1
|
Grana A, Chirano CA, Talhari S, de Sousa DRT, de Souza LTF, Leturiondo AL, de Oliveira Ferreira C, da Silva Cruz RC, Pedrosa VL, Miot HA, Talhari C. Unveiling hidden leprosy in underserved populations of the Amazonas state through active case-finding-the Amazon Skin Health Program (2023). Int J Dermatol 2025. [PMID: 39846086 DOI: 10.1111/ijd.17628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/24/2024] [Accepted: 12/13/2024] [Indexed: 01/24/2025]
Abstract
BACKGROUND Active case-finding is an effective strategy for combating leprosy, especially in early multibacillary cases in endemic regions. This early approach includes systematic actions such as epidemiological investigations, community surveys, and awareness campaigns to identify leprosy cases. This study reports new leprosy cases diagnosed through an active case-finding initiative conducted in 12 underserved populations from Amazonas in 2023. METHODS This is a cross-sectional descriptive study focused on patients diagnosed with leprosy and other dermatological diseases during the multi-professional Amazon Skin Health Program. Data collected for all suspected cases of leprosy encompassed epidemiological information, clinical details, slit skin smear test, histopathological examination, and polymerase chain reaction (PCR) test. RESULTS Among 13,023 individuals examined, 69 (0.53%) new cases of leprosy were detected: 46.38% were characterized as paucibacillary and 53.62% as multibacillary. Regarding their age and neurologic involvement, 10.1% were detected in children under 15 years, and 20.9% had grade II disability. This effort accounted for an increase of 21.8% in the year-based diagnoses of leprosy in the state of Amazonas. CONCLUSIONS Active case-finding can unveil hidden cases of leprosy in endemic areas, contributing to early detection to prevent neurological impairment and limit disease transmission. Additionally, the results advocate for targeted public health interventions, including the involvement of dermatologists in the diagnostic process and enhanced training for health professionals in differentiating leprosy from other cutaneous diseases.
Collapse
Affiliation(s)
- Aline Grana
- Programa de Pós-Graduação em Ciências Aplicadas à Dermatologia, Universidade do Estado do Amazonas, Manaus, AM, Brazil
| | | | - Sinesio Talhari
- Programa de Pós-Graduação em Ciências Aplicadas à Dermatologia, Universidade do Estado do Amazonas, Manaus, AM, Brazil
- Fundação Hospitalar Alfredo da Matta de Dermatologia, Manaus, AM, Brazil
| | | | | | - André Luiz Leturiondo
- Programa de Pós-Graduação em Ciências Aplicadas à Dermatologia, Universidade do Estado do Amazonas, Manaus, AM, Brazil
- Fundação Hospitalar Alfredo da Matta de Dermatologia, Manaus, AM, Brazil
| | | | | | - Valderiza Lourenço Pedrosa
- Programa de Pós-Graduação em Ciências Aplicadas à Dermatologia, Universidade do Estado do Amazonas, Manaus, AM, Brazil
- Fundação Hospitalar Alfredo da Matta de Dermatologia, Manaus, AM, Brazil
| | | | - Carolina Talhari
- Programa de Pós-Graduação em Ciências Aplicadas à Dermatologia, Universidade do Estado do Amazonas, Manaus, AM, Brazil
- Departamento de Dermatologia da Universidade do Estado do Amazonas, Manaus, AM, Brazil
| |
Collapse
|
2
|
Grijsen ML, Nguyen TH, Pinheiro RO, Singh P, Lambert SM, Walker SL, Geluk A. Leprosy. Nat Rev Dis Primers 2024; 10:90. [PMID: 39609422 DOI: 10.1038/s41572-024-00575-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/25/2024] [Indexed: 11/30/2024]
Abstract
Leprosy, a neglected tropical disease, causes significant morbidity in marginalized communities. Before the COVID-19 pandemic, annual new case detection plateaued for over a decade at ~200,000 new cases. The clinical phenotypes of leprosy strongly parallel host immunity to its causative agents Mycobacterium leprae and Mycobacterium lepromatosis. The resulting spectrum spans from paucibacillary leprosy, characterized by vigorous pro-inflammatory immunity with few bacteria, to multibacillary leprosy, harbouring large numbers of bacteria with high levels of seemingly non-protective, anti-M. leprae antibodies. Leprosy diagnosis remains clinical, leaving asymptomatic individuals with infection undetected. Antimicrobial treatment is effective with recommended multidrug therapy for 6 months for paucibacillary leprosy and 12 months for multibacillary leprosy. The incubation period ranges from 2 to 6 years, although longer periods have been described. Given this lengthy incubation period and dwindling clinical expertise, there is an urgent need to create innovative, low-complexity diagnostic tools for detection of M. leprae infection. Such advancements are vital for enabling swift therapeutic and preventive interventions, ultimately transforming patient outcomes. National health-care programmes should prioritize early case detection and consider post-exposure prophylaxis for individuals in close contact with affected persons. These measures will help interrupt transmission, prevent disease progression, and mitigate the risk of nerve damage and disabilities to achieve the WHO goal 'Towards Zero Leprosy' and reduce the burden of leprosy.
Collapse
Affiliation(s)
- Marlous L Grijsen
- Oxford University Clinical Research Unit Indonesia, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia.
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| | - Thuan H Nguyen
- University of Maryland, School of Medicine, Baltimore, MD, USA
| | - Roberta Olmo Pinheiro
- Leprosy Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, (IOC/FIOCRUZ), Rio de Janeiro, Brazil
| | - Pushpendra Singh
- Microbial Pathogenesis & Genomics Laboratory, ICMR-National Institute of Research in Tribal Health, Jabalpur, Madhya Pradesh, India
| | - Saba M Lambert
- London School of Hygiene & Tropical Medicine, Faculty of Infectious Diseases, London, UK
- Africa Leprosy, Tuberculosis, Rehabilitation and Training (ALERT) Hospital, Addis Ababa, Ethiopia
| | - Stephen L Walker
- London School of Hygiene & Tropical Medicine, Faculty of Infectious Diseases, London, UK
| | - Annemieke Geluk
- Leiden University Center of Infectious Diseases (LUCID), Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
3
|
Mayer-Barber KD, Barber DL, Via LE. Exhausted CD8 T cells and anti-inflammatory macrophages characterize lepromatous leprosy lesions. EBioMedicine 2024; 109:105382. [PMID: 39366250 PMCID: PMC11489073 DOI: 10.1016/j.ebiom.2024.105382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 10/06/2024] Open
Affiliation(s)
- Katrin D Mayer-Barber
- Inflammation and Innate Immunity Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Daniel L Barber
- T Lymphocyte Biology Section, Laboratory of Parasitic Diseases, NIAID, NIH, Bethesda, MD, 20892, USA
| | - Laura E Via
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, and Tuberculosis Imaging Program, Division of Intramural Research, NIAID, NIH, Bethesda, MD, 20892, USA.
| |
Collapse
|
4
|
Hendiger-Rizo EB, Chmielewska-Jeznach M, Poreda K, Rizo Liendo A, Koryszewska-Bagińska A, Olędzka G, Padzik M. Potentially Pathogenic Free-Living Amoebae Isolated from Soil Samples from Warsaw Parks and Squares. Pathogens 2024; 13:895. [PMID: 39452766 PMCID: PMC11510524 DOI: 10.3390/pathogens13100895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/10/2024] [Accepted: 10/11/2024] [Indexed: 10/26/2024] Open
Abstract
Free-living amoebae (FLA) are prevalent in diverse environments, representing various genera and species with different pathogenicity. FLA-induced infections, such as the highly fatal amoebic encephalitis, with a mortality rate of 99%, primarily affect immunocompromised individuals while others such as Acanthamoeba keratitis (AK) and cutaneous amebiasis may affect immunocompetent individuals. Despite the prevalence of FLA, there is a lack of standardized guidelines for their detection near human habitats. To date, no studies on the isolation and identification of FLA in environmental soil samples in Warsaw have been published. The aim of this study was to determine the presence of amoebae in soil samples collected from Warsaw parks and squares frequented by humans. The isolated protozoa were genotyped. Additionally, their pathogenic potential was determined through thermophilicity tests. A total of 23 soil samples were seeded on non-nutrient agar plates (NNA) at 26 °C and monitored daily for FLA presence. From the total of 23 samples, 18 were positive for FLA growth in NNA and PCR (78.2%). Acanthamoeba spp. was the most frequently isolated genus, with a total of 13 positive samples (13/18; 72.2%), and the T4 genotype being the most common. Moreover, Platyamoeba placida (3/18; 16.7%), Stenamoeba berchidia (1/18; 5.6%) and Allovahlkampfia sp. (1/18; 5.6%), also potentially pathogenic amoebae, were isolated. To our knowledge, this is the first report of FLA presence and characterization in the Warsaw area.
Collapse
Affiliation(s)
| | | | | | | | | | - Gabriela Olędzka
- Parasitology Laboratory, Department of Medical Biology, Medical University of Warsaw, Litewska 14/16, 00-575 Warsaw, Poland; (E.B.H.-R.); (M.C.-J.); (K.P.); (A.R.L.); (A.K.-B.); (M.P.)
| | | |
Collapse
|
5
|
Spiliopoulos O, Solomos Z, Puchner KP. Buruli ulcer, tuberculosis and leprosy: Exploring the One Health dimensions of three most prevalent mycobacterial diseases: A narrative review. Trop Med Int Health 2024; 29:657-667. [PMID: 38994702 DOI: 10.1111/tmi.14024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
ΟBJECTIVES: Although Buruli ulcer, tuberculosis, and leprosy are the three most common mycobacterial diseases, One Health dimensions of these infections remain poorly understood. This narrative review aims at exploring the scientific literature with respect to the presence of animal reservoir(s) and other environmental sources for the pathogens of these infections, their role in transmission to humans and the research on/practical implementation of One Health relevant control efforts. METHODS The literature review was conducted using the online databases PubMed, Scopus, ProQuest and Google Scholar, reviewing articles that were written in English in the last 15 years. Grey literature, published by intergovernmental agencies, was also reviewed. RESULTS For the pathogen of Buruli ulcer, evidence suggests possums as a possible animal reservoir and thus having an active role in disease transmission to humans. Cattle and some wildlife species are deemed as established animal reservoirs for tuberculosis pathogens, with a non-negligible proportion of infections in humans being of zoonotic origin. Armadillos constitute an established animal reservoir for leprosy pathogens with the transmission of the disease from armadillos to humans being deemed possible. Lentic environments, soil and other aquatic sources may represent further abiotic reservoirs for viable Buruli ulcer and leprosy pathogens infecting humans. Ongoing investigation and implementation of public health measures, targeting (sapro)zoonotic transmission can be found in all three diseases. CONCLUSION Buruli ulcer, tuberculosis and leprosy exhibit important yet still poorly understood One Health aspects. Despite the microbiological affinity of the respective causative mycobacteria, considerable differences in their animal reservoirs, potential environmental sources and modes of zoonotic transmission are being observed. Whether these differences reflect actual variations between these diseases or rather knowledge gaps remains unclear. For improved disease control, further investigation of zoonotic aspects of all three diseases and formulation of One Health relevant interventions is urgently needed.
Collapse
Affiliation(s)
- Orestis Spiliopoulos
- School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Zisimangelos Solomos
- School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Karl Philipp Puchner
- Laboratory of Primary Health Care, General Medicine and Health Services Research, Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
6
|
de Paula NA, Leite MN, de Faria Bertoluci DF, Soares CT, Rosa PS, Frade MAC. Human Skin as an Ex Vivo Model for Maintaining Mycobacterium leprae and Leprosy Studies. Trop Med Infect Dis 2024; 9:135. [PMID: 38922047 PMCID: PMC11209558 DOI: 10.3390/tropicalmed9060135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/09/2024] [Accepted: 06/13/2024] [Indexed: 06/27/2024] Open
Abstract
The in vitro cultivation of M. leprae has not been possible since it was described as causing leprosy, and the limitation of animal models for clinical aspects makes studies on leprosy and bacteria-human host interaction a challenge. Our aim was to standardize the ex vivo skin model (hOSEC) to maintenance and study of M. leprae as an alternative animal model. Bacillary suspensions were inoculated into human skin explants and sustained in DMEM medium for 60 days. Explants were evaluated by RT-PCR-16SrRNA and cytokine gene expression. The viability and infectivity of bacilli recovered from explants (D28 and D60) were evaluated using the Shepard's model. All explants were RT-PCR-16SrRNA positive. The viability and infectivity of recovered bacilli from explants, analyzed after 5 months of inoculation in mice, showed an average positivity of 31%, with the highest positivity in the D28 groups (80%). Furthermore, our work showed different patterns in cytokine gene expression (TGF-β, IL-10, IL-8, and TNF-α) in the presence of alive or dead bacilli. Although changes can be made to improve future experiments, our results have demonstrated that it is possible to use the hOSEC to maintain M. leprae for 60 days, interacting with the host system, an important step in the development of experimental models for studies on the biology of the bacillus, its interactions, and drug susceptibility.
Collapse
Affiliation(s)
- Natália Aparecida de Paula
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto14049-900, Brazil;
- Dermatology Division, Department of Medical Clinics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, Brazil;
- Reference Center for Sanitary Dermatology with Emphasis on Leprosy, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, Brazil
| | - Marcel Nani Leite
- Dermatology Division, Department of Medical Clinics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, Brazil;
| | | | - Cleverson Teixeira Soares
- Department of Anatomic Pathology, Lauro de Souza Lima Institute, Bauru 17034-971, Brazil; (D.F.d.F.B.); (C.T.S.)
| | - Patrícia Sammarco Rosa
- Division of Research and Education, Lauro de Souza Lima Institute, Bauru 17034-971, Brazil;
| | - Marco Andrey Cipriani Frade
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto14049-900, Brazil;
- Dermatology Division, Department of Medical Clinics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, Brazil;
- Reference Center for Sanitary Dermatology with Emphasis on Leprosy, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, Brazil
| |
Collapse
|
7
|
Gogate S, Khurana A, Ahuja A, Sardana K. Trans-epidermal extrusion of lepra bacilli from histoid lesions: a risk of continued transmission. Int J Dermatol 2024; 63:521-523. [PMID: 38235837 DOI: 10.1111/ijd.17035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 01/04/2024] [Accepted: 01/04/2024] [Indexed: 01/19/2024]
Abstract
The current goal of Zero Leprosy focuses on the interruption of the transmission of infection within endemic regions. While the role of the skin in the transmission dynamics of leprosy has not been clearly delineated, recent research on the environmental presence of lepra bacilli brings this aspect back into focus. We present a case of lepromatous leprosy with perforated-appearing histoid lesions on the palms and soles, demonstrating the presence of lepra bacilli throughout the epidermis.
Collapse
Affiliation(s)
- Siddharth Gogate
- Department of Dermatology, Venereology and Leprosy and Department of Pathology, Dr Ram Manohar Lohia Hospital and Atal Bihari Vajpayee Institute of Medical Sciences, New Delhi, India
| | - Ananta Khurana
- Department of Dermatology, Venereology and Leprosy and Department of Pathology, Dr Ram Manohar Lohia Hospital and Atal Bihari Vajpayee Institute of Medical Sciences, New Delhi, India
| | - Arvind Ahuja
- Department of Dermatology, Venereology and Leprosy and Department of Pathology, Dr Ram Manohar Lohia Hospital and Atal Bihari Vajpayee Institute of Medical Sciences, New Delhi, India
| | - Kabir Sardana
- Department of Dermatology, Venereology and Leprosy and Department of Pathology, Dr Ram Manohar Lohia Hospital and Atal Bihari Vajpayee Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
8
|
Krausser L, Chauvaux E, Van Dyck-Lippens M, Yssouf A, Assoumani Y, Tortosa P, de Jong BC, Braet SM. Ticks are unlikely to play a role in leprosy transmission in the Comoros (East Africa) as they do not harbour M. leprae DNA. Front Med (Lausanne) 2023; 10:1238914. [PMID: 37859857 PMCID: PMC10582737 DOI: 10.3389/fmed.2023.1238914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 09/18/2023] [Indexed: 10/21/2023] Open
Abstract
Introduction Leprosy, one of the oldest known human diseases, continues to pose a global challenge for disease control due to an incomplete understanding of its transmission pathways. Ticks have been proposed as a potential contributor in leprosy transmission due to their importance as vectors for other infectious diseases. Methods In 2010, a sampling of ticks residing on cattle was conducted on the islands Grande Comore, Anjouan, and Mohéli which constitute the Union of the Comoros where leprosy remains endemic. To investigate the potential role of ticks as a vector in transmission of leprosy disease, molecular analyses were conducted. Results Out of the 526 ticks analysed, none were found to harbour Mycobacterium leprae DNA, as determined by a quantitative polymerase chain reaction (qPCR) assay targeting a family of dispersed repeats (RLEP) specific to M. leprae. Discussion Therefore, our results suggest that in the Union of the Comoros, ticks are an unlikely vector for M. leprae.
Collapse
Affiliation(s)
- Lena Krausser
- Department of Biomedical Sciences, Institute of Tropical Medicine (ITM), Antwerp, Belgium
- University of Antwerp, Antwerp, Belgium
- Research Foundation Flanders (FWO), Brussels, Belgium
| | - Elien Chauvaux
- Department of Biomedical Sciences, Institute of Tropical Medicine (ITM), Antwerp, Belgium
- University of Antwerp, Antwerp, Belgium
| | | | - Amina Yssouf
- Unité Mixte de Recherche Processus Infectieux en Milieu Insulaire Tropical (UMR PIMIT), Université de La Réunion, CHU de La Réunion, Plateforme Technologique CYROI, Sainte-Clotilde, Réunion Island, France
- Plan National de Lutte contre le Paludisme, Moroni, Comoros
| | - Younoussa Assoumani
- Damien Foundation, Brussels, Belgium
- National Tuberculosis and Leprosy Control Program, Moroni, Comoros
| | - Pablo Tortosa
- Unité Mixte de Recherche Processus Infectieux en Milieu Insulaire Tropical (UMR PIMIT), Université de La Réunion, CHU de La Réunion, Plateforme Technologique CYROI, Sainte-Clotilde, Réunion Island, France
- Université de La Réunion, Fédération de recherche Environnement, Biodiversité et Santé, Saint-Denis, Réunion Island, France
| | | | - Sofie Marijke Braet
- Department of Biomedical Sciences, Institute of Tropical Medicine (ITM), Antwerp, Belgium
- University of Antwerp, Antwerp, Belgium
- Research Foundation Flanders (FWO), Brussels, Belgium
| |
Collapse
|
9
|
Chavarro-Portillo B, Soto CY, Guerrero MI. Mycobacterium leprae's Infective Capacity Is Associated with Activation of Genes Involved in PGL-I Biosynthesis in a Schwann Cells Infection Model. Int J Mol Sci 2023; 24:ijms24108727. [PMID: 37240073 DOI: 10.3390/ijms24108727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
Peripheral nerves and Schwann cells (SCs) are privileged and protected sites for initial colonization, survival, and spread of leprosy bacillus. Mycobacterium leprae strains that survive multidrug therapy show a metabolic inactivation that subsequently induces the recurrence of typical clinical manifestations of leprosy. Furthermore, the role of the cell wall phenolic glycolipid I (PGL-I) in the M. leprae internalization in SCs and the pathogenicity of M. leprae have been extensively known. This study assessed the infectivity in SCs of recurrent and non-recurrent M. leprae and their possible correlation with the genes involved in the PGL-I biosynthesis. The initial infectivity of non-recurrent strains in SCs was greater (27%) than a recurrent strain (6.5%). In addition, as the trials progressed, the infectivity of the recurrent and non-recurrent strains increased 2.5- and 2.0-fold, respectively; however, the maximum infectivity was displayed by non-recurrent strains at 12 days post-infection. On the other hand, qRT-PCR experiments showed that the transcription of key genes involved in PGL-I biosynthesis in non-recurrent strains was higher and faster (Day 3) than observed in the recurrent strain (Day 7). Thus, the results indicate that the capacity of PGL-I production is diminished in the recurrent strain, possibly affecting the infective capacity of these strains previously subjected to multidrug therapy. The present work opens the need to address more extensive and in-depth studies of the analysis of markers in the clinical isolates that indicate a possible future recurrence.
Collapse
Affiliation(s)
- Bibiana Chavarro-Portillo
- Hospital Universitario Centro Dermatológico Federico Lleras Acosta, Avenida 1ra # 13A-61, Bogotá 111511, Colombia
- Chemistry Department, Faculty of Sciences, Universidad Nacional de Colombia, Ciudad Universitaria, Carrera 30 N° 45-03, Bogotá 111321, Colombia
| | - Carlos Y Soto
- Chemistry Department, Faculty of Sciences, Universidad Nacional de Colombia, Ciudad Universitaria, Carrera 30 N° 45-03, Bogotá 111321, Colombia
| | - Martha Inírida Guerrero
- Hospital Universitario Centro Dermatológico Federico Lleras Acosta, Avenida 1ra # 13A-61, Bogotá 111511, Colombia
| |
Collapse
|
10
|
Siddiqui R, Muhammad JS, Alharbi AM, Alfahemi H, Khan NA. Can Acanthamoeba Harbor Monkeypox Virus? Microorganisms 2023; 11:microorganisms11040855. [PMID: 37110278 PMCID: PMC10146756 DOI: 10.3390/microorganisms11040855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/15/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
Acanthamoeba is well known to host a variety of microorganisms such as viruses, bacteria, protozoa, and yeast. Given the recent number of cases of monkeypox infection, we speculate that amoebae may be aiding viral transmission to the susceptible hosts. Although there is no confirmatory evidence to suggest that Acanthamoeba is a host to monkeypox (a double-stranded DNA virus), the recent discovery of mimivirus (another double-stranded DNA virus) from Acanthamoeba, suggests that amoebae may shelter monkeypox virus. Furthermore, given the possible spread of monkeypox virus from animals to humans during an earlier outbreak, which came about after patients came in contact with prairie dogs, it is likely that animals may also act as mixing vessel between ubiquitously distributed Acanthamoeba and monkeypox virus, in addition to the environmental habitat that acts as an interface in complex interactions between diverse microorganisms and the host.
Collapse
Affiliation(s)
- Ruqaiyyah Siddiqui
- College of Arts and Sciences, American University of Sharjah, Sharjah 26666, United Arab Emirates
- Department of Medical Biology, Faculty of Medicine, Istinye University, Istanbul 34010, Turkey
| | | | - Ahmad M. Alharbi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia
| | - Hasan Alfahemi
- Department of Medical Microbiology, Faculty of Medicine, Al-Baha University, Al-Baha 65799, Saudi Arabia
| | - Naveed Ahmed Khan
- Department of Medical Biology, Faculty of Medicine, Istinye University, Istanbul 34010, Turkey
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
- Correspondence: ; Tel.: +971-65057722
| |
Collapse
|
11
|
Sugawara-Mikami M, Tanigawa K, Kawashima A, Kiriya M, Nakamura Y, Fujiwara Y, Suzuki K. Pathogenicity and virulence of Mycobacterium leprae. Virulence 2022; 13:1985-2011. [PMID: 36326715 PMCID: PMC9635560 DOI: 10.1080/21505594.2022.2141987] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Leprosy is caused by Mycobacterium leprae (M. leprae) and M. lepromatosis, an obligate intracellular organism, and over 200,000 new cases occur every year. M. leprae parasitizes histiocytes (skin macrophages) and Schwann cells in the peripheral nerves. Although leprosy can be treated by multidrug therapy, some patients relapse or have a prolonged clinical course and/or experience leprosy reaction. These varying outcomes depend on host factors such as immune responses against bacterial components that determine a range of symptoms. To understand these host responses, knowledge of the mechanisms by which M. leprae parasitizes host cells is important. This article describes the characteristics of leprosy through bacteriology, genetics, epidemiology, immunology, animal models, routes of infection, and clinical findings. It also discusses recent diagnostic methods, treatment, and measures according to the World Health Organization (WHO), including prevention. Recently, the antibacterial activities of anti-hyperlipidaemia agents against other pathogens, such as M. tuberculosis and Staphylococcus aureus have been investigated. Our laboratory has been focused on the metabolism of lipids which constitute the cell wall of M. leprae. Our findings may be useful for the development of future treatments.
Collapse
Affiliation(s)
- Mariko Sugawara-Mikami
- Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University, Tokyo, Japan.,West Yokohama Sugawara Dermatology Clinic, Yokohama, Japan
| | - Kazunari Tanigawa
- Department of Molecular Pharmaceutics, Faculty of Pharma-Science, Teikyo University, Tokyo, Japan
| | - Akira Kawashima
- Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University, Tokyo, Japan
| | - Mitsuo Kiriya
- Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University, Tokyo, Japan
| | - Yasuhiro Nakamura
- Department of Molecular Pharmaceutics, Faculty of Pharma-Science, Teikyo University, Tokyo, Japan
| | - Yoko Fujiwara
- Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University, Tokyo, Japan
| | - Koichi Suzuki
- Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University, Tokyo, Japan
| |
Collapse
|
12
|
Liu Y, Shi C, Ma S, Ma Y, Lu X, Zhu J, Yang D. The protective role of tissue-resident interleukin 17A-producing gamma delta T cells in Mycobacterium leprae infection. Front Immunol 2022; 13:961405. [PMID: 36389696 PMCID: PMC9644052 DOI: 10.3389/fimmu.2022.961405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 10/06/2022] [Indexed: 10/18/2023] Open
Abstract
Mycobacterium leprae is a kind of disease-causing bacteria and results in leprosy in human. Gamma delta (γδ) T cell is a T-cell subset that is presented in both human dermis and epidermis. These cells bridge innate and adaptive immune responses and play critical roles in regulating anti-microbial defense, wound healing, and skin inflammation. Here, we investigated skin resident γδ T cells in patients with leprosy. Our data showed that γδ T cells significantly accumulated in skin lesions of leprosy patients with tuberculoid (TT) form. IL-23 can predominantly stimulate dermal γδ T cells to produce interleukin 17 (IL-17), a cytokine which may lead to disease protection. These γδ T cells expressed a specific set of surface molecules, and majority of these cells were Vδ1+. Also, IL-23 can stimulate the expansion of dermal γδ T cells expansion. Moreover, our results revealed that the transcription factor RORγt was responsible for IL-17A expression in leprosy lesion. Therefore, these data indicated that IL-23-responsive dermal γδ T cells were the major resource of IL-17A production in the skin and could be a potential target in the treatment of leprosy.
Collapse
Affiliation(s)
- Yan Liu
- Department of Infectious Diseases, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
| | - Chao Shi
- Department of Infectious Diseases, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shanshan Ma
- Department of Infectious Diseases, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yuelong Ma
- Department of Infectious Diseases, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xinyuan Lu
- Shanghai Key Laboratory of Pathogenic Fungi Medical Testing, Shanghai Pudong New Area People’s Hospital, Shanghai, China
| | - Jianyu Zhu
- Department of Infectious Diseases, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
| | - Degang Yang
- Department of Infectious Diseases, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
13
|
Wasson MK, Whitson C, Miller B, Abebe W, Tessema B, Emerson LE, Anantharam P, Tesfaye AB, Fairley JK. Potential drivers of leprosy infection: A case–control study of parasitic coinfection and water, sanitation, and hygiene in North Gondar, Ethiopia. FRONTIERS IN TROPICAL DISEASES 2022. [DOI: 10.3389/fitd.2022.934030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BackgroundDespite extensive control measures and a declining number of human reservoirs, the incidence of leprosy in excess of 200,000 new cases each year suggests that alternative pathways of transmission may play a role in continued endemicity. Parasitic coinfection and limited water, sanitation, and hygiene (WASH) have been suggested to predispose individuals to Mycobacterium leprae infection and were further explored in this study.MethodsLeprosy cases and uninfected controls were recruited from areas around North Gondar, Ethiopia throughout 2019. Participants completed dietary and WASH surveys in addition to providing stool for helminth microscopic diagnosis and urine for Schistosoma mansoni Point-of-care circulating cathodic antigen (POC-CCA)™ rapid diagnostic testing. A similar methodology was employed for a case–control study of leprosy previously conducted by our research team in North Gondar from May to October of 2018. To more comprehensively evaluate associations between the above exposures and leprosy, data from the present 2019 study and the previous 2018 study were combined in select multivariate logistic regression analyses.ResultsA total of 47 men (59%) and 33 women (41%) participated in this study with an average age of 40 (SD 15.0 years). Most leprosy cases were multibacillary (93%). There was a high prevalence of parasitic coinfection among both cases (71%) and controls (60%). WASH insecurities were also widespread. On multivariate analysis, lack of soap for handwashing [aOR= 2.53, 95% CI (1.17, 5.47)] and the lack of toilet facilities [Adjusted odds ratio (aOR)= 2.32, 95% CI (1.05, 5.12)] were significantly associated with leprosy. Positive directionality was identified for a number of other inputs, including helminth infection [aOR= 3.23, 95% CI (0.85, 12.35)].ConclusionsTaken together, these findings strengthen previous research conducted in 2018 implicating poor WASH conditions as a driver of leprosy infection. Leprosy remains the leading infectious cause of disability in the world. As such, future research should explore the above susceptibilities in more depth to curtail the global burden of disease.
Collapse
|
14
|
Turankar RP, Singh V, Lavania M, Singh I, Sengupta U, Jadhav RS. Existence of viable Mycobacterium leprae in natural environment and its genetic profiling in a leprosy endemic region. FRONTIERS IN TROPICAL DISEASES 2022. [DOI: 10.3389/fitd.2022.972682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
IntroductionMolecular epidemiology of leprosy is very important to study leprosy transmission dynamics and to enhance our understanding of leprosy in endemic areas by utilizing the molecular typing method. Nowadays our understanding of leprosy transmission dynamics has been refined by SNP typing and VNTR marker analysis of M. leprae strains.ObjectiveThis study was carried out to find out the presence of viable M. leprae in the soil and water samples from residing areas of leprosy patients staying in different blocks of Purulia district of West Bengal, understanding their genotypes and compared with that of M. leprae present in patients.Material and methodsSlit-skin smear (SSS) samples (n=112) were collected from the active multibacillary leprosy patients from different blocks of leprosy endemic area. Soil samples (n=1060) and water samples (n=620) were collected from residing areas of leprosy patients. SNP subtyping was performed by PCR followed by sequencing. Multiplex PCR was performed using fifteen ML-VNTR loci and results were analysed.ResultsWe observed high PCR positivity in soil samples (344 out of 1060; 32%) and water samples (140 out of 620; 23%). These PCR positive samples when further screened for viability, it was observed that 150 soil samples (44%) and 56 water samples (40%) showed presence of 16S rRNA. SNP typing of M. leprae revealed presence of predominantly type 1. SNP subtype 1D (83%) was most prevalent in all the blocks of Purulia followed by subtype 1C (15%) and subtype 1A (2%). SNP subtype 2F was noted in only one sample. SNP and VNTR combination showed presence of similar strain type in certain pockets of Purulia region which was responsible for transmission.ConclusionPresence of viable M. leprae in the environment, and presence of SNP Type 1 M. leprae in patients and environment suggests both environment and patients play a role in disease transmission.
Collapse
|
15
|
He Z, Zheng N, Zhang L, Tian Y, Hu Z, Shu L. Efficient inactivation of intracellular bacteria in dormant amoeba spores by FeP. JOURNAL OF HAZARDOUS MATERIALS 2022; 425:127996. [PMID: 34902724 DOI: 10.1016/j.jhazmat.2021.127996] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/26/2021] [Accepted: 12/03/2021] [Indexed: 06/14/2023]
Abstract
Waterborne pathogens and related diseases are a severe public health threat worldwide. Recent studies suggest that microbial interactions among infectious agents can significantly disrupt the disinfection processes, and current disinfection methods cannot inactivate intracellular pathogens effectively, posing an emerging threat to the safety of drinking water. This study developed a novel strategy, the FeP/persulfate (PS) system, to effectively inactivate intracellular bacteria within the amoeba spore. We found that the sulfate radical (SO4•-) produced by the FeP/PS system can be quickly converted into hydroxyl radicals (•OH), and •OH can penetrate the amoeba spores and inactivate the bacteria hidden inside amoeba spores. Therefore, this study proposes a novel technique to overcome the protective effects of microbial interactions and provides a new direction to inactivate intracellular pathogens efficiently.
Collapse
Affiliation(s)
- Zhenzhen He
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Ningchao Zheng
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Lin Zhang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Yuehui Tian
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhuofeng Hu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China.
| | - Longfei Shu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
16
|
Faber WR, Menke H, Rutten V, Pieters T. Lepra Bubalorum, a Potential Reservoir of Mycobacterium leprae. Front Microbiol 2021; 12:786921. [PMID: 34925294 PMCID: PMC8674755 DOI: 10.3389/fmicb.2021.786921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/12/2021] [Indexed: 11/13/2022] Open
Abstract
In 1926, a mycobacterial skin disease was observed in water buffaloes by researchers in Indonesia. The disease was designated as skin tuberculosis, though it was hypothesized that it might be a form of leprosy or a leprosy-like disease. In a follow-up study (Ph.D. thesis Lobel, 1934, Utrecht University, Netherlands) a similar nodular skin disease was described in Indonesian water buffaloes and named "lepra bubalorum" or "nodular leprosy." Two decades later Kraneveld and Roza (1954) reported that, so far, the diagnosis lepra bubalorum had been made in 146 cases in Indonesia. After a final series of research reports by Indonesian veterinarians in 1961, no subsequent cases were published. Based on information from these reports, it can be concluded that, even though evidence of nerve involvement in buffaloes was not reported, similarities exist between lepra bubalorum and Hansen's disease (leprosy), i.e., nodular skin lesions with a chronic course and microscopically granulomatous reactions with AFB in globi in vacuoles. This raises the question as to whether these historical cases might indeed have been caused by Mycobacterium leprae, Mycobacterium lepromatosis or another representative of the M. leprae complex. The future use of state-of-the-art molecular techniques may answer this question and may also help to answer the question whether water buffaloes should be considered as a potential natural reservoir of the causative pathogen of Hansen's disease.
Collapse
Affiliation(s)
- William R Faber
- Department of Dermatology, Amsterdam University Medical Centre (UMC), University of Amsterdam, Amsterdam, Netherlands
| | - Henk Menke
- Faculty of Science, Freudenthal Institute, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht, Netherlands
| | - Victor Rutten
- Division of Infectious Disease and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands.,Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
| | - Toine Pieters
- Faculty of Science, Freudenthal Institute, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht, Netherlands
| |
Collapse
|
17
|
Tongluan N, Shelton LT, Collins JH, Ingraffia P, McCormick G, Pena M, Sharma R, Lahiri R, Adams LB, Truman RW, Macaluso KR. Mycobacterium leprae Infection in Ticks and Tick-Derived Cells. Front Microbiol 2021; 12:761420. [PMID: 34777315 PMCID: PMC8578725 DOI: 10.3389/fmicb.2021.761420] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/06/2021] [Indexed: 11/13/2022] Open
Abstract
Leprosy is a zoonosis in the southern United States involving humans and wild armadillos. The majority of patients presenting with zoonotic strains of Mycobacterium leprae note extensive outdoor activity but only rarely report any history of direct contact with wild armadillos. Whether M. leprae is transmitted to new vertebrate hosts through the environment independently or with the aid of other organisms, e.g., arthropod vectors, is a fundamental question in leprosy transmission. The objectives of this study were to assess the potential for ticks to transmit M. leprae and to test if viable M. leprae can be maintained in tick-derived cells. To evaluate tick transmission, nymphal Amblyomma maculatum ticks were injected with isolated M. leprae. Infection and transmission were assessed by qPCR. Ticks infected as nymphs harbored M. leprae through vertical transmission events (nymph to adult and adult to progeny); and, horizontal transmission of M. leprae to a vertebrate host was observed. Mycobacterium leprae DNA was detected in multiple tick life cycle stages. Likewise, freshly isolated M. leprae (Thai-53) was used to infect a tick-derived cell line, and enumeration and bacterial viability were assessed at individual time points for up to 49 days. Evaluations of the viability of long-term cultured M. leprae (Thai-53 and Br4923) were also assessed in a mouse model. Tick-derived cells were able to maintain viable M. leprae over the 49-day course of infection and M. leprae remained infectious within tick cells for at least 300 days. The results of this study suggest that ticks themselves might serve as a vector for the transmission of M. leprae and that tick cells are suitable for maintenance of viable M. leprae for an extended period of time.
Collapse
Affiliation(s)
- Natthida Tongluan
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
- Department of Microbiology and Immunology, College of Medicine, University of South Alabama, Mobile, AL, United States
| | - Layne T. Shelton
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
| | - J. Hunter Collins
- United States Department of Health and Human Services, Health Resources and Services Administration, National Hansen’s Disease Program, Baton Rouge, LA, United States
| | - Patrick Ingraffia
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
| | - Gregory McCormick
- United States Department of Health and Human Services, Health Resources and Services Administration, National Hansen’s Disease Program, Baton Rouge, LA, United States
| | - Maria Pena
- United States Department of Health and Human Services, Health Resources and Services Administration, National Hansen’s Disease Program, Baton Rouge, LA, United States
| | - Rahul Sharma
- United States Department of Health and Human Services, Health Resources and Services Administration, National Hansen’s Disease Program, Baton Rouge, LA, United States
| | - Ramanuj Lahiri
- United States Department of Health and Human Services, Health Resources and Services Administration, National Hansen’s Disease Program, Baton Rouge, LA, United States
| | - Linda B. Adams
- United States Department of Health and Human Services, Health Resources and Services Administration, National Hansen’s Disease Program, Baton Rouge, LA, United States
| | - Richard W. Truman
- United States Department of Health and Human Services, Health Resources and Services Administration, National Hansen’s Disease Program, Baton Rouge, LA, United States
| | - Kevin R. Macaluso
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
- Department of Microbiology and Immunology, College of Medicine, University of South Alabama, Mobile, AL, United States
| |
Collapse
|
18
|
Abukhalid N, Islam S, Ndzeidze R, Bermudez LE. Mycobacterium avium Subsp. hominissuis Interactions with Macrophage Killing Mechanisms. Pathogens 2021; 10:1365. [PMID: 34832521 PMCID: PMC8623537 DOI: 10.3390/pathogens10111365] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/30/2021] [Accepted: 10/18/2021] [Indexed: 11/16/2022] Open
Abstract
Non-tuberculosis mycobacteria (NTM) are ubiquitously found throughout the environment. NTM can cause respiratory infections in individuals with underlying lung conditions when inhaled, or systemic infections when ingested by patients with impaired immune systems. Current therapies can be ineffective at treating NTM respiratory infections, even after a long course or with multidrug treatment regimens. NTM, such as Mycobacterium avium subspecies hominissuis (M. avium), is an opportunistic pathogen that shares environments with ubiquitous free-living amoeba and other environmental hosts, possibly their evolutionary hosts. It is highly likely that interactions between M. avium and free-living amoeba have provided selective pressure on the bacteria to acquire survival mechanisms, which are also used against predation by macrophages. In macrophages, M. avium resides inside phagosomes and has been shown to exit it to infect other cells. M. avium's adaptation to the hostile intra-phagosomal environment is due to many virulence mechanisms. M. avium is able to switch the phenotype of the macrophage to be anti-inflammatory (M2). Here, we have focused on and discussed the bacterial defense mechanisms associated with the intra-phagosome phase of infection. M. avium possesses a plethora of antioxidant enzymes, including the superoxide dismutases, catalase and alkyl hydroperoxide reductase. When these defenses fail or are overtaken by robust oxidative burst, many other enzymes exist to repair damage incurred on M. avium proteins, including thioredoxin/thioredoxin reductase. Finally, M. avium has several oxidant sensors that induce transcription of antioxidant enzymes, oxidation repair enzymes and biofilm- promoting genes. These expressions induce physiological changes that allow M. avium to survive in the face of leukocyte-generated oxidative stress. We will discuss the strategies used by M. avium to infect human macrophages that evolved during its evolution from free-living amoeba. The more insight we gain about M. avium's mode of pathogenicity, the more targets we can have to direct new anti-virulence therapies toward.
Collapse
Affiliation(s)
- Norah Abukhalid
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA; (N.A.); (S.I.); (R.N.)
| | - Sabrina Islam
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA; (N.A.); (S.I.); (R.N.)
| | - Robert Ndzeidze
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA; (N.A.); (S.I.); (R.N.)
| | - Luiz E. Bermudez
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA; (N.A.); (S.I.); (R.N.)
- Department of Microbiology, College of Science, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
19
|
Urban C, Blom AA, Pfrengle S, Walker-Meikle K, Stone AC, Inskip SA, Schuenemann VJ. One Health Approaches to Trace Mycobacterium leprae's Zoonotic Potential Through Time. Front Microbiol 2021; 12:762263. [PMID: 34745073 PMCID: PMC8566891 DOI: 10.3389/fmicb.2021.762263] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 09/16/2021] [Indexed: 11/25/2022] Open
Abstract
Hansen's disease (leprosy), mainly caused by infection with Mycobacterium leprae, has accompanied humanity for thousands of years. Although currently rare in Europe, there are over 200,000 new infections annually in South East Asia, Africa, and South America. Over the years many disciplines - palaeopathology, ancient DNA and other ancient biomolecules, and history - have contributed to a better understanding of leprosy's past, in particular its history in medieval Europe. We discuss their contributions and potential, especially in relation to the role of inter-species transmission, an unexplored phenomenon in the disease's history. Here, we explore the potential of interdisciplinary approaches that understand disease as a biosocial phenomenon, which is a product of both infection with M. leprae and social behaviours that facilitate transmission and spread. Genetic evidence of M. leprae isolated from archaeological remains combined with systematic zooarchaeological and historical analysis would not only identify when and in what direction transmission occurred, but also key social behaviours and motivations that brought species together. In our opinion, this combination is crucial to understand the disease's zoonotic past and current potential.
Collapse
Affiliation(s)
- Christian Urban
- Institute of Evolutionary Medicine, University of Zurich, Zurich, Switzerland
| | - Alette A. Blom
- Department of Archaeology, University of Cambridge, Cambridge, United Kingdom
| | - Saskia Pfrengle
- Institute of Evolutionary Medicine, University of Zurich, Zurich, Switzerland
| | | | - Anne C. Stone
- School of Human Evolution and Social Change, Arizona State University, Tempe, AZ, United States
| | - Sarah A. Inskip
- School of Archaeology and Ancient History, University of Leicester, Leicester, United Kingdom
| | | |
Collapse
|
20
|
Hockings KJ, Mubemba B, Avanzi C, Pleh K, Düx A, Bersacola E, Bessa J, Ramon M, Metzger S, Patrono LV, Jaffe JE, Benjak A, Bonneaud C, Busso P, Couacy-Hymann E, Gado M, Gagneux S, Johnson RC, Kodio M, Lynton-Jenkins J, Morozova I, Mätz-Rensing K, Regalla A, Said AR, Schuenemann VJ, Sow SO, Spencer JS, Ulrich M, Zoubi H, Cole ST, Wittig RM, Calvignac-Spencer S, Leendertz FH. Leprosy in wild chimpanzees. Nature 2021; 598:652-656. [PMID: 34646009 PMCID: PMC8550970 DOI: 10.1038/s41586-021-03968-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 08/27/2021] [Indexed: 11/08/2022]
Abstract
Humans are considered as the main host for Mycobacterium leprae1, the aetiological agent of leprosy, but spillover has occurred to other mammals that are now maintenance hosts, such as nine-banded armadillos and red squirrels2,3. Although naturally acquired leprosy has also been described in captive nonhuman primates4-7, the exact origins of infection remain unclear. Here we describe leprosy-like lesions in two wild populations of western chimpanzees (Pan troglodytes verus) in Cantanhez National Park, Guinea-Bissau and Taï National Park, Côte d'Ivoire, West Africa. Longitudinal monitoring of both populations revealed the progression of disease symptoms compatible with advanced leprosy. Screening of faecal and necropsy samples confirmed the presence of M. leprae as the causative agent at each site and phylogenomic comparisons with other strains from humans and other animals show that the chimpanzee strains belong to different and rare genotypes (4N/O and 2F). These findings suggest that M. leprae may be circulating in more wild animals than suspected, either as a result of exposure to humans or other unknown environmental sources.
Collapse
Affiliation(s)
- Kimberley J Hockings
- Centre for Ecology and Conservation, University of Exeter, Penryn, UK
- Centre for Research in Anthropology (CRIA - NOVA FCSH), Lisbon, Portugal
| | - Benjamin Mubemba
- Project Group Epidemiology of Highly Pathogenic Microorganisms, Robert Koch Institute, Berlin, Germany
- Department of Wildlife Sciences, School of Natural Resources, Copperbelt University, Kitwe, Zambia
| | - Charlotte Avanzi
- Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Kamilla Pleh
- Project Group Epidemiology of Highly Pathogenic Microorganisms, Robert Koch Institute, Berlin, Germany
- Taï Chimpanzee Project, Centre Suisse de Recherches Scientifiques, Abidjan, Côte d'Ivoire
| | - Ariane Düx
- Project Group Epidemiology of Highly Pathogenic Microorganisms, Robert Koch Institute, Berlin, Germany
| | - Elena Bersacola
- Centre for Ecology and Conservation, University of Exeter, Penryn, UK
- Centre for Research in Anthropology (CRIA - NOVA FCSH), Lisbon, Portugal
| | - Joana Bessa
- Centre for Research in Anthropology (CRIA - NOVA FCSH), Lisbon, Portugal
- Department of Zoology, University of Oxford, Oxford, UK
| | - Marina Ramon
- Centre for Ecology and Conservation, University of Exeter, Penryn, UK
| | - Sonja Metzger
- Project Group Epidemiology of Highly Pathogenic Microorganisms, Robert Koch Institute, Berlin, Germany
- Taï Chimpanzee Project, Centre Suisse de Recherches Scientifiques, Abidjan, Côte d'Ivoire
| | - Livia V Patrono
- Project Group Epidemiology of Highly Pathogenic Microorganisms, Robert Koch Institute, Berlin, Germany
| | - Jenny E Jaffe
- Project Group Epidemiology of Highly Pathogenic Microorganisms, Robert Koch Institute, Berlin, Germany
- Taï Chimpanzee Project, Centre Suisse de Recherches Scientifiques, Abidjan, Côte d'Ivoire
| | - Andrej Benjak
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Camille Bonneaud
- Centre for Ecology and Conservation, University of Exeter, Penryn, UK
| | - Philippe Busso
- Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Emmanuel Couacy-Hymann
- Laboratoire National d'Appui au Développement Agricole/Laboratoire Central de Pathologie Animale, Bingerville, Côte d'Ivoire
| | - Moussa Gado
- Programme National de Lutte Contre la Lèpre, Ministry of Public Health, Niamey, Niger
| | - Sebastien Gagneux
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Roch C Johnson
- Centre Interfacultaire de Formation et de Recherche en Environnement pour le Développement Durable, University of Abomey-Calavi, Jericho, Cotonou, Benin
- Fondation Raoul Follereau, Paris, France
| | - Mamoudou Kodio
- Centre National d'Appui à la Lutte Contre la Maladie, Bamako, Mali
| | | | - Irina Morozova
- Institute of Evolutionary Medicine, University of Zurich, Zurich, Switzerland
| | - Kerstin Mätz-Rensing
- Pathology Unit, German Primate Center, Leibniz-Institute for Primate Research, Göttingen, Germany
| | - Aissa Regalla
- Instituto da Biodiversidade e das Áreas Protegidas, Dr. Alfredo Simão da Silva (IBAP), Bissau, Guinea-Bissau
| | - Abílio R Said
- Instituto da Biodiversidade e das Áreas Protegidas, Dr. Alfredo Simão da Silva (IBAP), Bissau, Guinea-Bissau
| | | | - Samba O Sow
- Centre National d'Appui à la Lutte Contre la Maladie, Bamako, Mali
| | - John S Spencer
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Markus Ulrich
- Project Group Epidemiology of Highly Pathogenic Microorganisms, Robert Koch Institute, Berlin, Germany
| | - Hyacinthe Zoubi
- Programme National d'Elimination de la Lèpre, Dakar, Senegal
| | - Stewart T Cole
- Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Institut Pasteur, Paris, France
| | - Roman M Wittig
- Taï Chimpanzee Project, Centre Suisse de Recherches Scientifiques, Abidjan, Côte d'Ivoire
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | | | - Fabian H Leendertz
- Project Group Epidemiology of Highly Pathogenic Microorganisms, Robert Koch Institute, Berlin, Germany.
- Helmholtz Institute for One Health, Greifswald, Germany.
| |
Collapse
|
21
|
Barreto da Silveira IGDO, da Silva Neto JA, da Silva Ferreira J, Silva TS, Holanda ISA. Detection of Mycobacterium leprae DNA in clinical and environmental samples using serological analysis and PCR. Mol Biol Rep 2021; 48:6887-6895. [PMID: 34463915 DOI: 10.1007/s11033-021-06691-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 08/24/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND Leprosy is a chronic infectious disease caused by Mycobacterium leprae and persists as a serious public health problem in Brazil. This microorganism is inculturable, making it difficult to diagnose and elucidate details of its transmission chain. Thus, this study aimed to analyze the dynamics of environmental transmission of M. leprae in a case-control study in the city of Mossoró, Brazil. METHODS AND RESULTS Data of clinical, epidemiological, bacilloscopic, and serological evaluation of 22 newly diagnosed patients were compared, with molecular results of detection of specific genome regions RLEP and 16S rRNA of M. leprae in samples of the nasal swab, saliva, and house dust of these individuals and their controls (44 household contacts and 44 peridomiciliar contacts). The rapid serological tests evaluated, ML flow (IgM ND-O-BSA) and OrangeLife® (IgM and IgG anti NDO-LID 1) showed similar results, with greater positivity among paucibacillaries by OrangeLife® (54.5%). Positivity for nasal swab and saliva in multibacillary patients with RLEP primer was 16.7% and 33.3%, respectively. There was no detection of bacterial DNA in house dust or among paucibacillaries. The OrangeLife® test indicated that the lower the amount of windows, the more transmission in the house (3.79 more chances). Having a history of leprosy cases in the family increased the risk by 2.89 times, and being over 60 years of age gave 3.6 times more chances of acquiring the disease. PCR positivity was higher among all clinical samples using the M. leprae RLEP region than 16S rRNA. CONCLUSIONS In this study, the serological and PCR analysis were capable of detecting M. leprae DNA in clinical samples but not in the environmental samples. Close monitoring of patients and household contacts appears an effective measure to reduce the transmission of leprosy in endemic areas.
Collapse
Affiliation(s)
- Ismênia Glauce de Oliveira Barreto da Silveira
- Departamento de Ciências Agronômicas e Florestais, Centro de Ciências Vegetais, Universidade Federal Rural do Semi-Árido, Av. Francisco Mota, 572, Costa e Silva, Caixa-postal: 137, Mossoró, RN, CEP 59625-900, Brazil
| | - Jorge Alves da Silva Neto
- Departamento de Ciências Agronômicas e Florestais, Centro de Ciências Vegetais, Universidade Federal Rural do Semi-Árido, Av. Francisco Mota, 572, Costa e Silva, Caixa-postal: 137, Mossoró, RN, CEP 59625-900, Brazil
| | - Jéssica da Silva Ferreira
- Multiuser Molecular Biology Laboratory, Department of Animal Parasitology, Institute of Veterinary Medicine, Federal Rural University of Rio de Janeiro, Seropédica, Brazil
- Laboratory of Molecular Biology Applied to Mycobacteria, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil
| | - Tatiane Severo Silva
- Departamento de Ciências Agronômicas e Florestais, Centro de Ciências Vegetais, Universidade Federal Rural do Semi-Árido, Av. Francisco Mota, 572, Costa e Silva, Caixa-postal: 137, Mossoró, RN, CEP 59625-900, Brazil.
| | - Ioná Santos Araújo Holanda
- Departamento de Ciências Agronômicas e Florestais, Centro de Ciências Vegetais, Universidade Federal Rural do Semi-Árido, Av. Francisco Mota, 572, Costa e Silva, Caixa-postal: 137, Mossoró, RN, CEP 59625-900, Brazil
| |
Collapse
|
22
|
Amaro F, Martín-González A. Microbial warfare in the wild-the impact of protists on the evolution and virulence of bacterial pathogens. Int Microbiol 2021; 24:559-571. [PMID: 34365574 DOI: 10.1007/s10123-021-00192-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/03/2021] [Accepted: 06/28/2021] [Indexed: 01/01/2023]
Abstract
During the long history of co-evolution with protists, bacteria have evolved defense strategies to avoid grazing and survive phagocytosis. These mechanisms allow bacteria to exploit phagocytic cells as a protective niche in which to escape from environmental stress and even replicate. Importantly, these anti-grazing mechanisms can function as virulence factors when bacteria infect humans. Here, we discuss how protozoan predation exerts a selective pressure driving bacterial virulence and shaping their genomes, and how bacteria-protist interactions might contribute to the spread of antibiotic resistance as well. We provide examples to demonstrate that besides being voracious bacterial predators, protozoa can serve as melting pots where intracellular organisms exchange genetic information, or even "training grounds" where some pathogens become hypervirulent after passing through. In this special issue, we would like to emphasize the tremendous impact of bacteria-protist interactions on human health and the potential of amoebae as model systems to study biology and evolution of a variety of pathogens. Besides, a better understanding of bacteria-protist relationships will help us expand our current understanding of bacterial virulence and, likely, how pathogens emerge.
Collapse
Affiliation(s)
- Francisco Amaro
- Department of Genetics, Physiology and Microbiology, School of Biology, Complutense University of Madrid, 28040, Madrid, Spain.
| | - Ana Martín-González
- Department of Genetics, Physiology and Microbiology, School of Biology, Complutense University of Madrid, 28040, Madrid, Spain
| |
Collapse
|
23
|
Nath D, Chakraborty S. Genome wide analysis of Mycobacterium leprae for identification of putative microRNAs and their possible targets in human. Biologia (Bratisl) 2021. [DOI: 10.1007/s11756-021-00778-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
24
|
Abstract
BACKGROUND Although most cases of Hansen disease (HD) in the United States are imported from endemic areas, a subset of cases are relate to exposure to nine-banded armadillos. Several recent cases of HD in Arkansas occurred in patients who had not traveled to endemic areas and who reported variable degrees of armadillo exposure. OBJECTIVE The purpose of this study was to report 6 cases of HD diagnosed in Arkansas between 2004 and 2016. The secondary purpose was to explore the correlation between exposure to the nine-banded armadillo as it pertains to transmission of the disease. METHODS The referring clinician of each patient was contacted to gather information regarding the patient's clinical presentation, armadillo exposure, and travel history. In addition, the Arkansas Department of Health was consulted to review the demographics of individuals diagnosed with HD in the past 15 years and to review the distribution of HD throughout the state of Arkansas. RESULTS Six domestic cases of HD were associated with both direct and indirect exposure to armadillos. LIMITATIONS Armadillo exposure may be underreported in patients with HD because of fear of stigmatization and/or lack of access to care. CONCLUSIONS Direct exposure to armadillos does not appear to be required for transmission of HD making a soil-mediated mechanism of indirect exposure plausible.
Collapse
|
25
|
da Silva MB, Li W, Bouth RC, Gobbo AR, Messias ACC, Moraes TMP, Jorge EVO, Barreto JG, Filho FB, Conde GAB, Frade MAC, Salgado CG, Spencer JS. Latent leprosy infection identified by dual RLEP and anti-PGL-I positivity: Implications for new control strategies. PLoS One 2021; 16:e0251631. [PMID: 33984058 PMCID: PMC8118453 DOI: 10.1371/journal.pone.0251631] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 04/30/2021] [Indexed: 11/20/2022] Open
Abstract
The number of new cases of leprosy reported worldwide has remained essentially unchanged for the last decade despite continued global use of free multidrug therapy (MDT) provided to any diagnosed leprosy patient. In order to more effectively interrupt the chain of transmission, new strategies will be required to detect those with latent disease who contribute to furthering transmission. To improve the ability to diagnose leprosy earlier in asymptomatic infected individuals, we examined the combined use of two well-known biomarkers of M. leprae infection, namely the presence of M. leprae DNA by PCR from earlobe slit skin smears (SSS) and positive antibody titers to the M. leprae-specific antigen, Phenolic Glycolipid I (anti-PGL-I) from leprosy patients and household contacts living in seven hyperendemic cities in the northern state of Pará, Brazilian Amazon. Combining both tests increased sensitivity, specificity and accuracy over either test alone. A total of 466 individuals were evaluated, including 87 newly diagnosed leprosy patients, 52 post-treated patients, 296 household contacts and 31 healthy endemic controls. The highest frequency of double positives (PGL-I+/RLEP+) were detected in the new case group (40/87, 46%) with lower numbers for treated (12/52, 23.1%), household contacts (46/296, 15.5%) and healthy endemic controls (0/31, 0%). The frequencies in these groups were reversed for double negatives (PGL-I-/RLEP-) for new cases (6/87, 6.9%), treated leprosy cases (15/52, 28.8%) and the highest in household contacts (108/296, 36.5%) and healthy endemic controls (24/31, 77.4%). The data strongly suggest that household contacts that are double positive have latent disease, are likely contributing to shedding and transmission of disease to their close contacts and are at the highest risk of progressing to clinical disease. Proposed strategies to reduce leprosy transmission in highly endemic areas may include chemoprophylactic treatment of this group of individuals to stop the spread of bacilli to eventually lower new case detection rates in these areas.
Collapse
Affiliation(s)
- Moises Batista da Silva
- Laboratório de Dermato-Imunologia, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belem, Pará, Brazil
| | - Wei Li
- Colorado State University, Department of Microbiology, Immunology and Pathology, Mycobacteria Research Laboratories, Fort Collins, CO, Unites States of America
| | - Raquel Carvalho Bouth
- Laboratório de Dermato-Imunologia, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belem, Pará, Brazil
| | - Angélica Rita Gobbo
- Laboratório de Dermato-Imunologia, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belem, Pará, Brazil
| | - Ana Caroline Cunha Messias
- Laboratório de Dermato-Imunologia, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belem, Pará, Brazil
| | - Tania Mara Pires Moraes
- Instituto de Saúde Coletiva, Universidade Federal do Oeste do Pará (UFOPA), Santarém, Pará, Brazil
| | - Erika Vanessa Oliveira Jorge
- Laboratório de Dermato-Imunologia, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belem, Pará, Brazil
| | - Josafá Gonçalves Barreto
- Laboratório de Dermato-Imunologia, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belem, Pará, Brazil
- Spatial Epidemiology Laboratory, Universidade Federal do Pará—Campus Castanhal, Castanhal, Pará, Brazil
| | - Fred Bernardes Filho
- Division of Dermatology, Department of Internal Medicine of Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | | | - Marco Andrey Cipriani Frade
- Division of Dermatology, Department of Internal Medicine of Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Claudio Guedes Salgado
- Laboratório de Dermato-Imunologia, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belem, Pará, Brazil
| | - John Stewart Spencer
- Colorado State University, Department of Microbiology, Immunology and Pathology, Mycobacteria Research Laboratories, Fort Collins, CO, Unites States of America
- * E-mail:
| |
Collapse
|
26
|
van der Loo C, Bartie C, Barnard TG, Potgieter N. Detection of Free-Living Amoebae and Their Intracellular Bacteria in Borehole Water before and after a Ceramic Pot Filter Point-of-Use Intervention in Rural Communities in South Africa. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:3912. [PMID: 33917870 PMCID: PMC8068299 DOI: 10.3390/ijerph18083912] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/26/2021] [Accepted: 04/02/2021] [Indexed: 11/21/2022]
Abstract
Free-living amoebae (FLA) are ubiquitous in nature, whereas amoeba-resistant bacteria (ARB) have evolved virulent mechanisms that allow them to resist FLA digestion mechanisms and survive inside the amoeba during hostile environmental conditions. This study assessed the prevalence of FLA and ARB species in borehole water before and after a ceramic point-of-use intervention in rural households. A total of 529 water samples were collected over a five-month period from 82 households. All water samples were subjected to amoebal enrichment, bacterial isolation on selective media, and molecular identification using 16S PCR/sequencing to determine ARB species and 18S rRNA PCR/sequencing to determine FLA species present in the water samples before and after the ceramic pot intervention. Several FLA species including Acanthamoeba spp. and Mycobacterium spp. were isolated. The ceramic pot filter removed many of these microorganisms from the borehole water. However, design flaws could have been responsible for some FLA and ARB detected in the filtered water. FLA and their associated ARB are ubiquitous in borehole water, and some of these species might be potentially harmful and a health risk to vulnerable individuals. There is a need to do more investigations into the health risk of these organisms after point-of-use treatment.
Collapse
Affiliation(s)
- Clarissa van der Loo
- Water and Health Research Centre, Faculty of Health Sciences, University of Johannesburg, Johannesburg 2094, South Africa; (C.v.d.L.); (T.G.B.)
| | | | - Tobias George Barnard
- Water and Health Research Centre, Faculty of Health Sciences, University of Johannesburg, Johannesburg 2094, South Africa; (C.v.d.L.); (T.G.B.)
| | - Natasha Potgieter
- Environmental Health, Domestic Hygiene and Microbial Pathogens Research Group, Department of Microbiology, University of Venda, Thohoyandou 1950, South Africa
| |
Collapse
|
27
|
Avanzi C, Singh P, Truman RW, Suffys PN. Molecular epidemiology of leprosy: An update. INFECTION GENETICS AND EVOLUTION 2020; 86:104581. [PMID: 33022427 DOI: 10.1016/j.meegid.2020.104581] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 09/27/2020] [Accepted: 10/01/2020] [Indexed: 12/27/2022]
Abstract
Molecular epidemiology investigations are notoriously challenging in the leprosy field mainly because the inherent characteristics of the disease as well as its yet uncultivated causative agents, Mycobacterium leprae and M. lepromatosis. Despite significant developments in understanding the biology of leprosy bacilli through genomic approaches, the exact mechanisms of transmission is still unclear and the factors underlying pathological variation of the disease in different patients remain as major gaps in our knowledge about leprosy. Despite these difficulties, the last two decades have seen the development of genotyping procedures based on PCR-sequencing of target loci as well as by the genome-wide analysis of an increasing number of geographically diverse isolates of leprosy bacilli. This has provided a foundation for molecular epidemiology studies that are bringing a better understanding of strain evolution associated with ancient human migrations, and phylogeographical insights about the spread of disease globally. This review discusses the advantages and drawbacks of the main tools available for molecular epidemiological investigations of leprosy and summarizes various methods ranging from PCR-based genotyping to genome-typing techniques. We also describe their main applications in analyzing the short-range and long-range transmission of the disease. Finally, we summarise the current gaps and challenges that remain in the field of molecular epidemiology of leprosy.
Collapse
Affiliation(s)
- Charlotte Avanzi
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA; Swiss Tropical and Public Health Institute, Basel, Switzerland; University of Basel, Basel, Switzerland
| | - Pushpendra Singh
- Indian Council of Medical Research - National Institute of Research in Tribal Health, Jabalpur, India
| | - Richard W Truman
- Department of Pathobiological Sciences, Louisiana State University, Baton Rouge, LO, USA
| | - Philip N Suffys
- Laboratory of Molecular Biology Applied to Mycobacteria - Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro, Brazil.
| |
Collapse
|
28
|
Mungroo MR, Khan NA, Siddiqui R. Mycobacterium leprae: Pathogenesis, diagnosis, and treatment options. Microb Pathog 2020; 149:104475. [PMID: 32931893 DOI: 10.1016/j.micpath.2020.104475] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 09/02/2020] [Accepted: 09/04/2020] [Indexed: 01/14/2023]
Abstract
Mycobacterium leprae is known to cause leprosy, a neurological and dermatological disease. In the past 20 years, 16 million leprosy cases have been recorded and more than 200,000 new cases were registered each year, indicating that the disease is still progressing without hindrance. M. leprae, an intracellular bacterium, infects the Schwann cells of the peripheral nervous system. Several types of leprosy have been described, including indeterminate, tuberculoid, borderline tuberculoid, mid-borderline, borderline lepromatous and lepromatous, and three different forms of leprosy reactions, namely type 1, 2 and 3, have been designated. Microscopic detection, serological diagnostic test, polymerase chain reaction and flow tests are employed in the diagnosis of leprosy. The recommended treatment for leprosy consists of rifampicin, dapsone, clofazimine, ofloxacin and minocycline and vaccines are also available. However, relapse may occur after treatment has been halted and hence patients must be educated on the signs of relapse to allow proper treatment and reduce severity. In this review, we depict the current understanding of M. leprae pathogenicity, clinical aspects and manifestations. Transmission of leprosy, diagnosis and treatment are also discussed.
Collapse
Affiliation(s)
- Mohammad Ridwane Mungroo
- Department of Biology, Chemistry and Environmental Sciences, College of Arts and Sciences, American University of Sharjah, University City, Sharjah, United Arab Emirates
| | - Naveed Ahmed Khan
- Department of Biology, Chemistry and Environmental Sciences, College of Arts and Sciences, American University of Sharjah, University City, Sharjah, United Arab Emirates.
| | - Ruqaiyyah Siddiqui
- Department of Biology, Chemistry and Environmental Sciences, College of Arts and Sciences, American University of Sharjah, University City, Sharjah, United Arab Emirates
| |
Collapse
|
29
|
Emerson LE, Anantharam P, Yehuala FM, Bilcha KD, Tesfaye AB, Fairley JK. Poor WASH (Water, Sanitation, and Hygiene) Conditions Are Associated with Leprosy in North Gondar, Ethiopia. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17176061. [PMID: 32825398 PMCID: PMC7504265 DOI: 10.3390/ijerph17176061] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 08/13/2020] [Accepted: 08/16/2020] [Indexed: 11/16/2022]
Abstract
Access to safe water, sanitation, and hygiene (WASH) is critical for preventing the spread of neglected tropical diseases (NTDs) including leprosy. WASH-related transmission factors remain largely unexplored in the leprosy transmission cycle. The aim of this project is to better understand WASH exposures among leprosy cases through a case-control study in North Gondar, Ethiopia. We hypothesized that leprosy cases were more likely to have inadequate WASH access and were more likely to have concurrent schistosomiasis, as schistosomiasis immune consequences may facilitate leprosy infection. Forty leprosy cases (forty-one controls) were enrolled, tested for Schistosomamansoni, administered a demographic and WASH survey, and assigned a WASH index score. WASH factors significantly associated with leprosy on adjusted analyses included open defecation (aOR = 19.9, 95% CI 2.2, 176.3) and lack of access to soap (aOR = 7.3, 95% CI 1.1, 49.9). S. mansoni was detected in 26% of participants and in stratified analysis those with leprosy had a 3.6 (95% CI (0.8, 15.9)) greater odds of schistosomiasis in districts bordering the lake, compared to 0.33 lower odds of schistosomiasis in districts not bordering the lake (95% CI (0.09, 1.2)). Overall, results suggest that leprosy transmission may be related to WASH adequacy and access as well as to schistosomiasis co-infection.
Collapse
Affiliation(s)
- Lisa E. Emerson
- Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA; (L.E.E.); (P.A.)
| | - Puneet Anantharam
- Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA; (L.E.E.); (P.A.)
| | - Feleke M. Yehuala
- College of Medicine and Health Sciences, University of Gondar, P.O. Box 196 Gondar, Ethiopia; (F.M.Y.); (A.B.T.)
| | | | - Annisa B. Tesfaye
- College of Medicine and Health Sciences, University of Gondar, P.O. Box 196 Gondar, Ethiopia; (F.M.Y.); (A.B.T.)
| | - Jessica K. Fairley
- Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA; (L.E.E.); (P.A.)
- School of Medicine, Emory University, Atlanta, GA 30322, USA;
- Correspondence:
| |
Collapse
|
30
|
Martin KH, Borlee GI, Wheat WH, Jackson M, Borlee BR. Busting biofilms: free-living amoebae disrupt preformed methicillin-resistant Staphylococcus aureus (MRSA) and Mycobacterium bovis biofilms. MICROBIOLOGY (READING, ENGLAND) 2020; 166:695-706. [PMID: 32459167 PMCID: PMC7641382 DOI: 10.1099/mic.0.000933] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 05/01/2020] [Indexed: 12/22/2022]
Abstract
Biofilm-associated infections are difficult to eradicate because of their ability to tolerate antibiotics and evade host immune responses. Amoebae and/or their secreted products may provide alternative strategies to inhibit and disperse biofilms on biotic and abiotic surfaces. We evaluated the potential of five predatory amoebae - Acanthamoeba castellanii, Acanthamoeba lenticulata, Acanthamoeba polyphaga, Vermamoeba vermiformis and Dictyostelium discoideum - and their cell-free secretions to disrupt biofilms formed by methicillin-resistant Staphylococcus aureus (MRSA) and Mycobacterium bovis. The biofilm biomass produced by MRSA and M. bovis was significantly reduced when co-incubated with A. castellanii, A. lenticulata and A. polyphaga, and their corresponding cell-free supernatants (CFS). Acanthamoeba spp. generally produced CFS that mediated biofilm dispersal rather than directly killing the bacteria; however, A. polyphaga CFS demonstrated active killing of MRSA planktonic cells when the bacteria were present at low concentrations. The active component(s) of the A. polyphaga CFS is resistant to freezing, but can be inactivated to differing degrees by mechanical disruption and exposure to heat. D. discoideum and its CFS also reduced preformed M. bovis biofilms, whereas V. vermiformis only decreased M. bovis biofilm biomass when amoebae were added. These results highlight the potential of using select amoebae species or their CFS to disrupt preformed bacterial biofilms.
Collapse
Affiliation(s)
- Kevin H. Martin
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Grace I. Borlee
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| | - William H. Wheat
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Mary Jackson
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Bradley R. Borlee
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
31
|
Leprosy Transmission in Amazonian Countries: Current Status and Future Trends. CURRENT TROPICAL MEDICINE REPORTS 2020. [DOI: 10.1007/s40475-020-00206-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Abstract
Purpose of Review
Leprosy is one of the first pathologies described in the history of mankind. However, the ecology, transmission, and pathogenicity of the incriminated bacilli remain poorly understood. Despite effective treatment freely distributed worldwide since 1995, around 200,000 new cases continue to be detected yearly, mostly in the tropics. This review aims to discuss the unique characteristics of leprosy in Amazonian countries, which exhibit a very heterogeneous prevalence among human and animal reservoirs.
Recent Findings
Groundbreaking discoveries made in the last 15 years have challenged the dogmas about leprosy reservoirs, transmission, and treatment. The discovery of a new leprosy causative agent in 2008 and the scientific proof of zoonosis transmission of leprosy by nine-banded armadillos in the southern USA in 2011 challenged the prospects of leprosy eradication. In the Amazonian biome, nine-banded and other armadillo species are present but the lack of large-scale studies does not yet allow accurate assessment of the zoonotic risk. Brazil is the second country in the world reporting the highest number of new leprosy cases annually. The disease is also present, albeit with different rates, in all neighboring countries. Throughout the Amazonian biome, leprosy is mainly found in hyperendemic foci, conducive to the emergence and transmission of drug-resistant strains.
Summary
The deepening of current knowledge on leprosy reservoirs, transmission, and therapeutic issues, with the One Health approach and the help of molecular biology, will allow a better understanding and management of the public health issues and challenges related to leprosy in Amazonia.
Collapse
|
32
|
Ploemacher T, Faber WR, Menke H, Rutten V, Pieters T. Reservoirs and transmission routes of leprosy; A systematic review. PLoS Negl Trop Dis 2020; 14:e0008276. [PMID: 32339201 PMCID: PMC7205316 DOI: 10.1371/journal.pntd.0008276] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 05/07/2020] [Accepted: 04/07/2020] [Indexed: 01/08/2023] Open
Abstract
Leprosy is a chronic infectious disease caused by Mycobacterium leprae (M. leprae) and the more recently discovered Mycobacterium lepromatosis (M. lepromatosis). The two leprosy bacilli cause similar pathologic conditions. They primarily target the skin and the peripheral nervous system. Currently it is considered a Neglected Tropical Disease, being endemic in specific locations within countries of the Americas, Asia, and Africa, while in Europe it is only rarely reported. The reason for a spatial inequality in the prevalence of leprosy in so-called endemic pockets within a country is still largely unexplained. A systematic review was conducted targeting leprosy transmission research data, using PubMed and Scopus as sources. Publications between January 1, 1945 and July 1, 2019 were included. The transmission pathways of M. leprae are not fully understood. Solid evidence exists of an increased risk for individuals living in close contact with leprosy patients, most likely through infectious aerosols, created by coughing and sneezing, but possibly also through direct contact. However, this systematic review underscores that human-to-human transmission is not the only way leprosy can be acquired. The transmission of this disease is probably much more complicated than was thought before. In the Americas, the nine-banded armadillo (Dasypus novemcinctus) has been established as another natural host and reservoir of M. leprae. Anthroponotic and zoonotic transmission have both been proposed as modes of contracting the disease, based on data showing identical M. leprae strains shared between humans and armadillos. More recently, in red squirrels (Sciurus vulgaris) with leprosy-like lesions in the British Isles M. leprae and M. lepromatosis DNA was detected. This finding was unexpected, because leprosy is considered a disease of humans (with the exception of the armadillo), and because it was thought that leprosy (and M. leprae) had disappeared from the United Kingdom. Furthermore, animals can be affected by other leprosy-like diseases, caused by pathogens phylogenetically closely related to M. leprae. These mycobacteria have been proposed to be grouped as a M. leprae-complex. We argue that insights from the transmission and reservoirs of members of the M. leprae-complex might be relevant for leprosy research. A better understanding of possible animal or environmental reservoirs is needed, because transmission from such reservoirs may partly explain the steady global incidence of leprosy despite effective and widespread multidrug therapy. A reduction in transmission cannot be expected to be accomplished by actions or interventions from the human healthcare domain alone, as the mechanisms involved are complex. Therefore, to increase our understanding of the intricate picture of leprosy transmission, we propose a One Health transdisciplinary research approach. Leprosy is a chronic infectious disease caused by Mycobacterium leprae (M. leprae) and the more recently discovered Mycobacterium lepromatosis (M. lepromatosis). The two leprosy bacilli cause similar stigmatizing pathologic conditions. M. leprae primarily targets the skin and the peripheral nervous system. Currently it is considered a Neglected Tropical Disease. The transmission pathways of M. leprae are not fully understood. Solid evidence exists of an increased risk for individuals living in close contact with leprosy patients, most likely through infectious aerosols, created by coughing and sneezing, but possibly also through direct contact. However, this systematic review underscores that human-to-human transmission is not the only way leprosy can be acquired. Anthroponotic and zoonotic transmission have both been proposed as modes of contracting the disease, based on data showing identical M. leprae strains shared between humans and armadillos. A better understanding of possible animal or environmental reservoirs is needed, because transmission from such reservoirs may partly explain the steady global incidence of leprosy despite effective and widespread multidrug therapy. Reducing transmission cannot be expected from the human healthcare domain alone, as the mechanisms involved are complex. Therefore, we propose a One Health transdisciplinary research approach.
Collapse
Affiliation(s)
- Thomas Ploemacher
- Faculty of Science, Freudenthal Institute & Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht, the Netherlands
| | - William R. Faber
- Faculty of Medicine, Department of Dermatology, University of Amsterdam, Amsterdam, the Netherlands
| | - Henk Menke
- Faculty of Science, Freudenthal Institute & Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht, the Netherlands
| | - Victor Rutten
- Faculty of Veterinary Medicine, Utrecht University, the Netherlands
- Dept of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Republic of South Africa
| | - Toine Pieters
- Faculty of Science, Freudenthal Institute & Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht, the Netherlands
- * E-mail:
| |
Collapse
|
33
|
Shen L, Viljoen A, Villaume S, Joe M, Halloum I, Chêne L, Méry A, Fabre E, Takegawa K, Lowary TL, Vincent SP, Kremer L, Guérardel Y, Mariller C. The endogenous galactofuranosidase GlfH1 hydrolyzes mycobacterial arabinogalactan. J Biol Chem 2020; 295:5110-5123. [PMID: 32107309 DOI: 10.1074/jbc.ra119.011817] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 02/11/2020] [Indexed: 12/14/2022] Open
Abstract
Despite impressive progress made over the past 20 years in our understanding of mycolylarabinogalactan-peptidoglycan (mAGP) biogenesis, the mechanisms by which the tubercle bacillus Mycobacterium tuberculosis adapts its cell wall structure and composition to various environmental conditions, especially during infection, remain poorly understood. Being the central portion of the mAGP complex, arabinogalactan (AG) is believed to be the constituent of the mycobacterial cell envelope that undergoes the least structural changes, but no reports exist supporting this assumption. Herein, using recombinantly expressed mycobacterial protein, bioinformatics analyses, and kinetic and biochemical assays, we demonstrate that the AG can be remodeled by a mycobacterial endogenous enzyme. In particular, we found that the mycobacterial GlfH1 (Rv3096) protein exhibits exo-β-d-galactofuranose hydrolase activity and is capable of hydrolyzing the galactan chain of AG by recurrent cleavage of the terminal β-(1,5) and β-(1,6)-Galf linkages. The characterization of this galactosidase represents a first step toward understanding the remodeling of mycobacterial AG.
Collapse
Affiliation(s)
- Lin Shen
- Univ. Lille, CNRS, UMR8576 - UGSF - Unit[c33c]zpi;● de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France
| | - Albertus Viljoen
- Institut de Recherche en Infectiologie de Montpellier (IRIM), UMR9004 - CNRS/UM, 1919 route de Mende, 34293 Montpellier cedex 5, France
| | - Sydney Villaume
- Laboratoire de Chimie Bio-Organic (CBO), Université de Namur, rue de Bruxelles 61, 5000 Namur, Belgium
| | - Maju Joe
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta, Edmonton AB T6G 2G2, Canada
| | - Iman Halloum
- Institut de Recherche en Infectiologie de Montpellier (IRIM), UMR9004 - CNRS/UM, 1919 route de Mende, 34293 Montpellier cedex 5, France
| | - Loïc Chêne
- Laboratoire de Chimie Bio-Organic (CBO), Université de Namur, rue de Bruxelles 61, 5000 Namur, Belgium
| | - Alexandre Méry
- Univ. Lille, CNRS, UMR8576 - UGSF - Unit[c33c]zpi;● de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France
| | - Emeline Fabre
- Univ. Lille, CNRS, UMR8576 - UGSF - Unit[c33c]zpi;● de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France
| | - Kaoru Takegawa
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Todd L Lowary
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta, Edmonton AB T6G 2G2, Canada
| | - Stéphane P Vincent
- Laboratoire de Chimie Bio-Organic (CBO), Université de Namur, rue de Bruxelles 61, 5000 Namur, Belgium
| | - Laurent Kremer
- Institut de Recherche en Infectiologie de Montpellier (IRIM), UMR9004 - CNRS/UM, 1919 route de Mende, 34293 Montpellier cedex 5, France.,INSERM, Institut de Recherche en Infectiologie de Montpellier, 34293 Montpellier, France
| | - Yann Guérardel
- Univ. Lille, CNRS, UMR8576 - UGSF - Unit[c33c]zpi;● de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France
| | - Christophe Mariller
- Univ. Lille, CNRS, UMR8576 - UGSF - Unit[c33c]zpi;● de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France
| |
Collapse
|
34
|
Zhang X, Xia S, Zhao R, Wang H. Effect of temperature on opportunistic pathogen gene markers and microbial communities in long-term stored roof-harvested rainwater. ENVIRONMENTAL RESEARCH 2020; 181:108917. [PMID: 31759642 DOI: 10.1016/j.envres.2019.108917] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 11/07/2019] [Accepted: 11/10/2019] [Indexed: 06/10/2023]
Abstract
Roof-harvested rainwater (RHRW) has received increasing attention in recent years as an alternative water source for domestic use, yet its biological stability during storage is not fully understood. This study investigated the effects of temperature (4 °C, 20 °C and 30 °C) on the microbiological characteristics of RHRW over a storage period of 60 days by targeting different microbial groups including total bacteria and fecal indictor Escherichia coli, bacterial opportunistic pathogen genera and species (Legionella spp, Legionella pneumophila, Mycobacterium spp, Mycobacterium avium, Pseudomonas aeruginosa), and two amoebas (Acanthamoeba and Vermamoeba vermiformis). The rainwater chemistry demonstrated no obvious change during storage. The highest biomass was observed in RHRW stored at 30 °C, as measured by heterotrophic bacterial counts, adenosine triphosphate, and 16S rRNA gene numbers. Gene markers of E. coli, Legionella spp., P. aeruginosa, and V. vermiformis were detected in fresh RHRW and can persist during RHRW storage; whereas P. aeruginosa was the only species demonstrated significant regrowth at higher storage temperatures (P < 0.05). Acanthamoeba spp. was only detected in RHRW after 50 days of storage at three investigated temperatures, highlighting increased health risks in long-term stored RHRW. Bacterial community compositions were significantly different in RHRW stored at different temperatures, with increased variations among triplicate storage bottles noted at higher temperatures along with storage time. The results provide insights into RHRW storage practices in terms of mitigating microbial contamination risks.
Collapse
Affiliation(s)
- Xiaodong Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Siqing Xia
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Renzun Zhao
- Civil, Architectural and Environmental Engineering Department, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA
| | - Hong Wang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| |
Collapse
|
35
|
Aceng FL, Kawuma HJ, Majwala R, Lamunu M, Ario AR, Rwabinumi FM, Harris JR, Zhu BP. Spatial distribution and temporal trends of leprosy in Uganda, 2012-2016: a retrospective analysis of public health surveillance data. BMC Infect Dis 2019; 19:1016. [PMID: 31783799 PMCID: PMC6884789 DOI: 10.1186/s12879-019-4601-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 10/28/2019] [Indexed: 11/23/2022] Open
Abstract
Background Leprosy is a neglected disease that poses a significant challenge to public health in Uganda. The disease is endemic in Uganda, with 40% of the districts in the country affected in 2016, when 42 out of 112 districts notified the National Tuberculosis and Leprosy Program (NTLP) of at least one case of leprosy. We determined the spatial and temporal trends of leprosy in Uganda during 2012–2016 to inform control measures. Methods We analyzed quarterly leprosy case-finding data, reported from districts to the Uganda National Leprosy Surveillance system (managed by NTLP) during 2012–2016. We calculated new case detection by reporting district and administrative regions of treatment during this period. New case detection was defined as new leprosy cases diagnosed by the Uganda health services divided by regional population; population estimates were based on 2014 census data. We used logistic regression analysis in Epi-Info version 7.2.0 to determine temporal trends. Population estimates were based on 2014 census data. We used QGIS software to draw choropleth maps showing leprosy case detection rates, assumed to approximate the new case detection rates, per 100,000 population. Results During 2012–2016, there was 7% annual decrease in reported leprosy cases in Uganda each year (p = 0.0001), largely driven by declines in the eastern (14%/year, p = 0.0008) and central (11%/year, p = 0.03) regions. Declines in reported cases in the western (9%/year, p = 0.12) and northern (4%/year, p = 0.16) regions were not significant. The combined new case detection rates from 2012 to 2016 for the ten most-affected districts showed that 70% were from the northern region, 20% from the eastern, 10% from the western and 10% from the central regions. Conclusion There was a decreasing trend in leprosy new case detection in Uganda during 2012–2016; however, the declining trends were not consistent in all regions. The Northern region consistently identified more leprosy cases compared to the other regions. We recommend evaluation of the leprosy surveillance system to ascertain the leprosy situation.
Collapse
Affiliation(s)
- Freda Loy Aceng
- Uganda Public Health Fellowship Program, P.O. Box 7072, Kampala, Uganda. .,National Tuberculosis and Leprosy Program, Ministry of Health, Kampala, Uganda.
| | - Herman-Joseph Kawuma
- National Tuberculosis and Leprosy Program, Ministry of Health, Kampala, Uganda.,German Leprosy and TB Relief Association, Kampala, Uganda
| | - Robert Majwala
- Uganda Public Health Fellowship Program, P.O. Box 7072, Kampala, Uganda.,German Leprosy and TB Relief Association, Kampala, Uganda
| | - Maureen Lamunu
- National Tuberculosis and Leprosy Program, Ministry of Health, Kampala, Uganda.,German Leprosy and TB Relief Association, Kampala, Uganda
| | | | | | - Julie R Harris
- Workforce and Institute Development Branch, Division of Global Health Protection, Center for Global Health, US Centers for Disease Control and Prevention, Atlanta, USA
| | - Bao-Ping Zhu
- US Centers for Disease Control and Prevention, Kampala, Uganda.,Division of Global Health Protection, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, USA
| |
Collapse
|
36
|
Long JJ, Luna EK, Jackson M, Wheat W, Jahn CE, Leach JE. Interactions of free-living amoebae with the rice fungal pathogen, Rhizoctonia solani. BMC Res Notes 2019; 12:746. [PMID: 31730018 PMCID: PMC6858675 DOI: 10.1186/s13104-019-4802-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 11/12/2019] [Indexed: 11/13/2022] Open
Abstract
Objective Rhizoctonia solani is a soil-borne fungal pathogen of many important crop plants. In rice, R. solani causes sheath blight disease, which results in devastating grain yield and quality losses. Few methods are available to control this pathogen and classic single gene resistance mechanisms in rice plants have not been identified. We hypothesize that alternate means of control are available in the environment including free-living amoebae. Amoebae are soil-, water- and air-borne microorganisms that are predominantly heterotrophic. Many amoeba species are mycophagous, and several harm their prey using mechanisms other than phagocytosis. Here, we used light and scanning electron microscopy to survey the interactions of R. solani with four amoeba species, with the goal of identifying amoebae species with potential for biocontrol. Results We observed a wide range of responses during interactions of R. solani with four different free-living amoebae. Two Acanthamoeba species encyst in co-cultures with R. solani at higher rates than medium without R. solani. Vermamoeba vermiformis (formerly Hartmanella vermiformis) attach to R. solani mycelium and are associated with mycelial shriveling and perforations of fungal cell walls, indicating an antagonistic interaction. No phenotypic changes were observed in co-cultures of Dictyostelium discoideum and R. solani.
Collapse
Affiliation(s)
- John J Long
- Department of Plant Pathology, The Ohio State University, Columbus, OH, USA.,Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO, USA
| | - Emily K Luna
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO, USA
| | - Mary Jackson
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| | - William Wheat
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Courtney E Jahn
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO, USA
| | - Jan E Leach
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
37
|
Chavarro-Portillo B, Soto CY, Guerrero MI. Mycobacterium leprae's evolution and environmental adaptation. Acta Trop 2019; 197:105041. [PMID: 31152726 DOI: 10.1016/j.actatropica.2019.105041] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 05/28/2019] [Accepted: 05/28/2019] [Indexed: 11/24/2022]
Abstract
Leprosy is an ancient disease caused by the acid-fast bacillus Mycobacterium leprae, also known as Hansen's bacillus. M. leprae is an obligate intracellular microorganism with a marked Schwann cell tropism and is the only human pathogen capable of invading the superficial peripheral nerves. The transmission mechanism of M. leprae is not fully understood; however, the nasal mucosa is accepted as main route of M. leprae entry to the human host. The complete sequencing and the comparative genome analysis show that M. leprae underwent a genome reductive evolution process, as result of lifestyle change and adaptation to different environments; some of lost genes are homologous to those of host cells. Thus, M. leprae reduced its genome size to 3.3 Mbp, contributing to obtain the lowest GC content (approximately 58%) among mycobacteria. The M. leprae genome contains 1614 open reading frames coding for functional proteins, and 1310 pseudogenes corresponding to 41% of the genome, approximately. Comparative analyses to different microorganisms showed that M. leprae possesses the highest content of pseudogenes among pathogenic and non-pathogenic bacteria and archaea. The pathogen adaptation into host cells, as the Schwann cells, brought about the reduction of the genome and induced multiple gene inactivation. The present review highlights the characteristics of genome's reductive evolution that M. leprae experiences in the genetic aspects compared with other pathogens. The possible mechanisms of pseudogenes formation are discussed.
Collapse
|
38
|
Survival of Mycobacterium leprae and association with Acanthamoeba from environmental samples in the inhabitant areas of active leprosy cases: A cross sectional study from endemic pockets of Purulia, West Bengal. INFECTION GENETICS AND EVOLUTION 2019; 72:199-204. [DOI: 10.1016/j.meegid.2019.01.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 11/25/2018] [Accepted: 01/11/2019] [Indexed: 11/19/2022]
|
39
|
Scheid PL. Vermamoeba vermiformis - A Free-Living Amoeba with Public Health and Environmental Health Significance. ACTA ACUST UNITED AC 2019. [DOI: 10.2174/1874421401907010040] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Many case reports emphasize the fact that Free-Living Amoebae (FLA) can relatively easily get in contact with humans or animals. The presence of several facultative parasitic FLA in habitats related to human activities supports their public health relevance. While some strains of Acanthamoeba,Naegleria fowleri,Balamuthia mandrillarisand several other FLA have been described as facultative human pathogens, it remains controversial whetherVermamoeba vermiformisstrains may have a pathogenic potential, or whether this FLA is just an incidental contaminant in a range of human cases. However, several cases support its role as a human parasite, either as the only etiological agent, or in combination with other pathogens. Additionally, a wide range of FLA is known as vectors of microorganisms (endocytobionts), hereby emphasizing their environmental significance. Among those FLA serving as hosts for and vectors of (pathogenic) endocytobionts, there are also descriptions ofV. vermiformisas a vehicle and a reservoir of those endocytobionts. The involvement in animal and human health, the role as vector of pathogenic microorganisms and the pathogenicity in cell cultures, led to the assumption thatV. vermiformisshould be considered relevant in terms of public health and environmental health.
Collapse
|
40
|
Detection of Mycobacterium leprae DNA in soil: multiple needles in the haystack. Sci Rep 2019; 9:3165. [PMID: 30816338 PMCID: PMC6395756 DOI: 10.1038/s41598-019-39746-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 01/25/2019] [Indexed: 01/09/2023] Open
Abstract
Leprosy is an infectious disease caused by Mycobacterium leprae affecting the skin and nerves. Despite decades of availability of adequate treatment, transmission is unabated and transmission routes are not completely understood. Despite the general assumption that untreated M. leprae infected humans represent the major source of transmission, scarce reports indicate that environmental sources could also play a role as a reservoir. We investigated whether M. leprae DNA is present in soil of regions where leprosy is endemic or areas with possible animal reservoirs (armadillos and red squirrels). Soil samples (n = 73) were collected in Bangladesh, Suriname and the British Isles. Presence of M. leprae DNA was determined by RLEP PCR and genotypes were further identified by Sanger sequencing. M. leprae DNA was identified in 16.0% of soil from houses of leprosy patients (Bangladesh), in 10.7% from armadillos’ holes (Suriname) and in 5% from the habitat of lepromatous red squirrels (British Isles). Genotype 1 was found in Bangladesh whilst in Suriname the genotype was 1 or 2. M. leprae DNA can be detected in soil near human and animal sources, suggesting that environmental sources represent (temporary) reservoirs for M. leprae.
Collapse
|
41
|
Ferreira JDS, Souza Oliveira DA, Santos JP, Ribeiro CCDU, Baêta BA, Teixeira RC, Neumann ADS, Rosa PS, Pessolani MCV, Moraes MO, Bechara GH, de Oliveira PL, Sorgine MHF, Suffys PN, Fontes ANB, Bell-Sakyi L, Fonseca AH, Lara FA. Ticks as potential vectors of Mycobacterium leprae: Use of tick cell lines to culture the bacilli and generate transgenic strains. PLoS Negl Trop Dis 2018; 12:e0007001. [PMID: 30566440 PMCID: PMC6326517 DOI: 10.1371/journal.pntd.0007001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 01/09/2019] [Accepted: 11/14/2018] [Indexed: 01/28/2023] Open
Abstract
Leprosy is an infectious disease caused by Mycobacterium leprae and frequently resulting in irreversible deformities and disabilities. Ticks play an important role in infectious disease transmission due to their low host specificity, worldwide distribution, and the biological ability to support transovarial transmission of a wide spectrum of pathogens, including viruses, bacteria and protozoa. To investigate a possible role for ticks as vectors of leprosy, we assessed transovarial transmission of M. leprae in artificially-fed adult female Amblyomma sculptum ticks, and infection and growth of M. leprae in tick cell lines. Our results revealed M. leprae RNA and antigens persisting in the midgut and present in the ovaries of adult female A. sculptum at least 2 days after oral infection, and present in their progeny (eggs and larvae), which demonstrates the occurrence of transovarial transmission of this pathogen. Infected tick larvae were able to inoculate viable bacilli during blood-feeding on a rabbit. Moreover, following inoculation with M. leprae, the Ixodes scapularis embryo-derived tick cell line IDE8 supported a detectable increase in the number of bacilli for at least 20 days, presenting a doubling time of approximately 12 days. As far as we know, this is the first in vitro cellular system able to promote growth of M. leprae. Finally, we successfully transformed a clinical M. leprae isolate by inserting the reporter plasmid pCHERRY3; transformed bacteria infected and grew in IDE8 cells over a 2-month period. Taken together, our data not only support the hypothesis that ticks may have the potential to act as a reservoir and/or vector of leprosy, but also suggest the feasibility of technological development of tick cell lines as a tool for large-scale production of M. leprae bacteria, as well as describing for the first time a method for their transformation. Leprosy is a slow-progressing and extremely debilitating disease; the armadillo is the only animal model able to mimic the symptoms observed in humans. In addition, the causative agent, Mycobacterium leprae, is not cultivable in vitro. Due to these constraints the chain of transmission is still not yet completely understood. We know, however, that at least two animals, armadillos in the Americas and red squirrels in the UK, are natural reservoirs of the bacillus, although their role in disease epidemiology is unclear. This information raised the following question: Can ticks carry leprosy from wild animals to humans? In the present study we demonstrated that artificially-infected female cayenne ticks are able to transmit the bacillus to their offspring, which were then able to transmit it to rabbits during bloodfeeding. We were able to grow M. leprae in vitro in a tick cell line for the first time. We also generated the first transgenic M. leprae strain, making the pathogen fluorescent in order to monitor its viability in real time. We believe that this new methodology will boost the screening of new drugs useful for control of leprosy, as well as improving understanding of how M. leprae causes disease.
Collapse
Affiliation(s)
- Jéssica da Silva Ferreira
- Lab. de Microbiologia Celular, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de janeiro, Brazil
| | | | - João Pedro Santos
- Lab. de Microbiologia Celular, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de janeiro, Brazil
| | - Carla Carolina Dias Uzedo Ribeiro
- Department of Animal Parasitology, Institute of Veterinary Medicine, Federal Rural University of Rio de Janeiro, Rio de janeiro, Brazil
| | - Bruna A. Baêta
- Department of Animal Parasitology, Institute of Veterinary Medicine, Federal Rural University of Rio de Janeiro, Rio de janeiro, Brazil
| | - Rafaella Câmara Teixeira
- Department of Animal Parasitology, Institute of Veterinary Medicine, Federal Rural University of Rio de Janeiro, Rio de janeiro, Brazil
| | - Arthur da Silva Neumann
- Lab. de Microbiologia Celular, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de janeiro, Brazil
| | | | | | - Milton Ozório Moraes
- Lab. de Hanseníase, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de janeiro, Brazil
| | - Gervásio Henrique Bechara
- School of Agricultural Sciences and Veterinary Medicine, Pontifical Catholic University of Parana, Curitiba, Brazil
| | - Pedro L. de Oliveira
- Lab. de Bioquímica de Artrópodes Hematófagos, Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcos Henrique Ferreira Sorgine
- Lab. de Bioquímica de Artrópodes Hematófagos, Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Philip Noel Suffys
- Lab. de Biologia Molecular Aplicada a Micobactérias, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Amanda Nogueira Brum Fontes
- Lab. de Biologia Molecular Aplicada a Micobactérias, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Lesley Bell-Sakyi
- Department of Infection Biology, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Adivaldo H. Fonseca
- Department of Animal Parasitology, Institute of Veterinary Medicine, Federal Rural University of Rio de Janeiro, Rio de janeiro, Brazil
| | - Flavio Alves Lara
- Lab. de Microbiologia Celular, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de janeiro, Brazil
- * E-mail:
| |
Collapse
|
42
|
Abstract
Humans encounter mycobacterial species due to their ubiquity in different environmental niches. In many individuals, pathogenic mycobacterial species may breach our first-line barrier defenses of the innate immune system and modulate the activation of phagocytes to cause disease of the respiratory tract or the skin and soft tissues, sometimes resulting in disseminated infection. Cutaneous mycobacterial infections may cause a wide range of clinical manifestations, which are divided into four main disease categories: (i) cutaneous manifestations of Mycobacterium tuberculosis infection, (ii) Buruli ulcer caused by Mycobacterium ulcerans and other related slowly growing mycobacteria, (iii) leprosy caused by Mycobacterium leprae and Mycobacterium lepromatosis, and (iv) cutaneous infections caused by rapidly growing mycobacteria. Clinically, cutaneous mycobacterial infections present with widely different clinical presentations, including cellulitis, nonhealing ulcers, subacute or chronic nodular lesions, abscesses, superficial lymphadenitis, verrucous lesions, and other types of findings. Mycobacterial infections of the skin and subcutaneous tissue are associated with important stigma, deformity, and disability. Geography-based environmental exposures influence the epidemiology of cutaneous mycobacterial infections. Cutaneous tuberculosis exhibits different clinical phenotypes acquired through different routes, including via extrinsic inoculation of the tuberculous bacilli and dissemination to the skin from other sites, or represents hypersensitivity reactions to M. tuberculosis infection. In many settings, leprosy remains an important cause of neurological impairment, deformity, limb loss, and stigma. Mycobacterium lepromatosis, a mycobacterial species related to M. leprae, is linked to diffuse lepromatous leprosy of Lucio and Latapí. Mycobacterium ulcerans produces a mycolactone toxin that leads to subcutaneous tissue destruction and immunosuppression, resulting in deep ulcerations that often produce substantial disfigurement and disability. Mycobacterium marinum, a close relative of M. ulcerans, is an important cause of cutaneous sporotrichoid nodular lymphangitic lesions. Among patients with advanced immunosuppression, Mycobacterium kansasii, the Mycobacterium avium-intracellulare complex, and Mycobacterium haemophilum may cause cutaneous or disseminated disease. Rapidly growing mycobacteria, including the Mycobacterium abscessus group, Mycobacterium chelonei, and Mycobacterium fortuitum, are increasingly recognized pathogens in cutaneous infections associated particularly with plastic surgery and cosmetic procedures. Skin biopsies of cutaneous lesions to identify acid-fast staining bacilli and cultures represent the cornerstone of diagnosis. Additionally, histopathological evaluation of skin biopsy specimens may be useful in identifying leprosy, Buruli ulcer, and cutaneous tuberculosis. Molecular assays are useful in some cases. The treatment for cutaneous mycobacterial infections depends on the specific pathogen and therefore requires a careful consideration of antimicrobial choices based on official treatment guidelines.
Collapse
|
43
|
Prudent E, Raoult D. Fluorescence in situ hybridization, a complementary molecular tool for the clinical diagnosis of infectious diseases by intracellular and fastidious bacteria. FEMS Microbiol Rev 2018; 43:88-107. [DOI: 10.1093/femsre/fuy040] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 11/07/2018] [Indexed: 12/16/2022] Open
Affiliation(s)
- Elsa Prudent
- Aix Marseille Université, IRD, APHM, MEPHI, IHU-Méditerranée Infection, 19–21 Boulevard Jean Moulin, 13005 Marseille, France
| | - Didier Raoult
- Aix Marseille Université, IRD, APHM, MEPHI, IHU-Méditerranée Infection, 19–21 Boulevard Jean Moulin, 13005 Marseille, France
| |
Collapse
|
44
|
Delafont V, Rodier MH, Maisonneuve E, Cateau E. Vermamoeba vermiformis: a Free-Living Amoeba of Interest. MICROBIAL ECOLOGY 2018; 76:991-1001. [PMID: 29737382 DOI: 10.1007/s00248-018-1199-8] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 04/30/2018] [Indexed: 05/22/2023]
Abstract
Free-living amoebae are protists that are widely distributed in the environment including water, soil, and air. Although the amoebae of the genus Acanthamoeba are still the most studied, other species, such as Vermamoeba vermiformis (formerly Hartmannella vermiformis), are the subject of increased interest. Found in natural or man-made aquatic environments, V. vermiformis can support the multiplication of other microorganisms and is able to harbor and potentially protect pathogenic bacteria or viruses. This feature is to be noted because of the presence of this thermotolerant amoeba in hospital water networks. As a consequence, this protist could be implicated in health concerns and be indirectly responsible for healthcare-related infections. This review highlights, among others, the consequences of V. vermiformis relationships with other microorganisms and shows that this free-living amoeba species is therefore of interest for public health.
Collapse
Affiliation(s)
- Vincent Delafont
- Ecologie et Biologie des Interactions, UMR CNRS 7267, Equipe Microbiologie de l'Eau, Université de Poitiers, 1 rue Georges Bonnet, 86022, Poitiers Cedex, France
| | - Marie-Helene Rodier
- Ecologie et Biologie des Interactions, UMR CNRS 7267, Equipe Microbiologie de l'Eau, Université de Poitiers, 1 rue Georges Bonnet, 86022, Poitiers Cedex, France
- Laboratoire de parasitologie et mycologie, CHU La Milètrie, 86021, Poitiers Cedex, France
| | - Elodie Maisonneuve
- Ecologie et Biologie des Interactions, UMR CNRS 7267, Equipe Microbiologie de l'Eau, Université de Poitiers, 1 rue Georges Bonnet, 86022, Poitiers Cedex, France
| | - Estelle Cateau
- Ecologie et Biologie des Interactions, UMR CNRS 7267, Equipe Microbiologie de l'Eau, Université de Poitiers, 1 rue Georges Bonnet, 86022, Poitiers Cedex, France.
- Laboratoire de parasitologie et mycologie, CHU La Milètrie, 86021, Poitiers Cedex, France.
| |
Collapse
|
45
|
Long JJ, Jahn CE, Sánchez-Hidalgo A, Wheat W, Jackson M, Gonzalez-Juarrero M, Leach JE. Interactions of free-living amoebae with rice bacterial pathogens Xanthomonas oryzae pathovars oryzae and oryzicola. PLoS One 2018; 13:e0202941. [PMID: 30142182 PMCID: PMC6108499 DOI: 10.1371/journal.pone.0202941] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 06/23/2018] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Free-living amoebae (FLA) are voracious feeders, consuming bacteria and other microbes during colonization of the phytobiome. FLA are also known to secrete bacteriocidal or bacteriostatic compounds into their growth environment. METHODOLOGY AND PRINCIPAL FINDINGS Here, we explore the impacts of co-cultivation of five FLA species, including Acanthamoeba castellanii, A. lenticulata, A. polyphaga, Dictyostelium discoideum and Vermamoeba vermiformis, on survival of two devastating bacterial pathogens of rice, Xanthomonas oryzae pathovars (pv.) oryzae and oryzicola. In co-cultivation assays, the five FLA species were either bacteriostatic or bactericidal to X. oryzae pv. oryzae and X. oryzae pv. oryzicola. Despite these effects, bacteria were rarely detected inside amoebal cells. Furthermore, amoebae did not disrupt X. oryzae biofilms. The bactericidal effects persisted when bacteria were added to a cell-free supernatant from amoebal cultures, suggesting some amoebae produce an extracellular bactericidal compound. CONCLUSIONS/SIGNIFICANCE This work establishes novel, basal dynamics between important plant pathogenic bacteria and diverse amoebae, and lays the framework for future mechanistic studies.
Collapse
Affiliation(s)
- John J. Long
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, Colorado, United States of America
| | - Courtney E. Jahn
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, Colorado, United States of America
| | - Andrea Sánchez-Hidalgo
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - William Wheat
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Mary Jackson
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Mercedes Gonzalez-Juarrero
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Jan E. Leach
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, Colorado, United States of America
| |
Collapse
|
46
|
Evidence of zoonotic leprosy in Pará, Brazilian Amazon, and risks associated with human contact or consumption of armadillos. PLoS Negl Trop Dis 2018; 12:e0006532. [PMID: 29953440 PMCID: PMC6023134 DOI: 10.1371/journal.pntd.0006532] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 05/15/2018] [Indexed: 11/19/2022] Open
Abstract
Mycobacterium leprae (M. leprae) is a human pathogen and the causative agent for leprosy, a chronic disease characterized by lesions of the skin and peripheral nerve damage. Zoonotic transmission of M. leprae to humans by nine-banded armadillos (Dasypus novemcinctus) has been shown to occur in the southern United States, mainly in Texas, Louisiana, and Florida. Nine-banded armadillos are also common in South America, and residents living in some areas in Brazil hunt and kill armadillos as a dietary source of protein. This study examines the extent of M. leprae infection in wild armadillos and whether these New World mammals may be a natural reservoir for leprosy transmission in Brazil, similar to the situation in the southern states of the U.S. The presence of the M. leprae-specific repetitive sequence RLEP was detected by PCR amplification in purified DNA extracted from armadillo spleen and liver tissue samples. A positive RLEP signal was confirmed in 62% of the armadillos (10/16), indicating high rates of infection with M. leprae. Immunohistochemistry of sections of infected armadillo spleens revealed mycobacterial DNA and cell wall constituents in situ detected by SYBR Gold and auramine/rhodamine staining techniques, respectively. The M. leprae-specific antigen, phenolic glycolipid I (PGL-I) was detected in spleen sections using a rabbit polyclonal antibody specific for PGL-I. Anti-PGL-I titers were assessed by ELISA in sera from 146 inhabitants of Belterra, a hyperendemic city located in western Pará state in Brazil. A positive anti-PGL-I titer is a known biomarker for M. leprae infection in both humans and armadillos. Individuals who consumed armadillo meat most frequently (more than once per month) showed a significantly higher anti-PGL-I titer than those who did not eat or ate less frequently than once per month. Armadillos infected with M. leprae represent a potential environmental reservoir. Consequently, people who hunt, kill, or process or eat armadillo meat are at a higher risk for infection with M. leprae from these animals.
Collapse
|
47
|
Sun S, Noorian P, McDougald D. Dual Role of Mechanisms Involved in Resistance to Predation by Protozoa and Virulence to Humans. Front Microbiol 2018; 9:1017. [PMID: 29867902 PMCID: PMC5967200 DOI: 10.3389/fmicb.2018.01017] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 04/30/2018] [Indexed: 12/12/2022] Open
Abstract
Most opportunistic pathogens transit in the environment between hosts and the environment plays a significant role in the evolution of protective traits. The coincidental evolution hypothesis suggests that virulence factors arose as a response to other selective pressures rather for virulence per se. This idea is strongly supported by the elucidation of bacterial-protozoal interactions. In response to protozoan predation, bacteria have evolved various defensive mechanisms which may also function as virulence factors. In this review, we summarize the dual role of factors involved in both grazing resistance and human pathogenesis, and compare the traits using model intracellular and extracellular pathogens. Intracellular pathogens rely on active invasion, blocking of the phagosome and lysosome fusion and resistance to phagocytic digestion to successfully invade host cells. In contrast, extracellular pathogens utilize toxin secretion and biofilm formation to avoid internalization by phagocytes. The complexity and diversity of bacterial virulence factors whose evolution is driven by protozoan predation, highlights the importance of protozoa in evolution of opportunistic pathogens.
Collapse
Affiliation(s)
- Shuyang Sun
- ithree Institute, University of Technology Sydney, Sydney, NSW, Australia
| | - Parisa Noorian
- ithree Institute, University of Technology Sydney, Sydney, NSW, Australia.,School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Diane McDougald
- ithree Institute, University of Technology Sydney, Sydney, NSW, Australia.,Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
48
|
Schaap P, Schilde C. Encystation: the most prevalent and underinvestigated differentiation pathway of eukaryotes. MICROBIOLOGY-SGM 2018; 164:727-739. [PMID: 29620506 DOI: 10.1099/mic.0.000653] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Not long ago, protists were considered one of four eukaryote kingdoms, but recent gene-based phylogenies show that they contribute to all nine eukaryote subdomains. The former kingdoms of animals, plants and fungi are now relegated to lower ranks within subdomains. Most unicellular protists respond to adverse conditions by differentiating into dormant walled cysts. As cysts, they survive long periods of starvation, drought and other environmental threats, only to re-emerge when conditions improve. For protists pathogens, the resilience of their cysts can prevent successful treatment or eradication of the disease. In this context, effort has been directed towards understanding the molecular mechanisms that control encystation. We here firstly summarize the prevalence of encystation across protists and next focus on Amoebozoa, where most of the health-related issues occur. We review current data on processes and genes involved in encystation of the obligate parasite Entamoeba histolytica and the opportunistic pathogen Acanthamoeba. We show how the cAMP-mediated signalling pathway that controls spore and stalk cell encapsulation in Dictyostelium fruiting bodies could be retraced to a stress-induced pathway controlling encystation in solitary Amoebozoa. We highlight the conservation and prevalence of cAMP signalling genes in Amoebozoan genomes and the suprisingly large and varied repertoire of proteins for sensing and processing environmental signals in individual species.
Collapse
Affiliation(s)
- Pauline Schaap
- School of Life Sciences, University of Dundee, Dundee DD15EH, UK
| | | |
Collapse
|
49
|
Paling S, Wahyuni R, Ni'matuzahroh, Winarni D, Iswahyudi, Astari L, Adriaty D, Agusni I, Izumi S. ACANTHAMOEBA SP.S-11 PHAGOCYTOTIC ACTIVITY ON MYCOBACTERIUM LEPRAE IN DIFFERENT NUTRIENT CONDITIONS. Afr J Infect Dis 2018; 12:44-48. [PMID: 29619429 PMCID: PMC5876777 DOI: 10.2101/ajid.12v1s.5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 10/22/2017] [Accepted: 10/24/2017] [Indexed: 11/11/2022] Open
Abstract
Background: Mycobacterium leprae (M. leprae) is a pathogenic bacterium that causes leprosy. The presence of M. leprae in the environment is supported by microorganisms that act as the new host for M. leprae. Acanthamoeba’s potential to be a host of M. leprae in the environment. Acanthamoeba sp. is Free Living Amoeba (FLA) that classified as holozoic, saprophytic, and saprozoic. The existence of nutrients in the environment influence Acanthamoeba ability to phagocytosis or pinocytosis. This study is aimed to determine Acanthamoeba sp.S-11 phagocytic activity to Mycobacterium leprae (M. leprae) which cultured in non-nutrient media and riched-nutrient media. Materials and Methods: This research conducted by culturing Acanthamoeba sp.S-11 and M. leprae on different nutrient media conditions. M. leprae intracellular DNA were isolated and amplified by M. leprae specific primers through Real Time PCR (Q-PCR). Result: The results showed that Acanthamoeba co-cultured on non-nutrient media were more active to phagocyte M. leprae than on rich-nutrient media. Conclusion: The use of non-nutrient media is recommended to optimize Acanthamoeba sp. phagocytic activity to M. leprae.
Collapse
Affiliation(s)
- Sepling Paling
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Ratna Wahyuni
- Leprosy Study Group, Institute of Tropical Disease, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Ni'matuzahroh
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Dwi Winarni
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Iswahyudi
- Leprosy Study Group, Institute of Tropical Disease, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Linda Astari
- Department of Dermatology and Venereology, Faculty of Medicine, Universitas Airlangga, Surabaya 60286, Indonesia
| | - Dinar Adriaty
- Leprosy Study Group, Institute of Tropical Disease, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Indropo Agusni
- Leprosy Study Group, Institute of Tropical Disease, Universitas Airlangga, Surabaya 60115, Indonesia.,Department of Dermatology and Venereology, Faculty of Medicine, Universitas Airlangga, Surabaya 60286, Indonesia
| | - Shinzo Izumi
- Leprosy Study Group, Institute of Tropical Disease, Universitas Airlangga, Surabaya 60115, Indonesia
| |
Collapse
|
50
|
Abstract
Nontuberculous mycobacteria (NTM) include species that colonize human epithelia, as well as species that are ubiquitous in soil and aquatic environments. NTM that primarily inhabit soil and aquatic environments include the Mycobacterium avium complex (MAC, M. avium and Mycobacterium intracellulare) and the Mycobacterium abscessus complex (MABSC, M. abscessus subspecies abscessus, massiliense, and bolletii), and can be free-living, biofilm-associated, or amoeba-associated. Although NTM are rarely pathogenic in immunocompetent individuals, those who are immunocompromised - due to either an inherited or acquired immunodeficiency - are highly susceptible to NTM infection (NTMI). Several characteristics such as biofilm formation and the ability of select NTM species to form distinct colony morphotypes all may play a role in pathogenesis not observed in the related, well-characterized pathogen Mycobacterium tuberculosis The recognition of different morphotypes of NTM has been established and characterized since the 1950s, but the mechanisms that underlie colony phenotype change and subsequent differences in pathogenicity are just beginning to be explored. Advances in genomic analysis have led to progress in identifying genes important to the pathogenesis and persistence of MAC disease as well as illuminating genetic aspects of different colony morphotypes. Here we review recent literature regarding NTM ecology and transmission, as well as the factors which regulate colony morphotype and pathogenicity.
Collapse
Affiliation(s)
- Tiffany A Claeys
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Richard T Robinson
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.
| |
Collapse
|