1
|
Kapnick SM, Martin CA, Jewell CM. Engineering metabolism to modulate immunity. Adv Drug Deliv Rev 2024; 204:115122. [PMID: 37935318 PMCID: PMC10843796 DOI: 10.1016/j.addr.2023.115122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 07/19/2023] [Accepted: 10/25/2023] [Indexed: 11/09/2023]
Abstract
Metabolic programming and reprogramming have emerged as pivotal mechanisms for altering immune cell function. Thus, immunometabolism has become an attractive target area for treatment of immune-mediated disorders. Nonetheless, many hurdles to delivering metabolic cues persist. In this review, we consider how biomaterials are poised to transform manipulation of immune cell metabolism through integrated control of metabolic configurations to affect outcomes in autoimmunity, regeneration, transplant, and cancer. We emphasize the features of nanoparticles and other biomaterials that permit delivery of metabolic cues to the intracellular compartment of immune cells, or strategies for altering signals in the extracellular space. We then provide perspectives on the potential for reciprocal regulation of immunometabolism by the physical properties of materials themselves. Lastly, opportunities for clinical translation are highlighted. This discussion contributes to our understanding of immunometabolism, biomaterials-based strategies for altering metabolic configurations in immune cells, and emerging concepts in this evolving field.
Collapse
Affiliation(s)
- Senta M Kapnick
- Fischell Department of Bioengineering, University of Maryland, 8278 Paint Branch Drive, College Park, MD, USA; Department of Veterans Affairs, VA Maryland Health Care System, 10 N Green Street, Baltimore, MD, USA
| | - Corinne A Martin
- Fischell Department of Bioengineering, University of Maryland, 8278 Paint Branch Drive, College Park, MD, USA
| | - Christopher M Jewell
- Fischell Department of Bioengineering, University of Maryland, 8278 Paint Branch Drive, College Park, MD, USA; Department of Veterans Affairs, VA Maryland Health Care System, 10 N Green Street, Baltimore, MD, USA; Robert E. Fischell Institute for Biomedical Devices, 8278 Paint Branch Drive, College Park, MD, USA; Marlene and Stewart Greenebaum Comprehensive Cancer Center, 22 S Greene Street, Suite N9E17, Baltimore, MD, USA.
| |
Collapse
|
2
|
Nzoumbou-Boko R, Zolipou COOK, Yambiyo BM, Semballa S, Nalingbo MCIDM, Daulouède S, Vincendeau P. Optimization of the arginase activity assay micromethod for macrophages and sera. BMC Res Notes 2023; 16:188. [PMID: 37644583 PMCID: PMC10466829 DOI: 10.1186/s13104-023-06462-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 08/15/2023] [Indexed: 08/31/2023] Open
Abstract
OBJECTIVE We optimized the spectrophotometric micromethod for the determination of arginase activity based on the Corraliza et al. modification of Schimke's method. Arginase activity in sera from patients suffering from human African trypanosomiasis, in macrophage lysates from trypanosome-infected mice, and in purified bovine liver arginase was compared using the conventional and optimized micromethods. RESULTS The sensitivity of both micromethods was comparable. However, our optimized method has the following advantages: it uses small sample volumes (6 µl per assay vs. 50 µl) and reagent volumes (200 µl vs. 400 µl), it can be carried out in a single microplate well, thereby minimizing handling, and it requires fewer materials and utilizes readily available equipment. Our optimized method proved to be applicable and well suited for small-volume samples and resource-poor laboratories.
Collapse
Affiliation(s)
- Romaric Nzoumbou-Boko
- Laboratoire de Parasitologie, Institut Pasteur de Bangui, BP 923, Bangui, Central African Republic.
| | - Cyrille Oliver Ozzin-Kholy Zolipou
- Laboratoire de Parasitologie, Institut Pasteur de Bangui, BP 923, Bangui, Central African Republic
- Laboratoire de Parasitologie, UMR 177 IRD/CIRAD "INTERTRYP," Université Bordeaux, Bordeaux, F-33000, France
| | - Brice Martial Yambiyo
- Service d'Epidémiologie, Institut Pasteur de Bangui, BP 923, Bangui, Central African Republic
| | - Silla Semballa
- Laboratoire des Sciences Biologiques et Agronomiques pour le Développement (LASBAD), Université de Bangui, République Centrafricaine, Bangui, Central African Republic
| | | | - Sylvie Daulouède
- Laboratoire de Parasitologie, UMR 177 IRD/CIRAD "INTERTRYP," Université Bordeaux, Bordeaux, F-33000, France
| | - Philippe Vincendeau
- Laboratoire de Parasitologie, UMR 177 IRD/CIRAD "INTERTRYP," Université Bordeaux, Bordeaux, F-33000, France
| |
Collapse
|
3
|
Takele Y, Mulaw T, Adem E, Womersley R, Kaforou M, Franssen SU, Levin M, Taylor GP, Müller I, Cotton JA, Kropf P. Recurrent visceral leishmaniasis relapses in HIV co-infected patients are characterized by less efficient immune responses and higher parasite load. iScience 2023; 26:105867. [PMID: 36685039 PMCID: PMC9845767 DOI: 10.1016/j.isci.2022.105867] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 10/13/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Visceral leishmaniasis (VL) and HIV co-infection (VL/HIV) has emerged as a significant public health problem in Ethiopia, with up to 30% of patients with VL co-infected with HIV. These patients suffer from recurrent VL relapses and increased mortality. Those with a previous history of VL relapses (recurrent VL/HIV) experience increased VL relapses as compared to patients with HIV presenting with their first episode of VL (primary VL/HIV). Our aim was to identify drivers that account for the higher rate of VL relapses in patients with recurrent VL/HIV (n = 28) as compared to primary VL/HIV (n = 21). Our results show that the relapse-free survival in patients with recurrent VL/HIV was shorter, that they had higher parasite load, lower weight gain, and lower recovery of all blood cell lineages. Their poorer prognosis was characterized by lower production of IFN-gamma, lower CD4+ T cell counts, and higher expression of programmed cell death protein 1 (PD1) on T cells.
Collapse
Affiliation(s)
- Yegnasew Takele
- Department of Infectious Disease, Imperial College London, London, UK
- Leishmaniasis Research and Treatment Centre, University of Gondar, Gondar, Ethiopia
| | - Tadele Mulaw
- Leishmaniasis Research and Treatment Centre, University of Gondar, Gondar, Ethiopia
| | - Emebet Adem
- Leishmaniasis Research and Treatment Centre, University of Gondar, Gondar, Ethiopia
| | - Rebecca Womersley
- Department of Infectious Disease, Imperial College London, London, UK
| | - Myrsini Kaforou
- Department of Infectious Disease, Imperial College London, London, UK
| | | | - Michael Levin
- Department of Infectious Disease, Imperial College London, London, UK
| | | | - Ingrid Müller
- Department of Infectious Disease, Imperial College London, London, UK
| | | | - Pascale Kropf
- Department of Infectious Disease, Imperial College London, London, UK
| |
Collapse
|
4
|
Takele Y, Mulaw T, Adem E, Shaw CJ, Franssen SU, Womersley R, Kaforou M, Taylor GP, Levin M, Müller I, Cotton JA, Kropf P. Immunological factors, but not clinical features, predict visceral leishmaniasis relapse in patients co-infected with HIV. Cell Rep Med 2022; 3:100487. [PMID: 35106507 PMCID: PMC8784791 DOI: 10.1016/j.xcrm.2021.100487] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 10/11/2021] [Accepted: 12/07/2021] [Indexed: 11/17/2022]
Abstract
Visceral leishmaniasis (VL) has emerged as a clinically important opportunistic infection in HIV patients, as VL/HIV co-infected patients suffer from frequent VL relapse. Here, we follow cohorts of VL patients with or without HIV in Ethiopia. By the end of the study, 78.1% of VL/HIV-but none of the VL patients-experience VL relapse. Despite a clinically defined cure, VL/HIV patients maintain higher parasite loads, lower BMI, hepatosplenomegaly, and pancytopenia. We identify three immunological markers associated with VL relapse in VL/HIV patients: (1) failure to restore antigen-specific production of IFN-γ, (2) persistently lower CD4+ T cell counts, and (3) higher expression of PD1 on CD4+ and CD8+ T cells. We show that these three markers, which can be measured in primary hospital settings in Ethiopia, combine well in predicting VL relapse. The use of our prediction model has the potential to improve disease management and patient care.
Collapse
Affiliation(s)
- Yegnasew Takele
- Department of Infectious Disease, Imperial College London, London W2 1PG, UK
- Leishmaniasis Research and Treatment Centre, University of Gondar, PO Box 196, Gondar, Ethiopia
| | - Tadele Mulaw
- Leishmaniasis Research and Treatment Centre, University of Gondar, PO Box 196, Gondar, Ethiopia
| | - Emebet Adem
- Leishmaniasis Research and Treatment Centre, University of Gondar, PO Box 196, Gondar, Ethiopia
| | - Caroline Jayne Shaw
- Department of Metabolism, Digestion, and Reproduction, Imperial College London, London SW7 2AZ, UK
| | | | - Rebecca Womersley
- Department of Infectious Disease, Imperial College London, London W2 1PG, UK
| | - Myrsini Kaforou
- Department of Infectious Disease, Imperial College London, London W2 1PG, UK
| | | | - Michael Levin
- Department of Infectious Disease, Imperial College London, London W2 1PG, UK
| | - Ingrid Müller
- Department of Infectious Disease, Imperial College London, London W2 1PG, UK
| | | | - Pascale Kropf
- Department of Infectious Disease, Imperial College London, London W2 1PG, UK
| |
Collapse
|
5
|
Rostami MN, Khamesipour A. Potential biomarkers of immune protection in human leishmaniasis. Med Microbiol Immunol 2021; 210:81-100. [PMID: 33934238 PMCID: PMC8088758 DOI: 10.1007/s00430-021-00703-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 03/22/2021] [Indexed: 12/30/2022]
Abstract
Leishmaniasis is a vector-borne neglected tropical disease endemic in over 100 countries around the world. Available control measures are not always successful, therapeutic options are limited, and there is no vaccine available against human leishmaniasis, although several candidate antigens have been evaluated over the last decades. Plenty of studies have aimed to evaluate the immune response development and a diverse range of host immune factors have been described to be associated with protection or disease progression in leishmaniasis; however, to date, no comprehensive biomarker(s) have been identified as surrogate marker of protection or exacerbation, and lack of enough information remains a barrier for vaccine development. Most of the current understanding of the role of different markers of immune response in leishmaniasis has been collected from experimental animal models. Although the data generated from the animal models are crucial, it might not always be extrapolated to humans. Here, we briefly review the events during Leishmania invasion of host cells and the immune responses induced against Leishmania in animal models and humans and their potential role as a biomarker of protection against human leishmaniasis.
Collapse
Affiliation(s)
| | - Ali Khamesipour
- Center for Research and Training in Skin Diseases and Leprosy, Tehran University of Medical Sciences, 14155-6383, Tehran, Iran.
| |
Collapse
|
6
|
Kang S, Kumanogoh A. The spectrum of macrophage activation by immunometabolism. Int Immunol 2020; 32:467-473. [PMID: 32179900 DOI: 10.1093/intimm/dxaa017] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 03/12/2020] [Indexed: 12/28/2022] Open
Abstract
Macrophages are heterogeneous and plastic, and play several diverse functions in immune responses. Emerging data provide evidence of multiple roles for metabolic pathways in the control of macrophage effector functions. The diverse functions of macrophages are categorized into two main subsets: classical activated macrophages (M1) and alternative activated macrophages (M2). M1 macrophages secrete pro-inflammatory cytokines and reactive oxygen species and migrate into inflamed sites as a part of host defenses. On the other hand, M2 macrophages are involved in immune homeostasis by producing anti-inflammatory cytokines and phagocytosing apoptotic cells. Metabolic reprogramming of environmental or cellular nutrients such as glucose, lipids and amino acids supports this diversity. Mechanistically, the mammalian target of rapamycin (mTOR) network plays important roles in the effector functions of macrophages by modulating cellular metabolism and regulating gene expression at the transcriptional and translational levels. In this review, we outline immunometabolism and provide insights into metabolic regulation by mTOR in macrophages.
Collapse
Affiliation(s)
- Sujin Kang
- Department of Immune Regulation, Immunology Frontier Research Center, Osaka University, Suita City, Osaka, Japan
| | - Atsushi Kumanogoh
- Department of Immunopathology, Immunology Frontier Research Center, Osaka University, Suita City, Osaka, Japan.,Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita City, Osaka, Japan
| |
Collapse
|
7
|
Gedda MR, Singh B, Kumar D, Singh AK, Madhukar P, Upadhyay S, Singh OP, Sundar S. Post kala-azar dermal leishmaniasis: A threat to elimination program. PLoS Negl Trop Dis 2020; 14:e0008221. [PMID: 32614818 PMCID: PMC7332242 DOI: 10.1371/journal.pntd.0008221] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Leishmaniasis remains a public health concern around the world that primarily affects poor folks of the developing world spanning across 98 countries with mortality of 0.2 million to 0.4 million annually. Post kala-azar dermal leishmaniasis (PKDL) is the late skin manifestation of visceral leishmaniasis (VL). It has been reported that about 2.5% to 20% of patients recovered from VL develop PKDL having stilted macular or nodular lesions with parasites. In the Indian subcontinent (ISC), it manifests a few months after recovery from VL, though in Africa it can occur simultaneously with VL or a little later. New cases of PKDL are also observed without prior VL in the ISC. These individuals with PKDL represent an important but largely neglected reservoir of infection that perpetuates anthroponotic Leishmania donovani transmission in the ISC and can jeopardize the VL elimination program as these cases can infect the sand flies and spread the endemic. Therefore, it becomes imperative to eradicate PKDL as a part of the VL elimination program. With the limited treatment options besides little knowledge on PKDL, this review stands out in focusing on different aspects that should be dealt for sustained VL elimination.
Collapse
Affiliation(s)
- Mallikarjuna Rao Gedda
- Infectious Disease Research Laboratory, Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
- Center for Cellular Engineering, NIH Clinical Center, Bethesda, Maryland, United States of America
| | - Bhawana Singh
- Infectious Disease Research Laboratory, Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Dhiraj Kumar
- Infectious Disease Research Laboratory, Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
- Department of Zoology, Rameshwar College, BRA Bihar University, Muzaffarpur, India
| | - Abhishek Kumar Singh
- Infectious Disease Research Laboratory, Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Prasoon Madhukar
- Infectious Disease Research Laboratory, Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Shreya Upadhyay
- Infectious Disease Research Laboratory, Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Om Prakash Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Shyam Sundar
- Infectious Disease Research Laboratory, Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| |
Collapse
|
8
|
Konopelnuk VI, Kompanets IV, Svyatetska VM, Molozhavaya OS, Ostapchenko LI. Functional polarization of macrophages of rats with progesterone-induced obesity treated with melanin from the Antarctic yeast Nadsoniella nigra. REGULATORY MECHANISMS IN BIOSYSTEMS 2019. [DOI: 10.15421/021979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Progesterone-induced obesity develops in women who use this drug for contraception and the menopause treatment, though its mechanisms remain poorly understood. We studied functional M1 and M2 polarizations of the abdominal cavity macrophages of rats with progesterone induced obesity during 28 days of administration. The effect of melanin from the Antarctic yeast Nadsoniella nigra (Chaetothyriales, Herpotrichiellaceae, Nadsoniella Issatsch, 1914) was investigated. The NO level was determined by the accumulation of nitrites, ROS level was estimated by the NBT-test, arginase activity was assayed by the reaction of L-arginine hydrolysis. The body weights of rats administrated progesterone increased by 27% and continued to increase one month after withdrawal of progesterone (55% higher than control). Melanin prevents the weight gain when administered during one month after progesterone withdrawal. The NO production by peritoneal macrophages of obese animals intensified by 31% indicating their polarization towards pro-inflammatory M1 type. Production of ROS did not change. A 14% increase in arginase activity was observed, indicating the inhibition of M2 (anti-inflammatory) polarization. In the progesterone withdrawal group all these rates significantly decreased, indicating a reduction in the functional activity of peritoneal macrophages’. Melanin decreased the NO and ROS production by 60% and 18% respectively in comparison with the progesterone group and unexpectedly reduced arginase activity. Our data provide evidence of the spread of inflammation in response to progesterone-induced obesity. Peritoneal macrophages are involved in the inflammation in obesity, undergoing polarization towards the pro-inflammatory phenotype. The long-term consequences of such inflammation include the continuation of weight gain and likely the development of systemic inflammation associated with the exhaustion of the functional capacity of peritoneal cavity macrophages. Melanin has an anti-obesity effect and exhibits anti-inflammatory properties preventing progesterone-induced weight gain and macrophage M1 polarization. This requires detailed elucidation and can be valuable in designing countermeasures to prevent obesity outcomes.
Collapse
|
9
|
Shrivastava R, Shukla N. Attributes of alternatively activated (M2) macrophages. Life Sci 2019; 224:222-231. [PMID: 30928403 DOI: 10.1016/j.lfs.2019.03.062] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 03/21/2019] [Accepted: 03/25/2019] [Indexed: 01/22/2023]
Abstract
Macrophages are cells of innate immunity and are derived from circulating monocytes and embryonic yolk sac. They exhibit high plasticity and polarize functionally in response to stimulus triggering it into classically activated M1 macrophages and alternatively activated M2 macrophages. This review summarizes markers of M2 macrophages like transmembrane surface receptors and signaling cascades initiated on their activation; cytokine and chemokine repertoires along with their receptors; and genetic markers and their involvement in immunomodulation. The detailed discussion emphasizes the role of these markers in imparting functional benefits to this subset of macrophages which define their venture in various physiological and pathological conditions.
Collapse
Affiliation(s)
- Richa Shrivastava
- Department of Pharmacy, Birla Institute of Technology and Sciences (BITS), Pilani Campus, Pilani, Rajasthan 333031, India.
| | - Nidhi Shukla
- Division of Endocrinology, CSIR-Central Drug Research Institute (CDRI), Lucknow 226031, India
| |
Collapse
|
10
|
da Silva ER, Brogi S, Lucon-Júnior JF, Campiani G, Gemma S, Maquiaveli CDC. Dietary polyphenols rutin, taxifolin and quercetin related compounds target Leishmania amazonensis arginase. Food Funct 2019; 10:3172-3180. [DOI: 10.1039/c9fo00265k] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Taxifolin, quercetin glucuronide and quercetin glucosides inhibit arginase from Leishmania amazonensis.
Collapse
Affiliation(s)
- Edson Roberto da Silva
- Departamento de Medicina Veterinária
- Faculdade de Zootecnia e Engenharia de Alimentos
- Universidade de São Paulo
- 13635-900 Pirassununga
- Brazil
| | - Simone Brogi
- European Research Centre for Drug Discovery and Development (NatSynDrugs) and Department of Biotechnology
- Chemistry
- and Pharmacy
- DoE Department of Excellence 2018-2022
- Università degli Studi di Siena via Aldo Moro 2
| | - João Francisco Lucon-Júnior
- Programa de Pós-graduação em Biociência Animal
- Faculdade de Zootecnia e Engenharia de Alimentos
- Universidade de São Paulo
- 13635-900 Pirassununga
- Brazil
| | - Giuseppe Campiani
- European Research Centre for Drug Discovery and Development (NatSynDrugs) and Department of Biotechnology
- Chemistry
- and Pharmacy
- DoE Department of Excellence 2018-2022
- Università degli Studi di Siena via Aldo Moro 2
| | - Sandra Gemma
- European Research Centre for Drug Discovery and Development (NatSynDrugs) and Department of Biotechnology
- Chemistry
- and Pharmacy
- DoE Department of Excellence 2018-2022
- Università degli Studi di Siena via Aldo Moro 2
| | - Claudia do Carmo Maquiaveli
- Departamento de Medicina Veterinária
- Faculdade de Zootecnia e Engenharia de Alimentos
- Universidade de São Paulo
- 13635-900 Pirassununga
- Brazil
| |
Collapse
|
11
|
Abad Dar M, Hölscher C. Arginase-1 Is Responsible for IL-13-Mediated Susceptibility to Trypanosoma cruzi Infection. Front Immunol 2018; 9:2790. [PMID: 30555475 PMCID: PMC6281981 DOI: 10.3389/fimmu.2018.02790] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 11/13/2018] [Indexed: 01/17/2023] Open
Abstract
Arginase-1 (Arg-1) is a marker for alternatively activated macrophages (AAM) and is mainly induced by the type 2 cytokines interleukin (IL)-4 and IL-13 through the common IL-4 receptor-alpha (Rα) subunit. Both, Arg-1 and AAM undermine macrophage effector functions against intracellular parasites and are therefore implicated in the susceptibility to infection with Trypanosoma cruzi, the causative agent of Chagas' disease. However, the involvement of Arg-1 in promoting intracellular replication of T. cruzi in AAM has not been proven so far in vivo. Because Arg-1 is only moderately expressed in T. cruzi-infected wildtype mice, we elucidated the role of Arg-1 and AAM during infection in IL-13-overexpressing (IL-13tg) mice, which are characterized by an inflammation-induced development of AAM and an accompanied elevated expression of Arg-1. In comparison to wildtype littermates, IL-13tg mice were highly susceptible to T. cruzi infection with enhanced parasitemia and impaired survival. Importantly, T. cruzi-infected IL-13tg mice developed an elevated alternative macrophage activation with increased arginase activity. To proof the hypothesis, that Arg-1 accounts for the increased susceptibility of IL-13tg mice, we blocked arginase activity in infected IL-13tg mice. Because this arginase inhibition resulted in a decreased susceptibility to experimental Chagas disease our study supports in summary the conclusion that IL-13/IL-4Rα-driven Arg-1 expression contributes to the permissiveness of the host to T. cruzi infection.
Collapse
Affiliation(s)
- Mahin Abad Dar
- Infection Immunology, Research Center Borstel, Borstel, Germany
| | | |
Collapse
|
12
|
da Silva ER, Brogi S, Grillo A, Campiani G, Gemma S, Vieira PC, Maquiaveli CDC. Cinnamic acids derived compounds with antileishmanial activity target Leishmania amazonensis arginase. Chem Biol Drug Des 2018; 93:139-146. [PMID: 30216691 DOI: 10.1111/cbdd.13391] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 08/16/2018] [Accepted: 08/26/2018] [Indexed: 12/28/2022]
Abstract
This study describes the activity of five natural hydroxycinnamic acids and derived compound: caffeic (1), rosmarinic (2), chlorogenic (3), and cryptochlorogenic (4), acids and isoverbascoside (5). All compounds inhibited Leishmania amazonensis arginase with IC50 -in range of 1.5-11 μM. Compounds 2 and 5 also showed activity against promastigotes of L. amazonensis with IC50 = 61 (28-133) μM and IC50 = 14 (9-24) μM, respectively. Further computational studies applying molecular docking simulations were performed on the competitive inhibitors to gain insight into the molecular basis for arginase inhibition and could be exploited to the development of new antileishmanials drug targeting parasite arginase.
Collapse
Affiliation(s)
| | - Simone Brogi
- European Research Centre for Drug Discovery and Development (NatSynDrugs), Department of Biotechnology, Chemistry, and Pharmacy, Università degli Studi di Siena via Aldo Moro 2, Siena, Italy
| | - Alessandro Grillo
- European Research Centre for Drug Discovery and Development (NatSynDrugs), Department of Biotechnology, Chemistry, and Pharmacy, Università degli Studi di Siena via Aldo Moro 2, Siena, Italy
| | - Giuseppe Campiani
- European Research Centre for Drug Discovery and Development (NatSynDrugs), Department of Biotechnology, Chemistry, and Pharmacy, Università degli Studi di Siena via Aldo Moro 2, Siena, Italy
| | - Sandra Gemma
- European Research Centre for Drug Discovery and Development (NatSynDrugs), Department of Biotechnology, Chemistry, and Pharmacy, Università degli Studi di Siena via Aldo Moro 2, Siena, Italy
| | - Paulo Cezar Vieira
- Department of Chemistry, Universidade Federal de São Carlos, São Carlos, Brazil
| | | |
Collapse
|
13
|
Mulaw T, Tariku A, Tsegaye AT, Abebe Z. Effect of iron-folic acid supplementation on change of hemoglobin among visceral Leishmaniasis patients in northwest Ethiopia: a retrospective follow up study. BMC HEMATOLOGY 2018; 18:29. [PMID: 30258634 PMCID: PMC6151065 DOI: 10.1186/s12878-018-0123-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 09/10/2018] [Indexed: 01/01/2023]
Abstract
Background An individual with visceral Leishmaniasis (VL) commonly present with anemia and one of the VL treatment center in northwest Ethiopia has been recommended iron-folic acid supplementation to these patients. But there is no documented evidence whether iron-folic acid supplementation improves the hematological profile of patients. Therefore, the study aimed to assess change in hemoglobin (Hb) and its determinant factors among VL patients with and without iron-folic acid supplementation in northwest Ethiopia. Methods A retrospective cohort study was conducted from January 2015 to December 2016. Data were entered into Epi-Data version 3.1 and transferred to Statistical Package for Social Science (SPSS) version 20 for analysis. Independent sample T-test and linear regression were used to compare the change in Hb and identify factors associated with a change in Hb, respectively. A 95% confidence level and p-values less than 0.05 were used determine statistically significant. Results From a total of 602 VL patients, 299 (49.7%) were from University of Gondar hospital. The mean (±SD) change of Hb from baseline to end of treatment was 0.99(±1.64) and 1.61(±1.88) g/dl with and without iron-folate supplementation, respectively, with mean difference 0.62, 95% CI (0.34, 0.90) and a p-value of < 0.0001. In multiple linear regressions, combination therapy of sodium stibogluconate-paramomycin (SSG-PM) was positively associated with a change of Hb (β [SE, p]: 0.710/0.15, < 0.0001). Whereas age (- 0.030/0.009, 0.001), nasal bleeding (- 0.261/0.123, 0.035), baseline white blood cell (- 0.139/0.044, 0.002) and hemoglobin (- 0.513/0.031, < 0.0001), end of treatment spleen size (- 0.059/0.015, < 0.0001) and iron-folic acid supplementation (- 0.574/0.163, < 0.0001) were negatively associated with change of Hb. Conclusion Iron-folic acid supplementation had a negative effect on the change of Hb. A combination therapy of SSG-PM, age, nasal bleeding, baseline white blood cells and Hb, and iron-folic acid supplementation were the determinants of change of Hb. Therefore, avoiding iron-folic acid supplementation and strengthening VL treatment with a combination of SSG-PM and, and early identification of complications is recommended for a better outcome.
Collapse
Affiliation(s)
- Tadele Mulaw
- 1University of Gondar Specialized Hospital, Gondar, Ethiopia
| | - Amare Tariku
- 2Department of Human Nutrition, Institute of Public Health, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Adino Tesfahun Tsegaye
- 3Department of Epidemiology and Biostatistics, Institute of Public Health, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Zegeye Abebe
- 2Department of Human Nutrition, Institute of Public Health, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
14
|
Abdossamadi Z, Taheri T, Seyed N, Montakhab-Yeganeh H, Zahedifard F, Taslimi Y, Habibzadeh S, Gholami E, Gharibzadeh S, Rafati S. Live Leishmania tarentolae secreting HNP1 as an immunotherapeutic tool against Leishmania infection in BALB/c mice. Immunotherapy 2018; 9:1089-1102. [PMID: 29032739 DOI: 10.2217/imt-2017-0076] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
AIM Several disadvantages about chemotherapy for leishmaniasis has reinforced discovery of novel therapeutic agents especially immunotherapeutics. HNP1, as a member of the mammalian antimicrobial peptides family, is an attractive molecule due to its broad functional spectrum. Here, the in vivo potency of HNP1 in transgenic Leishmania tarentolae as an immunotherapy tool against Leishmania major-infected BALB/c mice was examined. METHODS & RESULTS 3 weeks after infection with L. major, the treatment effect of L. tarentolae-HNP1-EGFP was pursued. The results were promising in respect to parasite load control and Th1 immune response polarization compared with controls. CONCLUSION Immunotherapy by live L. tarentolae secreting HNP1 can elicit cellular immune response in a susceptible mouse model in order to control L. major infection.
Collapse
Affiliation(s)
- Zahra Abdossamadi
- Department of Immunotherapy & Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran, 13194
| | - Tahereh Taheri
- Department of Immunotherapy & Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran, 13194
| | - Negar Seyed
- Department of Immunotherapy & Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran, 13194
| | - Hossein Montakhab-Yeganeh
- Department of Immunotherapy & Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran, 13194
| | - Farnaz Zahedifard
- Department of Immunotherapy & Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran, 13194
| | - Yasaman Taslimi
- Department of Immunotherapy & Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran, 13194
| | - Sima Habibzadeh
- Department of Immunotherapy & Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran, 13194
| | - Elham Gholami
- Department of Immunotherapy & Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran, 13194
| | - Safoora Gharibzadeh
- Department of Epidemiology & Biostatistics, Pasteur institute of Iran, Tehran, Iran
| | - Sima Rafati
- Department of Immunotherapy & Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran, 13194
| |
Collapse
|
15
|
Holzmuller P, Geiger A, Nzoumbou-Boko R, Pissarra J, Hamrouni S, Rodrigues V, Dauchy FA, Lemesre JL, Vincendeau P, Bras-Gonçalves R. Trypanosomatid Infections: How Do Parasites and Their Excreted-Secreted Factors Modulate the Inducible Metabolism of l-Arginine in Macrophages? Front Immunol 2018; 9:778. [PMID: 29731753 PMCID: PMC5921530 DOI: 10.3389/fimmu.2018.00778] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Accepted: 03/28/2018] [Indexed: 12/20/2022] Open
Abstract
Mononuclear phagocytes (monocytes, dendritic cells, and macrophages) are among the first host cells to face intra- and extracellular protozoan parasites such as trypanosomatids, and significant expansion of macrophages has been observed in infected hosts. They play essential roles in the outcome of infections caused by trypanosomatids, as they can not only exert a powerful antimicrobial activity but also promote parasite proliferation. These varied functions, linked to their phenotypic and metabolic plasticity, are exerted via distinct activation states, in which l-arginine metabolism plays a pivotal role. Depending on the environmental factors and immune response elements, l-arginine metabolites contribute to parasite elimination, mainly through nitric oxide (NO) synthesis, or to parasite proliferation, through l-ornithine and polyamine production. To survive and adapt to their hosts, parasites such as trypanosomatids developed mechanisms of interaction to modulate macrophage activation in their favor, by manipulating several cellular metabolic pathways. Recent reports emphasize that some excreted-secreted (ES) molecules from parasites and sugar-binding host receptors play a major role in this dialog, particularly in the modulation of the macrophage's inducible l-arginine metabolism. Preventing l-arginine dysregulation by drugs or by immunization against trypanosomatid ES molecules or by blocking partner host molecules may control early infection and is a promising way to tackle neglected diseases including Chagas disease, leishmaniases, and African trypanosomiases. The present review summarizes recent knowledge on trypanosomatids and their ES factors with regard to their influence on macrophage activation pathways, mainly the NO synthase/arginase balance. The review ends with prospects for the use of biological knowledge to develop new strategies of interference in the infectious processes used by trypanosomatids, in particular for the development of vaccines or immunotherapeutic approaches.
Collapse
Affiliation(s)
- Philippe Holzmuller
- CIRAD, Montpellier, France.,UMR 117 ASTRE "Animal, Santé, Territoire, Risques et Ecosystèmes", Univ. Montpellier (I-MUSE), CIRAD, INRA, Montpellier, France
| | - Anne Geiger
- UMR 177 INTERTRYP "Interactions Hôte-Vecteur-Parasite-Environnement dans les maladies tropicales négligées dues aux Trypanosomatidae", Univ. Montpellier (I-MUSE), CIRAD, IRD, Univ. Bordeaux 2, Univ. Lyon 1, Montpellier, France
| | - Romaric Nzoumbou-Boko
- UMR 177 INTERTRYP "Interactions Hôte-Vecteur-Parasite-Environnement dans les maladies tropicales négligées dues aux Trypanosomatidae", Univ. Montpellier (I-MUSE), CIRAD, IRD, Univ. Bordeaux 2, Univ. Lyon 1, Montpellier, France.,Univ. Bordeaux, UMR 177 INTERTRYP, Bordeaux, France.,CHU Bordeaux, Laboratoire de Parasitologie-Mycologie, Bordeaux, France
| | - Joana Pissarra
- UMR 177 INTERTRYP "Interactions Hôte-Vecteur-Parasite-Environnement dans les maladies tropicales négligées dues aux Trypanosomatidae", Univ. Montpellier (I-MUSE), CIRAD, IRD, Univ. Bordeaux 2, Univ. Lyon 1, Montpellier, France
| | - Sarra Hamrouni
- UMR 177 INTERTRYP "Interactions Hôte-Vecteur-Parasite-Environnement dans les maladies tropicales négligées dues aux Trypanosomatidae", Univ. Montpellier (I-MUSE), CIRAD, IRD, Univ. Bordeaux 2, Univ. Lyon 1, Montpellier, France
| | - Valérie Rodrigues
- CIRAD, Montpellier, France.,UMR 117 ASTRE "Animal, Santé, Territoire, Risques et Ecosystèmes", Univ. Montpellier (I-MUSE), CIRAD, INRA, Montpellier, France
| | - Frédéric-Antoine Dauchy
- UMR 177 INTERTRYP "Interactions Hôte-Vecteur-Parasite-Environnement dans les maladies tropicales négligées dues aux Trypanosomatidae", Univ. Montpellier (I-MUSE), CIRAD, IRD, Univ. Bordeaux 2, Univ. Lyon 1, Montpellier, France.,Univ. Bordeaux, UMR 177 INTERTRYP, Bordeaux, France.,CHU Bordeaux, Département des Maladies Infectieuses et Tropicales, Bordeaux, France
| | - Jean-Loup Lemesre
- UMR 177 INTERTRYP "Interactions Hôte-Vecteur-Parasite-Environnement dans les maladies tropicales négligées dues aux Trypanosomatidae", Univ. Montpellier (I-MUSE), CIRAD, IRD, Univ. Bordeaux 2, Univ. Lyon 1, Montpellier, France
| | - Philippe Vincendeau
- UMR 177 INTERTRYP "Interactions Hôte-Vecteur-Parasite-Environnement dans les maladies tropicales négligées dues aux Trypanosomatidae", Univ. Montpellier (I-MUSE), CIRAD, IRD, Univ. Bordeaux 2, Univ. Lyon 1, Montpellier, France.,Univ. Bordeaux, UMR 177 INTERTRYP, Bordeaux, France.,CHU Bordeaux, Laboratoire de Parasitologie-Mycologie, Bordeaux, France
| | - Rachel Bras-Gonçalves
- UMR 177 INTERTRYP "Interactions Hôte-Vecteur-Parasite-Environnement dans les maladies tropicales négligées dues aux Trypanosomatidae", Univ. Montpellier (I-MUSE), CIRAD, IRD, Univ. Bordeaux 2, Univ. Lyon 1, Montpellier, France
| |
Collapse
|
16
|
Abstract
Traditionally cellular respiration or metabolism has been viewed as catabolic and anabolic pathways generating energy and biosynthetic precursors required for growth and general cellular maintenance. However, growing literature provides evidence of a much broader role for metabolic reactions and processes in controlling immunological effector functions. Much of this research into immunometabolism has focused on macrophages, cells that are central in pro- as well as anti-inflammatory responses—responses that in turn are a direct result of metabolic reprogramming. As we learn more about the precise role of metabolic pathways and pathway intermediates in immune function, a novel opportunity to target immunometabolism therapeutically has emerged. Here, we review the current understanding of the regulation of macrophage function through metabolic remodeling.
Collapse
Affiliation(s)
- Ciana Diskin
- School of Biochemistry and Immunology, Trinity College Dublin, Trinity Biomedical Science Institute, Dublin, Ireland
| | - Eva M Pålsson-McDermott
- School of Biochemistry and Immunology, Trinity College Dublin, Trinity Biomedical Science Institute, Dublin, Ireland
| |
Collapse
|
17
|
Abdossamadi Z, Seyed N, Zahedifard F, Taheri T, Taslimi Y, Montakhab-Yeganeh H, Badirzadeh A, Vasei M, Gharibzadeh S, Rafati S. Human Neutrophil Peptide 1 as immunotherapeutic agent against Leishmania infected BALB/c mice. PLoS Negl Trop Dis 2017; 11:e0006123. [PMID: 29253854 PMCID: PMC5749894 DOI: 10.1371/journal.pntd.0006123] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Revised: 01/02/2018] [Accepted: 11/21/2017] [Indexed: 12/11/2022] Open
Abstract
Human Neutrophil Peptide 1 (HNP1) produced by neutrophils, is a well-known antimicrobial peptide which plays a role both in innate as well as in adaptive immunity and is under intensive investigation as a potential therapeutic agent. Previous in vitro experiments have indicated the leishmaniacidal effect of recombinant HNP1 on Leishmania major (L. major) promastigotes and amastigotes. In the current study, we further extended the idea to explore the remedial effect of HNP1 in the two modalities of peptide therapy (folded HNP1) and gene therapy in L. major infected BALB/c mice. To this end, mice in five different groups received synthetic folded HNP1 (G1), pcDNA-HNP1-EGFP (G2), pcDNA-EGFP (G3), Amphotericin B (G4) and PBS (G5), which was started three weeks after infection for three consecutive weeks. Footpad swelling was monitored weekly and a day after the therapy ended, IFN-γ, IL-4, IL-10, IL-6 and nitric oxide produced by splenocytes were analyzed together with the parasite load in draining lymph nodes. Arginase activity and dermal histopathological changes were also analyzed in the infected footpads. We demonstrated that both therapeutic approaches effectively induced Th1 polarization and restricted parasite burden. It can control disease progression in contrast to non-treated groups. However, pcDNA-HNP1-EGFP is more promising in respect to parasite control than folded HNP1, but less effective than AmB treatment. We concluded with the call for a future approach, that is, a DNA-based expression of HNP1 combined with AmB as it can improve the leishmaniacidal efficacy. The outbreak level of cutaneous leishmaniasis is approximated between one and 1.5 million individuals per year. Owning to several disadvantages of current therapies, special attention to expand novel and efficient therapies has been demanded. Among Anti-Microbial Peptides (AMPs), Human Neutrophil Peptide 1 (HNP1) is one of the most potential defensins. Our promising in vitro experiments have shown the leishmaniacidal effect of recombinant HNP1. Here, we displayed the remedial effect of HNP1 in two approaches including peptide therapy and gene therapy in susceptible mice infected with L. major. Our investigation showed that although both approaches could decrease the parasite load and induce Th1 immune response compared to the control group, pcDNA-HNP1-EGFP has a better effect compared to the folded HNP1. Hence, immunotherapy by HNP1 can help elicit proper immunity despite the direct effect on promastigotes and amastigotes forms of parasite.
Collapse
Affiliation(s)
- Zahra Abdossamadi
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur institute of Iran, Tehran, Iran
| | - Negar Seyed
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur institute of Iran, Tehran, Iran
| | - Farnaz Zahedifard
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur institute of Iran, Tehran, Iran
| | - Tahereh Taheri
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur institute of Iran, Tehran, Iran
| | - Yasaman Taslimi
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur institute of Iran, Tehran, Iran
| | - Hossein Montakhab-Yeganeh
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur institute of Iran, Tehran, Iran
| | - Alireza Badirzadeh
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur institute of Iran, Tehran, Iran
| | - Mohammad Vasei
- Cell-Based Therapies Research Center, Digestive Disease Research Institute and Department of Pathology, Shariati Hospital, Tehran University of Medical Science, Tehran, Iran
| | - Safoora Gharibzadeh
- Department of Epidemiology and Biostatistics, Pasteur Institute of Iran, Tehran, Iran
| | - Sima Rafati
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur institute of Iran, Tehran, Iran
- * E-mail: ,
| |
Collapse
|
18
|
Kale SD, Ayubi T, Chung D, Tubau-Juni N, Leber A, Dang HX, Karyala S, Hontecillas R, Lawrence CB, Cramer RA, Bassaganya-Riera J. Modulation of Immune Signaling and Metabolism Highlights Host and Fungal Transcriptional Responses in Mouse Models of Invasive Pulmonary Aspergillosis. Sci Rep 2017; 7:17096. [PMID: 29213115 PMCID: PMC5719083 DOI: 10.1038/s41598-017-17000-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 11/20/2017] [Indexed: 02/04/2023] Open
Abstract
Incidences of invasive pulmonary aspergillosis, an infection caused predominantly by Aspergillus fumigatus, have increased due to the growing number of immunocompromised individuals. While A. fumigatus is reliant upon deficiencies in the host to facilitate invasive disease, the distinct mechanisms that govern the host-pathogen interaction remain enigmatic, particularly in the context of distinct immune modulating therapies. To gain insights into these mechanisms, RNA-Seq technology was utilized to sequence RNA derived from lungs of 2 clinically relevant, but immunologically distinct murine models of IPA on days 2 and 3 post inoculation when infection is established and active disease present. Our findings identify notable differences in host gene expression between the chemotherapeutic and steroid models at the interface of immunity and metabolism. RT-qPCR verified model specific and nonspecific expression of 23 immune-associated genes. Deep sequencing facilitated identification of highly expressed fungal genes. We utilized sequence similarity and gene expression to categorize the A. fumigatus putative in vivo secretome. RT-qPCR suggests model specific gene expression for nine putative fungal secreted proteins. Our analysis identifies contrasting responses by the host and fungus from day 2 to 3 between the two models. These differences may help tailor the identification, development, and deployment of host- and/or fungal-targeted therapeutics.
Collapse
Affiliation(s)
- Shiv D Kale
- Nutrional Immunology and Molecular Medicine Laboratory, Biocomplexity Institute of Virginia Tech., Blacksburg, VA, 24061, USA.
| | - Tariq Ayubi
- Nutrional Immunology and Molecular Medicine Laboratory, Biocomplexity Institute of Virginia Tech., Blacksburg, VA, 24061, USA
| | - Dawoon Chung
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, 03755, USA
- National Marine Biodiversity Institute of Korea, Seochun-gun, 33662, Republic of Korea
| | - Nuria Tubau-Juni
- Nutrional Immunology and Molecular Medicine Laboratory, Biocomplexity Institute of Virginia Tech., Blacksburg, VA, 24061, USA
| | - Andrew Leber
- Nutrional Immunology and Molecular Medicine Laboratory, Biocomplexity Institute of Virginia Tech., Blacksburg, VA, 24061, USA
| | - Ha X Dang
- Nutrional Immunology and Molecular Medicine Laboratory, Biocomplexity Institute of Virginia Tech., Blacksburg, VA, 24061, USA
- McDonnell Genome Institute at Washington University, St. Louis, MO, 63108, USA
| | - Saikumar Karyala
- Nutrional Immunology and Molecular Medicine Laboratory, Biocomplexity Institute of Virginia Tech., Blacksburg, VA, 24061, USA
| | - Raquel Hontecillas
- Nutrional Immunology and Molecular Medicine Laboratory, Biocomplexity Institute of Virginia Tech., Blacksburg, VA, 24061, USA
| | | | - Robert A Cramer
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, 03755, USA
| | - Josep Bassaganya-Riera
- Nutrional Immunology and Molecular Medicine Laboratory, Biocomplexity Institute of Virginia Tech., Blacksburg, VA, 24061, USA
| |
Collapse
|
19
|
Kumar P, Misra P, Thakur CP, Saurabh A, Rishi N, Mitra DK. T cell suppression in the bone marrow of visceral leishmaniasis patients: impact of parasite load. Clin Exp Immunol 2017; 191:318-327. [PMID: 29058314 DOI: 10.1111/cei.13074] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2017] [Indexed: 11/27/2022] Open
Abstract
Visceral leishmaniasis (VL) is a disseminated and lethal disease of reticulo-endothelial system caused by protozoan parasites Leishmania donovani and L. infantum, which are known to induce host T cell suppression. To understand the impact of parasite load on T cell function, the present was focused on parasite load with T cell function in bone marrow of 26 VL patients. We observed significant enrichment of forkhead box protein 3 (FoxP3)+ (P = 0·0003) and interleukin (IL)-10+ FoxP3+ regulatory T cells (Treg ) (P = 0·004) in the bone marrow (BM) of patients with high parasite load (HPL) compared with low parasite load (LPL). Concordantly, T effector cells producing interferon (IFN)-γ (P = 0·005) and IL-17A (P = 0·002) were reduced in the BM of HPL. Blocking of Treg -cell derived suppressive cytokines [(IL-10 and transforming growth factor (TGF)-β] rescued the effector T cells and their functions. However, it was observed that TGF-β levels were dominant, favouring Treg cell differentiation. Furthermore, the low ratio of IL-6/TGF-β favours the suppressive milieu in HPL patients. Here we show the change in levels of various cytokines with the parasitic load during active VL, which could be helpful in devising newer immunotherapeutic strategies against this disease.
Collapse
Affiliation(s)
- P Kumar
- Department of T.I.I., All India Institute of Medical Sciences (AIIMS), Ansari Nagar, New Delhi.,Amity Institute of Virology and Immunology, Amity University, Noida
| | - P Misra
- Department of T.I.I., All India Institute of Medical Sciences (AIIMS), Ansari Nagar, New Delhi
| | - C P Thakur
- Balaji Utthan Sansthan, Patna, Bihar, India
| | - A Saurabh
- Department of T.I.I., All India Institute of Medical Sciences (AIIMS), Ansari Nagar, New Delhi.,Amity Institute of Virology and Immunology, Amity University, Noida
| | - N Rishi
- Amity Institute of Virology and Immunology, Amity University, Noida
| | - D K Mitra
- Department of T.I.I., All India Institute of Medical Sciences (AIIMS), Ansari Nagar, New Delhi
| |
Collapse
|
20
|
Leptin regulates Granzyme-A, PD-1 and CTLA-4 expression in T cell to control visceral leishmaniasis in BALB/c Mice. Sci Rep 2017; 7:14664. [PMID: 29116252 PMCID: PMC5676676 DOI: 10.1038/s41598-017-15288-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 10/24/2017] [Indexed: 01/01/2023] Open
Abstract
Visceral leishmaniasis (VL) is responsible for several deaths in malnourished children accompanied by diminished circulating leptin and impaired cell-mediated immunity. Typically, leptin deficiency is associated with the Th2 polarization that markedly coincides with the pathogenesis of VL. The aim of the present study was to unravel the prophylactic role of leptin in malnutrition-coupled VL mice. Interestingly, we observed that L. donovani infection itself reduces the serum leptin levels in malnutrition. Exogenous leptin restored severe body weight loss and parasite load in the spleen and liver of malnourished infected mice compared to controls. Leptin increases functional CD8+ T-cell population, Granzyme-A expression down-regulates anergic T-cell markers such as PD-1 and CTLA-4. It was also noticed that, leptin suppresses GM-CSF mRNA expression in parasite favored monocytes and reduced arginase activity in bone marrow derived macrophage indicate macrophages dependent T-cell activation and proliferation. Leptin-induced IFN-γ, IL-2, and TNF-α cytokines in the culture supernatant of splenocytes upon soluble leishmanial antigen (SLA) stimulation and significantly up-regulates serum IgG2a titers, which help to generate Th1 immune response in VL. Furthermore, leptin induced a granulomatous response and restored L. donovani induced tissue degeneration in the liver. Altogether, our findings suggest the exogenous leptin can restore T cell mediated immunity in malnourished VL mice.
Collapse
|
21
|
Mandal A, Das S, Kumar A, Roy S, Verma S, Ghosh AK, Singh R, Abhishek K, Saini S, Sardar AH, Purkait B, Kumar A, Mandal C, Das P. l-Arginine Uptake by Cationic Amino Acid Transporter Promotes Intra-Macrophage Survival of Leishmania donovani by Enhancing Arginase-Mediated Polyamine Synthesis. Front Immunol 2017; 8:839. [PMID: 28798743 PMCID: PMC5526900 DOI: 10.3389/fimmu.2017.00839] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 07/03/2017] [Indexed: 11/24/2022] Open
Abstract
The survival of intracellular protozoan parasite, Leishmania donovani, the causative agent of Indian visceral leishmaniasis (VL), depends on the activation status of macrophages. l-Arginine, a semi-essential amino acid plays a crucial regulatory role for activation of macrophages. However, the role of l-arginine transport in VL still remains elusive. In this study, we demonstrated that intra-macrophage survival of L. donovani depends on the availability of extracellular l-arginine. Infection of THP-1-derived macrophage/human monocyte-derived macrophage (hMDM) with Leishmania, resulted in upregulation of l-arginine transport. While investigating the involvement of the transporters, we observed that Leishmania survival was greatly impaired when the transporters were blocked either using inhibitor or siRNA-mediated downregulation. CAT-2 was found to be the main isoform associated with l-arginine transport in L. donovani-infected macrophages. l-arginine availability and its transport regulated the host arginase in Leishmania infection. Arginase and inducible nitric oxide synthase (iNOS) expression were reciprocally regulated when assayed using specific inhibitors and siRNA-mediated downregulation. Interestingly, induction of iNOS expression and nitric oxide production were observed in case of inhibition of arginase in infected macrophages. Furthermore, inhibition of l-arginine transport as well as arginase resulted in decreased polyamine production, limiting parasite survival inside macrophages. l-arginine availability and transport regulated Th1/Th2 cytokine levels in case of Leishmania infection. Upregulation of l-arginine transport, induction of host arginase, and enhanced polyamine production were correlated with increased level of IL-10 and decreased level of IL-12 and TNF-α in L. donovani-infected macrophages. Our findings provide clear evidence for targeting the metabolism of l-arginine and l-arginine-metabolizing enzymes as an important therapeutic and prophylactic strategy to treat VL.
Collapse
Affiliation(s)
- Abhishek Mandal
- Department of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences (ICMR), Patna, India
| | - Sushmita Das
- Department of Microbiology, All India Institute of Medical Sciences (AIIMS), Patna, India
| | - Ajay Kumar
- Department of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences (ICMR), Patna, India
| | - Saptarshi Roy
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Sudha Verma
- Department of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences (ICMR), Patna, India
| | - Ayan Kumar Ghosh
- Department of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences (ICMR), Patna, India
| | - Ruby Singh
- Department of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences (ICMR), Patna, India
| | - Kumar Abhishek
- Department of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences (ICMR), Patna, India
| | - Savita Saini
- Department of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences (ICMR), Patna, India
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Hajipur, India
| | - Abul Hasan Sardar
- Department of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences (ICMR), Patna, India
| | - Bidyut Purkait
- Department of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences (ICMR), Patna, India
| | - Ashish Kumar
- Department of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences (ICMR), Patna, India
| | - Chitra Mandal
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Pradeep Das
- Department of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences (ICMR), Patna, India
| |
Collapse
|
22
|
Disease severity in patients with visceral leishmaniasis is not altered by co-infection with intestinal parasites. PLoS Negl Trop Dis 2017; 11:e0005727. [PMID: 28732017 PMCID: PMC5540614 DOI: 10.1371/journal.pntd.0005727] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Revised: 08/02/2017] [Accepted: 06/19/2017] [Indexed: 12/24/2022] Open
Abstract
Visceral leishmaniasis (VL) is a neglected tropical disease that affects the poorest communities and can cause substantial morbidity and mortality. Visceral leishmaniasis is characterized by the presence of Leishmania parasites in the spleen, liver and bone marrow, hepatosplenomegaly, pancytopenia, prolonged fever, systemic inflammation and low body mass index (BMI). The factors impacting on the severity of VL are poorly characterized. Here we performed a cross-sectional study to assess whether co-infection of VL patients with intestinal parasites influences disease severity, assessed with clinical and haematological data, inflammation, cytokine profiles and BMI. Data from VL patients was similar to VL patients co-infected with intestinal parasites, suggesting that co-infection of VL patients with intestinal parasites does not alter disease severity. Visceral leishmaniasis (VL), a disease caused by a parasite, Leishmania, belongs to the most neglected tropical diseases: they mainly occur in low-income countries and affect the poorest populations. The parasites are transmitted via the bite of an insect vector and migrate to the internal organs. When VL occurs, the patients will present with enlarged spleen and liver, a disturbed haematological profile with low blood cell counts, systemic inflammation and malnutrition. This stage of the disease is fatal if left untreated. The factors that influence VL disease severity are poorly characterized. Here, we recruited patients with VL in an area of Ethiopia with a high prevalence of intestinal parasites. Our aim was to assess whether the disease was more severe in VL patients co-infected with intestinal parasites. Our results show that clinical and haematological data, inflammation, cytokine profile and nutritional status of VL patients are similar in VL patients and in VL patients co-infected with intestinal parasites. These results suggest that co-infection of VL patients with intestinal parasites does not impact on disease severity.
Collapse
|
23
|
Badirzadeh A, Taheri T, Taslimi Y, Abdossamadi Z, Heidari-Kharaji M, Gholami E, Sedaghat B, Niyyati M, Rafati S. Arginase activity in pathogenic and non-pathogenic species of Leishmania parasites. PLoS Negl Trop Dis 2017; 11:e0005774. [PMID: 28708893 PMCID: PMC5529023 DOI: 10.1371/journal.pntd.0005774] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 07/26/2017] [Accepted: 07/05/2017] [Indexed: 12/25/2022] Open
Abstract
Proliferation of Leishmania (L.) parasites depends on polyamine availability, which can be generated by the L-arginine catabolism and the enzymatic activity of arginase (ARG) of the parasites and of the mammalian hosts. In the present study, we characterized and compared the arginase (arg) genes from pathogenic L. major and L. tropica and from non-pathogenic L. tarentolae. We quantified the level of the ARG activity in promastigotes and macrophages infected with pathogenic L. major and L. tropica and non-pathogenic L. tarentolae amastigotes. The ARG's amino acid sequences of the pathogenic and non-pathogenic Leishmania demonstrated virtually 98.6% and 88% identities with the reference L. major Friedlin ARG. Higher ARG activity was observed in all pathogenic promastigotes as compared to non-pathogenic L. tarentolae. In vitro infection of human macrophage cell line (THP1) with pathogenic and non-pathogenic Leishmania spp. resulted in increased ARG activities in the infected macrophages. The ARG activities present in vivo were assessed in susceptible BALB/c and resistant C57BL/6 mice infected with L. major, L. tropica and L. tarentolae. We demonstrated that during the development of the infection, ARG is induced in both strains of mice infected with pathogenic Leishmania. However, in L. major infected BALB/c mice, the induction of ARG and parasite load increased simultaneously according to the time course of infection, whereas in C57BL/6 mice, the enzyme is upregulated solely during the period of footpad swelling. In L. tropica infected mice, the footpads' swellings were slow to develop and demonstrated minimal cutaneous pathology and ARG activity. In contrast, ARG activity was undetectable in mice inoculated with the non-pathogenic L. tarentolae. Our data suggest that infection by Leishmania parasites can increase ARG activity of the host and provides essential polyamines for parasite salvage and its replication. Moreover, the ARG of Leishmania is vital for parasite proliferation and required for infection in mice. ARG activity can be used as one of the main marker of the disease severity.
Collapse
Affiliation(s)
- Alireza Badirzadeh
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
- Department of Medical Parasitology and Mycology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tahereh Taheri
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| | - Yasaman Taslimi
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| | - Zahra Abdossamadi
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| | - Maryam Heidari-Kharaji
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| | - Elham Gholami
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| | - Baharehsadat Sedaghat
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| | - Maryam Niyyati
- Department of Medical Parasitology and Mycology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sima Rafati
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
24
|
Yizengaw E, Getahun M, Tajebe F, Cruz Cervera E, Adem E, Mesfin G, Hailu A, Van der Auwera G, Yardley V, Lemma M, Skhedy Z, Diro E, Yeshanew A, Melkamu R, Mengesha B, Modolell M, Munder M, Müller I, Takele Y, Kropf P. Visceral Leishmaniasis Patients Display Altered Composition and Maturity of Neutrophils as well as Impaired Neutrophil Effector Functions. Front Immunol 2016; 7:517. [PMID: 27965662 PMCID: PMC5126105 DOI: 10.3389/fimmu.2016.00517] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 11/07/2016] [Indexed: 11/13/2022] Open
Abstract
Immunologically, active visceral leishmaniasis (VL) is characterized by profound immunosuppression, severe systemic inflammatory responses, and an impaired capacity to control parasite replication. Neutrophils are highly versatile cells, which play a crucial role in the induction as well as the resolution of inflammation, the control of pathogen replication, and the regulation of immune responses. Neutrophil functions have been investigated in human cutaneous leishmaniasis; however, their role in human VL is poorly understood. In the present study we evaluated the activation status and effector functions of neutrophils in patients with active VL and after successful anti-leishmanial treatment. Our results show that neutrophils are highly activated and have degranulated; high levels of arginase, myeloperoxidase, and elastase, all contained in neutrophils' granules, were found in the plasma of VL patients. In addition, we show that a large proportion of these cells are immature. We also analyzed effector functions of neutrophils that are essential for pathogen clearance and show that neutrophils have an impaired capacity to release neutrophil extracellular traps, produce reactive oxygen species, and phagocytose bacterial particles, but not Leishmania parasites. Our results suggest that impaired effector functions, increased activation, and immaturity of neutrophils play a key role in the pathogenesis of VL.
Collapse
Affiliation(s)
- Endalew Yizengaw
- Department of Immunology, University of Gondar , Gondar , Ethiopia
| | - Mulusew Getahun
- Department of Immunology, University of Gondar , Gondar , Ethiopia
| | | | | | - Emebet Adem
- Leishmaniasis Research and Treatment Centre, Gondar University , Gondar , Ethiopia
| | - Getnet Mesfin
- Department of Immunology, University of Gondar , Gondar , Ethiopia
| | - Asrat Hailu
- Department of Microbiology, Immunology and Parasitology, Addis Ababa University , Addis Ababa , Ethiopia
| | - Gert Van der Auwera
- Department of Biomedical Sciences, Institute of Tropical Medicine , Antwerp , Belgium
| | - Vanessa Yardley
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine , London , UK
| | - Mulualem Lemma
- Department of Internal Medicine, University of Gondar , Gondar , Ethiopia
| | - Ziv Skhedy
- Department of Mathematics and Statistics, University of Hasselt , Hasselt , Belgium
| | - Ermias Diro
- Leishmaniasis Research and Treatment Centre, Gondar University , Gondar , Ethiopia
| | - Arega Yeshanew
- Leishmaniasis Research and Treatment Centre, Gondar University , Gondar , Ethiopia
| | - Roma Melkamu
- Leishmaniasis Research and Treatment Centre, Gondar University , Gondar , Ethiopia
| | - Bewketu Mengesha
- Leishmaniasis Research and Treatment Centre, Gondar University , Gondar , Ethiopia
| | - Manuel Modolell
- Department of Cellular Immunology, Max-Planck-Institute for Immunobiology and Epigenetics , Freiburg , Germany
| | - Markus Munder
- Third Department of Medicine (Hematology, Oncology, and Pneumology), University Medical Center Mainz , Mainz , Germany
| | - Ingrid Müller
- Department of Medicine, Imperial College London , London , UK
| | - Yegnasew Takele
- Department of Medicine, Imperial College London, London, UK; Leishmaniasis Research and Treatment Centre, Gondar University, Gondar, Ethiopia
| | - Pascale Kropf
- Department of Medicine, Imperial College London , London , UK
| |
Collapse
|
25
|
Venturin GL, Chiku VM, Silva KLO, de Almeida BFM, de Lima VMF. M1 polarization and the effect of PGE 2 on TNF-α production by lymph node cells from dogs with visceral leishmaniasis. Parasite Immunol 2016; 38:698-704. [PMID: 27506591 DOI: 10.1111/pim.12353] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 08/08/2016] [Indexed: 12/01/2022]
Abstract
Canine visceral leishmaniasis (CVL) is caused by the intracellular parasite Leishmania infantum. Increased levels of arginase, nitric oxide (NO2 ) and prostaglandin E2 (PGE2 ) can play a regulatory role regarding the immune response in CVL cases. This study aimed to evaluate the arginase activity in adherent macrophages cultured from the lymph nodes of healthy and naturally infected dogs and to examine the NO2 and PGE2 levels in the supernatant of these cultures. In addition, the regulatory effect of PGE2 on the production of tumour necrosis factor (TNF-α) and interleukin-10 (IL-10) in supernatants from the total lymph node was observed in leucocyte cultures. The arginase activity was lower in the adherent macrophages cultured from the lymph nodes of naturally infected dogs and there were higher concentrations of NO2 and PGE2 in the supernatants of these cultures. Higher TNF-α and IL-10 concentrations were observed in supernatants from total lymph node leucocytes cultures, from infected dogs, and the presence of indomethacin only decreased TNF-α in the supernatant of these cultures. We conclude that the low arginase activity in macrophages suggested that M1 polarization and PGE2 were participating in the immune response and were increasing TNF-α in CVL.
Collapse
Affiliation(s)
- G L Venturin
- Animal Science, School of Veterinary Medicine, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | - V M Chiku
- Animal Science, School of Veterinary Medicine, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | - K L O Silva
- Animal Science, School of Veterinary Medicine, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | - B F M de Almeida
- Animal Science, School of Veterinary Medicine, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | - V M F de Lima
- Department of Surgery and Animal Reproduction, School of Veterinary Medicine, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil.
| |
Collapse
|
26
|
Sharma S, Davis RE, Srivastva S, Nylén S, Sundar S, Wilson ME. A Subset of Neutrophils Expressing Markers of Antigen-Presenting Cells in Human Visceral Leishmaniasis. J Infect Dis 2016; 214:1531-1538. [PMID: 27601622 DOI: 10.1093/infdis/jiw394] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 08/17/2016] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Visceral leishmaniasis (VL) is a potentially fatal parasitic disease associated with fever, cachexia and impaired protective T-cell responses against the parasite. METHODS Peripheral blood leukocytes from 105 subjects with VL and healthy control subjects from the endemic region of Muzaffarpur, Bihar, India, were compared using flow cytometry and reverse-transcriptase quantitative polymerase chain reaction. Findings were correlated with clinical data. RESULTS An expanded population of low-density neutrophils that expressed HLA-DR, CD80 and CD86 was observed in subjects with VL. This neutrophil population contracted after successful treatment of disease. Plasma from patients with acute VL was able to induce similar high-level HLA-DR expression in neutrophils from healthy subjects. HLA-DR+ neutrophils from subjects with VL did not stimulate T-cell proliferation, but they did express higher programmed cell death ligand-1 (PDL1) than other neutrophils, and lymphocytes of the same subjects expressed high programmed cell death 1 (PD1). CONCLUSIONS Patients with acute VL have expanded circulating low-density neutrophils expressing markers of antigen presentation, which diminish after treatment. Development of HLA-DR+ neutrophils is stimulated, at least in part, by components of plasma from patients with acute disease. Although we found no evidence that they act as antigen-presenting cells, these neutrophils expressed markers implicating a role in T-cell exhaustion.
Collapse
Affiliation(s)
- Smriti Sharma
- Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | | | - Shweta Srivastva
- Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Susanne Nylén
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Shyam Sundar
- Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Mary E Wilson
- Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India.,Departments of Internal Medicine and Microbiology, University of Iowa and the Veterans' Affairs Medical Center, Iowa City
| |
Collapse
|
27
|
Abstract
In recent years a substantial number of findings have been made in the area of immunometabolism, by which we mean the changes in intracellular metabolic pathways in immune cells that alter their function. Here, we provide a brief refresher course on six of the major metabolic pathways involved (specifically, glycolysis, the tricarboxylic acid (TCA) cycle, the pentose phosphate pathway, fatty acid oxidation, fatty acid synthesis and amino acid metabolism), giving specific examples of how precise changes in the metabolites of these pathways shape the immune cell response. What is emerging is a complex interplay between metabolic reprogramming and immunity, which is providing an extra dimension to our understanding of the immune system in health and disease.
Collapse
Affiliation(s)
- Luke A J O'Neill
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Rigel J Kishton
- Vanderbilt Centre for Immunobiology, Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | - Jeff Rathmell
- Vanderbilt Centre for Immunobiology, Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| |
Collapse
|
28
|
Malnutrition in Healthy Individuals Results in Increased Mixed Cytokine Profiles, Altered Neutrophil Subsets and Function. PLoS One 2016; 11:e0157919. [PMID: 27548305 PMCID: PMC4993519 DOI: 10.1371/journal.pone.0157919] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Accepted: 06/07/2016] [Indexed: 01/09/2023] Open
Abstract
Malnutrition is commonly associated with increased infectious disease susceptibility and severity. Whereas malnutrition might enhance the incidence of disease as well as its severity, active infection can in turn exacerbate malnutrition. Therefore, in a malnourished individual suffering from a severe infection, it is not possible to determine the contribution of the pre-existing malnutrition and/or the infection itself to increased disease severity. In the current study we focussed on two groups of malnourished, but otherwise healthy individuals: moderately malnourished (BMI: 18.4–16.5) and severely malnourished (BMI <16.5) and compared several immune parameters with those of individuals with a normal BMI (≥18.5). Our results show a similar haematological profile in all three groups, as well as a similar ratio of CD4+ and CD8+ T cells. We found significant correlations between low BMI and increased levels of T helper (Th) 1 (Interferon (IFN)-γ, (interleukin (IL)-2, IL-12), Th2 (IL-4, IL-5, IL-13), as well as IL-10, IL-33 and tumor necrosis factor-α, but not IL-8 or C reactive protein. The activities of arginase, an enzyme associated with immunosuppression, were similar in plasma, peripheral blood mononuclear cells (PBMC) and neutrophils from all groups and no differences in the expression levels of CD3ζ, a marker of T cell activation, were observed in CD4+ and CD8+T cells. Furthermore, whereas the capacity of neutrophils from the malnourished groups to phagocytose particles was not impaired, their capacity to produce reactive oxygen species was impaired. Finally we evaluated the frequency of a subpopulation of low-density neutrophils and show that they are significantly increased in the malnourished individuals. These differences were more pronounced in the severely malnourished group. In summary, our results show that even in the absence of apparent infections, healthy malnourished individuals display dysfunctional immune responses that might contribute to increased susceptibility and severity to infectious diseases.
Collapse
|
29
|
Mortazavi H, Sadeghipour P, Taslimi Y, Habibzadeh S, Zali F, Zahedifard F, Rahmati J, Kamyab K, Ghandi N, Zamanian A, Reza Tohidinik H, Muller I, Kropf P, Rafati S. Comparing acute and chronic human cutaneous leishmaniasis caused by Leishmania major and Leishmania tropica focusing on arginase activity. J Eur Acad Dermatol Venereol 2016; 30:2118-2121. [PMID: 27439742 DOI: 10.1111/jdv.13838] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 05/19/2016] [Indexed: 11/27/2022]
Abstract
BACKGROUND Cutaneous leishmaniasis (CL) in Iran is mainly caused by Leishmania major (L. major) and L. tropica. Arginase mediated L-arginine metabolism is an important issue in Leishmania parasite propagation. Arginase activity in human CL due to L. major and L. tropica have not been studied up to now. OBJECTIVES We aimed to compare the clinical and laboratory aspects of acute and chronic CL, focussing on arginase activity. METHODS In this case-control study, 30 patients with acute CL (duration ≤ 1 year), 13 patients with chronic CL (duration ≥ 2 year) and 11 healthy controls were recruited. Arginase activity was measured in skin biopsies of lesions, peripheral blood polymorphonuclear cells (PMNs), peripheral blood mononuclear cells (PBMCs) and plasma by standard methods. RESULTS The median of arginase activity in the acute lesions was higher than in chronic samples and significantly higher than in healthy controls (P = 0.008). PMNs of both acute and chronic patients showed higher levels of arginase activity as compared to the levels in PBMCs and plasma. The median of arginase activity in the PMNs of patients with chronic CL was higher than that of patients with acute CL and significantly higher than that of the healthy controls (P = 0.010). CONCLUSION The level of arginase activity in lesions of patients with acute and chronic CL was higher than the skin of healthy controls. The highest level of arginase activity was observed in PMNs from patients with chronic CL. This suggests that the high level of arginase activity in PMNs of patients with chronic CL may contribute to the chronicity.
Collapse
Affiliation(s)
- H Mortazavi
- Department of Dermatology, Razi Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - P Sadeghipour
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran.,Iran University of Medical Sciences, Tehran, Iran
| | - Y Taslimi
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| | - S Habibzadeh
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| | - F Zali
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| | - F Zahedifard
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| | - J Rahmati
- Department of General surgery and Plastic surgery, Razi Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - K Kamyab
- Department of Pathology, Razi Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - N Ghandi
- Department of Dermatology, Razi Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - A Zamanian
- Department of Dermatology, Rasoul-e-Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - H Reza Tohidinik
- School of Public Health, Gonabad University of medical sciences, Gonabad, Iran
| | - I Muller
- Section of Immunology, Department of Medicine, Imperial College London, London, UK
| | - P Kropf
- Section of Immunology, Department of Medicine, Imperial College London, London, UK
| | - S Rafati
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
30
|
Alemayehu M, Wubshet M, Mesfin N. Magnitude of visceral leishmaniasis and poor treatment outcome among HIV patients: meta-analysis and systematic review. HIV AIDS-RESEARCH AND PALLIATIVE CARE 2016; 8:75-81. [PMID: 27042142 PMCID: PMC4809333 DOI: 10.2147/hiv.s96883] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Background Visceral leishmaniasis (VL) coinfection with HIV/AIDS most often results in unfavorable responses to treatment, frequent relapses, and premature deaths. Scarce data are available, regarding the magnitude and poor treatment outcomes of VL-HIV coinfection. Objective The main objective of this systematic review was to describe the pooled prevalence of VL and poor treatment outcome among HIV patients. Review methods Electronic databases mainly PubMed were searched. Databases, such as Google and Google scholar, were searched for gray literature. Articles were selected based on their inclusion criterion, whether they included HIV-positive individuals with VL diagnosis. STATA 11 software was used to conduct a meta-analysis of pooled prevalence of VL-HIV coinfection. Results Fifteen of the 150 articles fulfilled the inclusion criteria. A majority of the study participants were males between 25 years and 41 years of age. The pooled prevalence of VL-HIV coinfection is 5.2% with 95% confidence interval of (2.45–10.99). Two studies demonstrated the impact of antiretroviral treatment on reduction in relapse rate compared with patients who did not start antiretroviral treatment. One study showed that the higher the baseline CD4+ cell count (>100 cells/mL) the lower the relapse rate. Former VL episodes were identified as risk factors for relapse in two articles. In one of the articles, an earlier bout of VL remains significant in the model adjusted to other variables. Conclusion The pooled prevalence of VL in HIV-infected patients is low and an earlier bout of VL and CD4+ count <100 cells/mL at the time of primary VL diagnosis are factors that predict poor treatment outcome.
Collapse
Affiliation(s)
- Mekuriaw Alemayehu
- Environmental and Occupational Health and Safety Department, Institute of Public Health, University of Gondar, Gondar, Ethiopia
| | - Mamo Wubshet
- Environmental and Occupational Health and Safety Department, Institute of Public Health, University of Gondar, Gondar, Ethiopia
| | - Nebiyu Mesfin
- Internal Medicine Department, School of Medicine, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
31
|
Adem E, Tajebe F, Getahun M, Kiflie A, Diro E, Hailu A, Shkedy Z, Mengesha B, Mulaw T, Atnafu S, Deressa T, Mathewos B, Abate E, Modolell M, Munder M, Müller I, Takele Y, Kropf P. Successful Treatment of Human Visceral Leishmaniasis Restores Antigen-Specific IFN-γ, but not IL-10 Production. PLoS Negl Trop Dis 2016; 10:e0004468. [PMID: 26962865 PMCID: PMC4786308 DOI: 10.1371/journal.pntd.0004468] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 01/27/2016] [Indexed: 12/31/2022] Open
Abstract
One of the key immunological characteristics of active visceral leishmaniasis (VL) is a profound immunosuppression and impaired production of Interferon-γ (IFN-γ). However, recent studies from Bihar in India showed using a whole blood assay, that whole blood cells have maintained the capacity to produce IFN-γ. Here we tested the hypothesis that a population of low-density granulocytes (LDG) might contribute to T cell responses hyporesponsiveness via the release of arginase. Our results show that this population is affected by the anticoagulant used to collect blood: the frequency of LDGs is significantly lower when the blood is collected with heparin as compared to EDTA; however, the anticoagulant does not impact on the levels of arginase released. Next, we assessed the capacity of whole blood cells from patients with active VL to produce IFN-γ and IL-10 in response to antigen-specific and polyclonal activation. Our results show that whole blood cells produce low or levels below detection limit of IFN-γ and IL-10, however, after successful treatment of VL patients, these cells gradually regain their capacity to produce IFN-γ, but not IL-10, in response to activation. These results suggest that in contrast to VL patients from Bihar, India, whole blood cells from VL patients from Gondar, Ethiopia, have lost their ability to produce IFN-γ during active VL and that active disease is not associated with sustained levels of IL-10 production following stimulation. The leishmaniases, a group of diseases caused by Leishmania parasites, belong to the most neglected tropical diseases: they are mainly found in low-income countries and affect the poorest populations. These parasites infect cells of the immune system called macrophages, which can kill the intracellular parasites in response to soluble mediators they receive from other cells of the immune system, the lymphocytes. Visceral leishmaniasis is the most severe form of the leishmaniases and is characterized by enlarged liver and spleen, fever, weight-loss and anaemia and represents a major public health problem in Ethiopia. Currently there is no vaccine available, the existing treatment has many severe side effects and drug-resistance is increasing. In the present study, we worked with patients suffering from visceral leishmaniasis. This form of the disease is fatal if the patients are not treated. We studied the ability of lymphocytes isolated from their blood to produce soluble mediators before and at different times after the end of treatment. Our results show that the lymphocytes have an impaired capacity to produce the soluble mediator required to instruct infected cells to kill the intracellular parasites, but that this lack of response is gradually restored with time after successful treatment.
Collapse
Affiliation(s)
- Emebet Adem
- Department of Immunology, University of Gondar, Ethiopia
| | | | | | - Amare Kiflie
- Department of Immunology, University of Gondar, Ethiopia
| | - Ermias Diro
- Department of Internal Medicine, University of Gondar, Ethiopia
| | - Asrat Hailu
- Department of Microbiology, Immunology and Parasitology, Addis Ababa University, Ethiopia
| | - Ziv Shkedy
- Department of Mathematics and Statistics, University of Hasselt, Belgium
| | - Bewketu Mengesha
- Leishmaniasis Research and Treatment Centre, Gondar University, Ethiopia
| | - Tadele Mulaw
- Leishmaniasis Research and Treatment Centre, Gondar University, Ethiopia
| | - Saba Atnafu
- Leishmaniasis Research and Treatment Centre, Gondar University, Ethiopia
| | | | | | - Ebba Abate
- Department of Immunology, University of Gondar, Ethiopia
| | - Manuel Modolell
- Department of Cellular Immunology, Max-Planck-Institute for Immunobiology and Epigenetics, Freiburg, Germany
| | - Markus Munder
- Third Department of Medicine (Hematology, Oncology, and Pneumology), University Medical Center Mainz, Mainz, Germany
| | - Ingrid Müller
- Department of Medicine, Imperial College London, London, United Kingdom
| | - Yegnasew Takele
- Leishmaniasis Research and Treatment Centre, Gondar University, Ethiopia
- Department of Medicine, Imperial College London, London, United Kingdom
| | - Pascale Kropf
- Department of Medicine, Imperial College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
32
|
Getaneh A, Tamrat A, Tadesse K. Arginase activity in peripheral blood of patients with intestinal schistosomiasis, Wonji, Central Ethiopia. Parasite Immunol 2016; 37:380-3. [PMID: 25786588 DOI: 10.1111/pim.12186] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 03/11/2015] [Indexed: 12/17/2022]
Abstract
Morbidity and mortality caused by schistosomiasis usually results from immunopathology. But the underlying mechanisms are not yet clearly understood. Th2-type immune response is thought to be dominant during chronic schistosomiasis, and upregulation of arginase-I is one component of this milieu. A cohort study was conducted to assess arginase activity in peripheral blood of humans with intestinal schistosomiasis in Wonji-Shoa Sugar Estate, Central Ethiopia. Laboratory-confirmed 30 Schistosoma mansoni-infected patients and 18 apparently healthy controls were recruited. Faecal egg count was carried out by Kato-Katz technique. Plasma and peripheral blood mononuclear cells (PBMCs) were isolated from whole blood. Activity of arginase in plasma and PBMC lysates was measured, and results were compared with that of controls. Twenty-one of 30 patients had light infection, whereas moderate and heavy intensity infections were observed in eight and only one patient(s), respectively. A significant increase in both PBMC (patients: 59.96 + 82.99, controls: 25.44 + 24.6 mU/mg protein, P < 0.0001) and plasma (patients: 1.61 + 2.19, controls: 0.31 + 0.73 mU/mL plasma, P < 0.0001) arginase activity was observed during human S. mansoni infection. Arginase activity increases in peripheral blood of patients with intestinal schistosomiasis.
Collapse
Affiliation(s)
- A Getaneh
- Department of Medical Laboratory Science, Arba Minch University, Arba Minch, Ethiopia
| | - A Tamrat
- Department of Microbiology, Immunology and Parasitology, Addis Ababa University, Addis Ababa, Ethiopia
| | - K Tadesse
- Department of Microbiology, Immunology and Parasitology, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
33
|
Zhang N, Deng J, Wu F, Lu X, Huang L, Zhao M. Expression of arginase I and inducible nitric oxide synthase in the peripheral blood and lymph nodes of HIV‑positive patients. Mol Med Rep 2015; 13:731-43. [PMID: 26647762 PMCID: PMC4686052 DOI: 10.3892/mmr.2015.4601] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 10/21/2015] [Indexed: 11/17/2022] Open
Abstract
Arginase I (Arg I) and inducible nitric oxide synthase (iNOS) are important in regulating immune functions through their metabolites. Previous studies have revealed that the expression of Arg I is increased and the expression of iNOS is reduced in the serum and peripheral blood mononuclear cells of human immunodeficiency virus (HIV)-infected patients. As one of the most important immune organs and HIV replication sites, whether similar changes are present in the lymph nodes following HIV infection remains to be elucidated. To investigate this, the present study collected lymph node and blood specimens from 52 HIV-infected patients to measure the expression levels of Arg I and iNOS by immunohistochemistry and fluoresence-based flow cytometry. Compared with control subjects without HIV infection, the patients with HIV had significantly higher expression levels of Arg I in the lymph nodes and higher frequencies of Arg I+ CD4+ T cells and CD8+ T cells in the blood and lymph nodes, and these results were contrary the those of iNOS in the corresponding compartments. The expression levels of Arg I in the lymph nodes and blood were negatively associated with peripheral CD4+ T cell count and positively associated with viral load. However, the expression levels of iNOS in the lymph nodes and blood were positively associated with peripheral CD4+ T cell count and negatively associated with viral load. These results showed that alterations in the expression levels of Arg I and iNOS in the peripheral T cells and peripheral nodes of HIV infected patients are associated with disease progression in these patients. These results indicate a potential to therapeutic strategy for delaying disease progression through regulating and manipulating the expression levels of Arg I and iNOS in patients infected with HIV.
Collapse
Affiliation(s)
- Naichun Zhang
- Treatment and Research Center for Infectious Diseases, The 302 Hospital of PLA, Beijing 100039, P.R. China
| | - Jianning Deng
- AIDS Department, The 4th People's Hospital of Nanning/Guangxi AIDS Clinical Treatment Center, Nanning, Guangxi 530023, P.R. China
| | - Fengyao Wu
- AIDS Department, The 4th People's Hospital of Nanning/Guangxi AIDS Clinical Treatment Center, Nanning, Guangxi 530023, P.R. China
| | - Xiangchan Lu
- AIDS Department, The 4th People's Hospital of Nanning/Guangxi AIDS Clinical Treatment Center, Nanning, Guangxi 530023, P.R. China
| | - Lei Huang
- Treatment and Research Center for Infectious Diseases, The 302 Hospital of PLA, Beijing 100039, P.R. China
| | - Min Zhao
- Treatment and Research Center for Infectious Diseases, The 302 Hospital of PLA, Beijing 100039, P.R. China
| |
Collapse
|
34
|
Sica A, Erreni M, Allavena P, Porta C. Macrophage polarization in pathology. Cell Mol Life Sci 2015; 72:4111-26. [PMID: 26210152 PMCID: PMC11113543 DOI: 10.1007/s00018-015-1995-y] [Citation(s) in RCA: 467] [Impact Index Per Article: 46.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 07/07/2015] [Accepted: 07/16/2015] [Indexed: 01/05/2023]
Abstract
Macrophages are cells of the innate immunity constituting the mononuclear phagocyte system and endowed with remarkable different roles essential for defense mechanisms, development of tissues, and homeostasis. They derive from hematopoietic precursors and since the early steps of fetal life populate peripheral tissues, a process continuing throughout adult life. Although present essentially in every organ/tissue, macrophages are more abundant in the gastro-intestinal tract, liver, spleen, upper airways, and brain. They have phagocytic and bactericidal activity and produce inflammatory cytokines that are important to drive adaptive immune responses. Macrophage functions are settled in response to microenvironmental signals, which drive the acquisition of polarized programs, whose extremes are simplified in the M1 and M2 dichotomy. Functional skewing of monocyte/macrophage polarization occurs in physiological conditions (e.g., ontogenesis and pregnancy), as well as in pathology (allergic and chronic inflammation, tissue repair, infection, and cancer) and is now considered a key determinant of disease development and/or regression. Here, we will review evidence supporting a dynamic skewing of macrophage functions in disease, which may provide a basis for macrophage-centered therapeutic strategies.
Collapse
Affiliation(s)
- Antonio Sica
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", via Bovio 6, Novara, Italy.
- Humanitas Clinical and Research Center, Via Manzoni 56, 20089, Milan, Rozzano, Italy.
| | - Marco Erreni
- Humanitas Clinical and Research Center, Via Manzoni 56, 20089, Milan, Rozzano, Italy
| | - Paola Allavena
- Humanitas Clinical and Research Center, Via Manzoni 56, 20089, Milan, Rozzano, Italy
| | - Chiara Porta
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", via Bovio 6, Novara, Italy
| |
Collapse
|
35
|
Badurdeen S, Mulongo M, Berkley JA. Arginine depletion increases susceptibility to serious infections in preterm newborns. Pediatr Res 2015; 77:290-7. [PMID: 25360828 PMCID: PMC4335378 DOI: 10.1038/pr.2014.177] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 09/02/2014] [Indexed: 12/21/2022]
Abstract
Preterm newborns are highly susceptible to bacterial infections. This susceptibility is regarded as being due to immaturity of multiple pathways of the immune system. However, it is unclear whether a mechanism that unifies these different, suppressed pathways exists. Here, we argue that the immune vulnerability of the preterm neonate is critically related to arginine depletion. Arginine, a "conditionally essential" amino acid, is depleted in acute catabolic states, including sepsis. Its metabolism is highly compartmentalized and regulated, including by arginase-mediated hydrolysis. Recent data suggest that arginase II-mediated arginine depletion is essential for the innate immune suppression that occurs in newborn models of bacterial challenge, impairing pathways critical for the immune response. Evidence that arginine depletion mediates protection from immune activation during first gut colonization suggests a regulatory role in controlling gut-derived pathogens. Clinical studies show that plasma arginine is depleted during sepsis. In keeping with animal studies, small clinical trials of L-arginine supplementation have shown benefit in reducing necrotizing enterocolitis in premature neonates. We propose a novel, broader hypothesis that arginine depletion during bacterial challenge is a key factor limiting the neonate's ability to mount an adequate immune response, contributing to the increased susceptibility to infections, particularly with respect to gut-derived sepsis.
Collapse
Affiliation(s)
- Shiraz Badurdeen
- Department of Paediatrics, Oxford University Hospitals NHS Trust, Oxford, UK,()
| | - Musa Mulongo
- KEMRI-Wellcome Trust, Centre for Geographic Medicine and Research-Coast, Kilifi, Kenya
| | - James A. Berkley
- KEMRI-Wellcome Trust, Centre for Geographic Medicine and Research-Coast, Kilifi, Kenya,Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
36
|
Systematic review of biomarkers to monitor therapeutic response in leishmaniasis. Antimicrob Agents Chemother 2014; 59:1-14. [PMID: 25367913 DOI: 10.1128/aac.04298-14] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Recently, there has been a renewed interest in the development of new drugs for the treatment of leishmaniasis. This has spurred the need for pharmacodynamic markers to monitor and compare therapies specifically for visceral leishmaniasis, in which the primary recrudescence of parasites is a particularly long-term event that remains difficult to predict. We performed a systematic review of studies evaluating biomarkers in human patients with visceral, cutaneous, and post-kala-azar dermal leishmaniasis, which yielded a total of 170 studies in which 53 potential pharmacodynamic biomarkers were identified. In conclusion, the large majority of these biomarkers constituted universal indirect markers of activation and subsequent waning of cellular immunity and therefore lacked specificity. Macrophage-related markers demonstrate favorable sensitivity and times to normalcy, but more evidence is required to establish a link between these markers and clinical outcome. Most promising are the markers directly related to the parasite burden, but future effort should be focused on optimization of molecular or antigenic targets to increase the sensitivity of these markers. In general, future research should focus on the longitudinal evaluation of the pharmacodynamic biomarkers during treatment, with an emphasis on the correlation of studied biomarkers and clinical parameters.
Collapse
|
37
|
Rath M, Müller I, Kropf P, Closs EI, Munder M. Metabolism via Arginase or Nitric Oxide Synthase: Two Competing Arginine Pathways in Macrophages. Front Immunol 2014; 5:532. [PMID: 25386178 PMCID: PMC4209874 DOI: 10.3389/fimmu.2014.00532] [Citation(s) in RCA: 804] [Impact Index Per Article: 73.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 10/09/2014] [Indexed: 12/23/2022] Open
Abstract
Macrophages play a major role in the immune system, both as antimicrobial effector cells and as immunoregulatory cells, which induce, suppress or modulate adaptive immune responses. These key aspects of macrophage biology are fundamentally driven by the phenotype of macrophage arginine metabolism that is prevalent in an evolving or ongoing immune response. M1 macrophages express the enzyme nitric oxide synthase, which metabolizes arginine to nitric oxide (NO) and citrulline. NO can be metabolized to further downstream reactive nitrogen species, while citrulline might be reused for efficient NO synthesis via the citrulline–NO cycle. M2 macrophages are characterized by expression of the enzyme arginase, which hydrolyzes arginine to ornithine and urea. The arginase pathway limits arginine availability for NO synthesis and ornithine itself can further feed into the important downstream pathways of polyamine and proline syntheses, which are important for cellular proliferation and tissue repair. M1 versus M2 polarization leads to opposing outcomes of inflammatory reactions, but depending on the context, M1 and M2 macrophages can be both pro- and anti-inflammatory. Notably, M1/M2 macrophage polarization can be driven by microbial infection or innate danger signals without any influence of adaptive immune cells, secondarily driving the T helper (Th)1/Th2 polarization of the evolving adaptive immune response. Since both arginine metabolic pathways cross-inhibit each other on the level of the respective arginine break-down products and Th1 and Th2 lymphocytes can drive or amplify macrophage M1/M2 dichotomy via cytokine activation, this forms the basis of a self-sustaining M1/M2 polarization of the whole immune response. Understanding the arginine metabolism of M1/M2 macrophage phenotypes is therefore central to find new possibilities to manipulate immune responses in infection, autoimmune diseases, chronic inflammatory conditions, and cancer.
Collapse
Affiliation(s)
- Meera Rath
- Department of Pharmacology, Institute of Medical Sciences, Faculty of Medical Sciences, Siksha 'O' Anusandhan University , Bhubaneshwar , India
| | - Ingrid Müller
- Section of Immunology, Department of Medicine, Imperial College London , London , UK
| | - Pascale Kropf
- Section of Immunology, Department of Medicine, Imperial College London , London , UK
| | - Ellen I Closs
- Department of Pharmacology, University Medical Center, Johannes Gutenberg University , Mainz , Germany
| | - Markus Munder
- Third Department of Medicine (Hematology, Oncology, and Pneumology), University Medical Center, Johannes Gutenberg University , Mainz , Germany ; Research Center for Immunotherapy, University Medical Center, Johannes Gutenberg University , Mainz , Germany
| |
Collapse
|
38
|
Corware K, Yardley V, Mack C, Schuster S, Al-Hassi H, Herath S, Bergin P, Modolell M, Munder M, Müller I, Kropf P. Protein energy malnutrition increases arginase activity in monocytes and macrophages. Nutr Metab (Lond) 2014; 11:51. [PMID: 25392710 PMCID: PMC4228191 DOI: 10.1186/1743-7075-11-51] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 09/24/2014] [Indexed: 11/24/2022] Open
Abstract
Background Protein energy malnutrition is commonly associated with immune dysfunctions and is a major factor in susceptibility to infectious diseases. Methods In this study, we evaluated the impact of protein energy malnutrition on the capacity of monocytes and macrophages to upregulate arginase, an enzyme associated with immunosuppression and increased pathogen replication. Results Our results show that monocytes and macrophages are significantly increased in the bone marrow and blood of mice fed on a protein low diet. No alteration in the capacity of bone marrow derived macrophages isolated from malnourished mice to phagocytose particles, to produce the microbicidal molecule nitric oxide and to kill intracellular Leishmania parasites was detected. However, macrophages and monocytes from malnourished mice express significantly more arginase both in vitro and in vivo. Using an experimental model of visceral leishmaniasis, we show that following protein energy malnutrition, the increased parasite burden measured in the spleen of these mice coincided with increased arginase activity and that macrophages provide a more permissive environment for parasite growth. Conclusions Taken together, these results identify a novel mechanism in protein energy malnutrition that might contributes to increased susceptibility to infectious diseases by upregulating arginase activity in myeloid cells. Electronic supplementary material The online version of this article (doi:10.1186/1743-7075-11-51) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Karina Corware
- Department of Medicine, Section of Immunology, Faculty of Medicine, Imperial College London, Norfolk Place, London, W2 1PG UK
| | - Vanessa Yardley
- Immunology and Infection Department, London School of Hygiene and Tropical Medicine, London, UK
| | - Christopher Mack
- Department of Medicine, Section of Immunology, Faculty of Medicine, Imperial College London, Norfolk Place, London, W2 1PG UK
| | - Steffen Schuster
- Department of Biochemistry, WHO Immunology Research and Training Center, University of Lausanne, Lausanne, Switzerland
| | - Hafid Al-Hassi
- Department of Medicine, Section of Immunology, Faculty of Medicine, Imperial College London, Norfolk Place, London, W2 1PG UK
| | - Shanthi Herath
- School of Biological Sciences, Royal Holloway, University of London, Egham, UK
| | - Philip Bergin
- International AIDS Vaccine Initiative Human Immunology Laboratory, Faculty of Medicine, Imperial College London, London, UK
| | - Manuel Modolell
- Department of Cellular Immunology, Max-Planck-Institute for Immunobiology and Epigenetics, Freiburg, Germany
| | - Markus Munder
- Third Department of Medicine (Hematology, Oncology, and Pneumology), University Medical Center Mainz, Mainz, Germany
| | - Ingrid Müller
- Department of Medicine, Section of Immunology, Faculty of Medicine, Imperial College London, Norfolk Place, London, W2 1PG UK
| | - Pascale Kropf
- Department of Medicine, Section of Immunology, Faculty of Medicine, Imperial College London, Norfolk Place, London, W2 1PG UK
| |
Collapse
|
39
|
Burrack KS, Morrison TE. The role of myeloid cell activation and arginine metabolism in the pathogenesis of virus-induced diseases. Front Immunol 2014; 5:428. [PMID: 25250029 PMCID: PMC4157561 DOI: 10.3389/fimmu.2014.00428] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 08/22/2014] [Indexed: 12/25/2022] Open
Abstract
When an antiviral immune response is generated, a balance must be reached between two opposing pathways: the production of proinflammatory and cytotoxic effectors that drive a robust antiviral immune response to control the infection and regulators that function to limit or blunt an excessive immune response to minimize immune-mediated pathology and repair tissue damage. Myeloid cells, including monocytes and macrophages, play an important role in this balance, particularly through the activities of the arginine-hydrolyzing enzymes nitric oxide synthase 2 (Nos2; iNOS) and arginase 1 (Arg1). Nitric oxide (NO) production by iNOS is an important proinflammatory mediator, whereas Arg1-expressing macrophages contribute to the resolution of inflammation and wound repair. In the context of viral infections, expression of these enzymes can result in a variety of outcomes for the host. NO has direct antiviral properties against some viruses, whereas during other virus infections NO can mediate immunopathology and/or inhibit the antiviral immune response to promote chronic infection. Arg1 activity not only has important wound healing functions but can also inhibit the antiviral immune response during some viral infections. Thus, depending on the specific virus and the tissue(s) involved, the activity of both of these arginine-hydrolyzing enzymes can either exacerbate or limit the severity of virus-induced disease. In this review, we will discuss a variety of viral infections, including HIV, SARS-CoV, LCMV, HCV, RSV, and others, where myeloid cells influence the control and clearance of the virus from the host, as well as the severity and resolution of tissue damage, via the activities of iNOS and/or Arg1. Clearly, monocyte/macrophage activation and arginine metabolism will continue to be important areas of investigation in the context of viral infections.
Collapse
Affiliation(s)
- Kristina S Burrack
- Department of Immunology and Microbiology, University of Colorado School of Medicine , Aurora, CO , USA
| | - Thomas E Morrison
- Department of Immunology and Microbiology, University of Colorado School of Medicine , Aurora, CO , USA
| |
Collapse
|
40
|
dos Reis MBG, Manjolin LC, Maquiaveli CDC, Santos-Filho OA, da Silva ER. Inhibition of Leishmania (Leishmania) amazonensis and rat arginases by green tea EGCG, (+)-catechin and (-)-epicatechin: a comparative structural analysis of enzyme-inhibitor interactions. PLoS One 2013; 8:e78387. [PMID: 24260115 PMCID: PMC3832641 DOI: 10.1371/journal.pone.0078387] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 09/17/2013] [Indexed: 11/21/2022] Open
Abstract
Epigallocatechin-3-gallate (EGCG), a dietary polyphenol (flavanol) from green tea, possesses leishmanicidal and antitrypanosomal activity. Mitochondrial damage was observed in Leishmania treated with EGCG, and it contributed to the lethal effect. However, the molecular target has not been defined. In this study, EGCG, (+)-catechin and (−)-epicatechin were tested against recombinant arginase from Leishmania amazonensis (ARG-L) and rat liver arginase (ARG-1). The compounds inhibit ARG-L and ARG-1 but are more active against the parasite enzyme. Enzyme kinetics reveal that EGCG is a mixed inhibitor of the ARG-L while (+)-catechin and (−)-epicatechin are competitive inhibitors. The most potent arginase inhibitor is (+)-catechin (IC50 = 0.8 µM) followed by (−)-epicatechin (IC50 = 1.8 µM), gallic acid (IC50 = 2.2 µM) and EGCG (IC50 = 3.8 µM). Docking analyses showed different modes of interaction of the compounds with the active sites of ARG-L and ARG-1. Due to the low IC50 values obtained for ARG-L, flavanols can be used as a supplement for leishmaniasis treatment.
Collapse
Affiliation(s)
- Matheus Balduíno Goncalves dos Reis
- Programa de Iniciação Científica da Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, São Paulo, Brazil
| | - Letícia Correa Manjolin
- Programa de Iniciação Científica da Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, São Paulo, Brazil
| | - Claudia do Carmo Maquiaveli
- Programa de pós-graduação em Fisiologia, Departamento de Fisiologia, Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Ribeirão Preto, São Paulo, Brazil
| | - Osvaldo Andrade Santos-Filho
- Laboratório de Modelagem Molecular, Departamento de Síntese Orgânica, Farmanguinhos/Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Edson Roberto da Silva
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
41
|
Cloke T, Munder M, Bergin P, Herath S, Modolell M, Taylor G, Müller I, Kropf P. Phenotypic alteration of neutrophils in the blood of HIV seropositive patients. PLoS One 2013; 8:e72034. [PMID: 24039734 PMCID: PMC3767740 DOI: 10.1371/journal.pone.0072034] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 07/04/2013] [Indexed: 12/14/2022] Open
Abstract
We have recently identified a novel population of activated low-density granulocytes (LDGs) in peripheral blood mononuclear cells of HIV seropositive patients. LDGs have a similar morphology to normal density granulocytes (NDGs), but are phenotypically different. Here we measured the expression levels of different phenotypic markers of granulocytes in the blood of HIV seropositive patients at different stages of HIV infection to determine whether the phenotype of NDGs and LDGs are affected by disease severity. Our results reveal that the phenotype of NDGs, but not that of LDGs, varies according to the severity of the disease.
Collapse
Affiliation(s)
- Tom Cloke
- Department of Immunology, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Markus Munder
- Third Department of Medicine (Hematology, Oncology, and Pneumology), University Medical Center Mainz, Mainz, Germany
| | - Philip Bergin
- International AIDS Vaccine Initiative Human Immunology Laboratory, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Shanthi Herath
- Department of Immunology, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Manuel Modolell
- Department of Cellular Immunology, Max-Planck-Institute for Immunobiology and Epigenetics, Freiburg, Germany
| | - Graham Taylor
- Section of Infectious Diseases, Imperial College London, London, United Kingdom
| | - Ingrid Müller
- Department of Immunology, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Pascale Kropf
- Department of Immunology, Faculty of Medicine, Imperial College London, London, United Kingdom
- * E-mail:
| |
Collapse
|