1
|
Luo A, Chen S, He M, Tan X, Li Z, Liu W, Liu Y. Establishment of Animal Infection Model of Spirometra Mansoni and Identification of Spirometra Mansoni by Enzyme-Linked Immunosorbent Assay. Vector Borne Zoonotic Dis 2024. [PMID: 39450467 DOI: 10.1089/vbz.2024.0051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024] Open
Abstract
Objective: Spirometra mansoni is a crucial zoonotic parasite. Its larvae are more harmful than adult worms due to their ability to migrate through the host's tissues and organs. Therefore, it is necessary to establish an animal model of spargana for observing pathological changes and exploring diagnostic techniques. Methods: In this study, we infected Kunming mice and cats without any pathogens by feeding sparganum (with the scolex and neck) in order to understand the infection cycle of S. mansoni and explore the preservation host of sparganosis. The infection of S. mansoni was determined by fecal detection and enzyme-linked immunosorbent assay (ELISA). Results: In the model of cats, the eggs of S. mansoni were found in the feces ten days after the infection. The serum-specific IgG antibodies against S. mansoni were positive in experimental groups (mice and cats), and after sixty days, the S. mansoni worms isolated from experimental groups were collected. Conclusion: In conclusion, the experimental results show that mice and cats can be stably infected with S. mansoni through feeding sparganum (with the scolex and neck). The infection method of this study has the potential to establish a practical model for investigating the diagnostic process of S. mansoni, laying the groundwork for application and development. ELISA was used to diagnose mice and cats infected with sparganosis mansoni, providing a case for non-invasive identification of animal sparganosis.
Collapse
Affiliation(s)
- Anqi Luo
- Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
- Hunan Key Laboratory of Chinese Veterinary Medicine, Changsha, China
| | - Shuyu Chen
- Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Mingye He
- YiYang Vocational & Technical College, Yiyang, China
| | - Xiaoruo Tan
- Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Zhikang Li
- Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Wei Liu
- Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Yisong Liu
- Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
- Hunan Key Laboratory of Chinese Veterinary Medicine, Changsha, China
| |
Collapse
|
2
|
Wang R, Hao J, Cao C, Li J, Zhang X. Molecular Characteristics of the Malate Dehydrogenase (MDH) Gene Family in Spirometra mansoni (Cestoda: Diphyllobothriidea). Int J Mol Sci 2024; 25:8802. [PMID: 39201488 PMCID: PMC11354392 DOI: 10.3390/ijms25168802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/08/2024] [Accepted: 08/08/2024] [Indexed: 09/02/2024] Open
Abstract
The plerocercoid larva of Spirometra mansoni can cause a parasitic zoonosis-sparganosis. Malate dehydrogenase (MDH) plays a very important role in the life activities of parasites. However, little is known about the MDH family in S. mansoni. We identified eight new MDH members in S. mansoni in this study. Clustering analysis divided SmMDHs into two groups and revealed patterns similar to the conserved motif organization. RT-qPCR suggested that five MDHs were highly expressed in the mature proglottid and that three MDHs were highly expressed in the gravid proglottid. Phylogenetic analysis revealed that SmMDHs contain both conserved family members and members in the process of further diversification. rSmMDH has an NAD binding domain, a dimer interface and a substrate binding domain. Natural SmMDH was immunolocalized in the tissues and follicles around the uterus in the mature or gravid proglottid and eggshells. The maximum forward and reverse reaction activities of rSmMDH were observed at pH 8.5 and 9.0, respectively. The optimum temperature for enzyme activity was 37 °C in the forward reaction and 40 °C in the reverse reaction. These results lay the foundation for studying the molecular functions and mechanisms of MDHs in S. mansoni and related taxa.
Collapse
Affiliation(s)
| | | | | | | | - Xi Zhang
- Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China; (R.W.); (J.H.); (C.C.); (J.L.)
| |
Collapse
|
3
|
Han LL, Lu QQ, Li YL, Zheng WW, Ren P, Liu RD, Cui J, Wang ZQ. Application of a recombinant novel trypsin from Trichinella spiralis for serodiagnosis of trichinellosis. Parasit Vectors 2024; 17:9. [PMID: 38178167 PMCID: PMC10768479 DOI: 10.1186/s13071-023-06067-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 11/26/2023] [Indexed: 01/06/2024] Open
Abstract
BACKGROUND The excretory/secretory (ES) antigen of Trichinella spiralis muscle larvae (ML) is currently the most widely used diagnostic antigen to detect T. spiralis infection. However, this antigen has certain drawbacks, such as a complicated ES antigen preparation process and lower sensitivity during the early phase of infection. The aim of this study was to investigate the features of a novel T. spiralis trypsin (TsTryp) and evaluate its potential diagnostic value for trichinellosis. METHODS The TsTryp gene was cloned and recombinant TsTryp (rTsTryp) expressed. Western blotting and an enzyme-linked immunosorbent assay (ELISA) were performed to confirm the antigenicity of rTsTryp. The expression pattern and distribution signature of TsTryp at various life-cycle stages of T. spiralis were analyzed by quantitative PCR, western blotting and the immunofluorescence test. An ELISA with rTsTryp and ML ES antigens was used to detect immunoglobulins G and M (IgG, IgM) in serum samples of infected mice, swine and humans. The seropositive results were further confirmed by western blot with rTsTryp and ML ES antigens. RESULTS TsTryp expression was observed in diverse T. spiralis life-cycle phases, with particularly high expression in the early developmental phase (intestinal infectious larvae and adults), with distribution observed mainly at the nematode outer cuticle and stichosome. rTsTryp was identified by T. spiralis-infected mouse sera and anti-rTsTryp sera. Natural TsTryp protease was detected in somatic soluble and ES antigens of the nematode. In mice infected with 200 T. spiralis ML, serum-specific IgG was first detected by rTsTryp-ELISA at 8 days post-infection (dpi), reaching 100% positivity at 12 dpi, and first detected by ES-ELISA at 10 dpi, reaching 100% positivity at 14 dpi. Specific IgG was detected by rTsTryp 2 days earlier than by ES antigens. When specific IgG was determined in serum samples from trichinellosis patients, the sensitivity of rTsTryp-ELISA and ES antigens-ELISA was 98.1% (51/52 samples) and 94.2% (49/52 samples), respectively (P = 0.308), but the specificity of rTsTryp was significantly higher than that of ES antigens (98.7% vs. 95.4%; P = 0.030). Additionally, rTsTryp conferred a lower cross-reaction, with only three serum samples in total testing positive from 11 clonorchiasis, 20 cysticercosis and 24 echinococcosis patients (1 sample from each patient group). CONCLUSIONS TsTryp was shown to be an early and highly expressed antigen at intestinal T. spiralis stages, indicating that rTsTryp represents a valuable diagnostic antigen for the serodiagnosis of early Trichinella infection.
Collapse
Affiliation(s)
- Lu Lu Han
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450001, China
| | - Qi Qi Lu
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450001, China
| | - Yang Li Li
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450001, China
| | - Wen Wen Zheng
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450001, China
| | - Pian Ren
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450001, China
| | - Ruo Dan Liu
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450001, China
| | - Jing Cui
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450001, China.
| | - Zhong Quan Wang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
4
|
Han LL, Lu QQ, Zheng WW, Li YL, Song YY, Zhang XZ, Long SR, Liu RD, Wang ZQ, Cui J. A novel trypsin of Trichinella spiralis mediates larval invasion of gut epithelium via binding to PAR2 and activating ERK1/2 pathway. PLoS Negl Trop Dis 2024; 18:e0011874. [PMID: 38166153 PMCID: PMC10786404 DOI: 10.1371/journal.pntd.0011874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/12/2024] [Accepted: 12/19/2023] [Indexed: 01/04/2024] Open
Abstract
BACKGROUND Proteases secreted by Trichinella spiralis intestinal infective larvae (IIL) play an important role in larval invasion and pathogenesis. However, the mechanism through which proteases mediate larval invasion of intestinal epithelial cells (IECs) remains unclear. A novel T. spiralis trypsin (TsTryp) was identified in IIL excretory/secretory (ES) proteins. It was an early and highly expressed protease at IIL stage, and had the potential as an early diagnostic antigen. The aim of this study was to investigate the biological characteristics of this novel TsTryp, its role in larval invasion of gut epithelium, and the mechanisms involved. METHODOLOGY/PRINCIPAL FINDING TsTryp with C-terminal domain was cloned and expressed in Escherichia coli BL21 (DE3), and the rTsTryp had the enzymatic activity of natural trypsin, but it could not directly degrade gut tight junctions (TJs) proteins. qPCR and western blotting showed that TsTryp was highly expressed at the invasive IIL stage. Immunofluorescence assay (IFA), ELISA and Far Western blotting revealed that rTsTryp specifically bound to IECs, and confocal microscopy showed that the binding of rTsTryp with IECs was mainly localized in the cytomembrane. Co-immunoprecipitation (Co-IP) confirmed that rTsTryp bound to protease activated receptors 2 (PAR2) in Caco-2 cells. rTsTryp binding to PAR2 resulted in decreased expression levels of ZO-1 and occludin and increased paracellular permeability in Caco-2 monolayers by activating the extracellular regulated protein kinases 1/2 (ERK1/2) pathway. rTsTryp decreased TJs expression and increased epithelial permeability, which could be abrogated by the PAR2 antagonist AZ3451 and ERK1/2 inhibitor PD98059. rTsTryp facilitated larval invasion of IECs, and anti-rTsTryp antibodies inhibited invasion. Both inhibitors impeded larval invasion and alleviated intestinal inflammation in vitro and in vivo. CONCLUSIONS TsTryp binding to PAR2 activated the ERK1/2 pathway, decreased the expression of gut TJs proteins, disrupted epithelial integrity and barrier function, and consequently mediated larval invasion of the gut mucosa. Therefore, rTsTryp could be regarded as a potential vaccine target for blocking T. spiralis invasion and infection.
Collapse
Affiliation(s)
- Lu Lu Han
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, China
| | - Qi Qi Lu
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, China
| | - Wen Wen Zheng
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, China
| | - Yang Li Li
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, China
| | - Yan Yan Song
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, China
| | - Xin Zhuo Zhang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, China
| | - Shao Rong Long
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, China
| | - Ruo Dan Liu
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, China
| | - Zhong Quan Wang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, China
| | - Jing Cui
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
5
|
Omar HM, Fahmy M, Abuowarda M. Hand palm sparganosis: morphologically and genetically confirmed Spirometra erinaceieuropaei in a fourteen-year-old girl, Egypt. J Parasit Dis 2023; 47:859-864. [PMID: 38009142 PMCID: PMC10667186 DOI: 10.1007/s12639-023-01623-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 07/28/2023] [Indexed: 11/28/2023] Open
Abstract
Two spargana of 5 and 7 cm long were removed from the right-hand palm of 14-year-old girl at the General Hospital, Qalyubia, Egypt. Sparganum is the 2nd larval stage (pleurocercoid) of Diphyllobothrid cestode species develops in the vertebrate second intermediate host through ingestion of the crustacean first intermediate host.Dogs and cats are the final hosts get infected through predation of the second vertebrate host.Human attracts infection through drinking water contaminated with the infected crustacean host or consumption of the flesh of of vertebrate hosts such as frogs and reptilian species. The surgically removed specimens were parsitologically identified as a non-proliferative metacestodes of a spirometran species that then on molecular analysis proved to be Spirometra erinaceieuropaei. The present report has allocated Egypt on the world sparganosis map.Molecular characterization of 28 S rRNA of S. erinaceieuropae and correlation to other Spirometra spp. from the Nile countries, particularly Ethiopia and Lake Victoria countries where the Nile waters originate, and from China were dealt with. Drinking of contaminated fresh water is the only proposed mode of infection in Egypt.
Collapse
Affiliation(s)
- Hussein M. Omar
- Department of Parasitology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211 Egypt
| | - Magdy Fahmy
- Department of Parasitology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211 Egypt
| | - Mai Abuowarda
- Department of Parasitology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211 Egypt
| |
Collapse
|
6
|
Song YY, Zhang XZ, Wang BN, Weng MM, Zhang ZY, Guo X, Zhang X, Wang ZQ, Cui J. Molecular characterization of a novel serine proteinase from Trichinella spiralis and its participation in larval invasion of gut epithelium. PLoS Negl Trop Dis 2023; 17:e0011629. [PMID: 37695792 PMCID: PMC10513378 DOI: 10.1371/journal.pntd.0011629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/21/2023] [Accepted: 08/30/2023] [Indexed: 09/13/2023] Open
Abstract
BACKGROUND A novel serine proteinase of Trichinells spiralis (TsSPc) has been identified in the excretion/secretion (ES) antigens, but its role in larval invasion is unclear. The aim of this study was to clone and express TsSPc, identify its biological and biochemical characteristics, and investigate its role on larval invasion of gut epithelium during T. spiralis infection. METHODOLOGY/PRINCIPAL FINDINGS TsSPc has a functional domain of serine proteinase, and its tertiary structure consists of three amino acid residues (His88, Asp139 and Ser229) forming a pocket like functional domain. Recombinant TsSPc (rTsSPc) was expressed and purified. The rTsSPc has good immunogenicity. On Western blot analysis, rTsSPc was recognized by infection serum and anti-rTsSPc serum, natural TsSPc in crude and ES antigens was identified by anti-rTsSPc serum. The results of qPCR, Western blot and indirect immunofluorescence test (IIFT) showed that TsSPc was expressed at diverse stage worms, and mainly localized at cuticle, stichosome and intrauterine embryos of this nematode. The rTsSPc had enzymatic activity of native serine protease, which hydrolyzed the substrate BAEE, casein and collagen I. After site directed mutation of enzymatic active sites of TsSPc, its antigenicity did not change but the enzyme activity was fully lost. rTsSPc specifically bound to intestinal epithelium cells (IECs) and the binding sites were mainly localized in cell membrane and cytoplasm. rTsSPc accelerated larval invasion of IECs, whereas anti-rTsSPc antibodies and TsSPc-specific dsRNA obviously hindered larval invasion. CONCLUSIONS TsSPc was a surface and secretory proteinase of the parasite, participated in larval invasion of gut epithelium, and may be considered as a candidate vaccine target molecule against Trichinella intrusion and infection.
Collapse
Affiliation(s)
- Yan Yan Song
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, PR China
| | - Xin Zhuo Zhang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, PR China
| | - Bo Ning Wang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, PR China
| | - Min Min Weng
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, PR China
| | - Zhao Yu Zhang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, PR China
| | - Xin Guo
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, PR China
| | - Xi Zhang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, PR China
| | - Zhong Quan Wang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, PR China
| | - Jing Cui
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, PR China
| |
Collapse
|
7
|
Xiang H, Wang J, Tan D, Xiong Y, Huang P, Shen Y, Xu Y, Gong Z, Hu F, Xu C, Wu J, Liu W, Liu J, Wan H, Hong D, Xie H. The serum IgG antibody level as a biomarker for clinical outcome in patients with cerebral sparganosis after treatment. Front Immunol 2023; 14:1158635. [PMID: 37051247 PMCID: PMC10083495 DOI: 10.3389/fimmu.2023.1158635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 03/13/2023] [Indexed: 03/29/2023] Open
Abstract
IntroductionCerebral sparganosis is a rare parasitic infection of the brain tissue. The remission of MRI change and clinical symptom has been used to evaluate the therapeutic effect. However, there is no study to correlate the serum IgG antibody level of sparganum to the prognosis of disease after treatment. Methods87 patients with cerebral sparganosis were collected from three medical centers. Clinical symptoms and MRI changes were evaluated at 12 months after initial treatment, and serum IgG antibody level of sparganum was evaluated at 2, 6, and 12 months after treatment. The positive cut-off value was based on 2.1 times the optical density (OD) of negative control. The index value was defined as the sample OD divided by the cut-off value.ResultsAmong the 87 patients after treatment, 71 patients had good clinical outcomes, and 16 had poor clinical outcomes. The area under the curve (AUC) showed that the index value measured at 12 months after treatment had the best prediction effect, with a value of 2.014. In the good-outcome group, the index values were less than 2.014 in all 71 patients, and only 8 patients had mildly enhanced residual lesions on MRI. In the poor-outcome group, the index values were more than 2.014 in all 16 patients, and all patients still showed significantly enhanced lesions on MRI. Compared with poor-outcome patients, only 2 patients with good outcomes had disease recurrence after treatment.DiscussionThis study provided evidence that the serum IgG antibody level of sparganum was a promising biomarker to evaluate the prognosis of patients with cerebral sparganosis after treatment.
Collapse
Affiliation(s)
- Haijie Xiang
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jie Wang
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Dandan Tan
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ying Xiong
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Pengcheng Huang
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yu Shen
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yun Xu
- Clinical Department, Jiangxi Provincial Institute of Parasitic Disease, Nanchang, China
| | - Zhihong Gong
- Clinical Department, Jiangxi Provincial Institute of Parasitic Disease, Nanchang, China
| | - Fei Hu
- Clinical Department, Jiangxi Provincial Institute of Parasitic Disease, Nanchang, China
| | - Chunhua Xu
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jie Wu
- Department of Neurosurgery, Guangdong 999 Brain Hospital, Guangzhou, China
| | - Wei Liu
- Department of Outpatient, The Nanchang City First Hospital, Nanchang, China
| | - Junpu Liu
- Clinical Department, Jiangxi Provincial Institute of Parasitic Disease, Nanchang, China
| | - Hui Wan
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Daojun Hong
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- *Correspondence: Daojun Hong, ; Huiqun Xie,
| | - Huiqun Xie
- Clinical Department, Jiangxi Provincial Institute of Parasitic Disease, Nanchang, China
- *Correspondence: Daojun Hong, ; Huiqun Xie,
| |
Collapse
|
8
|
Chen WQ, Liu SS, Cheng C, Cui J, Wang ZQ, Zhang X. Molecular characteristics of glutathione transferase gene family in a neglect medical Spirometra tapeworm. Front Vet Sci 2022; 9:1035767. [PMID: 36406076 PMCID: PMC9666886 DOI: 10.3389/fvets.2022.1035767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/18/2022] [Indexed: 11/07/2022] Open
Abstract
The Spirometra mansoni is a neglect medical tapeworm, its plerocercoid larvae can parasitize in humans and animals, causing sparganosis. In this study, 17 new members of the glutathione transferase (GST) family were sequenced and characterized in S. mansoni. Clustering analysis displayed the categorization of SmGSTs into two main clades. RT-qPCR illustrated that 7 GST genes were highly expressed in the plerocercoid stage while 8 GSTs were highly expressed in the adult. rSmGST has the typical C- and N-terminal double domains of glutathione transferase. Immunolocalization revealed that natural SmGST is mainly located in the epidermis and parenchyma of plerocercoid, and in the epidermis, parenchyma, uterus and egg shell of adult worm. The optimum activity for rSmGST was found to be pH 6.5 and 25°C. The evolutionary tree showed a high level of diversity of cestodes GSTs. SmGSTs contained both conserved family members and members in the process of further diversification. The findings in this study will lay a foundation to better explore the underlying mechanisms of GSTs involved in Spirometra tapeworms.
Collapse
|
9
|
Badri M, Olfatifar M, KarimiPourSaryazdi A, Zaki L, Madeira de Carvalho LM, Fasihi Harandi M, Barikbin F, Madani P, Vafae Eslahi A. The global prevalence of
Spirometra
parasites in snakes, frogs, dogs, and cats: A systematic review and meta‐analysis. Vet Med Sci 2022; 8:2785-2805. [DOI: 10.1002/vms3.932] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Milad Badri
- Medical Microbiology Research Center Qazvin University of Medical Sciences Qazvin Iran
- Metabolic Diseases Research Center, Research Institute For Prevention Of Non‐Communicable Diseases Qazvin University Of Medical Sciences Qazvin Iran
| | - Meysam Olfatifar
- Gastroenterology and Hepatology Diseases Research Center Qom University of Medical Sciences Qom Iran
| | - Amir KarimiPourSaryazdi
- Department of Parasitology and Entomology, Faculty of Medical Sciences Tarbiat Modares University Tehran Iran
| | - Leila Zaki
- Department of Parasitology and Entomology, Faculty of Medical Sciences Tarbiat Modares University Tehran Iran
| | - Luis Manuel Madeira de Carvalho
- CIISA, Centro Interdisciplinar de Investigação em Sanidade Animal Faculty of Veterinary Medicine, University of Lisbon Lisbon Portugal
| | - Majid Fasihi Harandi
- Research Center for Hydatid Disease in Iran Kerman University of Medical Sciences Kerman Iran
| | - Fatemeh Barikbin
- Post Graduate Students of Operative Dentistry, Student Research Committee Qazvin University of Medical Sciences Qazvin Iran
| | - Parisa Madani
- Metabolic Diseases Research Center, Research Institute For Prevention Of Non‐Communicable Diseases Qazvin University Of Medical Sciences Qazvin Iran
| | - Aida Vafae Eslahi
- Medical Microbiology Research Center Qazvin University of Medical Sciences Qazvin Iran
| |
Collapse
|
10
|
Zeng J, Zhang R, Ning Ma K, Han LL, Yan SW, Liu RD, Zhang X, Wang ZQ, Cui J. Characterization of a novel aminopeptidase P from Trichinella spiralis and its participation in the intrusion of intestinal epithelial cells. Exp Parasitol 2022; 242:108376. [PMID: 36089006 DOI: 10.1016/j.exppara.2022.108376] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/05/2022] [Accepted: 09/05/2022] [Indexed: 11/24/2022]
Abstract
Aminopeptidases P are metalloproteases belonging to the M24 peptidase family. It specifically hydrolyzes the N-terminus of polypeptides free of acidic amino acids, and plays an important role in the nutrition, metabolism and growth of parasites. The aim of this study was to characterize a novel Trichinella spiralis aminopeptidase P (TsAPP) and to investigate its functions in the invasion of T. spiralis. TsAPP contained two domains of creatinase (a creatinase N and creatinase N2) and a domain of peptidase M24C and APP. The complete TsAPP sequence was cloned and expressed in Escherichia coli BL21 cells. The recombinantly produced TsAPP was used to raise polyclonal antibodies that were subsequently used to detect the expression of the protein in the different life stages of T. spiralis. TsAPP was expressed in various T. spiralis stages. TsAPP was primarily localized in the cuticle, stichosome and intrauterine embryos of this nematode. rTsAPP has an enzymatic activity of a natural aminopeptidase P to hydrolyze the substrate H-Ala-Pro-OH. rTsAPP promoted the larval intrusion of intestinal epithelium cells (IECs). The results showed that TsAPP is involved in the T. spiralis intrusion of IECs and it might be a potential candidate vaccine target against Trichinella infection.
Collapse
Affiliation(s)
- Jie Zeng
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, PR China
| | - Ru Zhang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, PR China
| | - Kai Ning Ma
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, PR China
| | - Lu Lu Han
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, PR China
| | - Shu Wei Yan
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, PR China
| | - Ruo Dan Liu
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, PR China
| | - Xi Zhang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, PR China
| | - Zhong Quan Wang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, PR China.
| | - Jing Cui
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, PR China.
| |
Collapse
|
11
|
Liu SN, Su XY, Chen WQ, Yu JW, Li JR, Jiang P, Cui J, Wang ZQ, Zhang X. Transcriptome profiling of plerocercoid and adult developmental stages of the neglected medical tapeworm Spirometra erinaceieuropaei. Acta Trop 2022; 232:106483. [PMID: 35469749 DOI: 10.1016/j.actatropica.2022.106483] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 04/19/2022] [Accepted: 04/21/2022] [Indexed: 11/28/2022]
Abstract
The plerocercoid larvae of the tapeworm Spirometra erinaceieuropaei can parasitize humans and animals and cause serious parasitic zoonosis. However, our knowledge of the developmental process of S. erinaceieuropaei is still inadequate. To better characterize differential and specific genes and pathways associated with parasite development, a comparative transcriptomic analysis of the plerocercoid stage and the adult stage was performed using RNA-seq and de novo analysis. Approximately 13,659 differentially expressed genes (DEGs) were identified in plerocercoids versus adults, of which 6455 DEGs were upregulated and 7204 were downregulated. DEGs involved in parasite immunoevasion were more active in plerocercoid larvae than in adults, while DEGs associated with metabolic activity were upregulated in adults. Gene Ontology (GO) and Kyoto Encyclopedia of Genes (KEGG) analyses revealed that most DEGs involved in protein phosphorylation/dephosphorylation and the Wnt signalling pathway were much more active in plerocercoid larvae. The molecular functions of upregulated unigenes in adults were mainly enriched for metabolic activities. qPCR validated that the expression levels of 10 selected DEGs were consistent with those in RNA-seq, confirming the accuracy of the RNA-seq results. Our results contributed to increasing the knowledge on the S. erinaceieuropaei gene repertoire and expression profile and also provide valuable resources for functional studies on the molecular mechanisms of S. erinaceieuropaei.
Collapse
Affiliation(s)
- Shi Nan Liu
- Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Xiao Yi Su
- Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Wen Qing Chen
- Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Jin Wei Yu
- Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Jing Ru Li
- Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Peng Jiang
- Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Jing Cui
- Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Zhong Quan Wang
- Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Xi Zhang
- Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
12
|
Liu RD, Meng XY, Li CL, Long SR, Cui J, Wang ZQ. Molecular characterization and determination of the biochemical properties of cathepsin L of Trichinella spiralis. Vet Res 2022; 53:48. [PMID: 35739604 PMCID: PMC9229914 DOI: 10.1186/s13567-022-01065-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 05/03/2022] [Indexed: 11/22/2022] Open
Abstract
Cathepsin L is an important cysteine protease, but its function in T. spiralis remains unclear. The aim of this research was to explore the biological characteristics of T. spiralis cathepsin L (TsCatL) and its role in T. spiralis-host interactions. Bioinformatic analysis revealed the presence of the cysteine protease active site residues Gln, Cys, His and Asn in mature TsCatL, as well as specific motifs of cathepsin L similar to ERFNIN and GYLND in the prepeptide of TsCatL. Molecular docking of mature TsCatL and E64 revealed hydrophobic effects and hydrogen bonding interactions. Two domains of TsCatL (TsCatL2) were cloned and expressed, and recombinant TsCatL2 (rTsCatL2) was autocatalytically cleaved under acidic conditions to form mature TsCatL. TsCatL was transcribed and expressed in larvae and adults and located in the stichosome, gut and embryo. Enzyme kinetic tests showed that rTsCatL2 degraded the substrate Z-Phe-Arg-AMC under acidic conditions, which was inhibited by E64 and PMSF and enhanced by EDTA, L-cysteine and DTT. The kinetic parameters of rTsCatL2 were a Km value of 48.82 μM and Vmax of 374.4 nM/min at pH 4.5, 37 °C and 5 mM DTT. In addition, it was shown that rTsCatL2 degraded haemoglobin, serum albumin, immunoglobulins (mouse IgG, human IgG and IgM) and extracellular matrix components (fibronectin, collagen I and laminin). The proteolytic activity of rTsCatL2 was host specific and significantly inhibited by E64. rTsCatL2 possesses the natural activity of a sulfhydryl-containing cysteine protease, and TsCatL is an important digestive enzyme that seems to be important for the nutrient acquisition, immune evasion and invasion of Trichinella in the host.
Collapse
Affiliation(s)
- Ruo Dan Liu
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Xiang Yu Meng
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Chen Le Li
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Shao Rong Long
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Jing Cui
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China.
| | - Zhong Quan Wang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
13
|
Yang P, Zheng W, Wang L. Ultrasonographical and molecular diagnosis of breast sparganosis due to Spirometra erinaceieuropaei. Travel Med Infect Dis 2022; 49:102393. [PMID: 35752292 DOI: 10.1016/j.tmaid.2022.102393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Ping Yang
- Department of Pathology and Department of Ultrasound, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510080, China
| | - Wei Zheng
- Department of Pathology and Department of Ultrasound, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510080, China
| | - Lifu Wang
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, 510180, China.
| |
Collapse
|
14
|
Liu W, Gong T, Chen S, Liu Q, Zhou H, He J, Wu Y, Li F, Liu Y. Epidemiology, Diagnosis, and Prevention of Sparganosis in Asia. Animals (Basel) 2022; 12:1578. [PMID: 35739914 PMCID: PMC9219546 DOI: 10.3390/ani12121578] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 06/09/2022] [Accepted: 06/15/2022] [Indexed: 11/17/2022] Open
Abstract
Sparganosis is a zoonotic parasitic disease caused by the larvae (spargana) of the genus Spirometra, which is widely distributed globally and threatens human health. More than 60 species of Spirometra have already been identified, and over 2000 cases have been reported. This review summarizes the prevalence of humans, frogs, snakes, and other animals with spargana. Furthermore, the infection mode, distribution, and site are summarized and analyzed. We also describe the epidemiology, molecular diagnosis, and other aspects which are of considerable significance to preventing sparganum.
Collapse
Affiliation(s)
- Wei Liu
- Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; (W.L.); (T.G.); (S.C.); (H.Z.); (J.H.)
- Hunan Provincial the Key Laboratory of Protein Engineering in Animal Vaccine, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China;
| | - Tengfang Gong
- Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; (W.L.); (T.G.); (S.C.); (H.Z.); (J.H.)
| | - Shuyu Chen
- Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; (W.L.); (T.G.); (S.C.); (H.Z.); (J.H.)
| | - Quan Liu
- School of Life Sciences and Engineering, Foshan University, Foshan 528225, China;
| | - Haoying Zhou
- Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; (W.L.); (T.G.); (S.C.); (H.Z.); (J.H.)
| | - Junlin He
- Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; (W.L.); (T.G.); (S.C.); (H.Z.); (J.H.)
| | - Yong Wu
- Hunan Provincial the Key Laboratory of Protein Engineering in Animal Vaccine, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China;
| | - Fen Li
- Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; (W.L.); (T.G.); (S.C.); (H.Z.); (J.H.)
- Hunan Provincial the Key Laboratory of Protein Engineering in Animal Vaccine, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China;
| | - Yisong Liu
- Hunan Provincial the Key Laboratory of Protein Engineering in Animal Vaccine, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China;
| |
Collapse
|
15
|
Song YY, Lu QQ, Han LL, Yan SW, Zhang XZ, Liu RD, Long SR, Cui J, Wang ZQ. Proteases secreted by Trichinella spiralis intestinal infective larvae damage the junctions of the intestinal epithelial cell monolayer and mediate larval invasion. Vet Res 2022; 53:19. [PMID: 35255974 PMCID: PMC8900307 DOI: 10.1186/s13567-022-01032-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/25/2022] [Indexed: 12/12/2022] Open
Abstract
The intestinal epithelium is the first natural barrier against Trichinella spiralis larval invasion, but the mechanism of larval invasion of the gut epithelium is not fully elucidated. The aim of this study was to investigate whether the excretory/secretory proteins (ESPs) of T. spiralis intestinal infective larvae (IIL) degrade tight junction (TJ) proteins, to assess the main ESP proteases hydrolysing TJ proteins using various enzyme inhibitors and to define the key invasive factors in IIL invasion of the gut epithelium. The results of immunofluorescence, Western blot and Transwell assays showed that serine proteases and cysteine proteases in the ESPs played main roles in hydrolysing occludin, claudin-1 and E-cad and upregulating claudin-2 expression. Challenge infection results showed that IIL expulsion from the gut at 12 hpi was significantly higher in mice which were infected with muscle larvae (ML) treated with a single inhibitor (PMSF, E-64, 1,10-Phe or pepstatin) or various mixtures containing PMSF and E-64 than in mice in the PBS group or the groups treated with an inhibitor mixture not containing PMSF and E-64 (P < 0.0001). At 6 days post-infection, mice which were infected with ML treated with PMSF, E-64, 1,10-Phe or pepstatin exhibited 56.30, 64.91, 26.42 and 31.85% reductions in intestinal adult worms compared to mice in the PBS group (P < 0.0001). The results indicate that serine proteases and cysteine proteases play key roles in T. spiralis IIL invasion, growth and survival in the host and that they may be main candidate target molecules for vaccines against larval invasion and development.
Collapse
Affiliation(s)
- Yan Yan Song
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Qi Qi Lu
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Lu Lu Han
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Shu Wei Yan
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Xin Zhuo Zhang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Ruo Dan Liu
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Shao Rong Long
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Jing Cui
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China.
| | - Zhong Quan Wang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
16
|
Zhang XZ, Yue WW, Bai SJ, Hao HN, Song YY, Long SR, Dan Liu R, Cui J, Wang ZQ. Oral immunization with attenuated Salmonella encoding an elastase elicits protective immunity against Trichinella spiralis infection. Acta Trop 2022; 226:106263. [PMID: 34879232 DOI: 10.1016/j.actatropica.2021.106263] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 02/06/2023]
Abstract
Elastase belongs to the serine protease family. Previous studies showed that Trichinella spiralis elastase (TsE) was highly expressed in intestinal infective larvae (IIL). Recombinant TsE (rTsE) promoted the larval intrusion of enteral epithelium cells (IECs), whereas anti-rTsE antibodies and siRNA impeded larval intrusion. Subcutaneous vaccination of mice with rTsE showed a partial protective immunity, suggesting that TsE might be a promising vaccine target against Trichinella infection. In this study, complete TsE cDNA sequence was cloned into pcDNA3.1, and the rTsE DNA was transformed into attenuated S. typhimurium strain ΔcyaSL1344. Oral vaccination of mice with TsE DNA elicited a systemic Th1/Th2/Treg mixed immune response and gut local mucosal sIgA response. Immunized mice exhibited a significant immune protection against T. spiralis larval challenge, as demonstrated by a 52.48% reduction of enteral adult worms and a 69.43% reduction of muscle larvae. The protection might be related to the TsE-induced production of intestinal mucus, specific anti-TsE sIgA and IgG, and secretion of IFN-γ, IL-2, IL-4 and IL-10, which protected gut mucosa from larval intrusion, suppressed worm development and impeded female reproduction. The results demonstrated that attenuated Salmonella-delivered TsE DNA vaccine provided a prospective strategy for the control of Trichinella infection in food animals.
Collapse
|
17
|
Lu Y, Sun JH, Lu LL, Chen JX, Song P, Ai L, Cai YC, Li LH, Chen SH. Proteomic and Immunological Identification of Diagnostic Antigens from Spirometra erinaceieuropaei Plerocercoid. THE KOREAN JOURNAL OF PARASITOLOGY 2021; 59:615-623. [PMID: 34974668 PMCID: PMC8721309 DOI: 10.3347/kjp.2021.59.6.615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 11/27/2021] [Indexed: 11/23/2022]
Abstract
Human sparganosis is a food-borne parasitic disease caused by the plerocercoids of Spirometra species. Clinical diagnosis of sparganosis is crucial for effective treatment, thus it is important to identify sensitive and specific antigens of plerocercoids. The aim of the current study was to identify and characterize the immunogenic proteins of Spirometra erinaceieuropaei plerocercoids that were recognized by patient sera. Crude soluble extract of the plerocercoids were separated using 2-dimensional gel electrophoresis coupled with immunoblot and mass spectrometry analysis. Based on immunoblotting patterns and mass spectrometry results, 8 antigenic proteins were identified from the plerocercoid. Among the proteins, cysteine protease protein might be developed as an antigen for diagnosis of sparganosis.
Collapse
Affiliation(s)
- Yan Lu
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research); WHO Collaborating Center for Tropical Diseases; NHC Key Laboratory of Parasite and Vector Biology (National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention); National Center for International Research on Tropical Diseases; Shanghai,
P. R. China
| | - Jia-Hui Sun
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research); WHO Collaborating Center for Tropical Diseases; NHC Key Laboratory of Parasite and Vector Biology (National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention); National Center for International Research on Tropical Diseases; Shanghai,
P. R. China
| | - Li-Li Lu
- The Third Hospital of Shijiazhuang City, Shijiazhuang,
P. R. China
| | - Jia-Xu Chen
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research); WHO Collaborating Center for Tropical Diseases; NHC Key Laboratory of Parasite and Vector Biology (National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention); National Center for International Research on Tropical Diseases; Shanghai,
P. R. China
| | - Peng Song
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research); WHO Collaborating Center for Tropical Diseases; NHC Key Laboratory of Parasite and Vector Biology (National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention); National Center for International Research on Tropical Diseases; Shanghai,
P. R. China
| | - Lin Ai
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research); WHO Collaborating Center for Tropical Diseases; NHC Key Laboratory of Parasite and Vector Biology (National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention); National Center for International Research on Tropical Diseases; Shanghai,
P. R. China
| | - Yu-Chun Cai
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research); WHO Collaborating Center for Tropical Diseases; NHC Key Laboratory of Parasite and Vector Biology (National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention); National Center for International Research on Tropical Diseases; Shanghai,
P. R. China
| | - Lan-Hua Li
- School of Public Health, Weifang Medical University, Weifang,
P. R. China
| | - Shao-Hong Chen
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research); WHO Collaborating Center for Tropical Diseases; NHC Key Laboratory of Parasite and Vector Biology (National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention); National Center for International Research on Tropical Diseases; Shanghai,
P. R. China
- Corresponding author ()
| |
Collapse
|
18
|
Vaccination of mice with recombinant novel aminopeptidase P and cathepsin X alone or in combination induces protective immunity against Trichinella spiralis infection. Acta Trop 2021; 224:106125. [PMID: 34508714 DOI: 10.1016/j.actatropica.2021.106125] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/16/2021] [Accepted: 08/27/2021] [Indexed: 12/13/2022]
Abstract
Trichinella spiralis is a major foodborne zoonotic parasitic nematode which has a serious threat to meat food safety. Development of anti-Trichinella vaccine is requisite for control and elimination of Trichinella infection in food animals to ensure meat safety. Aminopeptidase P (TsAPP) and cathepsin X (TsCX) are two novel proteins identified in T. spiralis intestinal infectious L1 larvae (IIL1). The objective of this study was to investigate the protective immunity elicited by immunization with TsAPP and TsCX alone and TsAPP-TsCX in combination in a mouse model. The results demonstrate that subcutaneous vaccination of mice with rTsAPP, rTsCX or rTsAPP + rTsCX elicited a systemic humoral response (high levels of serum IgG, IgG1/IgG2a and IgA) and significant local gut mucosal sIgA responses. The vaccination with rTsAPP, rTsCX or rTsAPP + rTsCX also induced a systemic and local mixed Th1/Th2 response, as demonstrated by clear elevation levels of IFN-γ and IL-4 in vaccinated mice. Vaccination of mice with rTsAPP+rTsCX exhibited a 63.99 % reduction of intestinal adult worms and 68.50% reduction of muscle larva burdens, alleviated inflammation of intestinal mucosal and muscle tissues, and provided a higher immune protection than that of vaccination with rTsAPP or rTsCX alone. The results demonstrated that TsAPP and TsCX might be considered novel candidate target molecules for anti-Trichinella vaccines.
Collapse
|
19
|
Bai Y, Ma KN, Sun XY, Dan Liu R, Long SR, Jiang P, Wang ZQ, Cui J. Molecular characterization of a novel cathepsin L from Trichinella spiralis and its participation in invasion, development and reproduction. Acta Trop 2021; 224:106112. [PMID: 34453915 DOI: 10.1016/j.actatropica.2021.106112] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/09/2021] [Accepted: 08/13/2021] [Indexed: 12/14/2022]
Abstract
Cathepsin L is one member of cysteine protease superfamily and widely distributed in parasitic organisms, it plays the important roles in worm invasion, migration, nutrient intake, molting and immune evasion. The objective of this study was to investigate the biological characteristics of a novel cathepsin L from Trichinella spiralis (TsCL) and its role in larval invasion, development and reproduction. TsCL has a functional domain of C1 peptidase, which belongs to cathepsin L family. The complete TsCL sequence was cloned and expressed in Escherichia coli BL21. The rTsCL has good immunogenicity. RT-PCR and Western blotting analysis showed that TsCL was transcribed and expressed at different T. spiralis phases (e.g., muscle larvae, intestinal infectious larvae, adult worms and newborn larvae). Immunofluorescence test revealed that TsCL was principally localized in the cuticle, stichosome, midgut and female intrauterine embryos of the nematode. rTsCL has the capacity to specially bind with intestinal epithelial cells (IECs) and the binding sites was located in the cytoplasm. rTsCL promoted larval penetration into IEC, while anti-rTsCL antibodies inhibited the invasion. The silencing of TsCL gene by specific dsRNA significantly reduced the TsCL expression and enzyme activity, and also reduced larval invasive ability, development and female reproduction. The results showed that TsCL is an obligatory protease in T. spiralis lifecycle. TsCL participates in worm invasion, development and reproduction, and may be regarded as a potential candidate vaccine/drug target against T. spiralis infection.
Collapse
|
20
|
Oral vaccination with recombinant Lactobacillus plantarum encoding Trichinella spiralis inorganic pyrophosphatase elicited a protective immunity in BALB/c mice. PLoS Negl Trop Dis 2021; 15:e0009865. [PMID: 34699522 PMCID: PMC8547688 DOI: 10.1371/journal.pntd.0009865] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 09/29/2021] [Indexed: 12/11/2022] Open
Abstract
Background Trichinellosis is a serious zoonotic disease distributed around the world. It is needed to develop a safe, effective and feasible anti-Trichinella vaccine for prevention and control of trichinellosis. The aim of this study was to construct a recombinant Lactobacillus plantarum encoding Trichinella spiralis inorganic pyrophosphatase (TsPPase) and investigate its immune protective effects against T. spiralis infection. Methodology/Principal findings The growth of recombinant L. plantarum was not affected by TsPPase/pSIP409-pgsA′ plasmid, and the recombinant plasmid was inherited stably in bacteria. Western blot and immunofluorescence assay (IFA) indicated that the rTsPPase was expressed on the surface of recombinant L. plantarum. Oral vaccination with rTsPPase induced higher levels of specific serum IgG, IgG1, IgG2a and mucosal secretory IgA (sIgA) in BALB/c mice. ELISA analysis revealed that the levels of IFN-γ and IL-4 released from spleen, mesenteric lymph nodes and Peyer’s patches were evidently increased at 2–4 weeks following vaccination, compared to MRS (De Man, Rogosa, Sharpe) medium control group (P < 0.05). Immunization of mice with rTsPPase exhibited a 67.18, 54.78 and 51.91% reduction of intestinal infective larvae, adult worms and muscle larvae at 24 hours post infection (hpi), 6 days post infection (dpi) and 35 dpi, respectively (P < 0.05), and the larval molting and development was significantly inhibited by 45.45% at 24 hpi, compared to the MRS group. Conclusions TsPPase plays a crucial role in T. spiralis molting and development, oral vaccination with rTsPPase induced a significant local mucosal sIgA response and systemic Th1/Th2 immune response, and immune protection against T. spiralis infection in BALB/c mice. In the previous study, a Trichinella spiralis inorganic pyrophosphatase (TsPPase) was expressed and its role in larval molting and development was observed. In this study, a recombinant TsPPase/pSIP409-pgsA′ plasmid was constructed and transferred into Lactobacillus plantarum NC8, the rTsPPase was expressed on the surface of recombinant L. plantarum NC8. Oral immunization of mice with rTsPPase DNA vaccine elicited a high level of specific serum IgG, IgG1, IgG2a and mucosal secretory IgA (sIgA). The levels of IFN-γ and IL-4 released from spleen, mesenteric lymph nodes and Peyer’s patches were evidently increased at 2–4 weeks following vaccination. Immunization of mice with rTsPPase showed a significant reduction of intestinal infective larvae, adult worms and muscle larvae, and intestinal larval molting and development was significantly suppressed. The results indicated that oral vaccination with rTsPPase elicited a significant local mucosal sIgA response and specific systemic Th1/Th2 immune response, and an obvious protective immunity against T. spiralis infection.
Collapse
|
21
|
Zhuo TX, Wang Z, Song YY, Yan SW, Liu RD, Zhang X, Wang ZQ, Cui J. Characterization of a Novel Glutamine Synthetase From Trichinella spiralis and Its Participation in Larval Acid Resistance, Molting, and Development. Front Cell Dev Biol 2021; 9:729402. [PMID: 34616735 PMCID: PMC8488193 DOI: 10.3389/fcell.2021.729402] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 08/24/2021] [Indexed: 12/29/2022] Open
Abstract
Trichinella spiralis is a major foodborne parasite worldwide. After the encapsulated muscle larvae (ML) in meat are ingested, the ML are liberated in the stomach of the host and activated into intestinal infectious larvae (IIL), which develop into adult worm after molting four times. A novel glutamine synthetase (TsGS) was identified from T. spiralis IIL at 10 h post-infection, but its biological role in T. spiralis life cycle is not clear. The aim of this study was to investigate the biological characteristics of TsGS and its functions in larval acid resistance, molting, and development. TsGS has a glutamine synthetase (GS) catalytic domain. Complete TsGS sequence was cloned and expressed in Escherichia coli BL21. rTsGS has good immunogenicity. qPCR and Western blotting showed that TsGS was highly expressed at IIL stage, and immunofluorescence revealed that TsGS was principally localized at the cuticle and intrauterine embryos of this nematode. rTsGS has enzymatic activity of natural GS to hydrolyze the substrate (Glu, ATP, and NH4+). Silencing of TsGS gene significantly reduced the IIL survival at pH 2.5, decreased the IIL burden, and impeded larval molting and development. The results demonstrated that TsGS participates in T. spiralis larval acid resistance, molting and development, and it might be a candidate vaccine target against Trichinella molting and development.
Collapse
Affiliation(s)
- Tong Xu Zhuo
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, China
| | - Zhen Wang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, China
| | - Yan Yan Song
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, China
| | - Shu Wei Yan
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, China
| | - Ruo Dan Liu
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, China
| | - Xi Zhang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, China
| | - Zhong Quan Wang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, China
| | - Jing Cui
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
22
|
Yan SW, Hu YY, Song YY, Ren HN, Shen JM, Liu RD, Long SR, Jiang P, Cui J, Wang ZQ. Characterization of a Trichinella spiralis cathepsin X and its promotion for the larval invasion of mouse intestinal epithelial cells. Vet Parasitol 2021; 297:109160. [PMID: 32522393 DOI: 10.1016/j.vetpar.2020.109160] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 05/27/2020] [Accepted: 05/28/2020] [Indexed: 01/09/2023]
Abstract
The aim of this study was to ascertain the characteristics of a Trichinella spiralis cathepsin X (TsCX) and its role on larval invasion of intestinal epithelial cells (IECs). The full-length of TsCX cDNA sequence was cloned and expressed in Escherichia coli BL21. The results of RT-PCR, IFA and Western blot revealed that TsCX was expressed at T. spiralis muscle larvae (ML), intestinal infective larvae, adult worm and newborn larvae, and it was located in whole worm section. The results of Far western and confocal microscopy demonstrated that there was a specific binding of rTsCX and IEC, and the binding site was located within the IEC cytoplasm. rTsCX promoted T. spiralis larval invasion of mouse IECs while anti-rTsCX antibody inhibited larval invasion into the IECs. Silencing TsCX by specific siRNA reduced the TsCX expression and larval invasive capacity. These results indicated that TsCX specifically binds to IECs and promotes larval invasion of intestinal epithelia, and it might be a potential target of vaccines against enteral stages of T. spiralis.
Collapse
Affiliation(s)
- Shu Wei Yan
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou 450052, China
| | - Yuan Yuan Hu
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou 450052, China
| | - Yan Yan Song
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou 450052, China
| | - Hua Nan Ren
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou 450052, China
| | - Jia Ming Shen
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou 450052, China
| | - Ruo Dan Liu
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou 450052, China
| | - Shao Rong Long
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou 450052, China
| | - Peng Jiang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou 450052, China
| | - Jing Cui
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou 450052, China.
| | - Zhong Quan Wang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou 450052, China.
| |
Collapse
|
23
|
Hu YY, Zhang R, Yan SW, Yue WW, Zhang JH, Liu RD, Long SR, Cui J, Wang ZQ. Characterization of a novel cysteine protease in Trichinella spiralis and its role in larval intrusion, development and fecundity. Vet Res 2021; 52:113. [PMID: 34446106 PMCID: PMC8390047 DOI: 10.1186/s13567-021-00983-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/06/2021] [Indexed: 12/29/2022] Open
Abstract
The aim of this study was to investigate the biological properties of a novel gut-specific cysteine protease in Trichinella spiralis (TsGSCP) and its role in larval intrusion, development and fecundity. TsGSCP has a functional C1 peptidase domain; C1 peptidase belongs to cathepsin B family. The TsGSCP gene cloned and expressed in Escherichia coli BL21 showed intensive immunogenicity. qPCR and Western blotting revealed that TsGSCP mRNA and protein were expressed at various T. spiralis stages, but their expression levels in intestinal infectious larvae (IIL) were clearly higher than those in muscle larvae (ML), adult worms (AWs) and new-born larvae (NBL). Indirect immunofluorescence (IIF) analysis showed that TsGSCP was primarily located at the outer cuticle and the intrauterine embryos of this parasite. rTsGSCP showed the ability to specifically bind with IECs, and the binding site is within the IEC cytoplasm. rTsGSCP accelerated larval intrusion into host intestinal epithelial cells (IECs), whereas anti-rTsGSCP antibodies suppressed larval intrusion; the acceleration and suppression was induced by rTsGSCP and anti-rTsGSCP antibodies, respectively, in a dose-dependent manner. When ML were transfected with TsGSCP-specific dsRNA, TsGSCP expression and enzymatic activity were reduced by 46.82 and 37.39%, respectively, and the capacity of the larvae to intrude into IECs was also obviously impeded. Intestinal AW burden and adult female length and fecundity were significantly decreased in the group of mice infected with dsRNA-transfected ML compared to the control dsRNA and PBS groups. The results showed that TsGSCP plays a principal role in gut intrusion, worm development and fecundity in the T. spiralis lifecycle and might be a candidate target for vaccine development against Trichinella intrusion and infection.
Collapse
Affiliation(s)
- Yuan Yuan Hu
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Ru Zhang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Shu Wei Yan
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Wen Wen Yue
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Jia Hang Zhang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Ruo Dan Liu
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Shao Rong Long
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Jing Cui
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China.
| | - Zhong Quan Wang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
24
|
Ren HN, Zhuo TX, Bai SJ, Bai Y, Sun XY, Dan Liu R, Long SR, Cui J, Wang ZQ. Proteomic analysis of hydrolytic proteases in excretory/secretory proteins from Trichinella spiralis intestinal infective larvae using zymography combined with shotgun LC-MS/MS approach. Acta Trop 2021; 216:105825. [PMID: 33421420 DOI: 10.1016/j.actatropica.2021.105825] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 12/15/2020] [Accepted: 01/02/2021] [Indexed: 01/25/2023]
Abstract
The critical step of Trichinella spiralis infection is that the muscle larvae (ML) are activated to intestinal infective larvae (IIL) which invade the intestinal columnar epithelium to further develop. The IIL excretory/secretory (ES) proteins play an important role in host-parasite interaction. Proteolytic enzymes are able to mediate the tissue invasion, thereby increasing the susceptibility of parasites to their hosts. The aim of the current study was to screen and identify the natural active proteases in T. spiralis IIL ES proteins using Western blot and gel zymography combined with liquid chromatography tandem mass spectrometry (LC-MS/MS). The T. spiralis ML and IIL ES proteins were collected from the in vitro cultures and their enzymatic acitvities were examined by gelatin zymography and azocasein degradation. The protease activities were partially inhibited by PMSF, E-64 and EDTA. Three protein bands (45, 118 and 165 kDa) of T. spiralis IIL ES proteins were identified by shotgun LC-MS/MS because they have hydrolytic activity to gelatin compared to the ML ES proteins. Total of 30 T. spiralis proteins were identified and they are mainly serine proteinases (19), but also metalloproteinases (7) and cysteine proteinases (3). The qPCR results indicated that transcription levels of four T. spiralis protease genes (two serine proteases, a cathepsin B-like cysteine proteinase and a zinc metalloproteinase) at IIL stage were obviously higher than at the ML stage. These proteolytic enzymes are directly exposed to the host intestinal milieu and they may mediate the worm invasion of enteral epithelium and escaping from the host's immune responses. The results provide the new insights into understanding of the interaction of T. spiralis with host and the invasion mechanism.
Collapse
|
25
|
Enzyme-linked immunosorbent assay (ELISA) using recombinant Fasciola cathepsin L1 for the diagnosis of human fasciolosis caused by Fasciola hepatica/gigantica hybrid type. Parasitol Int 2021; 82:102311. [PMID: 33621657 DOI: 10.1016/j.parint.2021.102311] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 01/14/2021] [Accepted: 02/16/2021] [Indexed: 12/29/2022]
Abstract
Recombinant Fasciola cathepsin L-1 (rCatL1) was evaluated in enzyme-linked immunosorbent assay (ELISA) for the serodiagnosis of human fasciolosis in Japan. Quality characteristics of the test were accessed by receiver operating characteristic (ROC) analysis, with sera from fasciolosis patients (n = 10), patients with no evidence of parasitic infections (n = 29), and patients with other helminth infections (n = 119). Both the sensitivity and specificity of the test achieved 100% with the control samples. To test the performance of the assay in an authentic situation, 311 serum samples, which had been sent to our laboratory for the diagnosis of parasitic infections from January 2018 to February 2019, were re-assessed using the rCatL1 ELISA. In this case, the sensitivity of the rCatL1 ELISA was 100%, giving positive results to all fasciolosis sera (n = 7), and the specificity was 99.0%, in which three of the 304 non-fasciolosis samples were judged positive. Careful re-examination of the laboratory data and medical imaging of these three patients revealed that one of the patients, who had been diagnosed as having larva migrans syndrome, was judged to be infected with Fasciola, in addition to ascarid nematodes. Thus the true specificity of the assay in the authentic reached 99.3% (302/304). As the rCatL1 ELISA exhibited a highly significant positive likelihood ratio (152.0) and negative likelihood ratio (0.0), calculated from the 311 sample data, this rCatL1 ELISA can be used for routine screening and definitive diagnosis test for fasciolosis in reference laboratories.
Collapse
|
26
|
Yue X, Sun XY, Liu F, Hu CX, Bai Y, Da Yang Q, Liu RD, Zhang X, Cui J, Wang ZQ. Molecular characterization of a Trichinella spiralis serine proteinase. Vet Res 2020; 51:125. [PMID: 32988413 PMCID: PMC7520982 DOI: 10.1186/s13567-020-00847-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 09/10/2020] [Indexed: 02/07/2023] Open
Abstract
The aim of this study was to investigate the biological characteristics and functions of a Trichinella spiralis serine proteinase (TsSerp) during larval invasion and development in the host. The full-length TsSerp cDNA sequence was cloned and expressed in Escherichia coli BL21. The results of RT-PCR, IFA and western blotting analyses showed that TsSerp was a secretory protein that was highly expressed at the T. spiralis intestinal infective larva and muscle larva stages and primarily located at the cuticle, stichosome and intrauterine embryos of the parasite. rTsSerp promoted the larval invasion of intestinal epithelial cells (IECs) and the enteric mucosa, whereas an anti-rTsSerp antibody impeded larval invasion; the promotion and obstruction roles were dose-dependently related to rTsSerp and the anti-rTsSerp antibodies, respectively. Vaccination of mice with rTsSerp elicited a remarkable humoral immune response (high levels of serum IgG, IgG1/IgG2a, IgE and IgM), and it also triggered both systemic (spleen) and local intestinal mucosal mesenteric lymph node (MLN) cellular immune responses, as demonstrated by a significant elevation in Th1 cytokines (IFN-γ) and Th2 cytokines (IL-4) after the spleen and MLN cells from vaccinated mice were stimulated with rTsSerp. Anti-TsSerp antibodies participated in the killing and destruction of newborn larvae via ADCC. The mice vaccinated with rTsSerp exhibited a 48.7% reduction in intestinal adult worms and a 52.5% reduction in muscle larvae. These results indicated that TsSerp participates in T. spiralis invasion and development in the host and might be considered a potential candidate target antigen to develop oral polyvalent preventive vaccines against Trichinella infection.
Collapse
Affiliation(s)
- Xin Yue
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Xiang Yuan Sun
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Fang Liu
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Chen Xi Hu
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Ying Bai
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Qi Da Yang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Ruo Dan Liu
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Xi Zhang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Jing Cui
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China.
| | - Zhong Quan Wang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
27
|
Zhang Y, Zeng J, Song YY, Long SR, Liu RD, Jiang P, Zhang X, Cui J, Wang ZQ. Vaccination of Mice with a Novel Trypsin from Trichinella spiralis Elicits the Immune Protection against Larval Challenge. Vaccines (Basel) 2020; 8:E437. [PMID: 32764274 PMCID: PMC7564495 DOI: 10.3390/vaccines8030437] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 07/29/2020] [Accepted: 08/03/2020] [Indexed: 02/07/2023] Open
Abstract
Trichinella spiralis is a major foodborne parasite and has a serious threat to meat safety. Development of anti-Trichinella vaccines is prospective to eliminate Trichinella infection in food animal. The aim of this study was to assess the biological properties of a novel T. spiralis trypsin (TsT) and its elicited immune protection against larval challenge. The cDNA sequence of TsT gene was cloned and expressed. Western blotting showed rTsT was identified by infection serum and anti-TsT serum. RT-PCR results revealed that TsT gene was transcribed at diverse T. spiralis lifecycle stages. The IIFT results showed that natural TsT was principally expressed at epicuticle of 5-6 day adult worms, indicating that TsT is a worm somatic antigen and adult-stage specific surface antigen. Vaccination of mice with rTsT triggered an evident humoral immune response (high levels of serum IgG, IgG1/IgG2a, and enteral sIgA), and it also induced the systemic and enteral local cellular immune response, demonstrated by an significantly elevation of cytokines IFN-γ and IL-4. The mice vaccinated with rTsT exhibited a 33.17% reduction of enteral adult worms and a 37.80% reduction of muscle larvae after larval challenge. The results showed that TsT might be considered as a candidate target antigen for anti-T. spiralis vaccines.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Zhong Quan Wang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou 450052, China; (Y.Z.); (J.Z.); (Y.Y.S.); (S.R.L.); (R.D.L.); (P.J.); (X.Z.); (J.C.)
| |
Collapse
|
28
|
Guo KX, Bai Y, Ren HN, Sun XY, Song YY, Liu RD, Long SR, Zhang X, Jiang P, Wang ZQ, Cui J. Characterization of a Trichinella spiralis aminopeptidase and its participation in invasion, development and fecundity. Vet Res 2020; 51:78. [PMID: 32539772 PMCID: PMC7296678 DOI: 10.1186/s13567-020-00805-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 05/11/2020] [Indexed: 02/08/2023] Open
Abstract
A Trichinella spiralis aminopeptidase (TsAP) has been identified in intestinal infectious larvae (IIL) and adult worms (AW), but its biological function in the T. spiralis life cycle is unknown. The aim of this study was to characterize TsAP and ascertain its functions in the invasion, development and fecundity of T. spiralis. Recombinant TsAP (rTsAP) was expressed and purified. rTsAP has strong immunogenicity. qPCR and western blotting show that TsAP was transcribed and expressed at all T. spiralis lifecycle stages, but the expression level of TsAP mRNA and proteins at IIL and AW stages was obviously higher than those in muscle larvae (ML) and newborn larvae (NBL). The IFT results reveal that TsAP was principally located at the cuticle and the intrauterine embryos of this nematode. rTsAP had the enzymatic activity of natural aminopeptidase to hydrolyze the substrate Leu-pNA with an optimal temperature of 50 °C and optimal pH of 8.0. rTsAP promoted the larval penetration into intestinal epithelial cells, whereas anti-rTsAP antibodies suppressed the larval intrusion; the promotion and suppression was dose-dependently related to rTsAP or anti-rTsAP antibodies. TsAP protein expression level and enzymatic activity were reduced by 50.90 and 49.72% through silencing of the TsAP gene by specific siRNA 842. Intestinal AW and muscle larval burdens, worm length and female reproductive capacity were significantly declined in mice infected with siRNA-transfected ML compared to the control siRNA and PBS group. These results indicate that TsAP participates in the invasion, development and fecundity of T. spiralis and it might be a candidate target for anti-Trichinella vaccines.
Collapse
Affiliation(s)
- Kai Xia Guo
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052 China
| | - Ying Bai
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052 China
| | - Hua Nan Ren
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052 China
| | - Xiang Yuan Sun
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052 China
| | - Yan Yan Song
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052 China
| | - Ruo Dan Liu
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052 China
| | - Shao Rong Long
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052 China
| | - Xi Zhang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052 China
| | - Peng Jiang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052 China
| | - Zhong Quan Wang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052 China
| | - Jing Cui
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052 China
| |
Collapse
|
29
|
Li Y, Wang B, Zhu Y, Tian Z, Yang Z, Duan J, Wang Z. The cysteine protease ATG4B of Trichinella spiralis promotes larval invasion into the intestine of the host. Vet Res 2020; 51:69. [PMID: 32448368 PMCID: PMC7245929 DOI: 10.1186/s13567-020-00791-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 04/14/2020] [Indexed: 01/15/2023] Open
Abstract
The cysteine proteases of parasites are vital contributors that induce parasite migration to and invasion of host tissue. In this study, we analysed the cysteine protease ATG4B of Trichinella spiralis (TsATG4B) isolated from the soluble proteins of Trichinella spiralis (T. spiralis) adult worms to ascertain its biochemical properties and functions during invasion into the intestine of the host. The 43 kDa recombinant cysteine protease ATG4B protein (rTsATG4B) consists of a conserved peptidase_C54 domain and was expressed in Escherichia coli. Gelatine zymography showed that rTsATG4B could hydrolyse gelatine and that the hydrolytic activity was prevented by the cysteine protease inhibitor E-64 (pH 5.2). Immunofluorescence assays showed that TsATG4B is expressed at different stages and is localized at the cuticles and stichosomes of worms. Far-Western blotting and confocal microscopy revealed that rTsATG4B interacts with intestinal epithelial cells (IECs) and that it was subcellularly localized to the membrane and cytoplasm in IECs. Real‑time quantitative PCR (qPCR) results indicated that the transcription level of the TsATG4B gene was the higher in 6-day-old adult worms (6 days AW) than in any other stage. An in vitro larval invasion assay verified that rTsATG4B promoted larval invasion and that invasion was inhibited when rTsATG4B was pre-incubated with E-64, whereas anti-rTsATG4B serum inhibited larval invasion in a dose-dependent manner. Collectively, these results suggested that the enzymatic activity of TsATG4B significantly influences the hydrolysis process, which is necessary for larval invasion of the host intestinal epithelium.
Collapse
Affiliation(s)
- Yalan Li
- Department of Pathogen Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Baiyan Wang
- Scientific Research Experimental Center, School of Basic Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
| | - Yaxin Zhu
- Scientific Research Experimental Center, School of Basic Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
| | - Zhihua Tian
- Scientific Research Experimental Center, School of Basic Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
| | - Zhuo Yang
- Scientific Research Experimental Center, School of Basic Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
| | - Jiaqi Duan
- Scientific Research Experimental Center, School of Basic Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
| | - Zhongquan Wang
- Department of Pathogen Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
30
|
Xu J, Liu RD, Bai SJ, Hao HN, Yue WW, Xu YXY, Long SR, Cui J, Wang ZQ. Molecular characterization of a Trichinella spiralis aspartic protease and its facilitation role in larval invasion of host intestinal epithelial cells. PLoS Negl Trop Dis 2020; 14:e0008269. [PMID: 32339171 PMCID: PMC7205320 DOI: 10.1371/journal.pntd.0008269] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 05/07/2020] [Accepted: 04/06/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND T. spiralis aspartic protease has been identified in excretion/secretion (ES) proteins, but its roles in larval invasion are unclear. The aim of this study was to characterize T. spiralis aspartic protease-2 (TsASP2) and assess its roles in T. spiralis invasion into intestinal epithelial cells (IECs) using RNAi. METHODOLOGY/PRINCIPAL FINDINGS Recombinant TsASP2 (rTsASP2) was expressed and purified. The native TsASP2 of 43 kDa was recognized by anti-rTsASP2 serum in all worm stages except newborn larvae (NBL), and qPCR indicated that TsASP2 transcription was highest at the stage of intestinal infective larvae (IIL). IFA results confirmed that TsASP2 was located in the hindgut, midgut and muscle cells of muscle larvae (ML) and IIL and intrauterine embryos of the female adult worm (AW), but not in NBL. rTsASP2 cleaved several host proteins (human hemoglobin (Hb), mouse Hb, collagen and IgM). The proteolytic activity of rTsASP2 was host-specific, as it hydrolyzed mouse Hb more efficiently than human Hb. The enzymatic activity of rTsASP2 was significantly inhibited by pepstatin A. The expression levels of TsASP2 mRNA and protein were significantly suppressed by RNAi with 5 μM TsASP2-specific siRNA. Native aspartic protease activity in ML crude proteins was reduced to 54.82% after transfection with siRNA. Larval invasion of IECs was promoted by rTsASP2 and inhibited by anti-rTsASP2 serum and siRNA. Furthermore, cell monolayer damage due to larval invasion was obviously alleviated when siRNA-treated larvae were used. The adult worm burden, length of adult worms and female fecundity were clearly reduced in mice challenged using siRNA-treated ML relative to the PBS group. CONCLUSIONS rTsASP2 possesses the enzymatic activity of native aspartic protease and facilitates T. spiralis invasion of host IECs.
Collapse
Affiliation(s)
- Jia Xu
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, PR China
| | - Ruo Dan Liu
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, PR China
| | - Sheng Jie Bai
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, PR China
| | - Hui Nan Hao
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, PR China
| | - Wen Wen Yue
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, PR China
| | - Yang Xiu Yue Xu
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, PR China
| | - Shao Rong Long
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, PR China
| | - Jing Cui
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, PR China
- * E-mail: (JC); (ZQW)
| | - Zhong Quan Wang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, PR China
- * E-mail: (JC); (ZQW)
| |
Collapse
|
31
|
Zhang XZ, Sun XY, Bai Y, Song YY, Hu CX, Li X, Cui J, Wang ZQ. Protective immunity in mice vaccinated with a novel elastase-1 significantly decreases Trichinella spiralis fecundity and infection. Vet Res 2020; 51:43. [PMID: 32169101 PMCID: PMC7071723 DOI: 10.1186/s13567-020-00767-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 03/03/2020] [Indexed: 12/29/2022] Open
Abstract
Trichinella spiralis is an important foodborne parasitic nematode that represents an enormous threat to the food safety of pork meat. The development of a preventive vaccine is valuable for the prevention and control of Trichinella infection in domestic pigs to ensure pork safety. Elastase is a trypsin-like serine protease that hydrolyzes the host's diverse tissue components and participates in parasite penetration, and it might be a novel vaccine target molecule. The aim of this study was to assess the protective immunity produced by vaccination with a novel Trichinella spiralis elastase-1 (TsE) in a mouse model. The results demonstrate that subcutaneous vaccination of mice with rTsE elicited a systemic humoral response (high levels of serum IgG and subclass IgG1/IgG2a and IgA) and significant local enteral mucosal sIgA responses. Anti-rTsE IgG recognized the native TsE at the cuticle, stichosome of intestinal infective larvae and adult worm (AW), and intrauterine embryos of female AW. The rTsE vaccination also produced a systemic and local mixed Th1/Th2 response, as demonstrated by clear elevation levels of Th1 cytokines (IFN-γ, IL-2) and Th2 cytokines (IL-4, IL-10) after spleen, mesenteric lymph node and Peyer's patch cells from immunized mice were stimulated with rTsE. The immunized mice exhibited a 52.19% reduction in enteral AW and a 64.06% reduction in muscle larvae after challenge infection. The immune response triggered by rTsE vaccination protected enteral mucosa from larval intrusion, suppressed larval development and reduced female fecundity. The results indicate that TsE may represent a novel target molecule for anti-T. spiralis vaccines.
Collapse
Affiliation(s)
- Xin Zhuo Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095 China
| | - Xiang Yuan Sun
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052 China
| | - Ying Bai
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052 China
| | - Yan Yan Song
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052 China
| | - Chen Xi Hu
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052 China
| | - Xiangrui Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095 China
| | - Jing Cui
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052 China
| | - Zhong Quan Wang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052 China
| |
Collapse
|
32
|
Han Y, Yue X, Hu CX, Liu F, Liu RD, He MM, Long SR, Cui J, Wang ZQ. Interaction of a Trichinella spiralis cathepsin B with enterocytes promotes the larval intrusion into the cells. Res Vet Sci 2020; 130:110-117. [PMID: 32171999 DOI: 10.1016/j.rvsc.2020.03.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 02/18/2020] [Accepted: 03/06/2020] [Indexed: 11/18/2022]
Abstract
Cathepsin B is one member of cysteine protease family and widely distributed in organisms, it plays an important function in parasite penetrating, migrating, molting and immune escaping. The aim of this work was to investigate whether exist interaction between a Trichinella spiralis cathepsin B (TsCB) and mouse intestinal epithelium cells (IECs), and its influence in the process of larva cell invasion. The results of ELISA, indirect immunofluorescence assay (IIFA), confocal microscopy and Far western blotting showed that there was a strong specific binding of rTsCB and IEC proteins, and the binding positions were located in cytoplasm and nuclei of IECs. The results of the in vitro larva penetration test revealed that rTsCB facilitated the larva invasion of IECs, whereas anti-rTsCB antibodies impeded partially the larva intrusion of enterocytes, this promotive or inhibitory roles were dose-dependent of rTsCB or anti-rTsCB antibodies. Silencing TsCB by siRNA mediated RNA interference reduced the TsCB expression in T. spiralis larvae, and markedly inhibited the larva penetration of enterocytes. The results indicated that TsCB binding to IECs promoted larva penetration of host's enteral epithelia, and it is a promising molecular target against intestinal invasive stages of T. spiralis.
Collapse
Affiliation(s)
- Yue Han
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou 450052, PR China
| | - Xin Yue
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou 450052, PR China
| | - Chen Xi Hu
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou 450052, PR China
| | - Fang Liu
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou 450052, PR China
| | - Ruo Dan Liu
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou 450052, PR China
| | - Ming Ming He
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou 450052, PR China
| | - Shao Rong Long
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou 450052, PR China
| | - Jing Cui
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou 450052, PR China.
| | - Zhong Quan Wang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou 450052, PR China.
| |
Collapse
|
33
|
Hu CX, Jiang P, Yue X, Zeng J, Zhang XZ, Song YY, Liu RD, Zhang X, Wang ZQ, Cui J. Molecular characterization of a Trichinella spiralis elastase-1 and its potential as a diagnostic antigen for trichinellosis. Parasit Vectors 2020; 13:97. [PMID: 32093735 PMCID: PMC7041205 DOI: 10.1186/s13071-020-3981-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 02/18/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Trichinella spiralis muscle larval (ML) excretion/secretion (ES) antigen is the most widely used diagnostic antigen of trichinellosis, but preparation of ES antigen requires collecting worms from infected animals, and detection of specific IgG against ML ES antigen may result in a false negative at the early stage of infection. The aim of the study was to characterize T. spiralis elastase-1 (TsEla) and to evaluate its potential as diagnostic antigen for trichinellosis. METHODS The complete cDNA sequences of the TsEla gene were cloned and expressed, and recombinant (rTsEla) was purified. TsEla transcription and expression in different T. spiralis life-cycle stages was investigated by qPCR and western blotting, and its location in the nematodes was evaluated using an immunofluorescence assay (IFA). The antigenicity of rTsEla was investigated by western blotting analysis and ELISA. Anti-Trichinella IgG, IgM and IgE of experimentally infected mice and specific IgG antibodies of trichinellosis patients were assayed by rTsEla-ELISA and ES-ELISA. RESULTS The results of the qPCR and western blotting showed that TsEla was expressed in various T. spiralis life stages. Natural TsEla was detected in the soluble proteins and ES proteins of different life stages. IFA revealed that TsEla was identified in the whole nematodes of various stages, especially in the cuticle, stichosome and genital primordium of the parasite. Serum anti-Trichinella IgM, IgG and IgE in infected mice was first detected by rTsEla-ELISA at 6, 10 and 12 days post-infection (dpi), and reached 100% at 8, 14 and 14 dpi, respectively. When rTsEla-ELISA and ES-ELISA were used to detect anti-Trichinella IgG in sera of trichinellosis patients, the sensitivity was 97.37% (37/38) and 89.74% (34/38) (P > 0.05), and the specificity was 99.10% (220/222) and 98.20% (218/222), respectively (P > 0.05). The rTsEla cross-reacted with only one serum sample out of 20 samples from paragonimiasis patients and 7 samples from clonorchiasis patients. CONCLUSIONS rTsEla is valuable to early diagnosis of trichinellosis and could be an alternative diagnostic antigen to the ML ES antigens.
Collapse
Affiliation(s)
- Chen Xi Hu
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052 China
| | - Peng Jiang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052 China
| | - Xin Yue
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052 China
| | - Jie Zeng
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052 China
| | - Xin Zhuo Zhang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052 China
| | - Yan Yan Song
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052 China
| | - Ruo Dan Liu
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052 China
| | - Xi Zhang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052 China
| | - Zhong Quan Wang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052 China
| | - Jing Cui
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052 China
| |
Collapse
|
34
|
Characterization of a chymotrypsin-like enzyme from Trichinella spiralis and its facilitation of larva penetration into the host's enteral epithelial cells. Res Vet Sci 2020; 128:1-8. [DOI: 10.1016/j.rvsc.2019.10.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 10/26/2019] [Accepted: 10/28/2019] [Indexed: 12/23/2022]
|
35
|
Kondo Y, Ito D, Tademoto S, Itami N, Nishikata S, Takashima E, Tsuboi T, Fukumoto S, Otsuki H. Molecular cloning and characterization of plerocercoid-immunosuppressive factor from Spirometra erinaceieuropaei. Parasitol Int 2020; 76:102062. [PMID: 31978597 DOI: 10.1016/j.parint.2020.102062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 01/14/2020] [Accepted: 01/17/2020] [Indexed: 01/15/2023]
Abstract
A platyhelminth, Spirometra erinaceieuropaei, belonging to the class Cestoda, causes human sparganosis, and infection with its larva results in subtle inflammation in the body of its host. We previously reported the purification of a glycoprotein, plerocercoid-immunosuppressive factor (P-ISF) from the excretory/secretory products of S. erinaceieuropaei plerocercoids that may be involved in immuno-modification. We determined the sequence of P-ISF from the N-terminal and the internal 10 amino acids of P-ISF using degenerate PCR and 5'- and 3'-RACE methods. The putative gene encoding P-ISF was 1443 bp long and the gene contained 10 exons and 9 introns in a genomic DNA of size 5205 bp. P-ISF consists of 480 amino acids including the N-terminal signal peptide sequence, and has two unknown domains,-cestoda cysteine-rich domains (CCDs) and a fibronectin type III domain between the two CCDs. All cysteine residues were conserved in the two CCDs, which shared 62% amino acid identities. Homologous analysis revealed that the CCDs were homologous with an unknown protein of Diphyllobothrium latum. To produce specific antibodies, we expressed recombinant P-ISF (rP-ISF) using wheat germ protein synthetic system. P-ISF was localized in the sub-cutaneous tissues and the parenchymal tissues of plerocercoids. Transcription of P-ISF was detected only in plerocercoid stage, but not in adult stage. Western blotting also showed a band in plerocercoide stage but not in adult. The rP-ISF did not suppress nitrite production in RAW 264.7 cells stimulated with LPS, and this might be due to lack of carbohydrate chains in the recombinant protein.
Collapse
Affiliation(s)
- Yoko Kondo
- Division of Medical Zoology, Department of Microbiology and Immunology, Faculty of Medicine, Tottori University, Yonago 683-8503, Japan
| | - Daisuke Ito
- Division of Medical Zoology, Department of Microbiology and Immunology, Faculty of Medicine, Tottori University, Yonago 683-8503, Japan
| | - Sayuri Tademoto
- Technical Department, Tottori University, Yonago 683-8503, Japan
| | - Nanase Itami
- Division of Medical Zoology, Department of Microbiology and Immunology, Faculty of Medicine, Tottori University, Yonago 683-8503, Japan
| | - Shuma Nishikata
- Division of Medical Zoology, Department of Microbiology and Immunology, Faculty of Medicine, Tottori University, Yonago 683-8503, Japan
| | - Eizo Takashima
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama 790-8577, Japan
| | - Takafumi Tsuboi
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama 790-8577, Japan
| | - Soji Fukumoto
- Division of Medical Zoology, Department of Microbiology and Immunology, Faculty of Medicine, Tottori University, Yonago 683-8503, Japan; Tottori Medical Career Support Center, Tottori University Hospital, Yonago 683-8504, Japan
| | - Hitoshi Otsuki
- Division of Medical Zoology, Department of Microbiology and Immunology, Faculty of Medicine, Tottori University, Yonago 683-8503, Japan.
| |
Collapse
|
36
|
Cui J, Han Y, Yue X, Liu F, Song YY, Yan SW, Lei JJ, Zhang X, Jiang P, Wang ZQ. Vaccination of mice with a recombinant novel cathepsin B inhibits Trichinella spiralis development, reduces the fecundity and worm burden. Parasit Vectors 2019; 12:581. [PMID: 31829230 PMCID: PMC6907330 DOI: 10.1186/s13071-019-3833-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 12/02/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Trichinella spiralis is a major zoonotic tissue-dwelling nematode, which is a public health concern and a serious hazard to animal food safety. It is necessary to exploit an anti-Trichinella vaccine to interrupt the transmission of Trichinella infection among animals and from animals to humans. The purpose of the present study was to characterize the novel T. spiralis cathepsin B (TsCB) and to evaluate the immune protection elicited by immunization with recombinant TsCB (rTsCB). METHODS The complete cDNA sequences of the TsCB gene were cloned, expressed and purified. The antigenicity of rTsCB was investigated by western blot analysis and ELISA. Transcription and expression of TsCB at various T. spiralis life-cycle stages were analyzed by RT-PCR and indirect immunofluorescent assay (IIFA). The mice were subcutaneously immunized with rTsCB, and serum level of TsCB-specific IgG (IgG1 and IgG2a) and IgE antibodies were assayed by ELISA. Immune protection elicited by vaccination with rTsCB was investigated. RESULTS The TsCB was transcribed and expressed in four T. spiralis life-cycle stages (adult worm, AW; newborn larvae, NBL; muscle larvae, ML; and intestinal infective L1 larvae), it was primarily located in the cuticle and stichosome of the parasitic nematode. Vaccination of mice with rTsCB produced a prominent antibody response (high level of specific IgG and IgE) and immune protection, as demonstrated by a 52.81% AW burden reduction of intestines at six days post-infection (dpi) and a 50.90% ML burden reduction of muscles at 35 dpi after oral larva challenge. The TsCB-specific antibody response elicited by immunization with rTsCB also impeded intestinal worm growth and decreased the female fecundity. CONCLUSIONS TsCB might be considered as a novel potential molecular target to develop vaccines against T. spiralis infection.
Collapse
Affiliation(s)
- Jing Cui
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052 China
| | - Yue Han
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052 China
| | - Xin Yue
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052 China
| | - Fang Liu
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052 China
| | - Yan Yan Song
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052 China
| | - Shu Wei Yan
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052 China
| | - Jun Jun Lei
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052 China
| | - Xi Zhang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052 China
| | - Peng Jiang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052 China
| | - Zhong Quan Wang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052 China
| |
Collapse
|
37
|
Barčák D, Yoneva A, Sehadová H, Oros M, Gustinelli A, Kuchta R. Complex insight on microanatomy of larval "human broad tapeworm" Dibothriocephalus latus (Cestoda: Diphyllobothriidea). Parasit Vectors 2019; 12:408. [PMID: 31434579 PMCID: PMC6702751 DOI: 10.1186/s13071-019-3664-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 08/09/2019] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND In Europe, the tapeworm Dibothriocephalus latus (syn. Diphyllobothrium latum) is a well-known etiological agent of human diphyllobothriosis, which spreads by the consumption of raw fish flesh infected by plerocercoids (tapeworm's larval stage). However, the process of parasite establishment in both intermediate and definitive hosts is poorly understood. This study was targeted mainly on the scolex (anterior part) of the plerocercoid of this species, which facilitates penetration of the parasite in intermediate paratenic fish hosts, and subsequently its attachment to the intestine of the definitive host. METHODS Plerocercoids were isolated from the musculature of European perch (Perca fluviatilis) caught in Italian alpine lakes. Parasites were examined using confocal microscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Immunofluorescence tagging was held on whole mount larvae. RESULTS The organisation of the central and peripheral nervous system was captured in D. latus plerocercoids, including the ultrastructure of the nerve cells possessing large dense neurosecretory granules. Two types of nerve fibres run from the body surface toward the nerve plexus located in the parenchyma on each side of bothria. One type of these fibres was found to be serotoninergic and possessed large subtegumental nerve cell bodies. A well-developed gland apparatus, found throughout the plerocercoid parenchyma, produced heterogeneous granules with lucent core packed in a dense layer. Three different types of microtriches occurred on the scolex and body surface of plerocercoids of D. latus: (i) uncinate spinitriches; (ii) coniform spinitriches; and (iii) capilliform filitriches. Non-ciliated sensory receptors were observed between the distal cytoplasm of the tegument and the underlying musculature. CONCLUSIONS Confocal laser scanning microscopy and electron microscopy (SEM and TEM) showed the detailed microanatomy of the nervous system in the scolex of plerocercoids, and also several differences in the larval stages compared with adult D. latus. These features, i.e. well-developed glandular system and massive hook-shaped uncinate spinitriches, are thus probably required for plerocercoids inhabiting fish hosts and also for their post-infection attachment in the human intestine.
Collapse
Affiliation(s)
- Daniel Barčák
- Institute of Parasitology, Slovak Academy of Sciences, Hlinkova 3, 04001 Košice, Slovak Republic
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, 37005 České Budějovice, Czech Republic
| | - Aneta Yoneva
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, 37005 České Budějovice, Czech Republic
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 2 Gagarin Street, 1113 Sofia, Bulgaria
| | - Hana Sehadová
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, 37005 České Budějovice, Czech Republic
- University of South Bohemia, Faculty of Science, 37005 České Budějovice, Czech Republic
| | - Mikuláš Oros
- Institute of Parasitology, Slovak Academy of Sciences, Hlinkova 3, 04001 Košice, Slovak Republic
| | - Andrea Gustinelli
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra 50, 40064 Ozzano Emilia, BO Italy
| | - Roman Kuchta
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, 37005 České Budějovice, Czech Republic
| |
Collapse
|
38
|
Sun GG, Lei JJ, Ren HN, Zhang Y, Guo KX, Long SR, Liu RD, Jiang P, Wang ZQ, Cui J. Intranasal immunization with recombinant Trichinella spiralis serine protease elicits protective immunity in BALB/c mice. Exp Parasitol 2019; 201:1-10. [PMID: 31004570 DOI: 10.1016/j.exppara.2019.04.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 03/28/2019] [Accepted: 04/12/2019] [Indexed: 01/03/2023]
Abstract
The aim of this study was to observe the intestinal mucosal/systemic responses triggered by intranasal vaccination using recombinant Trichinella spiralis serine protease (rTsSP) and its capacity to elicit immune protection against larva challenge in a murine model. rTsSP coupled with cholera toxin B subunit (CTB) was used to vaccinate mice via intranasal route. The results revealed that intranasal vaccination with rTsSP plus CTB elicited significantly intestinal local sIgA response and a TsSP-specific systemic antibody response in vaccinated mice. Furthermore, more goblet cells/acidic mucins and IgA-secreting cells were observed in jejunum from vaccinated mice. Anti-rTsSP immune serum strongly recognized the cuticle of various worm stages (muscle larva, intestinal infective larva and adult worm). The level of IFN-γ, IL-4 and IL-10 of rTsSP-vaccinated mice was significantly elevated relative to CTB and PBS control groups. The vaccinated mice exhibited a 71.10% adult reduction at 9 days pi and a 62.10% muscle larva reduction at 42 days pi following larva challenge. Additionally, vaccination with rTsSP also dampened intestinal T. spiralis development and decreased the female fecundity. Our results showed that intranasal vaccination using rTsSP adjuvanted with CTB triggered significantly local sIgA response and systemic concurrent Th1/Th2 response that induced an obvious protection against Trichinella infection.
Collapse
Affiliation(s)
- Ge Ge Sun
- Department of Parasitology, Medical College, Zhengzhou University, 40 Daxue Road, Zhengzhou, 450052, PR China
| | - Jun Jun Lei
- Department of Parasitology, Medical College, Zhengzhou University, 40 Daxue Road, Zhengzhou, 450052, PR China
| | - Hua Nan Ren
- Department of Parasitology, Medical College, Zhengzhou University, 40 Daxue Road, Zhengzhou, 450052, PR China
| | - Yao Zhang
- Department of Parasitology, Medical College, Zhengzhou University, 40 Daxue Road, Zhengzhou, 450052, PR China
| | - Kai Xia Guo
- Department of Parasitology, Medical College, Zhengzhou University, 40 Daxue Road, Zhengzhou, 450052, PR China
| | - Shao Rong Long
- Department of Parasitology, Medical College, Zhengzhou University, 40 Daxue Road, Zhengzhou, 450052, PR China
| | - Ruo Dan Liu
- Department of Parasitology, Medical College, Zhengzhou University, 40 Daxue Road, Zhengzhou, 450052, PR China
| | - Peng Jiang
- Department of Parasitology, Medical College, Zhengzhou University, 40 Daxue Road, Zhengzhou, 450052, PR China
| | - Zhong Quan Wang
- Department of Parasitology, Medical College, Zhengzhou University, 40 Daxue Road, Zhengzhou, 450052, PR China.
| | - Jing Cui
- Department of Parasitology, Medical College, Zhengzhou University, 40 Daxue Road, Zhengzhou, 450052, PR China.
| |
Collapse
|
39
|
Deng K, Cui J, Qin Y, Zhu Y, Feng G. First report of sparganosis manifested by pleuritis and decreased peripheral blood eosinophils in Jiangsu province, China. Parasitol Res 2019; 118:1653-1656. [DOI: 10.1007/s00436-019-06268-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 02/12/2019] [Indexed: 11/25/2022]
|
40
|
Ren HN, Guo KX, Zhang Y, Sun GG, Liu RD, Jiang P, Zhang X, Wang L, Cui J, Wang ZQ. Molecular characterization of a 31 kDa protein from Trichinella spiralis and its induced immune protection in BALB/c mice. Parasit Vectors 2018; 11:625. [PMID: 30518426 PMCID: PMC6282284 DOI: 10.1186/s13071-018-3198-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 11/12/2018] [Indexed: 12/18/2022] Open
Abstract
Background Trichinella spiralis is an important foodborne zoonotic parasite and it is necessary to develop a vaccine in order to interrupt transmission from animals to humans. A 31 kDa protein from T. spiralis (Ts31) is an antigen targeted by protective antibodies, and Ts31 contains a domain of trypsin-like serine protease that might have the function of serine protease. The purpose of this study was to investigate the molecular characteristics of Ts31 and its induced immune protection. Methods Expression and localization of Ts31 in various T. spiralis phases were investigated using qPCR and immunofluorescent test (IFT). The specific binding between Ts31 and intestinal epithelium cells (IECs) was analyzed by Far-Western blotting, ELISA and IFT, and the cellular localization of binding sites was examined on confocal microscopy. The mice were subcutaneously vaccinated with recombinant Ts31 protein (rTs31), serum specific IgG was determined by ELISA, and immune protection induced by immunization with rTs31 was evaluated. Inhibition of anti-rTs31 IgG on IL1 invasion of IECs and ADCC-mediated killing of newborn larvae (NBL) was also determined. Results Ts31 was expressed at different life-cycle stages and located principally at the stichosome and cuticle of this parasite. rTs31 was capable to specially bond to IECs, and binding site was located in the cytoplasm of IECs. Immunization of mice with rTs31 elicited a significant humoral response and protection, as demonstrated by a 56.93% reduction of adult worms at 6 days post-infection (dpi) and a 53.50% reduction of muscle larvae at 42 dpi after larval challenge. Anti-rTs31 antibodies impeded T. spiralis penetration of enterocytes in a dose-dependent pattern, and participated in the destruction of NBL by an ADCC-mediated manner. Conclusions Ts31 facilitated the T. spiralis penetration of intestinal epithelium, which could make it a vaccine candidate target molecule against Trichinella infection.
Collapse
Affiliation(s)
- Hua Nan Ren
- Department of Parasitology, Medical College, Zhengzhou University, 40 Daxue Road, Zhengzhou, 450052, People's Republic of China
| | - Kai Xia Guo
- Department of Parasitology, Medical College, Zhengzhou University, 40 Daxue Road, Zhengzhou, 450052, People's Republic of China
| | - Yao Zhang
- Department of Parasitology, Medical College, Zhengzhou University, 40 Daxue Road, Zhengzhou, 450052, People's Republic of China
| | - Ge Ge Sun
- Department of Parasitology, Medical College, Zhengzhou University, 40 Daxue Road, Zhengzhou, 450052, People's Republic of China
| | - Ruo Dan Liu
- Department of Parasitology, Medical College, Zhengzhou University, 40 Daxue Road, Zhengzhou, 450052, People's Republic of China
| | - Peng Jiang
- Department of Parasitology, Medical College, Zhengzhou University, 40 Daxue Road, Zhengzhou, 450052, People's Republic of China
| | - Xi Zhang
- Department of Parasitology, Medical College, Zhengzhou University, 40 Daxue Road, Zhengzhou, 450052, People's Republic of China
| | - Li Wang
- Genetic and Prenatal Diagnostic Center of the First Affiliated Hospital, Medical College, Zhengzhou University, 40 Daxue Road, Zhengzhou, 450052, People's Republic of China.
| | - Jing Cui
- Department of Parasitology, Medical College, Zhengzhou University, 40 Daxue Road, Zhengzhou, 450052, People's Republic of China.
| | - Zhong Quan Wang
- Department of Parasitology, Medical College, Zhengzhou University, 40 Daxue Road, Zhengzhou, 450052, People's Republic of China.
| |
Collapse
|
41
|
Qi X, Yue X, Han Y, Jiang P, Yang F, Lei JJ, Liu RD, Zhang X, Wang ZQ, Cui J. Characterization of Two Trichinella spiralis Adult-Specific DNase II and Their Capacity to Induce Protective Immunity. Front Microbiol 2018; 9:2504. [PMID: 30455671 PMCID: PMC6230719 DOI: 10.3389/fmicb.2018.02504] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Accepted: 10/02/2018] [Indexed: 12/13/2022] Open
Abstract
Deoxyribonuclease II (DNase II) is a widespread endonuclease, which can degrade the DNA. Trichinella spiralis adult-specific DNase II-1 (TsDNase II-1) and DNase II-7 (TsDNase II-7) were identified in excretory-secretory (ES) or surface proteins of adult worm (AW) and intestinal infective larvae (IIL) using immunoproteomics with early infection sera. The aim of this study was to characterize the two T. spiralis DNase II enzymes and to investigate their role as potential vaccine candidate target molecules. The cDNA sequences of the two DNase II enzymes from 3 days old AWs of T. spiralis were cloned and expressed. The sequencing results showed that the complete cDNA sequences of the two DNase II enzymes were 1221 and 1161 bp long, and the predicted open reading frames encoded 347 and 348 amino acids, respectively. On Western blot analysis, natural TsDNase II-1 and TsDNase II-7 in the crude extracts of IIL, AWs, and newborn larvae (NBL) and AW ES proteins were recognized by both anti-rTsDNase II-1 and anti-rTsDNase II-7 sera. Indirect immunofluorescence test and qPCR showed that the two DNase II enzymes were highly expressed at AW and NBL stages and were mainly located at the cuticle and stichosome of the nematode. Vaccination with the two recombinant DNase II enzymes triggered prominent humoral responses that exhibited significant immune protection against T. spiralis larval infection, as demonstrated by the notable reduction in intestinal AW and muscle larva burdens. Specific antibodies to the two molecules evidently inhibited the in vitro parasite invasion of enterocytes and participated in the killing of NBL by an antibody-dependent cell-mediated cytotoxicity (ADCC) mode. The enzymes DNase II-1 and DNase II-7 are the potential target molecules for anti-Trichinella vaccine for blocking both larval invasion and development.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Zhong Q. Wang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, China
| | - Jing Cui
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
42
|
Identification of sparganosis based on next-generation sequencing. INFECTION GENETICS AND EVOLUTION 2018; 66:256-261. [PMID: 30315893 DOI: 10.1016/j.meegid.2018.10.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 10/08/2018] [Accepted: 10/10/2018] [Indexed: 11/23/2022]
Abstract
The incidence of sparganosis, a parasitic disease caused by plerocercoid larvae of the genus Spirometra, has gradually risen worldwide (especially in remote areas) in recent years. Pulmonary and pleural sparganosis, as well as other sites of infestation, including the subcutaneous tissues, the abdominal viscera, brain and eyes, has been reported. In clinical practice, due to the atypical signs and symptoms as well as limited laboratory approaches for the specific detection of sparganum, sparganosis is often misdiagnosed. In the present study, an 11-year-old girl visited the Department of Infectious Diseases in Shanghai Children's Medical Center for recurrent shoulder and chest pain and shortness of breath. Imaging tests demonstrated bilateral pleural and pericardial effusion, enlarged lymph nodes in front of the tracheal carina, and infection of the left lower lobe. Sparganum were not observed in the dissected soft tissue at the root of the right thigh with naked-eye and light microscopy examination. Histologic examination revealed granulomatous inflammation and tunnel-like necrosis with eosinophilic, neutrophilic and lymphocytic infiltration. Although the patient's serum was positive for sparganum antibodies, the diagnosis of sparganosis was not confirmed for more than three months. Ultimately, genomic DNA of Spirometra erinaceieuropaei was detected in the mass at the root of the right thigh using next-generation sequencing (NGS), confirming the diagnosis of sparganosis. The patient was treated with praziquantel (150 mg/kg/day) without recurrence after an eight-month follow-up. We present, for the first time, a study of human sparganosis diagnosed using NGS, which provided a clinically actionable diagnosis of a specific infectious disease from an uncommon pathogen.
Collapse
|
43
|
Song YY, Zhang Y, Ren HN, Sun GG, Qi X, Yang F, Jiang P, Zhang X, Cui J, Wang ZQ. Characterization of a serine protease inhibitor from Trichinella spiralis and its participation in larval invasion of host's intestinal epithelial cells. Parasit Vectors 2018; 11:499. [PMID: 30189888 PMCID: PMC6127903 DOI: 10.1186/s13071-018-3074-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Accepted: 08/23/2018] [Indexed: 12/29/2022] Open
Abstract
Background Trichinella spiralis serine protease inhibitor (TsSPI) was identified in ES proteins of adult worms (AW), the TsSPI gene was highly expressed at enteral stage worms (AW and newborn larvae), distributed mainly in the cuticle and stichosome of this nematode. Vaccination of mice with rTsSPI exhibited a 62.2% reduction of intestinal AW and a 57.25% reduction of muscle larvae after larval challenge. The aim of this study was to investigate the biological characteristics of TsSPI and its roles in the process of T. spiralis invasion of host’s intestinal epithelium cells (IECs). Methods The rTsSPI inhibition on trypsin enzymatic activity was detected by SDS-PAGE and spectrophotometry. The binding of rTsSPI with intestinal epithelium from normal mice and the primary cultured mouse intestinal epithelium cells (IECs) was examined by indirect immunofluorescent (IIF), the cellular localization of rTsSPI binding to IECs was observed by confocal microscopy. The inhibition of anti-rTsSPI serum on T. spiralis invasion of IECs was determined by an in vitro invasion assay. Anti-rTsSPI antibody cytotoxicity on the newborn larvae (NBL) was also determined. Results The rTsSPI had the inhibitory activity against porcine trypsin. The rTsSPI specifically bound to the intestinal epithelium from normal mice and primary cultured mouse IECs, and the binding sites were located in IEC membrane and cytoplasm. Anti-rTsSPI antibodies depressed the larval invasion of IECs with a dose-dependent mode. Anti-rTsSPI antibodies also participated in the destruction of T. spiralis NBL via an ADCC-mediated manner. Conclusions TsSPI might participate in the T. spiralis larval invasion of IECs and it is likely the potential vaccine target against T. spiralis enteral stages.
Collapse
Affiliation(s)
- Yan Yan Song
- Department of Parasitology, Medical College, Zhengzhou University, 40 Daxue Road, Zhengzhou, 450052, People's Republic of China
| | - Yao Zhang
- Department of Parasitology, Medical College, Zhengzhou University, 40 Daxue Road, Zhengzhou, 450052, People's Republic of China
| | - Hua Nan Ren
- Department of Parasitology, Medical College, Zhengzhou University, 40 Daxue Road, Zhengzhou, 450052, People's Republic of China
| | - Ge Ge Sun
- Department of Parasitology, Medical College, Zhengzhou University, 40 Daxue Road, Zhengzhou, 450052, People's Republic of China
| | - Xin Qi
- Department of Parasitology, Medical College, Zhengzhou University, 40 Daxue Road, Zhengzhou, 450052, People's Republic of China
| | - Fan Yang
- Department of Parasitology, Medical College, Zhengzhou University, 40 Daxue Road, Zhengzhou, 450052, People's Republic of China
| | - Peng Jiang
- Department of Parasitology, Medical College, Zhengzhou University, 40 Daxue Road, Zhengzhou, 450052, People's Republic of China
| | - Xi Zhang
- Department of Parasitology, Medical College, Zhengzhou University, 40 Daxue Road, Zhengzhou, 450052, People's Republic of China
| | - Jing Cui
- Department of Parasitology, Medical College, Zhengzhou University, 40 Daxue Road, Zhengzhou, 450052, People's Republic of China.
| | - Zhong Quan Wang
- Department of Parasitology, Medical College, Zhengzhou University, 40 Daxue Road, Zhengzhou, 450052, People's Republic of China.
| |
Collapse
|
44
|
Sun GG, Ren HN, Liu RD, Song YY, Qi X, Hu CX, Yang F, Jiang P, Zhang X, Wang ZQ, Cui J. Molecular characterization of a putative serine protease from Trichinella spiralis and its elicited immune protection. Vet Res 2018; 49:59. [PMID: 30001738 PMCID: PMC6043985 DOI: 10.1186/s13567-018-0555-5] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 05/08/2018] [Indexed: 01/25/2023] Open
Abstract
In our previous work, a Trichinella spiralis putative serine protease (TsSP) was identified from ES products of T. spiralis intestinal infective larvae (IIL) and adult worms (AW) by immunoproteomics: it was highly expressed in IIL compared with muscle larvae (ML). In this study, the TsSP biological characteristics in larval invasion and growth were identified and its potential as a vaccine target against Trichinella infection were investigated. Expression of TsSP at various developmental phases (newborn larvae, ML, IIL, and AW) was detected by qPCR, immunofluorescent test and Western blotting. The rTsSP could specifically bind to the intestinal epithelial cell (IEC) membrane and enter into the cytoplasm. Anti-rTsSP serum suppressed the larval invasion of enterocytes in a dose-dependent mode, and killed newborn and ML of T. spiralis, decreased larval infectivity and development in the host by an ADCC-mediated mechanism. Immunization of mice with rTsSP produced a Th2 predominant immune response, and resulted in a 52.70% reduction of adult worms at 5 days post-infection (dpi) and a 52.10% reduction of muscle larvae at 42 dpi. The results revealed there was an interaction between TsSP and the host’s IEC; TsSP might be a pivotal protein for the invading, growing and parasiting of this nematode in the host. Vaccination of mice with rTsSP elicited immune protection, and TsSP is a potential target molecule for vaccines against enteral Trichinella infection.
Collapse
Affiliation(s)
- Ge Ge Sun
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Hua Nan Ren
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Ruo Dan Liu
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Yan Yan Song
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Xin Qi
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Chen Xi Hu
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Fan Yang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Peng Jiang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Xi Zhang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Zhong Quan Wang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China.
| | - Jing Cui
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
45
|
Sun GG, Song YY, Jiang P, Ren HN, Yan SW, Han Y, Liu RD, Zhang X, Wang ZQ, Cui J. Characterization of a Trichinella spiralis putative serine protease. Study of its potential as sero-diagnostic tool. PLoS Negl Trop Dis 2018; 12:e0006485. [PMID: 29758030 PMCID: PMC5967804 DOI: 10.1371/journal.pntd.0006485] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 05/24/2018] [Accepted: 05/01/2018] [Indexed: 12/12/2022] Open
Abstract
Background Trichinellosis is a serious zoonositc parasitosis worldwide. Because its clinical manifestations aren’t specific, the diagnosis of trichinellosis is not easy to be made. Trichinella spiralis muscle larva (ML) excretory–secretory (ES) antigens are the most widely applied diagnostic antigens for human trichinellosis, but the major drawback of the ES antigens for assaying anti-Trichinella antibodies is the false negative in the early Trichinella infection period. The aim of this study was to characterize the T. spiralis putative serine protease (TsSP) and to investigate its potential use for diagnosis of trichinellosis. Methodology/Principal findings The full-length TsSP sequence was cloned and expressed, and recombinant TsSP (rTsSP) was purified by Ni-NTA-Sefinose Column. On Western blotting analysis the rTsSP was recognized by T. spiralis-infected mouse serum, and the natural TsSP was identified in T. spiralis ML crude and ES antigens by using anti-rTsSP serum. Expression of TsSP was detected at various T. spiralis developmental stages (newborn larvae, muscle larvae, intestinal infective larvae and adult worms). Immunolocalization identified the TsSP principally in cuticles and stichosomes of the nematode. The sensitivity of rTsSP-ELISA and ES-ELISA was 98.11% (52/53) and 88.68% (47/53) respectively (P > 0.05) when the sera from trichinellosis patients were examined. However, while twenty-one serum samples of trichinellosis patients’ sera at 19 days post-infection (dpi) were tested, the sensitivity (95.24%) of rTsSP-ELISA was distinctly higher than 71.43% of ES-ELISA (P < 0.05). The specificity (99.53%) of rTsSP-ELISA was remarkably higher than 91.98% of ES-ELISA (P < 0.01). Only one out of 20 serum samples of cysticercosis patients cross-reacted with the rTsSP. Specific anti-Trichinella IgG in infected mice was first detected by rTsSP-ELISA as soon as 7 dpi and antibody positive rate reached 100% on 10 dpi, whereas the ES-ELISA did not permit detection of 100% of infected mice before 16 dpi. Conclusions The rTsSP is a potential early diagnostic antigen for human trichinellosis. Trichinellosis is an important parasitic zoonosis, and has a public health hazard and an economic impact on the safety of animal food. The diagnosis of trichinellosis is difficult and it is often misdiagnosed. There is an evident 2–3 week window stage between clinical manifestations and the anti-Trichinella IgG positive. Serine protease is a superfamily of proteolytic enzymes and exerts a major role in tissue invasion, larval development and survival of the parasites. A T. spiralis putative serine protease (TsSP) was characterized in ES proteins of T. spiralis intestinal infective larvae and adult worms by the immunoproteomics with early infection serum. In this study, the TsSP was expressed and purified. The results revealed that the TsSP was expressed at various T. spiralis stages (newborn larvae, muscle larvae, intestinal infective larvae and adult worms) and it was principally located in cuticle and stichosome of the nematode. The rTsSP was sensitive and specific for detection of anti-Trichinella IgG, and could be regarded as an early diagnostic marker of trichinellosis.
Collapse
Affiliation(s)
- Ge Ge Sun
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, P. R. China
| | - Yan Yan Song
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, P. R. China
| | - Peng Jiang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, P. R. China
| | - Hua Na Ren
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, P. R. China
| | - Shu Wei Yan
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, P. R. China
| | - Yue Han
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, P. R. China
| | - Ruo Dan Liu
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, P. R. China
| | - Xi Zhang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, P. R. China
| | - Zhong Quan Wang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, P. R. China
- * E-mail: (ZQW); (JC)
| | - Jing Cui
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, P. R. China
- * E-mail: (ZQW); (JC)
| |
Collapse
|
46
|
Liu CY, Ren HN, Song YY, Sun GG, Liu RD, Jiang P, Long SR, Zhang X, Wang ZQ, Cui J. Characterization of a putative glutathione S-transferase of the parasitic nematode Trichinella spiralis. Exp Parasitol 2018; 187:59-66. [PMID: 29496524 DOI: 10.1016/j.exppara.2018.02.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Revised: 01/31/2018] [Accepted: 02/24/2018] [Indexed: 02/07/2023]
Abstract
The aim of this study was to identify the biological characteristics and functions of a putative Trichinella spiralis glutathione S-transferase (TspGST). The results of real-time PCR and immunofluorescent test (IFT) showed that the TspGST gene was expressed at all of T. spiralis different developmental stages (muscle larvae, intestinal infective larvae, adult worms and newborn larvae). When anti-rTspGST serum, mouse infection serum, and pre-immune serum were added to the medium, the inhibition rate of the larvae penetrated into the intestinal epithelial cells (IECs) was 25.72%, 49.55%, and 4.51%, respectively (P < 0.01). The inhibition of anti-rTspGST serum on larval invasion of IECs was dose-dependent (P < 0.05). Anti-rTspGST antibodies killed T. spiralis newborn larvae by an ADCC-mediated mechanism. Our results showed that the TspGST seemed to be an indispensable protein for T. spiralis invasion, growth and survival in host.
Collapse
Affiliation(s)
- Chun Ying Liu
- Department of Parasitology, Medical College, Zhengzhou University, 40 Daxue Road, Zhengzhou 450052, PR China
| | - Hua Na Ren
- Department of Parasitology, Medical College, Zhengzhou University, 40 Daxue Road, Zhengzhou 450052, PR China
| | - Yan Yan Song
- Department of Parasitology, Medical College, Zhengzhou University, 40 Daxue Road, Zhengzhou 450052, PR China
| | - Ge Ge Sun
- Department of Parasitology, Medical College, Zhengzhou University, 40 Daxue Road, Zhengzhou 450052, PR China
| | - Ruo Dan Liu
- Department of Parasitology, Medical College, Zhengzhou University, 40 Daxue Road, Zhengzhou 450052, PR China
| | - Peng Jiang
- Department of Parasitology, Medical College, Zhengzhou University, 40 Daxue Road, Zhengzhou 450052, PR China
| | - Shao Rong Long
- Department of Parasitology, Medical College, Zhengzhou University, 40 Daxue Road, Zhengzhou 450052, PR China
| | - Xi Zhang
- Department of Parasitology, Medical College, Zhengzhou University, 40 Daxue Road, Zhengzhou 450052, PR China
| | - Zhong Quan Wang
- Department of Parasitology, Medical College, Zhengzhou University, 40 Daxue Road, Zhengzhou 450052, PR China.
| | - Jing Cui
- Department of Parasitology, Medical College, Zhengzhou University, 40 Daxue Road, Zhengzhou 450052, PR China.
| |
Collapse
|
47
|
Tang TH, Wong SS, Lai CK, Poon RW, Chan HS, Wu TC, Cheung YF, Poon TL, Tsang YP, Tang WL, Wu AK. Molecular Identification of Spirometra erinaceieuropaei Tapeworm in Cases of Human Sparganosis, Hong Kong. Emerg Infect Dis 2018; 23:665-668. [PMID: 28322697 PMCID: PMC5367436 DOI: 10.3201/eid2304.160791] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Human sparganosis is a foodborne zoonosis endemic in Asia. We report a series of 9 histologically confirmed human sparganosis cases in Hong Kong, China. All parasites were retrospectively identified as Spirometra erinaceieuropaei. Skin and soft tissue swelling was the most common symptom, followed by central nervous system lesions.
Collapse
|
48
|
Teimoori S, Arimatsu Y, Laha T, Kaewkes S, Sereerak P, Sripa M, Tangkawattana S, Brindley PJ, Sripa B. Chicken IgY-based coproantigen capture ELISA for diagnosis of human opisthorchiasis. Parasitol Int 2017; 66:443-447. [PMID: 27140305 PMCID: PMC5086311 DOI: 10.1016/j.parint.2015.10.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 10/21/2015] [Indexed: 11/30/2022]
Abstract
Diagnosis of Opisthorchis viverrini infection by conventional stool examination is increasingly difficult due to the low intensity of the infection after several rounds of control programmes in endemic regions as well as coinfections with intestinal flukes. Therefore sensitive and specific diagnostic test is needed. In this study, a coproantigen sandwich ELISA using recombinant O. viverrini cathepsin F (rOv-CF) was developed. This sandwich ELISA employing chicken IgY raised against rOv-CF in combination with rabbit IgG antibody to the somatic O. viverrini antigens showed a lower detection limit (LLD) of 70ng native O. viverrini somatic antigens by spiking the parasite antigens into control feces. When applied to the diagnosis, the IgY-based sandwich ELISA exhibited sensitivity and specificity of 93.3% and 76.7%, respectively, in an investigation of 90 human cases positive or negative for opisthorchiasis. The positive predictive value (PPV) and negative predictive value (NPV) for this coproantigen detection were 66.7% and 95.2%, respectively. This IgY-based sandwich ELISA using parasite cathepsin F detection shows a promising immunodiagnostic alternative for human opisthorchiasis in endemic regions.
Collapse
Affiliation(s)
- Salma Teimoori
- Centre of Research Excellence for Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine, Siriraj Hospital, Bangkok 10700, Thailand; WHO Collaborating Centre for Research and Control of Opisthorchiasis (Southeast Asian Liver Fluke Disease), Tropical Disease Research Laboratory, Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Yuji Arimatsu
- WHO Collaborating Centre for Research and Control of Opisthorchiasis (Southeast Asian Liver Fluke Disease), Tropical Disease Research Laboratory, Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Thewarach Laha
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Sasithorn Kaewkes
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Piya Sereerak
- Department of Pathobiology, Faculty of Veterinary, Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Manop Sripa
- WHO Collaborating Centre for Research and Control of Opisthorchiasis (Southeast Asian Liver Fluke Disease), Tropical Disease Research Laboratory, Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Sirikachorn Tangkawattana
- Department of Pathobiology, Faculty of Veterinary, Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Paul J Brindley
- Department of Microbiology, Immunology and Tropical Medicine, and Research Center for Neglected Diseases of Poverty, School of Medicine & Health Sciences, George Washington University, Washington, DC 20037, USA
| | - Banchob Sripa
- Centre of Research Excellence for Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine, Siriraj Hospital, Bangkok 10700, Thailand.
| |
Collapse
|
49
|
Cui J, Wang Y, Zhang X, Lin XM, Zhang HW, Wang ZQ, Chen JX. A neglected risk for sparganosis: eating live tadpoles in central China. Infect Dis Poverty 2017; 6:58. [PMID: 28468685 PMCID: PMC5415782 DOI: 10.1186/s40249-017-0265-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 02/17/2017] [Indexed: 11/10/2022] Open
Abstract
A 29-year-old farmer from central China was sent into the Emergency Department of the Affiliated Hospital of Zhengzhou University. He had a 15-day history of persistent high fever, abdominal distention and pain. The patient was clinically diagnosed as appendicitis and peritonitis, and treated with antibiotics in a local hospital, did not improve. On exploratory laparotomy, the appendicular perforation and peritonitis were seen; appendicectomy were performed, and antibiotics were given. However, high fever and abdominal pain still persisted; intestinal adhesion and obstruction, ascites appeared. He was given the “critically ill notice”. He had eosinophilia (12.95%) and the history of eating live frog tadpoles for treating his cutaneous pruritus 3 days before onset of the disease. Serum anti-sparganum antibodies assayed by ELISA were positive. This patient has hospitalized for one and half months and spend more than US$ 12 000. This patient was primarily diagnosed as visceral sparganosis, and cured with praziquantel. Sparganosis is one neglected but important parasitic zoonosis of poverty. Human infections were mainly acquired by eating raw or uncooked meat of frogs and snakes infected with plerocercoids, using frog or snake flesh as poultices, or drinking raw water contaminated with infected copepods. However, sparganosis caused by ingestion of live tadpoles are emerging in central China. Our surveys showed that 11.93% of tadpoles in Henan province are infected with plerocercoids. Eating live tadpoles is a high risk for sparganum infection. The comprehensive public health education should be carried out for people in endemic areas and the bad habit of eating live tadpoles must be discouraged.
Collapse
Affiliation(s)
- Jing Cui
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, China
| | - Ye Wang
- Department of Emergency, Peking University Third Hospital, Beijing, China
| | - Xi Zhang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, China
| | - Xi-Meng Lin
- Institute of Parasitic Diseases, Center for Disease Prevention and Control of Henan Province, Zhengzhou, China
| | - Hong-Wei Zhang
- Institute of Parasitic Diseases, Center for Disease Prevention and Control of Henan Province, Zhengzhou, China
| | - Zhong-Quan Wang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, China.
| | - Jia-Xu Chen
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention; Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, China.
| |
Collapse
|
50
|
Tsubokawa D, Hatta T, Maeda H, Mikami F, Goso Y, Nakamura T, Alim MA, Tsuji N. A cysteine protease from Spirometra erinaceieuropaei plerocercoid is a critical factor for host tissue invasion and migration. Acta Trop 2017; 167:99-107. [PMID: 28012905 DOI: 10.1016/j.actatropica.2016.12.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 12/14/2016] [Accepted: 12/18/2016] [Indexed: 01/13/2023]
Abstract
Sparganosis in humans caused by the plerocercoid larvae of Spirometra erinaceieuropaei is found worldwide, especially in Eastern Asia and the Far East. Previous studies have suggested that dissolution of plerocercoid body, plerocercoid invasion of host tissue, and migration are important processes for sparganosis progression. However, the mechanisms underlying these processes have yet to be determined. Here, we demonstrated the enzymatic property and involvement of a native 23kDa cysteine protease (Se23kCP), purified from plerocercoids, in sparganosis pathogenesis. Se23kCP is mature protease consisting of 216 amino acids and has a high sequence similarity with cathepsin L in various organisms. Se23kCP conjugated with N-glycans, which have a core fucose residue. Both cysteine and serine protease-specific activities were determined in Se23kCP and their optimal pHs were found to be different, indicating that Se23kCP has a wide range of substrate specificity. Se23kCP was secreted from tegumental vacuoles of the plerocercoid to host subcutaneous tissues and degraded human structural proteins, such as collagen and fibronectin. In addition, the plerocercoid body was lysed by Se23kCP, which facilitated larval invasion of host tissue. Our findings suggest that Se23kCP induces host tissue invasion and migration, and might be an essential molecule for sparganosis onset and progression.
Collapse
Affiliation(s)
- Daigo Tsubokawa
- Department of Molecular and Cellular Parasitology, Kitasato University Graduate School of Medical Sciences, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa 252-0373, Japan; Department of Parasitology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa 252-0374, Japan
| | - Takeshi Hatta
- Department of Molecular and Cellular Parasitology, Kitasato University Graduate School of Medical Sciences, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa 252-0373, Japan; Department of Parasitology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa 252-0374, Japan
| | - Hiroki Maeda
- Department of Parasitology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa 252-0374, Japan; Department of Pathological and Preventive Veterinary Science, The United Graduate School of Veterinary Science, Yamaguchi University, Yoshida, Yamaguchi 753-8515, Japan
| | - Fusako Mikami
- Department of Parasitology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa 252-0374, Japan
| | - Yukinobu Goso
- Department of Biochemistry, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa 252-0374, Japan
| | - Takeshi Nakamura
- Department of Parasitology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa 252-0374, Japan
| | - M Abdul Alim
- Department of Parasitology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Naotoshi Tsuji
- Department of Molecular and Cellular Parasitology, Kitasato University Graduate School of Medical Sciences, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa 252-0373, Japan; Department of Parasitology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa 252-0374, Japan.
| |
Collapse
|