaire, InVS), Saint-Maurice, France
| | - Guillaume Mitta
- Université de Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, Université de Montpellier, Perpignan, France
| |
Collapse
|
40
|
Afifi MA, Jiman-Fatani AA, Al-Hussainy NH, Al-Rabia MW, Bogari AA. Genetic diversity among natural populations of Schistosoma haematobium might contribute to inconsistent virulence and diverse clinical outcomes. J Microsc Ultrastruct 2016; 4:222-227. [PMID: 30023230 PMCID: PMC6014255 DOI: 10.1016/j.jmau.2016.04.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 04/05/2016] [Accepted: 04/14/2016] [Indexed: 11/30/2022] Open
Abstract
There is an evident difference in the intensity of morbidity caused by Schistosoma haematobium in North-African zones compared to Sub-Saharan ones. Clinical outcome dichotomy corresponds to two geographically distinct intermediate host snail species that are only infected by the related strain of the parasite. In concert, there is a manifest hybridization of the parasite with other Schistosoma species confined to certain regions of Africa. This raises a reasonable suggestion that S. haematobium has no less than two phylogenetic clusters that have different virulence. The aim of the study was to examine the possible diversity among S. haematobium using simultaneous amplification of genomic DNA of selected isolates. Random amplified polymorphic DNA-polymerase chain reaction markers were used to study the genetic diversity among S. haematobium natural isolates from selected regions of Africa (Egypt, Zimbabwe, and South Africa) that represent different ecological conditions, different species of intermediate host, and different possibilities of field hybridization with other schistosomes. A moderate to high level of genetic diversity was evident among the three isolates. More bands were shared by the isolates from Zimbabwe and South Africa (similarity index = 0.721) than those shared by each with the Egyptian isolate (similarity index = 0.551 and 0.566, respectively), suggesting that at least two phylogenetic groups of S. haematobium do exist in distinct geographic regions of Africa. The elucidation of the possible genetic diversity among S. haematobium parasites may explain many ambiguous aspects of the biology of the parasite-like virulence, immune evasion and drug resistance.
Collapse
Affiliation(s)
- Mohammed A Afifi
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Parasitology, Faculty of Medicine, Beni-Suef University, Beni-Suef City, Egypt
| | - Asif A Jiman-Fatani
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Nabeel H Al-Hussainy
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammed W Al-Rabia
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Anas A Bogari
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
41
|
Sady H, Al-Mekhlafi HM, Webster BL, Ngui R, Atroosh WM, Al-Delaimy AK, Nasr NA, Chua KH, Lim YAL, Surin J. New insights into the genetic diversity of Schistosoma mansoni and S. haematobiumin Yemen. Parasit Vectors 2015; 8:544. [PMID: 26482435 PMCID: PMC4617239 DOI: 10.1186/s13071-015-1168-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 10/14/2015] [Indexed: 12/15/2022] Open
Abstract
Background Human schistosomiasis is a neglected tropical disease of great importance that remains highly prevalent in Yemen, especially amongst rural communities. In order to investigate the genetic diversity of human Schistosoma species, a DNA barcoding study was conducted on S. mansoni and S. haematobium in Yemen. Methods A cross-sectional study was conducted to collect urine and faecal samples from 400 children from five provinces in Yemen. The samples were examined for the presence of Schistosoma eggs. A partial fragment of the schistosome cox1 mitochondrial gene was analysed from each individual sample to evaluate the genetic diversity of the S. mansoni and S. haematobium infections. The data was also analysed together with previous published cox1 data for S. mansoni and S. haematobium from Africa and the Indian Ocean Islands. Results Overall, 31.8 % of participants were found to be excreting schistosome eggs in either the urine or faeces (8.0 % S. mansoni and 22.5 % S. haematobium). Nineteen unique haplotypes of S. mansoni were detected and split into four lineages. Furthermore, nine unique haplotypes of S. haematobium were identified that could be split into two distinct groups. Conclusion This study provides novel and interesting insights into the population diversity and structure of S. mansoni and S. haematobium in Yemen. The data adds to our understanding of the evolutionary history and phylogeography of these devastating parasites whilst the genetic information could support the control and monitoring of urogenital and intestinal schistosomiasis in these endemic areas.
Collapse
Affiliation(s)
- Hany Sady
- Department of Parasitology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia. .,Department of Medical Laboratories, Faculty of Medical Sciences, Hodeidah University, Hodeidah, Yemen.
| | - Hesham M Al-Mekhlafi
- Department of Parasitology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia. .,Azal National Research Center, Azal University for Human Development, 447, Sana'a, Yemen. .,Department of Parasitology, Faculty of Medicine and Health Sciences, Sana'a University, 1247, Sana'a, Yemen.
| | - Bonnie L Webster
- Parasites and Vectors Division, Department of Life Sciences, Natural History Museum, Cromwell Road, London, SW7 5BD, UK.
| | - Romano Ngui
- Department of Parasitology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Wahib M Atroosh
- Department of Parasitology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Ahmed K Al-Delaimy
- Department of Parasitology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Nabil A Nasr
- Department of Parasitology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Kek Heng Chua
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Yvonne A L Lim
- Department of Parasitology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Johari Surin
- Department of Parasitology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
42
|
Development of novel multiplex microsatellite polymerase chain reactions to enable high-throughput population genetic studies of Schistosoma haematobium. Parasit Vectors 2015; 8:432. [PMID: 26329827 PMCID: PMC4557312 DOI: 10.1186/s13071-015-1044-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 08/12/2015] [Indexed: 11/24/2022] Open
Abstract
Background Human urogenital schistosomiasis caused by Schistosoma haematobium is widely distributed across Africa and is increasingly targeted for control and regional elimination. The development of new high-throughput, cost-effective molecular tools and approaches are needed to monitor and evaluate the impact of control programs on the parasite populations. Microsatellite loci are genetic markers that can be used to investigate how parasite populations change over time and in relation to external influences such as control interventions. Findings Here, 18 existing S. haematobium microsatellite loci were optimised to enable simultaneous amplification across two novel multiplex microsatellite PCR’s, each containing nine loci. Methods were developed for the cost effective and rapid processing and microsatellite analysis of S. haematobium larval stages stored on Whatman-FTA cards and proved robust on miracidia and cercariae collected from Zanzibar and Niger. Conclusion The development of these novel and robust multiplex microsatellite assays, in combination with an improved protocol to elute gDNA from Whatman-FTA fixed schistosome larval stages, enables the high-throughput population genetic analysis of S. haematobium. The molecular resources and protocols described here advance the way researchers can perform multi locus-based population genetic analyses of S. haematobium as part of the evaluation and monitoring of schistosomiasis control programmes. Electronic supplementary material The online version of this article (doi:10.1186/s13071-015-1044-6) contains supplementary material, which is available to authorized users.
Collapse
|
43
|
Berry A, Moné H, Iriart X, Mouahid G, Aboo O, Boissier J, Fillaux J, Cassaing S, Debuisson C, Valentin A, Mitta G, Théron A, Magnaval JF. Schistosomiasis haematobium, Corsica, France. Emerg Infect Dis 2015; 20:1595-7. [PMID: 25153697 PMCID: PMC4178424 DOI: 10.3201/eid2009.140928] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
|
44
|
Quan JH, Choi IW, Ismail HAHA, Mohamed AS, Jeong HG, Lee JS, Hong ST, Yong TS, Cha GH, Lee YH. Genetic Diversity of Schistosoma haematobium Eggs Isolated from Human Urine in Sudan. THE KOREAN JOURNAL OF PARASITOLOGY 2015; 53:271-7. [PMID: 26174820 PMCID: PMC4510678 DOI: 10.3347/kjp.2015.53.3.271] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 03/25/2015] [Accepted: 04/15/2015] [Indexed: 11/29/2022]
Abstract
The genetic diversity of Schistosoma haematobium remains largely unstudied in comparison to that of Schistosoma mansoni. To characterize the extent of genetic diversity in S. haematobium among its definitive host (humans), we collected S. haematobium eggs from the urine of 73 infected schoolchildren at 5 primary schools in White Nile State, Sudan, and then performed a randomly amplified polymorphic DNA marker ITS2 by PCR-RFLP analysis. Among 73 S. haematobium egg-positive cases, 13 were selected based on the presence of the S. haematobium satellite markers A4 and B2 in their genomic DNA, and used for RFLP analysis. The 13 samples were subjected to an RFLP analysis of the S. haematobium ITS2 region; however, there was no variation in size among the fragments. Compared to the ITS2 sequences obtained for S. haematobium from Kenya, the nucleotide sequences of the ITS2 regions of S. haematobium from 4 areas in Sudan were consistent with those from Kenya (> 99%). In this study, we demonstrate for the first time that most of the S. haematobium population in Sudan consists of a pan-African S. haematobium genotype; however, we also report the discovery of Kenyan strain inflow into White Nile, Sudan.
Collapse
Affiliation(s)
- Juan-Hua Quan
- Department of Gastroenterology, The Affiliated Hospital of Guangdong Medical College, Zhanjiang 524-001, Guangdong, China
| | - In-Wook Choi
- Department of Infection Biology, Chungnam National University School of Medicine, Daejeon 301-131, Korea
| | | | | | - Hoo-Gn Jeong
- Korea Association of Health Promotion (KAHP), Seoul 157-705, Korea
| | - Jin-Su Lee
- Korea Association of Health Promotion (KAHP), Seoul 157-705, Korea
| | - Sung-Tae Hong
- Department of Parasitology and Tropical Medicine, Seoul National University College of Medicine, Seoul 110-799, Korea
| | - Tai-Soon Yong
- Department of Environmental Medical Biology and Institute of Tropical Medicine, Yonsei University College of Medicine, Seoul 120-752, Korea
| | - Guang-Ho Cha
- Department of Infection Biology, Chungnam National University School of Medicine, Daejeon 301-131, Korea
| | - Young-Ha Lee
- Department of Infection Biology, Chungnam National University School of Medicine, Daejeon 301-131, Korea
| |
Collapse
|
45
|
Ezeh C, Yin M, Li H, Zhang T, Xu B, Sacko M, Feng Z, Hu W. High genetic variability of Schistosoma haematobium in Mali and Nigeria. THE KOREAN JOURNAL OF PARASITOLOGY 2015; 53:129-34. [PMID: 25748721 PMCID: PMC4384788 DOI: 10.3347/kjp.2015.53.1.129] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 10/21/2014] [Accepted: 10/23/2014] [Indexed: 12/29/2022]
Abstract
Schistosoma haematobium is one of the most prevalent parasitic flatworms, infecting over 112 million people in Africa. However, little is known about the genetic diversity of natural S. haematobium populations from the human host because of the inaccessible location of adult worms in the host. We used 4 microsatellite loci to genotype individually pooled S. haematobium eggs directly from each patient sampled at 4 endemic locations in Africa. We found that the average allele number of individuals from Mali was significantly higher than that from Nigeria. In addition, no significant difference in allelic composition was detected among the populations within Nigeria; however, the allelic composition was significantly different between Mali and Nigeria populations. This study demonstrated a high level of genetic variability of S. haematobium in the populations from Mali and Nigeria, the 2 major African endemic countries, suggesting that geographical population differentiation may occur in the regions.
Collapse
Affiliation(s)
- Charles Ezeh
- Key Laboratory of Parasite and Vector Biology, Ministry of Public Health, National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai 200025, China
| | - Mingbo Yin
- School of Life Science, Fudan University, Shanghai 200433, China
| | - Hongyan Li
- School of Life Science, Fudan University, Shanghai 200433, China
| | - Ting Zhang
- Key Laboratory of Parasite and Vector Biology, Ministry of Public Health, National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai 200025, China
| | - Bin Xu
- Key Laboratory of Parasite and Vector Biology, Ministry of Public Health, National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai 200025, China
| | - Moussa Sacko
- Laboratory of Parasitology, Institut National de Recherche en Sante Publique, 1771, Bamako, Mali
| | - Zheng Feng
- Key Laboratory of Parasite and Vector Biology, Ministry of Public Health, National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai 200025, China
| | - Wei Hu
- Key Laboratory of Parasite and Vector Biology, Ministry of Public Health, National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai 200025, China ; School of Life Science, Fudan University, Shanghai 200433, China
| |
Collapse
|
46
|
Chan A, Chiang LP, Hapuarachchi HC, Tan CH, Pang SC, Lee R, Lee KS, Ng LC, Lam-Phua SG. DNA barcoding: complementing morphological identification of mosquito species in Singapore. Parasit Vectors 2014; 7:569. [PMID: 25498759 PMCID: PMC4282734 DOI: 10.1186/s13071-014-0569-4] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Accepted: 11/25/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Taxonomy that utilizes morphological characteristics has been the gold standard method to identify mosquito species. However, morphological identification is challenging when the expertise is limited and external characters are damaged because of improper specimen handling. Therefore, we explored the applicability of mitochondrial cytochrome C oxidase subunit 1 (COI) gene-based DNA barcoding as an alternative tool to identify mosquito species. In the present study, we compared the morphological identification of mosquito specimens with their differentiation based on COI barcode, in order to establish a more reliable identification system for mosquito species found in Singapore. METHODS We analysed 128 adult mosquito specimens, belonging to 45 species of 13 genera. Phylogenetic trees were constructed for Aedes, Anopheles, Culex and other genera of mosquitoes and the distinctive clustering of different species was compared with their taxonomic identity. RESULTS The COI-based DNA barcoding achieved a 100% success rate in identifying the mosquito species. We also report COI barcode sequences of 16 mosquito species which were not available previously in sequence databases. CONCLUSIONS Our study utilised for the first time DNA barcoding to identify mosquito species in Singapore. COI-based DNA barcoding is a useful tool to complement taxonomy-based identification of mosquito species.
Collapse
Affiliation(s)
- Abigail Chan
- Environmental Health Institute, National Environment Agency, 11 Biopolis Way, Helios Block, #06-05/08, Singapore, 138667, Singapore.
| | - Lee-Pei Chiang
- Shizenature Pte Ltd, 3016, Eastech, Bedok North Avenue 4, #02-13, Singapore, 489947, Singapore.
| | - Hapuarachchige C Hapuarachchi
- Environmental Health Institute, National Environment Agency, 11 Biopolis Way, Helios Block, #06-05/08, Singapore, 138667, Singapore.
| | - Cheong-Huat Tan
- Environmental Health Institute, National Environment Agency, 11 Biopolis Way, Helios Block, #06-05/08, Singapore, 138667, Singapore.
| | - Sook-Cheng Pang
- Environmental Health Institute, National Environment Agency, 11 Biopolis Way, Helios Block, #06-05/08, Singapore, 138667, Singapore.
| | - Ruth Lee
- Environmental Health Institute, National Environment Agency, 11 Biopolis Way, Helios Block, #06-05/08, Singapore, 138667, Singapore.
| | - Kim-Sung Lee
- School of Life Sciences and Chemical Technology, Ngee Ann Polytechnic, 535, Clementi Road, Singapore, 599489, Singapore.
| | - Lee-Ching Ng
- Environmental Health Institute, National Environment Agency, 11 Biopolis Way, Helios Block, #06-05/08, Singapore, 138667, Singapore.
| | - Sai-Gek Lam-Phua
- Environmental Health Institute, National Environment Agency, 11 Biopolis Way, Helios Block, #06-05/08, Singapore, 138667, Singapore.
| |
Collapse
|
47
|
Čandek K, Kuntner M. DNA barcoding gap: reliable species identification over morphological and geographical scales. Mol Ecol Resour 2014; 15:268-77. [DOI: 10.1111/1755-0998.12304] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Revised: 07/06/2014] [Accepted: 07/16/2014] [Indexed: 12/23/2022]
Affiliation(s)
- Klemen Čandek
- Institute of Biology; Scientific Research Centre of the Slovenian Academy of Sciences and Arts; Novi Trg 2 1000 Ljubljana Slovenia
| | - Matjaž Kuntner
- Institute of Biology; Scientific Research Centre of the Slovenian Academy of Sciences and Arts; Novi Trg 2 1000 Ljubljana Slovenia
- Centre for Behavioural Ecology and Evolution; College of Life Sciences; Hubei University; 368 Youyi Road 430062 Wuhan China
- Department of Entomology; National Museum of Natural History; Smithsonian Institution; PO Box 37012 Washington DC 20013-7012 USA
| |
Collapse
|
48
|
Poole H, Terlouw DJ, Naunje A, Mzembe K, Stanton M, Betson M, Lalloo DG, Stothard JR. Schistosomiasis in pre-school-age children and their mothers in Chikhwawa district, Malawi with notes on characterization of schistosomes and snails. Parasit Vectors 2014; 7:153. [PMID: 24690282 PMCID: PMC4230191 DOI: 10.1186/1756-3305-7-153] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 03/17/2014] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND To complement ongoing schistosomiasis control within national control programmes (NCPs) that administer praziquantel to school-age children, assessing the risk and extent of schistosomiasis in pre-school-age children (PSAC) is important. METHODS In June 2012, schistosomiasis in Chikhwawa district, Malawi was assessed across 12 villages examining pre-school-age children (PSAC) and their mothers by serological and parasitological diagnosis, as supplemented with urine-antigen and questionnaire-interview methods. Urinary tract morbidity was inferred by haematuria and albuminuria assays. RESULTS In total, 49.5% (CI₉₅ 42.6-56.4) of 208 PSAC and 94.5% (CI₉₅ 90.9-98.1) of 165 mothers were seropositive for schistosomiasis, in 2 villages seroprevalence exceeded 75% in PSAC. Egg-patent urogenital and intestinal schistosomiasis was observed; 17.7% (CI₉₅ 12.4-23.2) of PSAC and 45.1% (CI₉₅ 37.4-52.8) of mothers having active schistosomiasis by parasitological and urine-antigen testing combined. PSAC often had extensive daily water contact and many (~25%) had haematuria and albuminuria. As eggs with an atypical morphology of Schistosoma haematobium were observed, a general selection of schistosome eggs was characterized by DNA barcoding, finding Group I S. haematobium and Group IV and V S. mansoni. Malacological surveys encountered several populations of Bulinus globosus but failed to find Biomphalaria. CONCLUSIONS Both PSAC and their mothers appear to be at significant risk of schistosomiasis and should be considered for treatment within the NCP of Malawi.
Collapse
Affiliation(s)
- Helen Poole
- Department of Parasitology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - Dianne J Terlouw
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, PO Box 30096, Chichiri, Blantyre 3, Malawi
| | - Andrew Naunje
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, PO Box 30096, Chichiri, Blantyre 3, Malawi
| | - Kondwani Mzembe
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, PO Box 30096, Chichiri, Blantyre 3, Malawi
| | - Michelle Stanton
- Department of Parasitology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - Martha Betson
- Department of Parasitology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - David G Lalloo
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - J Russell Stothard
- Department of Parasitology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| |
Collapse
|
49
|
Betson M, Sousa-Figueiredo JC, Kabatereine NB, Stothard JR. New insights into the molecular epidemiology and population genetics of Schistosoma mansoni in Ugandan pre-school children and mothers. PLoS Negl Trop Dis 2013; 7:e2561. [PMID: 24349589 PMCID: PMC3861247 DOI: 10.1371/journal.pntd.0002561] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 10/14/2013] [Indexed: 12/22/2022] Open
Abstract
Significant numbers of pre-school children are infected with Schistosoma mansoni in sub-Saharan Africa and are likely to play a role in parasite transmission. However, they are currently excluded from control programmes. Molecular phylogenetic studies have provided insights into the evolutionary origins and transmission dynamics of S. mansoni, but there has been no research into schistosome molecular epidemiology in pre-school children. Here, we investigated the genetic diversity and population structure of S. mansoni in pre-school children and mothers living in lakeshore communities in Uganda and monitored for changes over time after praziquantel treatment. Parasites were sampled from children (<6 years) and mothers enrolled in the longitudinal Schistosomiasis Mothers and Infants Study at baseline and at 6-, 12- and 18-month follow-up surveys. 1347 parasites from 35 mothers and 45 children were genotyped by direct sequencing of the cytochrome c oxidase (cox1) gene. The cox1 region was highly diverse with over 230 unique sequences identified. Parasite populations were genetically differentiated between lakes and non-synonymous mutations were more diverse at Lake Victoria than Lake Albert. Surprisingly, parasite populations sampled from children showed a similar genetic diversity to those sampled from mothers, pointing towards a non-linear relationship between duration of exposure and accumulation of parasite diversity. The genetic diversity six months after praziquantel treatment was similar to pre-treatment diversity. Our results confirm the substantial genetic diversity of S. mansoni in East Africa and provide significant insights into transmission dynamics within young children and mothers, important information for schistosomiasis control programmes. Many pre-school children in sub-Saharan Africa are infected with the parasite Schistosoma mansoni, which causes intestinal schistosomiasis. However, there has been no work published on the molecular epidemiology of Schistosoma in children under six or the role that these children play in parasite transmission. We analysed the genetic structure of parasite populations collected from mothers and young children living on the shores of Lakes Albert and Victoria in Uganda. Parasite populations were different at the two lakes indicating that there is little flow of parasite genes between the lakes. We were surprised to discover a large amount of genetic variation in parasites sampled from both children and mothers, suggesting that genetic variation is not directly related to duration of exposure to infested water. In addition, we found some evidence that young children are involved in S. mansoni transmission. The substantial genetic variation of S. mansoni in young children suggests that these parasites could be operating as a source of a variety of genetic traits, including drug susceptibility. Overall our findings offer significant insights into population genetics of S. mansoni in pre-school children and their mothers and provide important information for effective control of intestinal schistosomiasis.
Collapse
Affiliation(s)
- Martha Betson
- Department of Production and Population Health, The Royal Veterinary College, Hatfield, Hertfordshire, United Kingdom
| | - Jose C. Sousa-Figueiredo
- Parasitology Department, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | | | - J. Russell Stothard
- Parasitology Department, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- * E-mail:
| |
Collapse
|
50
|
Glenn TC, Lance SL, McKee AM, Webster BL, Emery AM, Zerlotini A, Oliveira G, Rollinson D, Faircloth BC. Significant variance in genetic diversity among populations of Schistosoma haematobium detected using microsatellite DNA loci from a genome-wide database. Parasit Vectors 2013; 6:300. [PMID: 24499537 PMCID: PMC3874762 DOI: 10.1186/1756-3305-6-300] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 09/18/2013] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Urogenital schistosomiasis caused by Schistosoma haematobium is widely distributed across Africa and is increasingly being targeted for control. Genome sequences and population genetic parameters can give insight into the potential for population- or species-level drug resistance. Microsatellite DNA loci are genetic markers in wide use by Schistosoma researchers, but there are few primers available for S. haematobium. METHODS We sequenced 1,058,114 random DNA fragments from clonal cercariae collected from a snail infected with a single Schistosoma haematobium miracidium. We assembled and aligned the S. haematobium sequences to the genomes of S. mansoni and S. japonicum, identifying microsatellite DNA loci across all three species and designing primers to amplify the loci in S. haematobium. To validate our primers, we screened 32 randomly selected primer pairs with population samples of S. haematobium. RESULTS We designed >13,790 primer pairs to amplify unique microsatellite loci in S. haematobium, (available at http://www.cebio.org/projetos/schistosoma-haematobium-genome). The three Schistosoma genomes contained similar overall frequencies of microsatellites, but the frequency and length distributions of specific motifs differed among species. We identified 15 primer pairs that amplified consistently and were easily scored. We genotyped these 15 loci in S. haematobium individuals from six locations: Zanzibar had the highest levels of diversity; Malawi, Mauritius, Nigeria, and Senegal were nearly as diverse; but the sample from South Africa was much less diverse. CONCLUSIONS About half of the primers in the database of Schistosoma haematobium microsatellite DNA loci should yield amplifiable and easily scored polymorphic markers, thus providing thousands of potential markers. Sequence conservation among S. haematobium, S. japonicum, and S. mansoni is relatively high, thus it should now be possible to identify markers that are universal among Schistosoma species (i.e., using DNA sequences conserved among species), as well as other markers that are specific to species or species-groups (i.e., using DNA sequences that differ among species). Full genome-sequencing of additional species and specimens of S. haematobium, S. japonicum, and S. mansoni is desirable to better characterize differences within and among these species, to develop additional genetic markers, and to examine genes as well as conserved non-coding elements associated with drug resistance.
Collapse
Affiliation(s)
- Travis C Glenn
- Department of Environmental Health Science, University of Georgia, Athens 30602 GA, USA
| | - Stacey L Lance
- Savannah River Ecology Laboratory, University of Georgia, Drawer E, Aiken 29802 SC, USA
| | - Anna M McKee
- Department of Environmental Health Science, University of Georgia, Athens 30602 GA, USA
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens 30602 GA, USA
| | - Bonnie L Webster
- Department of Life Sciences, Natural History Museum, Wolfson Wellcome Biomedical Laboratories, Cromwell Road, London, SW7 5BD, UK
- Present address; Department of Infectious Disease Epidemiology, Imperial College Faculty of Medicine (St Mary’s Campus), Norfolk Place, London W2 1PG, UK
| | - Aidan M Emery
- Department of Life Sciences, Natural History Museum, Wolfson Wellcome Biomedical Laboratories, Cromwell Road, London, SW7 5BD, UK
| | - Adhemar Zerlotini
- Rene Rachou Research Center, National Institute of Science and Technology in Tropical Diseases, Oswaldo Cruz Foundation, Av. Augusto de Lima 1715, BarroPreto, Belo Horizonte CEP 30190-002 MG, Brazil
- Present address: Embrapa Agricultural Informatics, Av. Andre Tosello, 209, Campinas 13083-886 SP, Brazil
| | - Guilherme Oliveira
- Rene Rachou Research Center, National Institute of Science and Technology in Tropical Diseases, Oswaldo Cruz Foundation, Av. Augusto de Lima 1715, BarroPreto, Belo Horizonte CEP 30190-002 MG, Brazil
| | - David Rollinson
- Department of Life Sciences, Natural History Museum, Wolfson Wellcome Biomedical Laboratories, Cromwell Road, London, SW7 5BD, UK
| | - Brant C Faircloth
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles 90095 CA, USA
| |
Collapse
|