1
|
Mathieu-Bégné E, Kincaid-Smith J, Chaparro C, Allienne JF, Rey O, Boissier J, Toulza E. Schistosoma haematobium and Schistosoma bovis first generation hybrids undergo gene expressions changes consistent with species compatibility and heterosis. PLoS Negl Trop Dis 2024; 18:e0012267. [PMID: 38954732 PMCID: PMC11249247 DOI: 10.1371/journal.pntd.0012267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/15/2024] [Accepted: 06/03/2024] [Indexed: 07/04/2024] Open
Abstract
When two species hybridize, the two parental genomes are brought together and some alleles might interact for the first time. To date, the extent of the transcriptomic changes in first hybrid generations, along with their functional outcome constitute an important knowledge gap, especially in parasite species. Here we explored the molecular and functional outcomes of hybridization in first-generation hybrids between the blood fluke parasites Schistosoma haematobium and S. bovis. Through a transcriptomic approach, we measured gene expression in both parental species and hybrids. We described and quantified expression profiles encountered in hybrids along with the main biological processes impacted. Up to 7,100 genes fell into a particular hybrid expression profile (intermediate between the parental expression levels, over-expressed, under-expressed, or expressed like one of the parental lines). Most of these genes were different depending on the direction of the parental cross (S. bovis mother and S. haematobium father or the reverse) and depending on the sex. For a given sex and cross direction, the vast majority of genes were hence unassigned to a hybrid expression profile: either they were differentially expressed genes but not typical of any hybrid expression profiles or they were not differentially expressed neither between hybrids and parental lines nor between parental lines. The most prevalent profile of gene expression in hybrids was the intermediate one (24% of investigated genes). These results suggest that transcriptomic compatibility between S. haematobium and S. bovis remains quite high. We also found support for an over-dominance model (over- and under-expressed genes in hybrids compared to parental lines) potentially associated with heterosis. In females in particular, processes such as reproductive processes, metabolism and cell interactions as well as signaling pathways were indeed affected. Our study hence provides new insight on the biology of Schistosoma hybrids with evidences supporting compatibility and heterosis.
Collapse
Affiliation(s)
| | - Julien Kincaid-Smith
- IHPE, Université de Montpellier, CNRS, Ifremer, Université Perpignan Via Domitia, Perpignan, France
- CBGP, IRD, CIRAD, INRAE, Institut Agro, Université de Montpellier, Montpellier, France
| | - Cristian Chaparro
- IHPE, Université de Montpellier, CNRS, Ifremer, Université Perpignan Via Domitia, Perpignan, France
| | - Jean-François Allienne
- IHPE, Université de Montpellier, CNRS, Ifremer, Université Perpignan Via Domitia, Perpignan, France
| | - Olivier Rey
- IHPE, Université de Montpellier, CNRS, Ifremer, Université Perpignan Via Domitia, Perpignan, France
| | - Jérôme Boissier
- IHPE, Université de Montpellier, CNRS, Ifremer, Université Perpignan Via Domitia, Perpignan, France
| | - Eve Toulza
- IHPE, Université de Montpellier, CNRS, Ifremer, Université Perpignan Via Domitia, Perpignan, France
| |
Collapse
|
2
|
Polack B, Mathieu-Bégné E, Vallée I, Rognon A, Fontaine JJ, Toulza E, Thomas M, Boissier J. Experimental Infections Reveal Acquired Zoonotic Capacity of Human Schistosomiasis Trough Hybridization. J Infect Dis 2024; 229:1904-1908. [PMID: 38669235 DOI: 10.1093/infdis/jiae152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Indexed: 04/28/2024] Open
Abstract
We are currently witnessing the endemization of urogenital schistosomiasis in southern Europe. The incriminated parasite is a hybrid between a human parasite and a livestock parasite. Using an experimental evolutionary protocol, we created hybrid lines from pure strains of both parasite species. We showed that the host spectrum of the human parasite is enlarged to the livestock parasite after genomic introgression. We also evidenced that the tropism of the parasites within the host changes and that some hybrid lines are more virulent than the parental strains. These results engage a paradigm shift from human to zoonotic transmission of urogenital schistosomiasis.
Collapse
Affiliation(s)
- Bruno Polack
- Anses, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| | | | - Isabelle Vallée
- Anses, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Anne Rognon
- IHPE, University of Montpellier, CNRS, Ifremer, University of Perpignan Via Domitia, Perpignan, France
| | - Jean-Jacques Fontaine
- Anses, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Eve Toulza
- IHPE, University of Montpellier, CNRS, Ifremer, University of Perpignan Via Domitia, Perpignan, France
| | - Myriam Thomas
- Anses, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Jérôme Boissier
- IHPE, University of Montpellier, CNRS, Ifremer, University of Perpignan Via Domitia, Perpignan, France
| |
Collapse
|
3
|
Huguenin A, Kincaid-Smith J, Depaquit J, Boissier J, Ferté H. MALDI-TOF: A new tool for the identification of Schistosoma cercariae and detection of hybrids. PLoS Negl Trop Dis 2023; 17:e0010577. [PMID: 36976804 PMCID: PMC10081743 DOI: 10.1371/journal.pntd.0010577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 04/07/2023] [Accepted: 03/06/2023] [Indexed: 03/29/2023] Open
Abstract
Schistosomiasis is a neglected water-born parasitic disease caused by Schistosoma affecting more than 200 million people. Introgressive hybridization is common among these parasites and raises issues concerning their zoonotic transmission. Morphological identification of Schistosoma cercariae is difficult and does not permit hybrids detection. Our objective was to assess the performance of MALDI-TOF (Matrix Assistated Laser Desorption-Ionization–Time Of Flight) mass spectrometry for the specific identification of cercariae in human and non-human Schistosoma and for the detection of hybridization between S. bovis and S. haematobium. Spectra were collected from laboratory reared molluscs infested with strains of S. haematobium, S. mansoni, S. bovis, S. rodhaini and S. bovis x S. haematobium natural (Corsican hybrid) and artificial hybrids. Cluster analysis showed a clear separation between S. haematobium, S. bovis, S. mansoni and S. rodhaini. Corsican hybrids are classified with those of the parental strain of S. haematobium whereas other hybrids formed a distinct cluster. In blind test analysis the developed MALDI-TOF spectral database permits identification of Schistosoma cercariae with high accuracy (94%) and good specificity (S. bovis: 99.59%, S. haematobium 99.56%, S. mansoni and S. rodhaini: 100%). Most misidentifications were between S. haematobium and the Corsican hybrids. The use of machine learning permits to improve the discrimination between these last two taxa, with accuracy, F1 score and Sensitivity/Specificity > 97%. In multivariate analysis the factors associated with obtaining a valid identification score (> 1.7) were absence of ethanol preservation (p < 0.001) and a number of 2–3 cercariae deposited per well (p < 0.001). Also, spectra acquired from S. mansoni cercariae are more likely to obtain a valid identification score than those acquired from S. haematobium (p<0.001). MALDI-TOF is a reliable technique for high-throughput identification of Schistosoma cercariae of medical and veterinary importance and could be useful for field survey in endemic areas.
Collapse
Affiliation(s)
- Antoine Huguenin
- Université de Reims Champagne Ardenne, EA7510 ESCAPE, Reims, France
- Laboratoire de Parasitologie-Mycologie, pôle de Biopathologie, CHU de Reims, Reims, France
- * E-mail:
| | - Julien Kincaid-Smith
- IHPE, Université de Montpellier, CNRS, Ifremer, Université de Perpignan, Perpignan, France
- CBGP, IRD, CIRAD, INRAE, Institut Agro, Université de Montpellier, Montpellier, France
| | - Jérôme Depaquit
- Université de Reims Champagne Ardenne, EA7510 ESCAPE, Reims, France
- Laboratoire de Parasitologie-Mycologie, pôle de Biopathologie, CHU de Reims, Reims, France
| | - Jérôme Boissier
- IHPE, Université de Montpellier, CNRS, Ifremer, Université de Perpignan, Perpignan, France
| | - Hubert Ferté
- Université de Reims Champagne Ardenne, EA7510 ESCAPE, Reims, France
| |
Collapse
|
4
|
Morphometric analysis of schistosome eggs recovered from human urines in communities along the shoreline of Oyan River Dam in Ogun State, Nigeria. J Helminthol 2023; 96:e89. [PMID: 36621866 DOI: 10.1017/s0022149x22000815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
There are growing concerns that communities characterized with surface water, where both humans and livestock interact for agricultural, domestic, cultural and recreational purposes, are likely to support hybridization between schistosome species infecting humans and livestock. This study therefore investigated the morphometrics of schistosome eggs recovered from human urine samples in four schistosomiasis endemic communities (Imala-Odo, Abule-Titun, Apojula and Ibaro-Oyan) along the banks of Oyan River Dam in Ogun State, Nigeria. Recovered eggs were counted, photographed, and measured with IC Measure™ for total length, maximum width and a ratio of egg shape. A total of 1984 Schistosoma eggs were analysed. Two major egg morphotypes were identified: the first represented 67.8% of the eggs, with the typical round to oval shape and mean length and width of 166 μm, 66.8 μm, respectively; the second represented 32.2% of the eggs and are more elongated, with a mean length of 198 μm, and width of 71.3 μm. Our results revealed significant variations in sizes of the schistosome eggs recovered (length: t = -35.374, degrees of freedom (df) = 1982, P = 0.000; weight: t = -10.431, df = 1982, P = 0.000), with the atypical shaped eggs appearing more elongated than expected. These eggs might represent individuals with some degree of contribution from Schistosoma bovis or possibly other Schistosoma species known to be present in Nigeria. Hence, this observation calls for further molecular studies to establish the genetic information about the miracidia from both atypical and typical eggs. It is also important to establish the presence of bona fide S. bovis infection in cattle and vector snails in the presumptive areas of hybridization.
Collapse
|
5
|
Mating Interactions between Schistosoma bovis and S. mansoni and Compatibility of Their F1 Progeny with Biomphalaria glabrata and Bulinus truncatus. Microorganisms 2022; 10:microorganisms10061251. [PMID: 35744769 PMCID: PMC9227498 DOI: 10.3390/microorganisms10061251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/12/2022] [Accepted: 06/14/2022] [Indexed: 11/22/2022] Open
Abstract
Contrary to the majority of other Trematoda, Schistosoma species are gonochoric. Consequently, in endemic areas where several schistosome species overlap and can co-infect the same definitive host, there may be frequent opportunities for interspecific pairing. Our experimental study provides novel insight on the pairing behavior between Schistosoma bovis and S. mansoni in mixed infections in mice. We used six mate choice experiments to assess mating interactions between the two schistosome species. We show that mating between the two Schistosoma species is not random and that S. mansoni exhibits greater mate recognition compared to S. bovis. We also performed reciprocal crosses (male S. mansoni × female S. bovis) and (female S. mansoni × male S. bovis) that produce active swimming miracidia. These miracidia were genotyped by ITS2 sequencing and proposed for mollusc infection. Molecular analyses show that all the miracidia are parthenogenetically produced (i.e., their harbor the mother ITS2 genotype) and as a consequence can only infect the mollusc of the maternal species. Offspring produced by male S. mansoni × female S. bovis pairing can only infect Bulinus truncatus whereas offspring produced by female S. mansoni × male S. bovis can only infect Biomphalaria glabrata snails. Evolutionary and epidemiological consequences are discussed.
Collapse
|
6
|
Morphological and genomic characterisation of the Schistosoma hybrid infecting humans in Europe reveals admixture between Schistosoma haematobium and Schistosoma bovis. PLoS Negl Trop Dis 2021; 15:e0010062. [PMID: 34941866 PMCID: PMC8741037 DOI: 10.1371/journal.pntd.0010062] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 01/07/2022] [Accepted: 12/06/2021] [Indexed: 11/19/2022] Open
Abstract
Schistosomes cause schistosomiasis, the world's second most important parasitic disease after malaria in terms of public health and social-economic impacts. A peculiar feature of these dioecious parasites is their ability to produce viable and fertile hybrid offspring. Originally only present in the tropics, schistosomiasis is now also endemic in southern Europe. Based on the analysis of two genetic markers the European schistosomes had previously been identified as hybrids between the livestock- and the human-infective species Schistosoma bovis and Schistosoma haematobium, respectively. Here, using PacBio long-read sequencing technology we performed genome assembly improvement and annotation of S. bovis, one of the parental species for which no satisfactory genome assembly was available. We then describe the whole genome introgression levels of the hybrid schistosomes, their morphometric parameters (eggs and adult worms) and their compatibility with two European snail strains used as vectors (Bulinus truncatus and Planorbarius metidjensis). Schistosome-snail compatibility is a key parameter for the parasites life cycle progression, and thus the capability of the parasite to establish in a given area. Our results show that this Schistosoma hybrid is strongly introgressed genetically, composed of 77% S. haematobium and 23% S. bovis origin. This genomic admixture suggests an ancient hybridization event and subsequent backcrosses with the human-specific species, S. haematobium, before its introduction in Corsica. We also show that egg morphology (commonly used as a species diagnostic) does not allow for accurate hybrid identification while genetic tests do.
Collapse
|
7
|
Kincaid-Smith J, Mathieu-Bégné E, Chaparro C, Reguera-Gomez M, Mulero S, Allienne JF, Toulza E, Boissier J. No pre-zygotic isolation mechanisms between Schistosoma haematobium and Schistosoma bovis parasites: From mating interactions to differential gene expression. PLoS Negl Trop Dis 2021; 15:e0009363. [PMID: 33945524 PMCID: PMC8127863 DOI: 10.1371/journal.pntd.0009363] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 05/14/2021] [Accepted: 04/06/2021] [Indexed: 01/21/2023] Open
Abstract
Species usually develop reproductive isolation mechanisms allowing them to avoid interbreeding. These preventive barriers can act before reproduction, "pre-zygotic barriers", or after reproduction, "post-zygotic barriers". Pre-zygotic barriers prevent unfavourable mating, while post-zygotic barriers determine the viability and selective success of the hybrid offspring. Hybridization in parasites and the underlying reproductive isolation mechanisms maintaining their genetic integrity have been overlooked. Using an integrated approach this work aims to quantify the relative importance of pre-zygotic barriers in Schistosoma haematobium x S. bovis crosses. These two co-endemic species cause schistosomiasis, one of the major debilitating parasitic diseases worldwide, and can hybridize naturally. Using mate choice experiments we first tested if a specific mate recognition system exists between both species. Second, using RNA-sequencing we analysed differential gene expression between homo- and hetero-specific pairing in male and female adult parasites. We show that homo- and hetero-specific pairing occurs randomly between these two species, and few genes in both sexes are affected by hetero-specific pairing. This suggests that i) mate choice is not a reproductive isolating factor, and that ii) no pre-zygotic barrier except spatial isolation "by the final vertebrate host" seems to limit interbreeding between these two species. Interestingly, among the few genes affected by the pairing status of the worms, some can be related to pathways affected during male and female interactions and may also present interesting candidates for species isolation mechanisms and hybridization in schistosome parasites.
Collapse
Affiliation(s)
- Julien Kincaid-Smith
- Univ. Montpellier, CNRS, IFREMER, UPVD, IHPE, Perpignan,
France
- Centre for Emerging, Endemic and Exotic Diseases (CEEED), Department of
Pathobiology and Population Sciences (PPS), Royal Veterinary College, University
of London, Hawkshead Campus, Herts, United Kingdom
| | | | | | - Marta Reguera-Gomez
- Departamento de Parasitología, Facultad de Farmacia, Universidad de
Valencia, Burjassot, Valencia, Spain
| | - Stephen Mulero
- Univ. Montpellier, CNRS, IFREMER, UPVD, IHPE, Perpignan,
France
| | | | - Eve Toulza
- Univ. Montpellier, CNRS, IFREMER, UPVD, IHPE, Perpignan,
France
| | - Jérôme Boissier
- Univ. Montpellier, CNRS, IFREMER, UPVD, IHPE, Perpignan,
France
| |
Collapse
|
8
|
Liu S, Piao X, Hou N, Cai P, Ma Y, Chen Q. Duplex real-time PCR for sexing Schistosoma japonicum cercariae based on W chromosome-specific genes and its applications. PLoS Negl Trop Dis 2020; 14:e0008609. [PMID: 32822351 PMCID: PMC7467314 DOI: 10.1371/journal.pntd.0008609] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 09/02/2020] [Accepted: 07/15/2020] [Indexed: 02/07/2023] Open
Abstract
As a unique feature among otherwise hermaphroditic trematodes, Schistosoma species are gonochoric parasites whose sex is genetically determined (ZZ for males and ZW for females). However, schistosome larvae are morphologically identical, and sex can only be discriminated by molecular methods. Here, we integrated published Schistosoma. japonicum transcriptome and genome data to identify W chromosome-specific genes as sex biomarkers. Three W chromosome-specific genes of S. japonicum were identified as sex biomarkers from a panel of 12 genes expressed only in females. An efficient duplex real-time PCR (qPCR) method for sexing cercariae was developed which could identify the sex of cercariae within 2 h without DNA extraction. Moreover, this method can be used to identify not only single-sex but also mixed-sex schistosome-infected snails. We observed a nearly equal proportion of single-male, single-female, and mixed-sex schistosome infections in artificially infected snails. Sex-known schistosome-infected snail models can be efficiently constructed with the aid of duplex qPCR. A field study revealed that single-sex schistosome infections were predominant among naturally infected snails. Finally, a schistosomiasis mouse model based on sex-known cercariae infection was shown to be more reliable than a model based on sex-unknown cercariae infection. The developed duplex qPCR method for sexing S. japonicum cercariae can be widely used for schistosomiasis modeling, genetic experiments, and field-based molecular epidemiological studies. Schistosoma japonicum is a major causative agent of human schistosomiasis. Unlike other parasitic worms, S. japonicum females are determined by the heterogametic sex chromosome (ZW) and males by the homogametic sex chromosome (ZZ). The life cycle of S. japonicum includes the egg, miracidium, mother sporocyst, daughter sporocyst, cercaria, schistosomulum, and adult stages. The sex of adult male and female worms can be morphologically distinguished, whereas the sex of larvae, such as cercariae, can only be discriminated by molecular methods. In this study, we established an efficient duplex real-time PCR method for sexing S. japonicum cercariae based on newly identified W chromosome-specific genes. The established duplex real-time PCR method will facilitate construction of sex-controlled schistosome-infected intermediate host or definitive host models for schistosome-host interplays and schistosomiasis studies. This method is also a powerful tool for investigating the epidemiology of single-sex and mixed-sex schistosome-infected snails in the field.
Collapse
Affiliation(s)
- Shuai Liu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China
- * E-mail: (SL); (QC)
| | - Xianyu Piao
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China
| | - Nan Hou
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China
| | - Pengfei Cai
- Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Yu Ma
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China
| | - Qijun Chen
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Shenyang Agriculture University, Shenyang, P.R. China
- * E-mail: (SL); (QC)
| |
Collapse
|
9
|
Wen M, Feron R, Pan Q, Guguin J, Jouanno E, Herpin A, Klopp C, Cabau C, Zahm M, Parrinello H, Journot L, Burgess SM, Omori Y, Postlethwait JH, Schartl M, Guiguen Y. Sex chromosome and sex locus characterization in goldfish, Carassius auratus (Linnaeus, 1758). BMC Genomics 2020; 21:552. [PMID: 32781981 PMCID: PMC7430817 DOI: 10.1186/s12864-020-06959-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 07/29/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Goldfish is an important model for various areas of research, including neural development and behavior and a species of significant importance in aquaculture, especially as an ornamental species. It has a male heterogametic (XX/XY) sex determination system that relies on both genetic and environmental factors, with high temperatures being able to produce female-to-male sex reversal. Little, however, is currently known on the molecular basis of genetic sex determination in this important cyprinid model. Here we used sequencing approaches to better characterize sex determination and sex-chromosomes in an experimental strain of goldfish. RESULTS Our results confirmed that sex determination in goldfish is a mix of environmental and genetic factors and that its sex determination system is male heterogametic (XX/XY). Using reduced representation (RAD-seq) and whole genome (pool-seq) approaches, we characterized sex-linked polymorphisms and developed male specific genetic markers. These male specific markers were used to distinguish sex-reversed XX neomales from XY males and to demonstrate that XX female-to-male sex reversal could even occur at a relatively low rearing temperature (18 °C), for which sex reversal has been previously shown to be close to zero. We also characterized a relatively large non-recombining region (~ 11.7 Mb) on goldfish linkage group 22 (LG22) that contained a high-density of male-biased genetic polymorphisms. This large LG22 region harbors 373 genes, including a single candidate as a potential master sex gene, i.e., the anti-Mullerian hormone gene (amh). However, no sex-linked polymorphisms were detected in the coding DNA sequence of the goldfish amh gene. CONCLUSIONS These results show that our goldfish strain has a relatively large sex locus on LG22, which is likely the Y chromosome of this experimental population. The presence of a few XX males even at low temperature also suggests that other environmental factors in addition to temperature could trigger female-to-male sex reversal. Finally, we also developed sex-linked genetic markers, which will be important tools for future research on sex determination in our experimental goldfish population. However, additional work would be needed to explore whether this sex locus is conserved in other populations of goldfish.
Collapse
Affiliation(s)
- Ming Wen
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
- INRAE, LPGP, 35000, Rennes, France
| | - Romain Feron
- INRAE, LPGP, 35000, Rennes, France
- Department of Ecology and Evolution, University of Lausanne, 1015, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, 1015, Lausanne, Switzerland
| | - Qiaowei Pan
- INRAE, LPGP, 35000, Rennes, France
- Department of Ecology and Evolution, University of Lausanne, 1015, Lausanne, Switzerland
| | | | | | | | - Christophe Klopp
- Plate-forme bio-informatique Genotoul, Mathématiques et Informatique Appliquées de Toulouse, INRAE, Castanet Tolosan, France
- SIGENAE, GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet Tolosan, France
| | - Cedric Cabau
- SIGENAE, GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet Tolosan, France
| | - Margot Zahm
- SIGENAE, GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet Tolosan, France
| | - Hugues Parrinello
- Montpellier GenomiX (MGX), c/o Institut de Génomique Fonctionnelle, 141 rue de la Cardonille, 34094, Montpellier Cedex 05, France
| | - Laurent Journot
- Montpellier GenomiX (MGX), c/o Institut de Génomique Fonctionnelle, 141 rue de la Cardonille, 34094, Montpellier Cedex 05, France
| | - Shawn M Burgess
- Translational and Functional Genomics Branch, National Human Genome Research Institute, Bethesda, MD, USA
| | - Yoshihiro Omori
- Laboratory of Functional Genomics, Graduate School of Bioscience, Nagahama Institute of Bioscience and Technology, Nagahama, Shiga, Japan
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | | | - Manfred Schartl
- Developmental Biochemistry, Biozentrum, University of Würzburg, Würzburg, Germany
- The Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX, USA
| | | |
Collapse
|
10
|
Mulero S, Rey O, Arancibia N, Mas-Coma S, Boissier J. Persistent establishment of a tropical disease in Europe: the preadaptation of schistosomes to overwinter. Parasit Vectors 2019; 12:379. [PMID: 31358021 PMCID: PMC6664521 DOI: 10.1186/s13071-019-3635-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 07/23/2019] [Indexed: 12/12/2022] Open
Abstract
Background Global changes promote the spread of infectious diseases worldwide. In this context, tropical urogenital schistosomiasis is now permanently established in Corsica since its first emergence in 2013. The local persistence of the tropical pathogens (schistosomes) responsible for urogenital schistosomiasis at such latitudes might be explained by (i) the presence of its intermediate host, the snail Bulinus truncatus, (ii) the recurrent local reseeding of schistosomes by their vertebrate hosts (either human or animal) every summer, and/or (iii) the maintenance and survival of schistosomes within their snail hosts over winter. Methods In this study we conducted an ecological experiment to assess the ability of temperate and tropical schistosome strains to survive in classical winter temperatures in Corsican rivers when infecting temperate (local) snail strains. We also quantified the ability of the schistosomes to complete their life-cycle post-overwintering when returned to classical summer water temperatures. Results Our results show that Mediterranean molluscs are locally adapted to winter conditions compared to tropical molluscs. Moreover, temperate and tropical schistosome strains equally survived the cold and produced viable offspring when returned to optimal temperatures. These results indicate that schistosomes can overwinter under temperate climates when infecting locally adapted snails and might partly explain the establishment and maintenance of schistosomes in Corsica from year to year. Conclusions The observed broader thermal range of schistosomes compared to that of their snail hosts was unexpected and clearly indicates that the spread and establishment of schistosomiasis in temperate countries relies primarily on the presence of the locally adapted snail host lineages, currently known to be present in France, Italy, Portugal, Spain and Greece.
Collapse
Affiliation(s)
- Stephen Mulero
- IHPE, University of Montpellier, CNRS, Ifremer, University of Perpignan Via Domitia, 66860, Perpignan, France
| | - Olivier Rey
- IHPE, University of Montpellier, CNRS, Ifremer, University of Perpignan Via Domitia, 66860, Perpignan, France
| | - Nathalie Arancibia
- IHPE, University of Montpellier, CNRS, Ifremer, University of Perpignan Via Domitia, 66860, Perpignan, France
| | - Santiago Mas-Coma
- Departamento de Parasitología, Facultad de Farmacia, Universidad de Valencia, Av. Vicent Andrés Estellés s/n, Burjassot, 46100, Valencia, Spain
| | - Jérôme Boissier
- IHPE, University of Montpellier, CNRS, Ifremer, University of Perpignan Via Domitia, 66860, Perpignan, France.
| |
Collapse
|
11
|
Oleaga A, Rey O, Polack B, Grech-Angelini S, Quilichini Y, Pérez-Sánchez R, Boireau P, Mulero S, Brunet A, Rognon A, Vallée I, Kincaid-Smith J, Allienne JF, Boissier J. Epidemiological surveillance of schistosomiasis outbreak in Corsica (France): Are animal reservoir hosts implicated in local transmission? PLoS Negl Trop Dis 2019; 13:e0007543. [PMID: 31233502 PMCID: PMC6611637 DOI: 10.1371/journal.pntd.0007543] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 07/05/2019] [Accepted: 06/11/2019] [Indexed: 12/02/2022] Open
Abstract
Environmental and anthropogenic changes are expected to promote emergence and spread of pathogens worldwide. Since 2013, human urogenital schistosomiasis is established in Corsica island (France). Schistosomiasis is a parasitic disease affecting both humans and animals. The parasite involved in the Corsican outbreak is a hybrid form between Schistosoma haematobium, a human parasite, and Schistosoma bovis, a livestock parasite. S. bovis has been detected in Corsican livestock few decades ago raising the questions whether hybridization occurred in Corsica and if animals could behave as a reservoir for the recently established parasite lineage. The latter hypothesis has huge epidemiological outcomes since the emergence of a zoonotic lineage of schistosomes would be considerably harder to control and eradicate the disease locally and definitively needs to be verified. In this study we combined a sero-epidemiological survey on ruminants and a rodent trapping campaign to check whether schistosomes could shift on vertebrate hosts other than humans. A total of 3,519 domesticated animals (1,147 cattle; 671 goats and 1,701 sheep) from 160 farms established in 14 municipalities were sampled. From these 3,519 screened animals, 17 were found to be serologically positive but were ultimately considered as false positive after complementary analyses. Additionally, our 7-day extensive rodent trapping (i.e. 1,949 traps placed) resulted in the capture of a total of 34 rats (Rattus rattus) and 4 mice (Mus musculus). Despite the low number of rodents captured, molecular diagnostic tests showed that two of them have been found to be infected by schistosomes. Given the low abundance of rodents and the low parasitic prevalence and intensity among rodents, it is unlikely that neither rats nor ruminants play a significant role in the maintenance of schistosomiasis outbreak in Corsica. Finally, the most likely hypothesis is that local people initially infected in 2013 re-contaminated the river during subsequent summers, however we cannot definitively rule out the possibility of an animal species acting as reservoir host. There is an increasing interest on the effect of global changes on the transmission of infectious diseases. Both environmental and anthropogenic changes are expected to promote outbreaks and spread of pathogens. In particular, tropical infectious diseases are expected to move towards more temperate latitudes. Until 2013, urogenital schistosomiasis was restricted to tropical and sub-tropical areas. In summer 2013, a schistosomiasis outbreak has emerged in Corsica (France) with more than 100 cases. Corsica is a French Mediterranean island, which is very popular for tourists from throughout Europe due to the natural beauty of the environment. Surprisingly, in summer 2015 and 2016, the contamination has resumed, and schistosomiasis has been classified in the list of French notifiable infectious disease. In this context it has been hypothesised that reservoir vertebrate hosts, either human and/or animal are at the origin of the maintenance of the local transmission. This paper shows that ruminants (cow, sheep and goats) should not play a role of reservoir host but we found that rodents living in the vicinity of the transmission sites have been infected by the parasite. Considering the low abundance of rodents and the low parasitic prevalence/intensity among rodents, it is unlikely that rats play a significant role in the maintenance of schistosomiasis outbreak in Corsica and that other animals or human could maintain the parasite locally.
Collapse
Affiliation(s)
- Ana Oleaga
- Parasitology Laboratory, Institute of Natural Resources and Agrobiology (IRNASA, CSIC). Cordel de Merinas, Salamanca, Spain
| | - Olivier Rey
- IHPE, Univ. Montpellier, CNRS, Ifremer, Univ. Perpignan Via Domitia, Perpignan France
| | - Bruno Polack
- UMR BIPAR, Ecole Nationale Vétérinaire d’Alfort, ANSES, INRA, Université Paris-Est, Maisons-Alfort, France
| | | | - Yann Quilichini
- UMR SPE 6134, CNRS-Université de Corse Campus Grimaldi Bât 018, Université de Corse, Corte, France
| | - Ricardo Pérez-Sánchez
- Parasitology Laboratory, Institute of Natural Resources and Agrobiology (IRNASA, CSIC). Cordel de Merinas, Salamanca, Spain
| | - Pascal Boireau
- UMR BIPAR, Anses, Ecole Nationale Vétérinaire d'Alfort, INRA, University Paris-Est, Animal Health Laboratory, Maisons-Alfort, France
| | - Stephen Mulero
- IHPE, Univ. Montpellier, CNRS, Ifremer, Univ. Perpignan Via Domitia, Perpignan France
| | - Aimé Brunet
- UMR SPE 6134, CNRS-Université de Corse Campus Grimaldi Bât 018, Université de Corse, Corte, France
| | - Anne Rognon
- IHPE, Univ. Montpellier, CNRS, Ifremer, Univ. Perpignan Via Domitia, Perpignan France
| | - Isabelle Vallée
- UMR BIPAR, Anses, Ecole Nationale Vétérinaire d'Alfort, INRA, University Paris-Est, Animal Health Laboratory, Maisons-Alfort, France
| | - Julien Kincaid-Smith
- IHPE, Univ. Montpellier, CNRS, Ifremer, Univ. Perpignan Via Domitia, Perpignan France
| | | | - Jérôme Boissier
- IHPE, Univ. Montpellier, CNRS, Ifremer, Univ. Perpignan Via Domitia, Perpignan France
- * E-mail:
| |
Collapse
|
12
|
Anderson TJC, LoVerde PT, Le Clec'h W, Chevalier FD. Genetic Crosses and Linkage Mapping in Schistosome Parasites. Trends Parasitol 2018; 34:982-996. [PMID: 30150002 DOI: 10.1016/j.pt.2018.08.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 07/27/2018] [Accepted: 08/02/2018] [Indexed: 12/14/2022]
Abstract
Linkage mapping - utilizing experimental genetic crosses to examine cosegregation of phenotypic traits with genetic markers - is now 100 years old. Schistosome parasites are exquisitely well suited to linkage mapping approaches because genetic crosses can be conducted in the laboratory, thousands of progeny are produced, and elegant experimental work over the last 75 years has revealed heritable genetic variation in multiple biomedically important traits such as drug resistance, host specificity, and virulence. Application of this approach is timely because the improved genome assembly for Schistosoma mansoni and developing molecular toolkit for schistosomes increase our ability to link phenotype with genotype. We describe current progress and potential future directions of linkage mapping in schistosomes.
Collapse
Affiliation(s)
| | | | - Winka Le Clec'h
- Texas Biomedical Research Institute, San Antonio, Texas 78227, USA
| | | |
Collapse
|