1
|
Orozco-Gonzales JL, Dos Santos Benedito A, Cardona-Salgado D, Ferreira CP, de Oliveira Florentino H, Sepulveda-Salcedo LS, Vasilieva O. Comparing the long-term persistence of different Wolbachia strains after the release of bacteria-carrying mosquitoes. Math Biosci 2024; 372:109190. [PMID: 38631561 DOI: 10.1016/j.mbs.2024.109190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 03/18/2024] [Accepted: 04/04/2024] [Indexed: 04/19/2024]
Abstract
This paper proposes a bidimensional modeling framework for Wolbachia invasion, assuming imperfect maternal transmission, incomplete cytoplasmic incompatibility, and direct infection loss due to thermal stress. Our model adapts to various Wolbachia strains and retains all properties of higher-dimensional models. The conditions for the durable coexistence of Wolbachia-carrying and wild mosquitoes are expressed using the model's parameters in a compact closed form. When the Wolbachia bacterium is locally established, the size of the remanent wild population can be assessed by a direct formula derived from the model. The model was tested for four Wolbachia strains undergoing laboratory and field trials to control mosquito-borne diseases: wMel, wMelPop, wAlbB, and wAu. As all these bacterial strains affect the individual fitness of mosquito hosts differently and exhibit different levels of resistance to temperature variations, the model helped to conclude that: (1) the wMel strain spreads faster in wild mosquito populations; (2) the wMelPop exhibits lower resilience but also guarantees the smallest size of the remanent wild population; (3) the wAlbB strain performs better at higher ambient temperatures than others; (4) the wAu strain is not sustainable and cannot persist in the wild mosquito population despite its resistance to high temperatures.
Collapse
|
2
|
Khan MB, Yang ZS, Lin CY, Hsu MC, Urbina AN, Assavalapsakul W, Wang WH, Chen YH, Wang SF. Dengue overview: An updated systemic review. J Infect Public Health 2023; 16:1625-1642. [PMID: 37595484 DOI: 10.1016/j.jiph.2023.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/24/2023] [Accepted: 08/01/2023] [Indexed: 08/20/2023] Open
Abstract
Dengue is caused by the dengue virus (DENVs) infection and clinical manifestations include dengue fever (DF), dengue hemorrhagic fever (DHF), or dengue shock syndrome (DSS). Due to a lack of antiviral drugs and effective vaccines, several therapeutic and control strategies have been proposed. A systemic literature review was conducted according to PRISMA guidelines to select proper references to give an overview of DENV infection. Results indicate that understanding the virus characteristics and epidemiology are essential to gain the basic and clinical knowledge as well as dengue disseminated pattern and status. Different factors and mechanisms are thought to be involved in the presentation of DHF and DSS, including antibody-dependent enhancement, immune dysregulation, viral virulence, host genetic susceptibility, and preexisting dengue antibodies. This study suggests that dissecting pathogenesis and risk factors as well as developing different types of therapeutic and control strategies against DENV infection are urgently needed.
Collapse
Affiliation(s)
- Muhammad Bilal Khan
- Center for Tropical Medicine and Infectious Disease Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Zih-Syuan Yang
- Center for Tropical Medicine and Infectious Disease Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Chih-Yen Lin
- Center for Tropical Medicine and Infectious Disease Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Ming-Cheng Hsu
- Center for Tropical Medicine and Infectious Disease Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Aspiro Nayim Urbina
- Center for Tropical Medicine and Infectious Disease Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Wanchai Assavalapsakul
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Wen-Hung Wang
- School of Medicine, College of Medicine, National Sun Yat-Sen University, Kaohsiung 804201, Taiwan
| | - Yen-Hsu Chen
- Center for Tropical Medicine and Infectious Disease Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; School of Medicine, College of Medicine, National Sun Yat-Sen University, Kaohsiung 804201, Taiwan; Division of Infectious Disease, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | - Sheng-Fan Wang
- Center for Tropical Medicine and Infectious Disease Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan.
| |
Collapse
|
3
|
Ross PA. Designing effective Wolbachia release programs for mosquito and arbovirus control. Acta Trop 2021; 222:106045. [PMID: 34273308 DOI: 10.1016/j.actatropica.2021.106045] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 07/04/2021] [Accepted: 07/06/2021] [Indexed: 01/22/2023]
Abstract
Mosquitoes carrying endosymbiotic bacteria called Wolbachia are being released in mosquito and arbovirus control programs around the world through two main approaches: population suppression and population replacement. Open field releases of Wolbachia-infected male mosquitoes have achieved over 95% population suppression by reducing the fertility of wild mosquito populations. The replacement of populations with Wolbachia-infected females is self-sustaining and can greatly reduce local dengue transmission by reducing the vector competence of mosquito populations. Despite many successful interventions, significant questions and challenges lie ahead. Wolbachia, viruses and their mosquito hosts can evolve, leading to uncertainty around the long-term effectiveness of a given Wolbachia strain, while few ecological impacts of Wolbachia releases have been explored. Wolbachia strains are diverse and the choice of strain to release should be made carefully, taking environmental conditions and the release objective into account. Mosquito quality control, thoughtful community awareness programs and long-term monitoring of populations are essential for all types of Wolbachia intervention. Releases of Wolbachia-infected mosquitoes show great promise, but existing control measures remain an important way to reduce the burden of mosquito-borne disease.
Collapse
|
4
|
Trewin BJ, Pagendam DE, Johnson BJ, Paton C, Snoad N, Ritchie SA, Staunton KM, White BJ, Mitchell S, Beebe NW. Mark-release-recapture of male Aedes aegypti (Diptera: Culicidae): Use of rhodamine B to estimate movement, mating and population parameters in preparation for an incompatible male program. PLoS Negl Trop Dis 2021; 15:e0009357. [PMID: 34097696 PMCID: PMC8183986 DOI: 10.1371/journal.pntd.0009357] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 04/01/2021] [Indexed: 11/18/2022] Open
Abstract
Rapid advances in biological and digital support systems are revolutionizing the population control of invasive disease vectors such as Aedes aegypti. Methods such as the sterile and incompatible insect techniques (SIT/IIT) rely on modified males to seek out and successfully mate with females, and in doing so outcompete the wild male population for mates. Currently, these interventions most frequently infer mating success through area-wide population surveillance and estimates of mating competitiveness are rare. Furthermore, little is known about male Ae. aegypti behaviour and biology in field settings. In preparation for a large, community scale IIT program, we undertook a series of mark- release-recapture experiments using rhodamine B to mark male Ae. aegypti sperm and measure mating interactions with females. We also developed a Spatial and Temporally Evolving Isotropic Kernel (STEIK) framework to assist researchers to estimate the movement of individuals through space and time. Results showed that ~40% of wild females captured daily were unmated, suggesting interventions will need to release males multiple times per week to be effective at suppressing Ae. aegypti populations. Males moved rapidly through the landscape, particularly when released during the night. Although males moved further than what is typically observed in females of the species, survival was considerably lower. These unique insights improve our understanding of mating interactions in wild Ae. aegypti populations and lay the foundation for robust suppression strategies in the future. Incompatible insect techniques for controlling populations of the dengue vector, Aedes aegypti, utilize the mating biology of adult male mosquitoes to achieve suppression through a sterilization process. As the study of Ae. aegypti control has typically focused on adult female mosquitoes, knowledge on male movement, survival and mating interactions in the field is lacking. Here we undertook several mark-release-recapture experiments on adult male Ae. aegypti in Innisfail, Australia, and measured important biological parameters. For the first time in large field experiments, we employed rhodamine B as a marker that when fed to adult males, identified both marked males and the wild females they mated with. We observed males moving further through the landscape, but surviving for a shorter period, than previous measurements undertaken on females in a field setting. A high proportion (~40%) of unmated females suggests individuals are constantly available for mating. As such, sterile male strategies may need to release at regular intervals to achieve effective population suppression. The unique insights provided by this study will assist in designing future sterile male field interventions.
Collapse
Affiliation(s)
| | | | - Brian J. Johnson
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Cairns, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Australia
| | - Chris Paton
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Cairns, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Australia
| | - Nigel Snoad
- Verily Life Sciences, San Francisco, California, United States of America
| | - Scott A. Ritchie
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Cairns, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Australia
| | - Kyran M. Staunton
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Cairns, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Australia
| | - Bradley J. White
- Verily Life Sciences, San Francisco, California, United States of America
| | - Sara Mitchell
- Verily Life Sciences, San Francisco, California, United States of America
| | - Nigel W. Beebe
- CSIRO Health and Biosecurity, Brisbane, Australia
- School of Biological Sciences, University of Queensland, Brisbane, Australia
| |
Collapse
|
5
|
Zurita A, Benkacimi L, El Karkouri K, Cutillas C, Parola P, Laroche M. New records of bacteria in different species of fleas from France and Spain. Comp Immunol Microbiol Infect Dis 2021; 76:101648. [PMID: 33895462 DOI: 10.1016/j.cimid.2021.101648] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 03/24/2021] [Accepted: 03/30/2021] [Indexed: 11/16/2022]
Abstract
In this study, we assessed the presence of vector-borne microorganisms in different species of fleas collected from different hosts in diverse areas of South-Western Europe by molecular methods. A total of 319 fleas belonging to eight different species was tested for the presence of eight microorganisms. Wolbachia spp. endosymbionts were detected in Ctenocephalides felis, Pulex irritans, Archaeopsylla erinacei and Ctenophthalmus baeticus boisseauorum specimens. Rickettsia felis, an emerging pathogen, was detected in C. felis, A. erinacei and Ct. b. boisseauorum. Rickettsia typhi, the agent of murine typhus was detected for the first time in A. erinacei and Mycobacterium spp. were detected for the first time in fleas (C. felis, P. irritans and A. erinacei). Lastly, five different species of Bartonella were detected in fleas' DNA in this study, including a possible new bacterium belonging to this genus. With this study, we updated the knowledge of the flea-borne bacteria present in the South-West of Europe reinforcing the idea about the necessity to expand and increase the current knowledge on flea-borne pathogens.
Collapse
Affiliation(s)
- Antonio Zurita
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Seville, Professor García González 2, 41012, Seville, Spain
| | - Linda Benkacimi
- IHU-Méditerranée Infection, Marseille, France; Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France
| | - Khalid El Karkouri
- IHU-Méditerranée Infection, Marseille, France; Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France
| | - Cristina Cutillas
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Seville, Professor García González 2, 41012, Seville, Spain
| | - Philippe Parola
- IHU-Méditerranée Infection, Marseille, France; Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France
| | - Maureen Laroche
- IHU-Méditerranée Infection, Marseille, France; Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France.
| |
Collapse
|
6
|
Controlling Wolbachia Transmission and Invasion Dynamics among Aedes Aegypti Population via Impulsive Control Strategy. Symmetry (Basel) 2021. [DOI: 10.3390/sym13030434] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
This work is devoted to analyzing an impulsive control synthesis to maintain the self-sustainability of Wolbachia among Aedes Aegypti mosquitoes. The present paper provides a fractional order Wolbachia invasive model. Through fixed point theory, this work derives the existence and uniqueness results for the proposed model. Also, we performed a global Mittag-Leffler stability analysis via Linear Matrix Inequality theory and Lyapunov theory. As a result of this controller synthesis, the sustainability of Wolbachia is preserved and non-Wolbachia mosquitoes are eradicated. Finally, a numerical simulation is established for the published data to analyze the nature of the proposed Wolbachia invasive model.
Collapse
|
7
|
Qadri M, Short S, Gast K, Hernandez J, Wong ACN. Microbiome Innovation in Agriculture: Development of Microbial Based Tools for Insect Pest Management. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2020. [DOI: 10.3389/fsufs.2020.547751] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
8
|
Amos BA, Ritchie SA, Cardé RT. Attraction Versus Capture II: Efficiency of the BG-Sentinel Trap Under Semifield Conditions and Characterizing Response Behaviors of Male Aedes aegypti (Diptera: Culicidae). JOURNAL OF MEDICAL ENTOMOLOGY 2020; 57:1539-1549. [PMID: 32363393 DOI: 10.1093/jme/tjaa065] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Indexed: 06/11/2023]
Abstract
Aedes aegypti (L.) is an important vector of viruses causing dengue, Zika, chikungunya, and yellow fever and as such presents a serious threat to public health in tropical regions. Control programs involving 'rear and release' of modified male Ae. aegypti are underway and require effective trapping methods for surveillance of both the released insects and the impacted wild mosquito population. The BG-Sentinel trap (BGS) is widely used in Ae. aegypti surveillance but its level of efficiency, that is, what proportion of the mosquitoes encountering the trap are captured, is unknown. This is especially true for male mosquitoes, the behavior of which is incompletely understood. We tested the efficiency of two versions of the BGS for capturing male Ae. aegypti under semifield conditions with and without CO2 and a human skin odor mimic lure and with these baits combined. A navy-blue BGS trap emitting CO2 and a human skin odor mimic captured 18% of the released male Ae. aegypti, with a capture efficiency of 9 % (of the total encounters with the trap). Male Ae. aegypti had multiple encounters with the BGS that did not result in capture; they crossed over the trap entrance without being captured or landed on the sides of the trap. Swarming behavior around the BGS was also recorded, even when only a visual cue was present. Understanding male Ae. aegypti behaviors during an encounter with the BGS can inform improvement of trap design and therefore capture efficiency for surveillance in control programs.
Collapse
Affiliation(s)
- Brogan A Amos
- Department of Entomology, University of California, Riverside, CA
| | - Scott A Ritchie
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Smithfield, QLD, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Smithfield, QLD, Australia
| | - Ring T Cardé
- Department of Entomology, University of California, Riverside, CA
| |
Collapse
|
9
|
Zhou C, Huang JC, Zheng L, He S, Zhou W. Trophic transfer and biotransformation of selenium in the mosquito (Aedes albopictus) and interactive effects with hexavalent chromium. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 262:114288. [PMID: 32155550 DOI: 10.1016/j.envpol.2020.114288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 02/10/2020] [Accepted: 02/27/2020] [Indexed: 06/10/2023]
Abstract
As an essential micronutrient for animals with a narrow range between essentiality and toxicity, selenium (Se) usually coexists with chromium (Cr) in contaminated aquatic environments. This study investigated effects of three diets (Microcystis aeruginosa, Chlorella vulgaris and biofilms) exposed to Se or/and Cr on Aedes albopictus as a vector for the aquatic-terrestrial transfer of Se and Cr. Se(IV)-exposed mosquitoes concentrated Se up to 66-fold faster than Se(VI)-exposed ones, corresponding to the greater Se enrichment in Se(IV)-treated diets. Analysis using synchrotron-based X-ray absorption spectroscopy (XAS) showed that Se(0) (61.9-74.6%) dominated Se(VI)-exposed mosquitoes except for the C. vulgaris-fed larvae (organo-Se, 94.0%), while organo-Se accounted for 93.3-100.0% in Se(IV)-exposed mosquitoes. Cr accumulation in larvae (56.40-87.24 μg Cr/g DW) or adults (19.41-50.77 μg Cr/g DW) was not significantly different among all Cr(VI) treatments, despite varying diet Cr levels. With Cr(0) being dominant (57.7-94.0%), Cr(VI)-exposed mosquitoes posed little threat to predators. Although mosquitoes exposed to Se or Cr had shorter wings, adults supplied with C. vulgaris or biofilms co-exposed to Se(VI) and Cr(VI) had wings significantly (1.1-1.2 fold) longer than Se(VI) only exposed ones. Overall, our study reveals the role of Ae. albopictus in transferring waterborne Se and Cr from the contaminated aquatic ecosystem to the terrestrial ecosystem with the resulting eco-risks to wildlife in both ecosystems.
Collapse
Affiliation(s)
- Chuanqi Zhou
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Rd, Minhang District, Shanghai 200240, China
| | - Jung-Chen Huang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Rd, Minhang District, Shanghai 200240, China.
| | - Lixin Zheng
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Rd, Minhang District, Shanghai 200240, China
| | - Shengbing He
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Rd, Minhang District, Shanghai 200240, China
| | - Weili Zhou
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Rd, Minhang District, Shanghai 200240, China
| |
Collapse
|
10
|
Bouyer J, Culbert NJ, Dicko AH, Pacheco MG, Virginio J, Pedrosa MC, Garziera L, Pinto ATM, Klaptocz A, Germann J, Wallner T, Salvador-Herranz G, Herrero RA, Yamada H, Balestrino F, Vreysen MJB. Field performance of sterile male mosquitoes released from an uncrewed aerial vehicle. Sci Robot 2020; 5:5/43/eaba6251. [DOI: 10.1126/scirobotics.aba6251] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 05/22/2020] [Indexed: 11/02/2022]
Abstract
Genetic control methods of mosquito vectors of malaria, dengue, yellow fever, and Zika are becoming increasingly popular due to the limitations of other techniques such as the use of insecticides. The sterile insect technique is an effective genetic control method to manage insect populations. However, it is crucial to release sterile mosquitoes by air to ensure homogeneous coverage, especially in large areas. Here, we report a fully automated adult mosquito release system operated from an uncrewed aerial vehicle or drone. Our system, developed and tested in Brazil, enabled a homogeneous dispersal of sterile male Aedes aegypti while maintaining their quality, leading to a homogeneous sterile-to-wild male ratio due to their aggregation in the same sites. Our results indicate that the released sterile males were able to compete with the wild males in mating with the wild females; thus, the sterile males were able to induce sterility in the native female population. The use of drones to implement the sterile insect technique will lead to improvements in areal coverage and savings in operational costs due to the requirement of fewer release sites and field staff.
Collapse
Affiliation(s)
- J. Bouyer
- Unité Mixte de Recherche ASTRE, CIRAD, INRA, Univ Montpellier, Montpellier, France
| | - N. J. Culbert
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, A-1400 Vienna, Austria
- Institute of Integrative Biology and the Centre for Genomic Research, University of Liverpool, Liverpool, Merseyside, UK
| | - A. H. Dicko
- WeRobotics, Rue d’Italie 11, 1204 Geneva, Switzerland
- Statistics for Development–STATS4D, Sacre Coeur III, 1 bis, P.O 11000, Dakar, Senegal
| | - M. Gomez Pacheco
- Biofábrica Moscamed Brasil, Av. C1, 992 - Quadra D 13, Lote 15, Distrito Industrial do São Francisco, Bahia, Brazil
| | - J. Virginio
- Biofábrica Moscamed Brasil, Av. C1, 992 - Quadra D 13, Lote 15, Distrito Industrial do São Francisco, Bahia, Brazil
| | - M. C. Pedrosa
- Biofábrica Moscamed Brasil, Av. C1, 992 - Quadra D 13, Lote 15, Distrito Industrial do São Francisco, Bahia, Brazil
| | - L. Garziera
- Biofábrica Moscamed Brasil, Av. C1, 992 - Quadra D 13, Lote 15, Distrito Industrial do São Francisco, Bahia, Brazil
| | - A. T. Macedo Pinto
- Biofábrica Moscamed Brasil, Av. C1, 992 - Quadra D 13, Lote 15, Distrito Industrial do São Francisco, Bahia, Brazil
| | - A. Klaptocz
- WeRobotics, Rue d’Italie 11, 1204 Geneva, Switzerland
| | - J. Germann
- WeRobotics, Rue d’Italie 11, 1204 Geneva, Switzerland
| | - T. Wallner
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, A-1400 Vienna, Austria
- WeRobotics, Rue d’Italie 11, 1204 Geneva, Switzerland
| | - G. Salvador-Herranz
- WeRobotics, Rue d’Italie 11, 1204 Geneva, Switzerland
- Instituto de Investigación e Innovación en Bioingeniería (I3B), Universitat Politècnica de València, Camino de Vera, s/n, 46022 Valencia, Spain
| | - R. Argiles Herrero
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, A-1400 Vienna, Austria
| | - H. Yamada
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, A-1400 Vienna, Austria
| | - F. Balestrino
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, A-1400 Vienna, Austria
- Centro Agricoltura Ambiente “Giorgio Nicoli” S.r.l. (CAA), Via Sant’Agata, 835, 40014 Crevalcore BO, Italy
| | - M. J. B. Vreysen
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, A-1400 Vienna, Austria
| |
Collapse
|
11
|
Zhang X, Liu Q, Zhu H. Modeling and dynamics of Wolbachia-infected male releases and mating competition on mosquito control. J Math Biol 2020; 81:243-276. [PMID: 32458175 DOI: 10.1007/s00285-020-01509-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 02/12/2020] [Indexed: 01/28/2023]
Abstract
Despite centuries of continuous efforts, mosquito-borne diseases (MBDs) remain enormous health threat of human life worldwide. Lately, the USA government has approved an innovative technology of releasing Wolbachia-infected male mosquitoes to suppress the wild mosquito population. In this paper we first introduce a stage-structured model for natural mosquitos, then we establish a new model considering the releasing of Wolbachia-infected male mosquitoes and the mating competition between the natural male mosquitoes and infected males on the suppression of natural mosquitoes. Dynamical analysis of the two models, including the existence and local stability of the equilibria and bifurcation analysis, reveals the existence of a forward bifurcation or a backward bifurcation with multiple attractors. Moreover, globally dynamical properties are further explored by using Lyapunov function and theory of monotone operators, respectively. Our findings suggest that infected male augmentation itself cannot always guarantee the success of population eradication, but leads to three possible levels of population suppression, so we define the corresponding suppression rate and estimate the minimum release ratio for population eradication. Furthermore, we study how the release ratio of infected males and natural ones, mating competition, the rate of cytoplasmic incompatibility and the basic offspring number affect the suppression rate of natural mosquitoes. Our results show that the successful eradication relies on assessing the reproductive capacity of natural mosquitoes, a selection of suitable Wolbachia strains and an appropriate release amount of infected males. This study will be helpful for public health authorities in designing proper strategies to control vector mosquitoes and prevent the epidemics of MBDs.
Collapse
Affiliation(s)
- Xianghong Zhang
- Department of Mathematics and Statistics, Southwest University, Chongqing, 400715, People's Republic of China.,LAMPS and CDM, Department of Mathematics and Statistics, York University, Toronto, ON, M3J 1P3, Canada
| | - Qiyong Liu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, People's Republic of China
| | - Huaiping Zhu
- LAMPS and CDM, Department of Mathematics and Statistics, York University, Toronto, ON, M3J 1P3, Canada.
| |
Collapse
|
12
|
Wang WH, Urbina AN, Chang MR, Assavalapsakul W, Lu PL, Chen YH, Wang SF. Dengue hemorrhagic fever - A systemic literature review of current perspectives on pathogenesis, prevention and control. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2020; 53:963-978. [PMID: 32265181 DOI: 10.1016/j.jmii.2020.03.007] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 02/26/2020] [Accepted: 03/08/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Dengue is an arboviral disease caused by dengue virus. Symptomatic dengue infection causes a wide range of clinical manifestations, from mild dengue fever (DF) to potentially fatal disease, such as dengue hemorrhagic fever (DHF) or dengue shock syndrome (DSS). We conducted a literature review to analyze the risks of DHF and current perspectives for DHF prevention and control. METHODS According to the PRISMA guidelines, the references were selected from PubMed, Web of Science and Google Scholar database using search strings containing a combination of terms that included dengue hemorrhagic fever, pathogenesis, prevention and control. Quality of references were evaluated by independent reviewers. RESULTS DHF was first reported in the Philippines in 1953 and further transmitted to the countries in the region of South-East Asia and Western Pacific. Plasma leakages is the main pathophysiological hallmark that distinguishes DHF from DF. Severe plasma leakage can result in hypovolemic shock. Various factors are thought to impact disease presentation and severity. Virus virulence, preexisting dengue antibodies, immune dysregulation, lipid change and host genetic susceptibility are factors reported to be correlated with the development of DHF. However, the exact reasons and mechanisms that triggers DHF remains controversial. Currently, no specific drugs and licensed vaccines are available to treat dengue disease in any of its clinical presentations. CONCLUSION This study concludes that antibody-dependent enhancement, cytokine dysregulation and variation of lipid profiles are correlated with DHF occurrence. Prompt diagnosis, appropriate treatment, active and continuous surveillance of cases and vectors are the essential determinants for dengue prevention and control.
Collapse
Affiliation(s)
- Wen-Hung Wang
- Division of Infectious Disease, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan; Center for Tropical Medicine and Infectious Disease, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
| | - Aspiro Nayim Urbina
- Program in Tropical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung City, 80708, Taiwan.
| | - Max R Chang
- Program in Tropical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung City, 80708, Taiwan.
| | - Wanchai Assavalapsakul
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Po-Liang Lu
- Division of Infectious Disease, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan; Center for Tropical Medicine and Infectious Disease, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
| | - Yen-Hsu Chen
- Division of Infectious Disease, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan; Center for Tropical Medicine and Infectious Disease, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
| | - Sheng-Fan Wang
- Center for Tropical Medicine and Infectious Disease, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan; Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
| |
Collapse
|
13
|
Lau MJ, Endersby-Harshman NM, Axford JK, Ritchie SA, Hoffmann AA, Ross PA. Measuring the Host-Seeking Ability of Aedes aegypti Destined for Field Release. Am J Trop Med Hyg 2020; 102:223-231. [PMID: 31769394 PMCID: PMC6947783 DOI: 10.4269/ajtmh.19-0510] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 10/04/2019] [Indexed: 12/24/2022] Open
Abstract
Host seeking is an essential process in mosquito reproduction. Field releases of modified mosquitoes for population replacement rely on successful host seeking by female mosquitoes, but host-seeking ability is rarely tested in a realistic context. We tested the host-seeking ability of female Aedes aegypti mosquitoes using a semi-field system. Females with different Wolbachia infection types (wMel-, wAlbB-infected, and uninfected) or from different origins (laboratory and field) were released at one end of a semi-field cage and recaptured as they landed on human experimenters 15 m away. Mosquitoes from each population were then identified with molecular tools or through minimal dusting with fluorescent powder. Wolbachia-infected and uninfected populations had similar average durations to landing and overall recapture proportions, as did laboratory and field-sourced Ae. aegypti. These results indicate that the host-seeking ability of mosquitoes is not negatively affected by Wolbachia infection or long-term laboratory maintenance. This method provides an approach to study the host-seeking ability of mosquitoes in a realistic setting, which will be useful when evaluating strains of mosquitoes that are planned for releases into the field to suppress arbovirus transmission.
Collapse
Affiliation(s)
- Meng-Jia Lau
- Pest and Environmental Adaptation Research Group, Bio21 Institute and the School of BioSciences, The University of Melbourne, Parkville, Australia
| | - Nancy M. Endersby-Harshman
- Pest and Environmental Adaptation Research Group, Bio21 Institute and the School of BioSciences, The University of Melbourne, Parkville, Australia
| | - Jason K. Axford
- Pest and Environmental Adaptation Research Group, Bio21 Institute and the School of BioSciences, The University of Melbourne, Parkville, Australia
| | - Scott A. Ritchie
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Smithfield, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Smithfield, Australia
| | - Ary A. Hoffmann
- Pest and Environmental Adaptation Research Group, Bio21 Institute and the School of BioSciences, The University of Melbourne, Parkville, Australia
| | - Perran A. Ross
- Pest and Environmental Adaptation Research Group, Bio21 Institute and the School of BioSciences, The University of Melbourne, Parkville, Australia
| |
Collapse
|
14
|
Sasmita HI, Tu WC, Bong LJ, Neoh KB. Effects of larval diets and temperature regimes on life history traits, energy reserves and temperature tolerance of male Aedes aegypti (Diptera: Culicidae): optimizing rearing techniques for the sterile insect programmes. Parasit Vectors 2019; 12:578. [PMID: 31823817 PMCID: PMC6905064 DOI: 10.1186/s13071-019-3830-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 12/02/2019] [Indexed: 12/16/2022] Open
Abstract
Background Producing high quality sterile males is vital in Aedes aegypti rear-and-release birth control strategies. Larval diets, rearing temperatures, and their interactions determine the accumulation rates of essential nutrients in larvae, but these factors have been understudied in relation to mass-rearing techniques for producing eminent males. Methods We compared the effects of two larval diets, a cereal-legume-based diet (Khan’s diet) and a standard larval diet developed in the FAO/IAEA Insect Pest Control Laboratory (IAEA 2 diet). Diets were tested at selected temperatures for both larval and male adult life history traits, adult extreme temperature tolerance, and mating capacity relative to energy reserves of reared male adult Ae. aegypti. Results Khan’s diet resulted in shorter immature development time at each test temperature (except for 25 °C) than an IAEA 2 diet. Larvae reared at 28 °C and 32 °C with Khan’s diet demonstrated low pupation rates (c.80%). We accounted for these phenomena as secondary sex ratio manipulation, because a higher proportion of male adults emerged at 28 °C and 32 °C than that for the IAEA 2 diet. In general, the pupal development time shortened as temperature increased, resulting in higher teneral energy reserves in male mosquitoes. High energy reserves allowed male mosquitoes reared with Khan’s diet to have higher adult longevity (5–6 days longer when sugar-fed and 2–3 days longer when water-fed) and tolerance of heat stress than those fed on the IAEA 2 diet. The IAEA 2 diet produced larger male mosquitoes than Khan’s diet did: mosquitoes fed on Khan’s diet were 1.03–1.05 times smaller than those fed on the IAEA 2 diet at 28 °C and 32 °C. No evidence indicated reduced mating capacity for small mosquitoes fed on Khan’s diet. Conclusions Larvae reared at 28 °C and 32 °C with Khan’s diet were characterized by shorter immature development time compared with those fed on the IAEA 2 diet. Adult mosquitoes produced from that larval rearing condition exhibited a significant male bias, long lifespan, and better endurance against extreme temperatures relative to energy reserves. Thus, the larval diet at rearing temperature of 28 °C and 32 °C optimized rearing techniques for the sterile insect programmes. However, mating competitiveness and flight performance of adult males require further investigation.
Collapse
Affiliation(s)
- Hadian Iman Sasmita
- Department of Entomology, National Chung Hsing University, 145, Xingda Rd. South District, Taichung, 402, Taiwan.,Center for Isotopes and Radiation Application (CIRA), National Nuclear Energy Agency (BATAN), Jl. Lebak Bulus Raya No. 49, Jakarta, 12440, Indonesia
| | - Wu-Chun Tu
- Department of Entomology, National Chung Hsing University, 145, Xingda Rd. South District, Taichung, 402, Taiwan
| | - Lee-Jin Bong
- Department of Entomology, National Chung Hsing University, 145, Xingda Rd. South District, Taichung, 402, Taiwan
| | - Kok-Boon Neoh
- Department of Entomology, National Chung Hsing University, 145, Xingda Rd. South District, Taichung, 402, Taiwan.
| |
Collapse
|
15
|
Abstract
Wolbachia is an endosymbiotic Alphaproteobacteria that can suppress insect-borne diseases through decreasing host virus transmission (population replacement) or through decreasing host population density (population suppression). We contrast natural Wolbachia infections in insect populations with Wolbachia transinfections in mosquitoes to gain insights into factors potentially affecting the long-term success of Wolbachia releases. Natural Wolbachia infections can spread rapidly, whereas the slow spread of transinfections is governed by deleterious effects on host fitness and demographic factors. Cytoplasmic incompatibility (CI) generated by Wolbachia is central to both population replacement and suppression programs, but CI in nature can be variable and evolve, as can Wolbachia fitness effects and virus blocking. Wolbachia spread is also influenced by environmental factors that decrease Wolbachia titer and reduce maternal Wolbachia transmission frequency. More information is needed on the interactions between Wolbachia and host nuclear/mitochondrial genomes, the interaction between invasion success and local ecological factors, and the long-term stability of Wolbachia-mediated virus blocking.
Collapse
Affiliation(s)
- Perran A Ross
- Pest and Environmental Adaptation Research Group, School of BioSciences, Bio21 Institute, The University of Melbourne, Victoria 3052, Australia
| | - Michael Turelli
- Department of Evolution and Ecology, University of California, Davis, California 95616, USA;
| | - Ary A Hoffmann
- Pest and Environmental Adaptation Research Group, School of BioSciences, Bio21 Institute, The University of Melbourne, Victoria 3052, Australia
| |
Collapse
|
16
|
Aldersley A, Pongsiri A, Bunmee K, Kijchalao U, Chittham W, Fansiri T, Pathawong N, Qureshi A, Harrington LC, Ponlawat A, Cator LJ. Too "sexy" for the field? Paired measures of laboratory and semi-field performance highlight variability in the apparent mating fitness of Aedes aegypti transgenic strains. Parasit Vectors 2019; 12:357. [PMID: 31324262 PMCID: PMC6642483 DOI: 10.1186/s13071-019-3617-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 07/13/2019] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Evaluating and improving mating success and competitive ability of laboratory-reared transgenic mosquito strains will enhance the effectiveness of proposed disease-control strategies that involve deployment of transgenic strains. Two components of the mosquito rearing process, larval diet quantity and aquatic environment - which are linked to physiological and behavioural differences in adults - are both relatively easy to manipulate. In mosquitoes, as for many other arthropod species, the quality of the juvenile habitat is strongly associated with adult fitness characteristics, such as longevity and fecundity. However, the influence of larval conditioning on mating performance is poorly understood. Here, we investigated the combined effects of larval diet amount and environmental water source on adult male mating success in a genetically modified strain of Aedes aegypti mosquitoes in competition with wild-type conspecifics. Importantly, this research was conducted in a field setting using low generation laboratory and wild-type lines. RESULTS By controlling larval diet (high and low) and rearing water source (field-collected and laboratory water), we generated four treatment lines of a genetically modified strain of Ae. aegypti tagged with fluorescent sperm. Laboratory reared mosquitoes were then competed against a low generation wild-type colony in a series of laboratory and semi-field mating experiments. While neither food quantity nor larval aquatic environment were found to affect male mating fitness, the transgenic lines consistently outperformed wild-types in laboratory competition assays, an advantage that was not conferred to semi-field tests. CONCLUSIONS Using a model transgenic system, our results indicate that differences in the experimental conditions of laboratory- and field-based measures of mating success can lead to variation in the perceived performance ability of modified strains if they are only tested in certain environments. While there are many potential sources of variation between laboratory and field lines, laboratory adaptation - which may occur over relatively few generations in this species - may directly impact mating ability depending on the context in which it is measured. We suggest that colony-hybridization with field material can potentially be used to mitigate these effects in a field setting. Release programs utilising mass-produced modified laboratory strains should incorporate comparative assessments of quality in candidate lines.
Collapse
Affiliation(s)
- Andrew Aldersley
- Department of Life Sciences, Imperial College London, Silwood Park, Ascot, UK
| | - Arissara Pongsiri
- Vector Biology and Control Section, Department of Entomology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Kamonchanok Bunmee
- Department of Medical Entomology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Udom Kijchalao
- Vector Biology and Control Section, Department of Entomology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Wachiraphan Chittham
- Vector Biology and Control Section, Department of Entomology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Thanyalak Fansiri
- Vector Biology and Control Section, Department of Entomology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Nattaphol Pathawong
- Vector Biology and Control Section, Department of Entomology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Alima Qureshi
- Department of Life Sciences, Imperial College London, Silwood Park, Ascot, UK
| | | | - Alongkot Ponlawat
- Vector Biology and Control Section, Department of Entomology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Lauren J. Cator
- Department of Life Sciences, Imperial College London, Silwood Park, Ascot, UK
| |
Collapse
|
17
|
Hancock PA, Ritchie SA, Koenraadt CJM, Scott TW, Hoffmann AA, Godfray HCJ. Predicting the spatial dynamics of
Wolbachia
infections in
Aedes aegypti
arbovirus vector populations in heterogeneous landscapes. J Appl Ecol 2019. [DOI: 10.1111/1365-2664.13423] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
| | - Scott A. Ritchie
- Australian Institute of Tropical Health and Medicine James Cook University Douglas Qld Australia
| | | | - Thomas W. Scott
- Department of Entomology and Nematology University of California Davis California
| | - Ary A. Hoffmann
- Bio 21 Molecular Science and Biotechnology Institute University of Melbourne Parkville Vic. Australia
| | | |
Collapse
|
18
|
Ross PA, Endersby‐Harshman NM, Hoffmann AA. A comprehensive assessment of inbreeding and laboratory adaptation in Aedes aegypti mosquitoes. Evol Appl 2019; 12:572-586. [PMID: 30828375 PMCID: PMC6383739 DOI: 10.1111/eva.12740] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 09/04/2018] [Accepted: 11/11/2018] [Indexed: 12/13/2022] Open
Abstract
Modified Aedes aegypti mosquitoes reared in laboratories are being released around the world to control wild mosquito populations and the diseases they transmit. Several efforts have failed due to poor competitiveness of the released mosquitoes. We hypothesized that colonized mosquito populations could suffer from inbreeding depression and adapt to laboratory conditions, reducing their performance in the field. We established replicate populations of Ae. aegypti mosquitoes collected from Queensland, Australia, and maintained them in the laboratory for twelve generations at different census sizes. Mosquito colonies maintained at small census sizes (≤100 individuals) suffered from inbreeding depression due to low effective population sizes which were only 25% of the census size as estimated by SNP markers. Populations that underwent full-sib mating for nine consecutive generations had greatly reduced performance across all traits measured. We compared the established laboratory populations with their ancestral population resurrected from quiescent eggs for evidence of laboratory adaptation. The overall performance of laboratory populations maintained at a large census size (400 individuals) increased, potentially reflecting adaptation to artificial rearing conditions. However, most individual traits were unaffected, and patterns of adaptation were not consistent across populations. Differences between replicate populations may indicate that founder effects and drift affect experimental outcomes. Though we find limited evidence of laboratory adaptation, mosquitoes maintained at low population sizes can clearly suffer fitness costs, compromising the success of "rear-and-release" strategies for arbovirus control.
Collapse
Affiliation(s)
- Perran A. Ross
- Bio21 Institute and the School of BioSciencesThe University of MelbourneParkvilleVictoriaAustralia
| | | | - Ary A. Hoffmann
- Bio21 Institute and the School of BioSciencesThe University of MelbourneParkvilleVictoriaAustralia
| |
Collapse
|
19
|
Improving Estimates of Fried’s Index from Mating Competitiveness Experiments. JOURNAL OF AGRICULTURAL, BIOLOGICAL AND ENVIRONMENTAL STATISTICS 2018. [DOI: 10.1007/s13253-018-0333-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
20
|
Yeap HL, Endersby-Harshman NM, Hoffmann AA. The Effect of Nonrandom Mating on Wolbachia Dynamics: Implications for Population Replacement and Sterile Releases in Aedes Mosquitoes. Am J Trop Med Hyg 2018; 99:608-617. [PMID: 29968550 PMCID: PMC6169187 DOI: 10.4269/ajtmh.18-0178] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/22/2018] [Indexed: 01/11/2023] Open
Abstract
Wolbachia bacteria are known to cause deviations from random mating and affect sperm competition (SC) in some of their arthropod hosts. Because these effects could influence the effectiveness of Wolbachia in mosquito population replacement and suppression programs, we developed a theoretical framework to investigate them and we collected relevant data for the wMel infection in Aedes aegypti. Using incompatibility patterns as a measure of mating success of infected versus uninfected mosquitoes, we found some evidence that uninfected males sire more offspring than infected males. However, our theoretical framework suggests that this effect is unlikely to hamper Wolbachia invasion and has only minor effects on population suppression programs. Nevertheless, we suggest that mating effects and SC need to be monitored in an ongoing manner in release programs, given the possibility of ongoing selection for altered mating patterns.
Collapse
Affiliation(s)
- Heng Lin Yeap
- Pest, and Environmental Adaptation Research Group (PEARG), School of Bioscience, Bio21 Institute University of Melbourne, Melbourne, Australia
- Commonwealth Scientific, and Industrial Research Organisation (CSIRO), Black Mountain Laboratories, Black Mountain, Canberra, Australia
| | - Nancy Margaret Endersby-Harshman
- Pest, and Environmental Adaptation Research Group (PEARG), School of Bioscience, Bio21 Institute University of Melbourne, Melbourne, Australia
| | - Ary Anthony Hoffmann
- Pest, and Environmental Adaptation Research Group (PEARG), School of Bioscience, Bio21 Institute University of Melbourne, Melbourne, Australia
| |
Collapse
|
21
|
Callahan AG, Ross PA, Hoffmann AA. Small females prefer small males: size assortative mating in Aedes aegypti mosquitoes. Parasit Vectors 2018; 11:445. [PMID: 30068363 PMCID: PMC6090812 DOI: 10.1186/s13071-018-3028-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 07/20/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND With Aedes aegypti mosquitoes now being released in field programmes aimed at disease suppression, there is interest in identifying factors influencing the mating and invasion success of released mosquitoes. One factor that can increase release success is size: released males may benefit competitively from being larger than their field counterparts. However, there could be a risk in releasing only large males if small field females avoid these males and instead prefer small males. Here we investigate this risk by evaluating mating success for mosquitoes differing in size. RESULTS We measured mating success indirectly by coupling size with Wolbachia-infected or uninfected mosquitoes and scoring cytoplasmic incompatibility. Large females showed no evidence of a mating preference, whereas small males were relatively more successful than large males when mating with small females, exhibiting an advantage of around 20-25%. CONCLUSIONS Because field females typically encompass a wide range of sizes while laboratory reared (and released) males typically fall into a narrow size range of large mosquitoes, these patterns can influence the success of release programmes which rely on cytoplasmic incompatibility to suppress populations and initiate replacement invasions. Releases could include some small males generated under low food or crowded conditions to counter this issue, although this would need to be weighed against issues associated with costs of producing males of various size classes.
Collapse
Affiliation(s)
- Ashley G. Callahan
- Pest and Environmental Adaptation Research Group, School of BioSciences, Bio21 Institute, The University of Melbourne, Parkville, 3052 Australia
| | - Perran A. Ross
- Pest and Environmental Adaptation Research Group, School of BioSciences, Bio21 Institute, The University of Melbourne, Parkville, 3052 Australia
| | - Ary A. Hoffmann
- Pest and Environmental Adaptation Research Group, School of BioSciences, Bio21 Institute, The University of Melbourne, Parkville, 3052 Australia
| |
Collapse
|
22
|
Zakrzewski M, Rašić G, Darbro J, Krause L, Poo YS, Filipović I, Parry R, Asgari S, Devine G, Suhrbier A. Mapping the virome in wild-caught Aedes aegypti from Cairns and Bangkok. Sci Rep 2018; 8:4690. [PMID: 29549363 PMCID: PMC5856816 DOI: 10.1038/s41598-018-22945-y] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 03/02/2018] [Indexed: 12/12/2022] Open
Abstract
Medically important arboviruses such as dengue, Zika, and chikungunya viruses are primarily transmitted by the globally distributed mosquito Aedes aegypti. Increasing evidence suggests that transmission can be influenced by mosquito viromes. Herein RNA-Seq was used to characterize RNA metaviromes of wild-caught Ae. aegypti from Bangkok (Thailand) and from Cairns (Australia). The two mosquito populations showed a high degree of similarity in their viromes. BLAST searches of assembled contigs suggest up to 27 insect-specific viruses may infect Ae. aegypti, with up to 23 of these currently uncharacterized and up to 16 infecting mosquitoes from both Cairns and Bangkok. Three characterized viruses dominated, Phasi Charoen-like virus, Humaita-Tubiacanga virus and Cell fusing agent virus, and comparisons with other available RNA-Seq datasets suggested infection levels with these viruses may vary in laboratory-reared mosquitoes. As expected, mosquitoes from Bangkok showed higher mitochondrial diversity and carried alleles associated with knock-down resistance to pyrethroids. Blood meal reads primarily mapped to human genes, with a small number also showing homology with rat/mouse and dog genes. These results highlight the wide spectrum of data that can be obtained from such RNA-Seq analyses, and suggests differing viromes may need to be considered in arbovirus vector competence studies.
Collapse
Affiliation(s)
- Martha Zakrzewski
- Medical Genomics, QIMR Berghofer Medical Research Institute, Brisbane, Qld, 4029, Australia
| | - Gordana Rašić
- Mosquito Control, QIMR Berghofer Medical Research Institute, Brisbane, Qld, 4029, Australia
| | - Jonathan Darbro
- Mosquito Control, QIMR Berghofer Medical Research Institute, Brisbane, Qld, 4029, Australia.,Metro North Public Health Unit, Bryden Street, Windsor, QLD, 4030, Australia
| | - Lutz Krause
- Medical Genomics, QIMR Berghofer Medical Research Institute, Brisbane, Qld, 4029, Australia.,The University of Queensland Diamantina Institute, Brisbane, QLD, Australia
| | - Yee S Poo
- Inflammation Biology, QIMR Berghofer Medical Research Institute, Brisbane, Qld, 4029, Australia
| | - Igor Filipović
- Mosquito Control, QIMR Berghofer Medical Research Institute, Brisbane, Qld, 4029, Australia
| | - Rhys Parry
- School of Biological Sciences, The University of Queensland, Brisbane, QLD, 4029, Australia
| | - Sassan Asgari
- School of Biological Sciences, The University of Queensland, Brisbane, QLD, 4029, Australia
| | - Greg Devine
- Mosquito Control, QIMR Berghofer Medical Research Institute, Brisbane, Qld, 4029, Australia
| | - Andreas Suhrbier
- Inflammation Biology, QIMR Berghofer Medical Research Institute, Brisbane, Qld, 4029, Australia.
| |
Collapse
|
23
|
Ritchie SA, van den Hurk AF, Smout MJ, Staunton KM, Hoffmann AA. Mission Accomplished? We Need a Guide to the 'Post Release' World of Wolbachia for Aedes-borne Disease Control. Trends Parasitol 2018; 34:217-226. [PMID: 29396201 DOI: 10.1016/j.pt.2017.11.011] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 11/23/2017] [Accepted: 11/28/2017] [Indexed: 02/05/2023]
Abstract
Historically, sustained control of Aedes aegypti, the vector of dengue, chikungunya, yellow fever, and Zika viruses, has been largely ineffective. Subsequently, two novel 'rear and release' control strategies utilizing mosquitoes infected with Wolbachia are currently being developed and deployed widely. In the incompatible insect technique, male Aedes mosquitoes, infected with Wolbachia, suppress populations through unproductive mating. In the transinfection strategy, both male and female Wolbachia-infected Ae. aegypti mosquitoes rapidly infect the wild population with Wolbachia, blocking virus transmission. It is critical to monitor the long-term stability of Wolbachia in host populations, and also the ability of this bacterium to continually inhibit virus transmission. Ongoing release and monitoring programs must be future-proofed should political support weaken when these vectors are successfully controlled.
Collapse
Affiliation(s)
- Scott A Ritchie
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Smithfield, QLD 4878, Australia; Australian Institute of Tropical Health and Medicine, James Cook University, Smithfield, QLD 4878, Australia.
| | - Andrew F van den Hurk
- Public Health Virology, Forensic and Scientific Services, Department of Health, Queensland Government, 39 Kessels Rd, Coopers Plains, QLD 4108, Australia
| | - Michael J Smout
- Australian Institute of Tropical Health and Medicine, James Cook University, Smithfield, QLD 4878, Australia
| | - Kyran M Staunton
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Smithfield, QLD 4878, Australia; Australian Institute of Tropical Health and Medicine, James Cook University, Smithfield, QLD 4878, Australia
| | - Ary A Hoffmann
- School of BioSciences, Bio21 Institute, The University of Melbourne, Melbourne, VIC 3010, Australia
| |
Collapse
|
24
|
Use of rhodamine B to mark the body and seminal fluid of male Aedes aegypti for mark-release-recapture experiments and estimating efficacy of sterile male releases. PLoS Negl Trop Dis 2017; 11:e0005902. [PMID: 28957318 PMCID: PMC5634656 DOI: 10.1371/journal.pntd.0005902] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 10/10/2017] [Accepted: 08/23/2017] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Recent interest in male-based sterile insect technique (SIT) and incompatible insect technique (IIT) to control Aedes aegypti and Aedes albopictus populations has revealed the need for an economical, rapid diagnostic tool for determining dispersion and mating success of sterilized males in the wild. Previous reports from other insects indicated rhodamine B, a thiol-reactive fluorescent dye, administered via sugar-feeding can be used to stain the body tissue and seminal fluid of insects. Here, we report on the adaptation of this technique for male Ae. aegypti to allow for rapid assessment of competitiveness (mating success) during field releases. METHODOLOGY/PRINCIPLE FINDINGS Marking was achieved by feeding males on 0.1, 0.2, 0.4 or 0.8% rhodamine B (w/v) in 50% honey solutions during free flight. All concentrations produced >95% transfer to females and successful body marking after 4 days of feeding, with 0.4 and 0.8% solutions producing the longest-lasting body marking. Importantly, rhodamine B marking had no effect on male mating competitiveness and proof-of-principle field releases demonstrated successful transfer of marked seminal fluid to females under field conditions and recapture of marked males. CONCLUSIONS/SIGNIFICANCE These results reveal rhodamine B to be a potentially useful evaluation method for male-based SIT/IIT control strategies as well as a viable body marking technique for male-based mark-release-recapture experiments without the negative side-effects of traditional marking methods. As a standalone method for use in mating competitiveness assays, rhodamine B marking is less expensive than PCR (e.g. paternity analysis) and stable isotope semen labelling methods and less time-consuming than female fertility assays used to assess competitiveness of sterilised males.
Collapse
|
25
|
Ross PA, Axford JK, Richardson KM, Endersby-Harshman NM, Hoffmann AA. Maintaining Aedes aegypti Mosquitoes Infected with Wolbachia. J Vis Exp 2017. [PMID: 28829414 DOI: 10.3791/56124] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Aedes aegypti mosquitoes experimentally infected with Wolbachia are being utilized in programs to control the spread of arboviruses such as dengue, chikungunya and Zika. Wolbachia-infected mosquitoes can be released into the field to either reduce population sizes through incompatible matings or to transform populations with mosquitoes that are refractory to virus transmission. For these strategies to succeed, the mosquitoes released into the field from the laboratory must be competitive with native mosquitoes. However, maintaining mosquitoes in the laboratory can result in inbreeding, genetic drift and laboratory adaptation which can reduce their fitness in the field and may confound the results of experiments. To test the suitability of different Wolbachia infections for deployment in the field, it is necessary to maintain mosquitoes in a controlled laboratory environment across multiple generations. We describe a simple protocol for maintaining Ae. aegypti mosquitoes in the laboratory, which is suitable for both Wolbachia-infected and wild-type mosquitoes. The methods minimize laboratory adaptation and implement outcrossing to increase the relevance of experiments to field mosquitoes. Additionally, colonies are maintained under optimal conditions to maximize their fitness for open field releases.
Collapse
Affiliation(s)
- Perran A Ross
- School of BioSciences, Bio21 Institute and University of Melbourne;
| | - Jason K Axford
- School of BioSciences, Bio21 Institute and University of Melbourne
| | | | | | - Ary A Hoffmann
- School of BioSciences, Bio21 Institute and University of Melbourne
| |
Collapse
|
26
|
Messika I, Garrido M, Kedem H, China V, Gavish Y, Dong Q, Fuqua C, Clay K, Hawlena H. From endosymbionts to host communities: factors determining the reproductive success of arthropod vectors. Oecologia 2017; 184:859-871. [PMID: 28721523 DOI: 10.1007/s00442-017-3906-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 06/20/2017] [Indexed: 11/26/2022]
Abstract
Elucidating the factors determining reproductive success has challenged scientists since Darwin, but the exact pathways that shape the evolution of life history traits by connecting extrinsic (e.g., landscape structure) and intrinsic (e.g., female's age and endosymbionts) factors and reproductive success have rarely been studied. Here we collected female fleas from wild rodents in plots differing in their densities and proportions of the most dominant rodent species. We then combined path analysis and model selection approaches to explore the network of effects, ranging from micro to macroscales, determining the reproductive success of these fleas. Our results suggest that female reproductive success is directly and positively associated with their infection by Mycoplasma bacteria and their own body mass, and with the rodent species size and total density. In addition, we found evidence for indirect effects of rodent sex and rodent community diversity on female reproductive success. These results highlight the importance of exploring interrelated factors across organization scales while studying the reproductive success of wild organisms, and they have implications for the control of vector-borne diseases.
Collapse
Affiliation(s)
- Irit Messika
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Mario Garrido
- Mitrani Department of Desert Ecology, Swiss Institute for Dryland Environmental and Energy Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, 84990, Midreshet Ben-Gurion, Israel
| | - Hadar Kedem
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Victor China
- Department of Zoology, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
- The Inter-University Institute for Marine Sciences, Eilat, Israel
| | - Yoni Gavish
- Faculty of Biological Sciences, School of Biology, University of Leeds, Leeds, UK
| | - Qunfeng Dong
- Department of Public Health Sciences, Center for Biomedical Informatics, Stritch School of Medicine, Loyola University Chicago, Chicago, IL, USA
| | - Clay Fuqua
- Department of Biology, Indiana University, Bloomington, IN, USA
| | - Keith Clay
- Department of Biology, Indiana University, Bloomington, IN, USA
| | - Hadas Hawlena
- Mitrani Department of Desert Ecology, Swiss Institute for Dryland Environmental and Energy Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, 84990, Midreshet Ben-Gurion, Israel.
| |
Collapse
|
27
|
Abstract
Males and females exhibit highly dimorphic phenotypes, particularly in their gonads, which is believed to be driven largely by differential gene expression. Typically, the protein sequences of genes upregulated in males, or male-biased genes, evolve rapidly as compared to female-biased and unbiased genes. To date, the specific study of gonad-biased genes remains uncommon in metazoans. Here, we identified and studied a total of 2927, 2013, and 4449 coding sequences (CDS) with ovary-biased, testis-biased, and unbiased expression, respectively, in the yellow fever mosquito Aedes aegypti The results showed that ovary-biased and unbiased CDS had higher nonsynonymous to synonymous substitution rates (dN/dS) and lower optimal codon usage (those codons that promote efficient translation) than testis-biased genes. Further, we observed higher dN/dS in ovary-biased genes than in testis-biased genes, even for genes coexpressed in nonsexual (embryo) tissues. Ovary-specific genes evolved exceptionally fast, as compared to testis- or embryo-specific genes, and exhibited higher frequency of positive selection. Genes with ovary expression were preferentially involved in olfactory binding and reception. We hypothesize that at least two potential mechanisms could explain rapid evolution of ovary-biased genes in this mosquito: (1) the evolutionary rate of ovary-biased genes may be accelerated by sexual selection (including female-female competition or male-mate choice) affecting olfactory genes during female swarming by males, and/or by adaptive evolution of olfactory signaling within the female reproductive system (e.g., sperm-ovary signaling); and/or (2) testis-biased genes may exhibit decelerated evolutionary rates due to the formation of mating plugs in the female after copulation, which limits male-male sperm competition.
Collapse
|
28
|
Jong ZW, Kassim NFA, Naziri MA, Webb CE. The effect of inbreeding and larval feeding regime on immature development of Aedes albopictus. JOURNAL OF VECTOR ECOLOGY : JOURNAL OF THE SOCIETY FOR VECTOR ECOLOGY 2017; 42:105-112. [PMID: 28504428 DOI: 10.1111/jvec.12244] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 12/27/2016] [Indexed: 06/07/2023]
Abstract
The fundamental approach to the biological control of Aedes albopictus requires the mass rearing of mosquitoes and the release of highly competitive adults in the field. As the fitness of adults is highly dependent on the development of immatures, we aimed to identify the minimum feeding regime required to produce viable and competitive adults by evaluating three response parameters: development duration, immature mortality, and adult wing length. Our study suggests at least 0.60 mg/larva/day of larval diet composed of dog food, dried beef liver, yeast, and milk powder in a weight ratio of 2:1:1:1 is required to maximize adult fitness. With standardized protocols in mass rearing, intensive studies can be readily conducted on mosquito colonies to facilitate comparisons across laboratories. This study also evaluated the differences in response of laboratory and field strains under different feeding regimes. We found that strain alone did not exert substantial effects on all response parameters. However, the field strain exhibited significantly lower immature mortality than the laboratory strain under the minimum feeding regime. Females and males of the laboratory strain had longer wing lengths under nutritional constraint due to the higher mortality that resulted in reduced interactions with the remaining larvae. Meanwhile, the field strain exhibited heterogeneous duration of immature development compared with the laboratory strain. The disparities demonstrated by the two strains in this study suggest the effect of inbreeding surfaced after a long term of laboratory colonization. Despite the trade-offs resulting from laboratory colonization, the competitiveness of the laboratory strain of Ae. albopictus is comparable to the field strain, provided the larvae are fed optimally.
Collapse
Affiliation(s)
- Zheng-Wei Jong
- School of Biological Sciences, Universiti Sains Malaysia, 11800, Minden, Pulau Pinang, Malaysia
| | - Nur Faeza A Kassim
- School of Biological Sciences, Universiti Sains Malaysia, 11800, Minden, Pulau Pinang, Malaysia
| | - Muhammad Aiman Naziri
- School of Biological Sciences, Universiti Sains Malaysia, 11800, Minden, Pulau Pinang, Malaysia
| | - Cameron E Webb
- Medical Entomology, NSW Health Pathology, ICPMR, Westmead Hospital, Westmead, Australia
- Marie Bashir Institute of Infectious Disease and Biosecurity, University of Sydney, Australia
| |
Collapse
|
29
|
Schmidt TL, Barton NH, Rašić G, Turley AP, Montgomery BL, Iturbe-Ormaetxe I, Cook PE, Ryan PA, Ritchie SA, Hoffmann AA, O’Neill SL, Turelli M. Local introduction and heterogeneous spatial spread of dengue-suppressing Wolbachia through an urban population of Aedes aegypti. PLoS Biol 2017; 15:e2001894. [PMID: 28557993 PMCID: PMC5448718 DOI: 10.1371/journal.pbio.2001894] [Citation(s) in RCA: 150] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2016] [Accepted: 04/17/2017] [Indexed: 11/30/2022] Open
Abstract
Dengue-suppressing Wolbachia strains are promising tools for arbovirus control, particularly as they have the potential to self-spread following local introductions. To test this, we followed the frequency of the transinfected Wolbachia strain wMel through Ae. aegypti in Cairns, Australia, following releases at 3 nonisolated locations within the city in early 2013. Spatial spread was analysed graphically using interpolation and by fitting a statistical model describing the position and width of the wave. For the larger 2 of the 3 releases (covering 0.97 km2 and 0.52 km2), we observed slow but steady spatial spread, at about 100–200 m per year, roughly consistent with theoretical predictions. In contrast, the smallest release (0.11 km2) produced erratic temporal and spatial dynamics, with little evidence of spread after 2 years. This is consistent with the prediction concerning fitness-decreasing Wolbachia transinfections that a minimum release area is needed to achieve stable local establishment and spread in continuous habitats. Our graphical and likelihood analyses produced broadly consistent estimates of wave speed and wave width. Spread at all sites was spatially heterogeneous, suggesting that environmental heterogeneity will affect large-scale Wolbachia transformations of urban mosquito populations. The persistence and spread of Wolbachia in release areas meeting minimum area requirements indicates the promise of successful large-scale population transformation. Wolbachia are bacteria that live inside insect cells. In insects that act as viral vectors, Wolbachia can suppress virus transmission to new hosts. Wolbachia have been experimentally introduced into Aedes aegypti mosquito populations to reduce the transmission of dengue, Zika, and other arboviruses that cause human disease. Wolbachia invade populations by causing cytoplasmic incompatibility, a phenomenon whereby embryos from crosses between infected males and uninfected females fail to hatch. While Wolbachia have been shown to successfully invade and remain established in isolated Ae. aegypti populations, outward spread from urban release zones has not been previously documented. This is an important step in demonstrating that Wolbachia can be used to combat mosquito-borne infectious disease in cities. Here we describe Wolbachia spread from 2 introduction areas within Cairns in northeastern Australia at a rate of about 100–200 meters per year. Spread occurs only when introduction areas are sufficiently large. The slow rates of observed spread are broadly consistent with mathematical predictions based on estimated Ae. aegypti dispersal distances, Wolbachia dynamics, and effects seen in isolated populations. Spread is uneven and likely depends on local characteristics (e.g., barriers) that affect mosquito density and dispersal. Our data indicate that Wolbachia can be introduced locally in large cities, remain established where released, and slowly spread from release areas. These dynamics indicate that high Wolbachia infection frequencies can be established gradually across large urban areas through local releases.
Collapse
Affiliation(s)
- Tom L. Schmidt
- School of BioSciences, Bio21 Institute, University of Melbourne, Parkville, Victoria, Australia
| | | | - Gordana Rašić
- School of BioSciences, Bio21 Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Andrew P. Turley
- Institute of Vector-Borne Disease, Monash University, Clayton, Victoria, Australia
| | - Brian L. Montgomery
- Institute of Vector-Borne Disease, Monash University, Clayton, Victoria, Australia
| | | | - Peter E. Cook
- Institute of Vector-Borne Disease, Monash University, Clayton, Victoria, Australia
| | - Peter A. Ryan
- Institute of Vector-Borne Disease, Monash University, Clayton, Victoria, Australia
| | - Scott A. Ritchie
- School of Public Health, Tropical Medicine and Rehabilitation Sciences, James Cook University, Cairns, Queensland, Australia
| | - Ary A. Hoffmann
- School of BioSciences, Bio21 Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Scott L. O’Neill
- Institute of Vector-Borne Disease, Monash University, Clayton, Victoria, Australia
| | - Michael Turelli
- Department of Evolution and Ecology, University of California, Davis, Davis, California, United States of America
- * E-mail:
| |
Collapse
|
30
|
Hancock PA, White VL, Ritchie SA, Hoffmann AA, Godfray HCJ. Predicting Wolbachia invasion dynamics in Aedes aegypti populations using models of density-dependent demographic traits. BMC Biol 2016; 14:96. [PMID: 27825343 PMCID: PMC5100186 DOI: 10.1186/s12915-016-0319-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 10/19/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Arbovirus transmission by the mosquito Aedes aegypti can be reduced by the introduction and establishment of the endosymbiotic bacteria Wolbachia in wild populations of the vector. Wolbachia spreads by increasing the fitness of its hosts relative to uninfected mosquitoes. However, mosquito fitness is also strongly affected by population size through density-dependent competition for limited food resources. We do not understand how this natural variation in fitness affects symbiont spread, which limits our ability to design successful control strategies. RESULTS We develop a mathematical model to predict A. aegypti-Wolbachia dynamics that incorporates larval density-dependent variation in important fitness components of infected and uninfected mosquitoes. Our model explains detailed features of the mosquito-Wolbachia dynamics observed in two independent experimental A. aegypti populations, allowing the combined effects on dynamics of multiple density-dependent fitness components to be characterized. We apply our model to investigate Wolbachia field release dynamics, and show how invasion outcomes can depend strongly on the severity of density-dependent competition at the release site. Specifically, the ratio of released relative to wild mosquitoes required to attain a target infection frequency (at the end of a release program) can vary by nearly an order of magnitude. The time taken for Wolbachia to become established following releases can differ by over 2 years. These effects depend on the relative fitness of field and insectary-reared mosquitoes. CONCLUSIONS Models of Wolbachia invasion incorporating density-dependent demographic variation in the host population explain observed dynamics in experimental A. aegypti populations. These models predict strong effects of density-dependence on Wolbachia dynamics in field populations, and can assist in the effective use of Wolbachia to control the transmission of arboviruses such as dengue, chikungunya and zika.
Collapse
Affiliation(s)
- Penelope A Hancock
- Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK.
| | - Vanessa L White
- Bio 21 Institute, School of Biosciences, University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Scott A Ritchie
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville City, Queensland, 4878, Australia
| | - Ary A Hoffmann
- Bio 21 Institute, School of Biosciences, University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - H Charles J Godfray
- Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK
| |
Collapse
|
31
|
Zurita A, Gutiérrez SG, Cutillas C. Infection Rates of Wolbachia sp. and Bartonella sp. in Different Populations of Fleas. Curr Microbiol 2016; 73:704-713. [DOI: 10.1007/s00284-016-1119-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 07/13/2016] [Indexed: 11/24/2022]
|
32
|
Zhang D, Lees RS, Xi Z, Bourtzis K, Gilles JRL. Combining the Sterile Insect Technique with the Incompatible Insect Technique: III-Robust Mating Competitiveness of Irradiated Triple Wolbachia-Infected Aedes albopictus Males under Semi-Field Conditions. PLoS One 2016; 11:e0151864. [PMID: 26990981 PMCID: PMC4798476 DOI: 10.1371/journal.pone.0151864] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 03/04/2016] [Indexed: 11/19/2022] Open
Abstract
Combination of the sterile insect technique with the incompatible insect technique is considered to be a safe approach to control Aedes albopictus populations in the absence of an accurate and scalable sex separation system or genetic sexing strain. Our previous study has shown that the triple Wolbachia-infected Ae. albopictus strain (wAlbA, wAlbB and wPip) was suitable for mass rearing and females could be completely sterilized as pupae with a radiation dose of at least 28 Gy. However, whether this radiation dose can influence the mating competitiveness of the triple infected males was still unknown. In this study we aimed to evaluate the effects of irradiation on the male mating competitiveness of the triple infected strain under laboratory and semi-field conditions. The results herein indicate that irradiation with a lower, female-sterilizing dose has no negative impact on the longevity of triple infected males while a reduced lifespan was observed in the wild type males (wAlbA and wAlbB) irradiated with a higher male-sterilizing dose, in small cages. At different sterile: fertile release ratios in small cages, triple-infected males induced 39.8, 81.6 and 87.8% sterility in a wild type female population at 1:1, 5:1 and 10:1 release ratios, respectively, relative to a fertile control population. Similarly, irradiated triple infected males induced 31.3, 70.5 and 89.3% sterility at 1:1, 5:1 and 10:1 release ratios, respectively, again relative to the fertile control. Under semi-field conditions at a 5:1 release ratio, relative to wild type males, the mean male mating competitiveness index of 28 Gy irradiated triple-infected males was significantly higher than 35 Gy irradiated wild type males, while triple infected males showed no difference in mean mating competitiveness to either irradiated triple-infected or irradiated wild type males. An unexpected difference was also observed in the relative male mating competitiveness of the triple infected strain after irradiation at 28 Gy dose in small vs large cages, with a higher male mating competitiveness index calculated from results of experiments in the large cages. Based on these results, we consider that the male mating performance of the triple infected strain after irradiation at 28 Gy, a dose required for complete female sterility and the avoidance of population replacement, is approximately equal to that of the wild type males under semi-field conditions. Though field evaluation is required, this suggests that the triple infected strain is suitable for irradiation and release as part of a combined SIT-IIT approach to Ae. albopictus control.
Collapse
Affiliation(s)
- Dongjing Zhang
- Sun Yat-sen University - Michigan State University Joint Center of Vector Control for Tropical Diseases, Zhongshan School of Medicine, Guangzhou, Guangdong Province, China
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Vienna, Austria
| | - Rosemary Susan Lees
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Vienna, Austria
| | - Zhiyong Xi
- Sun Yat-sen University - Michigan State University Joint Center of Vector Control for Tropical Diseases, Zhongshan School of Medicine, Guangzhou, Guangdong Province, China
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - Kostas Bourtzis
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Vienna, Austria
| | - Jeremie R. L. Gilles
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Vienna, Austria
- * E-mail:
| |
Collapse
|
33
|
Hoang KP, Teo TM, Ho TX, Le VS. Mechanisms of sex determination and transmission ratio distortion in Aedes aegypti. Parasit Vectors 2016; 9:49. [PMID: 26818000 PMCID: PMC4730765 DOI: 10.1186/s13071-016-1331-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 01/20/2016] [Indexed: 01/13/2023] Open
Abstract
Background More effective mosquito control strategies are urgently required due to the increasing prevalence of insecticide resistance. The sterile insect technique (SIT) and the release of insects carrying a dominant lethal allele (RIDL) are two proposed methods for environmentally-friendly, species-targeted population control. These methods may be more suitable for developing countries if producers reduce the cost of rearing insects. The cost of control programs could be reduced by producing all-male mosquito populations to circumvent the isolation of females before release without reducing male mating competitiveness caused by transgenes. Results An RNAi construct targeting the RNA recognition motif of the Aedes aegypti transformer-2 (tra-2) gene does not trigger female-to-male sex conversion as commonly observed among dipterous insects. Instead, homozygous insects show greater mortality among m-chromosome-bearing sperm and mm zygotes, yielding up to 100 % males in the subsequent generations. The performance of transgenic males was not significantly different to wild-type males in narrow-cage competitive mating experiments. Conclusion Our data provide preliminary evidence that the knockdown of Ae. aegypti tra-2 gene expression causes segregation distortion acting at the level of gametic function, which is reinforced by sex-specific zygotic lethality. This finding could promote the development of new synthetic sex distorter systems for the production of genetic sexing mosquito strains. Electronic supplementary material The online version of this article (doi:10.1186/s13071-016-1331-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kim Phuc Hoang
- University of Engineering and Technology, Vietnam National University, Hanoi, 144 Xuan Thuy, Cau Giay, 10000, Hanoi, Vietnam.
| | - Tze Min Teo
- Advanced Agriecological Research Sdn. Bhd, No. 11 Jalan Teknologi 3/6, 47810, Petaling Jaya, Selangor, Malaysia.
| | - Thien Xuan Ho
- Department of Plant Pathology, University of Arkansas, 495 N Campus Drive, Fayetteville, AR, 72701, USA.
| | - Vinh Sy Le
- University of Engineering and Technology, Vietnam National University, Hanoi, 144 Xuan Thuy, Cau Giay, 10000, Hanoi, Vietnam.
| |
Collapse
|
34
|
Abstract
Dengue is an emerging threat to billions of people worldwide. In the last 20 years, the incidence has increased four-fold and this trend appears to be continuing. Caused by one of four viral serotypes, dengue can present as a wide range of clinical phenotypes with the severe end of the spectrum being defined by a syndrome of capillary leak, coagulopathy, and organ impairment. The pathogenesis of severe disease is thought to be in part immune mediated, but the exact mechanisms remain to be defined. The current treatment of dengue relies on supportive measures with no licensed therapeutics available to date. There have been recent advances in our understanding of a number of areas of dengue research, of which the following will be discussed in this review: the drivers behind the global dengue pandemic, viral structure and epitope binding, risk factors for severe disease and its pathogenesis, as well as the findings of recent clinical trials including therapeutics and vaccines. We conclude with current and future dengue control measures and key areas for future research.
Collapse
Affiliation(s)
- Sophie Yacoub
- Department of medicine, Imperial College London, London, UK; Oxford University Clinical research Unit, Wellcome Trust Major Overseas Programme, Ho Chi Minh City, Vietnam
| | - Juthathip Mongkolsapaya
- Department of medicine, Imperial College London, London, UK; Dengue Hemorrhagic Fever Research Unit, Office for Research and Development, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Gavin Screaton
- Department of medicine, Imperial College London, London, UK
| |
Collapse
|
35
|
Axford JK, Ross PA, Yeap HL, Callahan AG, Hoffmann AA. Fitness of wAlbB Wolbachia Infection in Aedes aegypti: Parameter Estimates in an Outcrossed Background and Potential for Population Invasion. Am J Trop Med Hyg 2015; 94:507-16. [PMID: 26711515 DOI: 10.4269/ajtmh.15-0608] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 11/03/2015] [Indexed: 11/07/2022] Open
Abstract
Wolbachia endosymbionts are potentially useful tools for suppressing disease transmission by Aedes aegypti mosquitoes because Wolbachia can interfere with the transmission of dengue and other viruses as well as causing deleterious effects on their mosquito hosts. Most recent research has focused on the wMel infection, but other infections also influence viral transmission and may spread in natural populations. Here, we focus on the wAlbB infection in an Australian outbred background and show that this infection has many features that facilitate its invasion into natural populations including strong cytoplasmic incompatibility, a lack of effect on larval development, an equivalent mating success to uninfected males and perfect maternal transmission fidelity. On the other hand, the infection has deleterious effects when eggs are held in a dried state, falling between wMel and the more virulent wMelPop Wolbachia strains. The impact of this infection on lifespan also appears to be intermediate, consistent with the observation that this infection has a titer in adults between wMel and wMelPop. Population cage experiments indicate that the wAlbB infection establishes in cages when introduced at a frequency of 22%, suggesting that this strain could be successfully introduced into populations and subsequently persist and spread.
Collapse
Affiliation(s)
- Jason K Axford
- Pest and Environmental Adaptation Research Group, Bio21 Institute and School of BioSciences, University of Melbourne, Parkville, Australia; Commonwealth Scientific and Industrial Research Organization, Acton, Australia
| | - Perran A Ross
- Pest and Environmental Adaptation Research Group, Bio21 Institute and School of BioSciences, University of Melbourne, Parkville, Australia; Commonwealth Scientific and Industrial Research Organization, Acton, Australia
| | - Heng Lin Yeap
- Pest and Environmental Adaptation Research Group, Bio21 Institute and School of BioSciences, University of Melbourne, Parkville, Australia; Commonwealth Scientific and Industrial Research Organization, Acton, Australia
| | - Ashley G Callahan
- Pest and Environmental Adaptation Research Group, Bio21 Institute and School of BioSciences, University of Melbourne, Parkville, Australia; Commonwealth Scientific and Industrial Research Organization, Acton, Australia
| | - Ary A Hoffmann
- Pest and Environmental Adaptation Research Group, Bio21 Institute and School of BioSciences, University of Melbourne, Parkville, Australia; Commonwealth Scientific and Industrial Research Organization, Acton, Australia
| |
Collapse
|
36
|
Hoffmann AA, Ross PA, Rašić G. Wolbachia strains for disease control: ecological and evolutionary considerations. Evol Appl 2015; 8:751-68. [PMID: 26366194 PMCID: PMC4561566 DOI: 10.1111/eva.12286] [Citation(s) in RCA: 135] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 06/02/2015] [Indexed: 12/15/2022] Open
Abstract
Wolbachia are endosymbionts found in many insects with the potential to suppress vectorborne diseases, particularly through interfering with pathogen transmission. Wolbachia strains are highly variable in their effects on hosts, raising the issue of which attributes should be selected to ensure that the best strains are developed for disease control. This depends on their ability to suppress viral transmission, invade host populations, persist without loss of viral suppression and not interfere with other control strategies. The potential to achieve these objectives is likely to involve evolutionary constraints; viral suppression may be limited by the ability of infections to spread due to deleterious host fitness effects. However, there are exceptions to these patterns in both natural infections and in novel associations generated following interspecific transfer, suggesting that pathogen blockage, deleterious fitness effects and changes to reproductive biology might be at least partly decoupled to achieve ideal infection attributes. The stability of introduced Wolbachia and its effects on viral transmission remain unclear, but rapid evolutionary changes seem unlikely. Although deliberate transfers of Wolbachia across species remain particularly challenging, the availability of strains with desirable attributes should be expanded, taking advantage of the diversity available across thousands of strains in natural populations.
Collapse
Affiliation(s)
- Ary A Hoffmann
- Pest and Environmental Adaptation Research Group, School of BioSciences, Bio21 Institute, The University of Melbourne Parkville, Vic., Australia
| | - Perran A Ross
- Pest and Environmental Adaptation Research Group, School of BioSciences, Bio21 Institute, The University of Melbourne Parkville, Vic., Australia
| | - Gordana Rašić
- Pest and Environmental Adaptation Research Group, School of BioSciences, Bio21 Institute, The University of Melbourne Parkville, Vic., Australia
| |
Collapse
|
37
|
Abstract
The endosymbiotic bacteria Wolbachia pipientis (wMel strain) has been successfully established in several populations of Aedes aegypti, the primary dengue vector. The virulent Wolbachia strain wMelPop is known to cause several pathological impacts (increased egg mortality, life shortening, etc.) reducing overall fitness in the mosquito Ae. aegypti. Increased egg mortality could substantially reduce egg banks in areas with a lengthy monsoonal dry season, and be employed to eliminate local populations. We tested this application under semi-field cage conditions. First, we determined that wMelPop infection significantly reduced the survival of desiccation-resistant eggs of the dengue vector Ae. aegypti, with shade and temperature having a significant impact; nearly all wMelPop-infected eggs failed to hatch after 6 and 10 weeks in summer and winter conditions, respectively. In laboratory selection experiments we found that egg desiccation resistance can be increased by selection, and that this effect of wMelPop infection is due to the nuclear background of the host rather than Wolbachia. We then conducted an invasion of wMelPop within a semi-field cage using sustained weekly releases of wMelPop infected mosquitoes, with fixation achieved after 9 weeks. The egg populations wMelPop infected and an uninfected control were then subjected to a simulated prolonged monsoonal dry season (2.5 months) before flooding to induce hatching. The wMelPop infected eggs suffered significantly greater mortality than the controls, with only 0.67% and 4.35% of respective infected and uninfected eggs held in 99% shade hatching after 80 days. These studies suggest that wMelPop could be used to locally eliminate populations of Ae. aegypti that are exposed to prolonged dry conditions, particularly if combined with vector control. Dengue is a leading cause of morbidity in the tropics. As a commercial vaccine is not available, control or modification of the mosquito vectors is employed to prevent transmission. Strains of the endosymbiotic bacteria Wolbachia affect the survival and ability of the dengue vector Aedes aegypti to transmit dengue. The Wolbachia strain wMelPop over-replicates within Ae. aegypti, inducing strong dengue virus blocking and early mortality of both egg and adult mosquitoes. We investigated whether this life-shortening Wolbachia strain can be used to eliminate local populations of Ae. aegypti in a semi-field cage. Our results indicate that Ae. aegypti eggs infected with wMelPop died at a significantly higher rate than uninfected eggs, and were nearly eliminated during a simulated dry season of 2–3 months. This suggests that that releases of wMelPop could facilitate control and elimination of Ae. aegypti if used in concert with vector control.
Collapse
|