1
|
Ibnidris A, Liaskos N, Eldem E, Gunn A, Streffer J, Gold M, Rea M, Teipel S, Gardiol A, Boccardi M. Facilitating the use of the target product profile in academic research: a systematic review. J Transl Med 2024; 22:693. [PMID: 39075460 PMCID: PMC11288132 DOI: 10.1186/s12967-024-05476-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 07/03/2024] [Indexed: 07/31/2024] Open
Abstract
BACKGROUND The Target Product Profile (TPP) is a tool used in industry to guide development strategies by addressing user needs and fostering effective communication among stakeholders. However, they are not frequently used in academic research, where they may be equally useful. This systematic review aims to extract the features of accessible TPPs, to identify commonalities and facilitate their integration in academic research methodology. METHODS We searched peer-reviewed papers published in English developing TPPs for different products and health conditions in four biomedical databases. Interrater agreement, computed on random abstract and paper sets (Cohen's Kappa; percentage agreement with zero tolerance) was > 0.91. We interviewed experts from industry contexts to gain insight on the process of TPP development, and extracted general and specific features on TPP use and structure. RESULTS 138 papers were eligible for data extraction. Of them, 92% (n = 128) developed a new TPP, with 41.3% (n = 57) focusing on therapeutics. The addressed disease categories were diverse; the largest (47.1%, n = 65) was infectious diseases. Only one TPP was identified for several fields, including global priorities like dementia. Our analyses found that 56.5% of papers (n = 78) was authored by academics, and 57.8% of TPPs (n = 80) featured one threshold level of product performance. The number of TPP features varied widely across and within product types (n = 3-44). Common features included purpose/context of use, shelf life for drug stability and validation aspects. Most papers did not describe the methods used to develop the TPP. We identified aspects to be taken into account to build and report TPPs, as a starting point for more focused initiatives guiding use by academics. DISCUSSION TPPs are used in academic research mostly for infectious diseases and have heterogeneous features. Our extraction of key features and common structures helps to understand the tool and widen its use in academia. This is of particular relevance for areas of notable unmet needs, like dementia. Collaboration between stakeholders is key for innovation. Tools to streamline communication such as TPPs would support the development of products and services in academia as well as industry.
Collapse
Affiliation(s)
- Aliaa Ibnidris
- German Center for Neurodegenerative Diseases (DZNE), Rostock-Greifswald site, Gehlsheimer Str. 20, 18147, Rostock, Germany
- Neuroscience Institute, Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
| | - Nektarios Liaskos
- German Center for Neurodegenerative Diseases (DZNE), Rostock-Greifswald site, Gehlsheimer Str. 20, 18147, Rostock, Germany
- European Infrastructure for Translational Medicine (EATRIS), Amsterdam, The Netherlands
| | - Ece Eldem
- German Center for Neurodegenerative Diseases (DZNE), Rostock-Greifswald site, Gehlsheimer Str. 20, 18147, Rostock, Germany
| | | | - Johannes Streffer
- Reference Center for Biological Markers of Dementia (BIODEM), Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Michael Gold
- AriLex Life Sciences LLC, 780 Elysian Way, Deerfield, IL, 60015, USA
| | | | - Stefan Teipel
- German Center for Neurodegenerative Diseases (DZNE), Rostock-Greifswald site, Gehlsheimer Str. 20, 18147, Rostock, Germany
- Department of Psychosomatic Medicine and Psychotherapy, University of Medicine Rostock, Rostock, Germany
| | - Alejandra Gardiol
- European Infrastructure for Translational Medicine (EATRIS), Amsterdam, The Netherlands
- Queen Mary University of London, London, UK
| | - Marina Boccardi
- German Center for Neurodegenerative Diseases (DZNE), Rostock-Greifswald site, Gehlsheimer Str. 20, 18147, Rostock, Germany.
- Department of Psychosomatic Medicine and Psychotherapy, University of Medicine Rostock, Rostock, Germany.
| |
Collapse
|
2
|
Tripathi MN, Jangir P, Aakriti, Rai S, Gangwar M, Nath G, Saxena PS, Srivastava A. A novel approach for rapid and sensitive detection of Zika virus utilizing silver nanoislands as SERS platform. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 302:123045. [PMID: 37356391 DOI: 10.1016/j.saa.2023.123045] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 06/14/2023] [Accepted: 06/18/2023] [Indexed: 06/27/2023]
Abstract
To control the spread of the disease, the Zika virus (ZIKV), a flavivirus infection spread by mosquitoes and common in across the world, needs to be accurately and promptly diagnosed. This endeavour gets challenging when early-stage illnesses have low viral loads. As a result, we have created a biosensor based on surface-enhanced Raman scattering (SERS) for the quick, accurate, and timely diagnosis of the Zika virus. In this study, a glass coverslip was coated with silver nanoislands, which were then utilized as the surface for creating the sensing platform. Silver nanoislands exhibit strong plasmonic activity and good conductive characteristics. It enhances the Raman signals as a result and gives the SERS platform an appropriate surface. The created platform has been applied to Zika virus detection. With a limit of detection (LOD) of 0.11 ng/mL, the constructed sensor exhibits a linear range from 5 ng/mL to 1000 ng/mL. Hence, even at the nanogram scale, this technique may be a major improvement over clinical diagnosis approaches for making proper, precise, and accurate Zika virus detection.
Collapse
Affiliation(s)
- Manish Nath Tripathi
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Poonam Jangir
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Aakriti
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Suyash Rai
- Department of Physics, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Mayank Gangwar
- Viral Research and Diagnostic Laboratory, Department of Microbiology, Institute of Medical Science, Banaras Hindu University, Varanasi 221005, India
| | - Gopal Nath
- Viral Research and Diagnostic Laboratory, Department of Microbiology, Institute of Medical Science, Banaras Hindu University, Varanasi 221005, India
| | - Preeti S Saxena
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| | - Anchal Srivastava
- Department of Physics, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
3
|
Modeling the spread of the Zika virus by sexual and mosquito transmission. PLoS One 2022; 17:e0270127. [PMID: 36584063 PMCID: PMC9803243 DOI: 10.1371/journal.pone.0270127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 06/05/2022] [Indexed: 12/31/2022] Open
Abstract
Zika Virus (ZIKV) is a flavivirus that is transmitted predominantly by the Aedes species of mosquito, but also through sexual contact, blood transfusions, and congenitally from mother to child. Although approximately 80% of ZIKV infections are asymptomatic and typical symptoms are mild, multiple studies have demonstrated a causal link between ZIKV and severe diseases such as Microcephaly and Guillain Barré Syndrome. Two goals of this study are to improve ZIKV models by considering the spread dynamics of ZIKV as both a vector-borne and sexually transmitted disease, and also to approximate the degree of under-reporting. In order to accomplish these objectives, we propose a compartmental model that allows for the analysis of spread dynamics as both a vector-borne and sexually transmitted disease, and fit it to the ZIKV incidence reported to the National System of Public Health Surveillance in 27 municipalities of Colombia between January 1 2015 and December 31 2017. We demonstrate that our model can represent the infection patterns over this time period with high confidence. In addition, we argue that the degree of under-reporting is also well estimated. Using the model we assess potential viability of public health scenarios for mitigating disease spread and find that targeting the sexual pathway alone has negligible impact on overall spread, but if the proportion of risky sexual behavior increases then it may become important. Targeting mosquitoes remains the best approach of those considered. These results may be useful for public health organizations and governments to construct and implement suitable health policies and reduce the impact of the Zika outbreaks.
Collapse
|
4
|
Crone MA, Freemont PS. Simple Low-Cost Production of DNA MS2 Virus-Like Particles As Molecular Diagnostic Controls. GEN BIOTECHNOLOGY 2022; 1:496-503. [PMID: 36644571 PMCID: PMC9814128 DOI: 10.1089/genbio.2022.0033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/20/2022] [Indexed: 12/24/2022]
Abstract
Suitable controls are integral for the validation and continued quality assurance of diagnostic workflows. Plasmids, DNA, or in vitro transcribed RNA are often used to validate novel diagnostic workflows, however, they are poorly representative of clinical samples. RNA phage virus-like particles (VLPs) packaged with exogenous RNA have been used in clinical diagnostics as workflow controls, serving as surrogates for infectious viral particles. Comparable controls for DNA viruses are more challenging to produce, with analogous DNA phages being infectious and packaging of DNA within RNA phages requiring complex purification procedures and expensive chemical linkers. We present a simple and inexpensive method to produce Emesvirus zinderi (MS2) VLPs, packaged with DNA, that makes use of affinity chromatography for purification and enzymatic production of exogenous DNA suitable for packaging. The produced VLPs were packaged with hepatitis B virus DNA and were then quantified using droplet digital PCR and calibrated against the WHO international standard using a commercial assay in an accredited clinical laboratory.
Collapse
Affiliation(s)
- Michael A. Crone
- London Biofoundry, Imperial College Translation and Innovation Hub, London, United Kingdom; Imperial College London, London, United Kingdom.,Section of Structural and Synthetic Biology, Department of Infectious Disease, Imperial College London, London, United Kingdom; and Imperial College London, London, United Kingdom.,UK Dementia Research Institute Care Research and Technology Centre, Imperial College London, London, United Kingdom
| | - Paul S. Freemont
- London Biofoundry, Imperial College Translation and Innovation Hub, London, United Kingdom; Imperial College London, London, United Kingdom.,Section of Structural and Synthetic Biology, Department of Infectious Disease, Imperial College London, London, United Kingdom; and Imperial College London, London, United Kingdom.,UK Dementia Research Institute Care Research and Technology Centre, Imperial College London, London, United Kingdom.,Address correspondence to: Paul S. Freemont, London Biofoundry, Imperial College Translation and Innovation Hub, White City Campus, 84 Wood Lane, London W12 0BZ, United Kingdom,
| |
Collapse
|
5
|
Cifuentes MP, Suarez CM, Cifuentes R, Malod-Dognin N, Windels S, Valderrama JF, Juarez PD, Valdez RB, Colen C, Phillips C, Ramesh A, Im W, Lichtveld M, Mouton C, Pržulj N, Hood DB. Big Data to Knowledge Analytics Reveals the Zika Virus Epidemic as Only One of Multiple Factors Contributing to a Year-Over-Year 28-Fold Increase in Microcephaly Incidence. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19159051. [PMID: 35897436 PMCID: PMC9331749 DOI: 10.3390/ijerph19159051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/24/2022] [Accepted: 07/04/2022] [Indexed: 01/27/2023]
Abstract
During the 2015-2016 Zika Virus (ZIKV) epidemic in Brazil, the geographical distributions of ZIKV infection and microcephaly outbreaks did not align. This raised doubts about the virus as the single cause of the microcephaly outbreak and led to research hypotheses of alternative explanatory factors, such as environmental variables and factors, agrochemical use, or immunizations. We investigated context and the intermediate and structural determinants of health inequalities, as well as social environment factors, to determine their interaction with ZIKV-positive- and ZIKV-negative-related microcephaly. The results revealed the identification of 382 associations among 382 nonredundant variables of Zika surveillance, including multiple determinants of environmental public health factors and variables obtained from 5565 municipalities in Brazil. This study compared those factors and variables directly associated with microcephaly incidence positive to ZIKV and those associated with microcephaly incidence negative to ZIKV, respectively, and mapped them in case and control subnetworks. The subnetworks of factors and variables associated with low birth weight and birthweight where birth incidence served as an additional control were also mapped. Non-significant differences in factors and variables were observed, as were weights of associations between microcephaly incidence, both positive and negative to ZIKV, which revealed diagnostic inaccuracies that translated to the underestimation of the scope of the ZIKV outbreak. A detailed analysis of the patterns of association does not support a finding that vaccinations contributed to microcephaly, but it does raise concerns about the use of agrochemicals as a potential factor in the observed neurotoxicity arising from the presence of heavy metals in the environment and microcephaly not associated with ZIKV. Summary: A comparative network inferential analysis of the patterns of variables and factors associated with Zika virus infections in Brazil during 2015-2016 coinciding with a microcephaly epidemic identified multiple contributing determinants. This study advances our understanding of the cumulative interactive effects of exposures to chemical and non-chemical stressors in the built, natural, physical, and social environments on adverse pregnancy and health outcomes in vulnerable populations.
Collapse
Affiliation(s)
- Myriam Patricia Cifuentes
- Department of Mathematics, College of Sciences, Antonio Nariño University, Bogotá 111321, Colombia;
- Division of Environmental Health Sciences, College of Public Health, Ohio State University, Columbus, OH 43210, USA
| | | | - Ricardo Cifuentes
- School of Medicine and Health Sciences, Universidad Militar Nueva Granada, Bogotá 110111, Colombia;
| | - Noel Malod-Dognin
- Department of Computer Science, University College London, London WC1E 6BT, UK; (N.M.-D.); (S.W.); (N.P.)
| | - Sam Windels
- Department of Computer Science, University College London, London WC1E 6BT, UK; (N.M.-D.); (S.W.); (N.P.)
| | - Jose Fernando Valderrama
- Subdirectorate of Transmissible Diseases, Ministry of Health and Social Protection, Bogotá 110311, Colombia;
| | - Paul D. Juarez
- Department of Family and Community Medicine, Meharry Medical College, Nashville, TN 37208, USA; (P.D.J.); (W.I.)
| | - R. Burciaga Valdez
- Department of Family & Community Medicine, School of Medicine, University of New Mexico, Albuquerque, NM 87106, USA;
| | - Cynthia Colen
- Department of Sociology, College of Arts and Sciences, Ohio State University, Columbus, OH 43210, USA;
| | - Charles Phillips
- Electrical Engineering and Computer Science, University of Tennessee, Knoxville, TN 37996, USA;
| | - Aramandla Ramesh
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, TN 37208, USA;
| | - Wansoo Im
- Department of Family and Community Medicine, Meharry Medical College, Nashville, TN 37208, USA; (P.D.J.); (W.I.)
| | - Maureen Lichtveld
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15261, USA;
| | - Charles Mouton
- Department of Family Medicine, College of Medicine, University of Texas Medical Branch, Galveston, TX 77555, USA;
| | - Nataša Pržulj
- Department of Computer Science, University College London, London WC1E 6BT, UK; (N.M.-D.); (S.W.); (N.P.)
| | - Darryl B. Hood
- Division of Environmental Health Sciences, College of Public Health, Ohio State University, Columbus, OH 43210, USA
- Correspondence:
| |
Collapse
|
6
|
Harapan H, Panta K, Michie A, Ernst T, McCarthy S, Muhsin M, Safarianti S, Zanaria TM, Mudatsir M, Sasmono RT, Imrie A. Hyperendemic Dengue and Possible Zika Circulation in the Westernmost Region of the Indonesian Archipelago. Viruses 2022; 14:219. [PMID: 35215813 PMCID: PMC8875625 DOI: 10.3390/v14020219] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/16/2022] [Accepted: 01/20/2022] [Indexed: 12/03/2022] Open
Abstract
The transmission of dengue and other medically important mosquito-borne viruses in the westernmost region of Indonesia is not well described. We assessed dengue and Zika virus seroprevalence in Aceh province, the westernmost area of the Indonesian archipelago. Serum samples collected from 199 randomly sampled healthy residents of Aceh Jaya in 2017 were analyzed for neutralizing antibodies by plaque reduction neutralization test (PRNT). Almost all study participants (198/199; 99.5%) presented with multitypic profiles of neutralizing antibodies to two or more DENV serotypes, indicating transmission of multiple DENV in the region prior to 2017. All residents were exposed to one or more DENV serotypes by the age of 30 years. The highest geometric mean titers were measured for DENV-4, followed by DENV-1, DENV-2 and DENV-3. Among a subset of 116 sera, 27 neutralized ZIKV with a high stringency (20 with PRNT90 > 10 and 7 with PRNT90 > 40). This study showed that DENV is hyperendemic in the westernmost region of the Indonesian archipelago and suggested that ZIKV may have circulated prior to 2017.
Collapse
Affiliation(s)
- Harapan Harapan
- Medical Research Unit, School of Medicine, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia; (H.H.); (M.M.)
- Tropical Disease Centre, School of Medicine, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
- Department of Microbiology, School of Medicine, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
- School of Biomedical Sciences, University of Western Australia, Nedlands, WA 6009, Australia; (K.P.); (A.M.); (T.E.); (S.M.)
| | - Kritu Panta
- School of Biomedical Sciences, University of Western Australia, Nedlands, WA 6009, Australia; (K.P.); (A.M.); (T.E.); (S.M.)
| | - Alice Michie
- School of Biomedical Sciences, University of Western Australia, Nedlands, WA 6009, Australia; (K.P.); (A.M.); (T.E.); (S.M.)
| | - Timo Ernst
- School of Biomedical Sciences, University of Western Australia, Nedlands, WA 6009, Australia; (K.P.); (A.M.); (T.E.); (S.M.)
| | - Suzi McCarthy
- School of Biomedical Sciences, University of Western Australia, Nedlands, WA 6009, Australia; (K.P.); (A.M.); (T.E.); (S.M.)
- Pathwest Laboratory Medicine, Nedlands, WA 6009, Australia
| | - Muhsin Muhsin
- Department of Internal Medicine, School of Medicine, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia;
- Department of Parasitology, School of Medicine, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia; (S.S.); (T.M.Z.)
| | - Safarianti Safarianti
- Department of Parasitology, School of Medicine, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia; (S.S.); (T.M.Z.)
| | - Tjut Mariam Zanaria
- Department of Parasitology, School of Medicine, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia; (S.S.); (T.M.Z.)
| | - Mudatsir Mudatsir
- Medical Research Unit, School of Medicine, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia; (H.H.); (M.M.)
- Tropical Disease Centre, School of Medicine, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
- Department of Microbiology, School of Medicine, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
| | - R. Tedjo Sasmono
- Eijkman Institute for Molecular Biology, Jakarta 10430, Indonesia;
| | - Allison Imrie
- School of Biomedical Sciences, University of Western Australia, Nedlands, WA 6009, Australia; (K.P.); (A.M.); (T.E.); (S.M.)
| |
Collapse
|
7
|
Kameda K, Kelly AH, Lezaun J, Löwy I. Imperfect diagnosis: The truncated legacies of Zika testing. SOCIAL STUDIES OF SCIENCE 2021; 51:683-706. [PMID: 34461777 PMCID: PMC8474320 DOI: 10.1177/03063127211035492] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
When the Zika virus burst onto the international scene in the second half of 2015, the development of diagnostic tools was seen as an urgent global health priority. Diagnostic capacity was restricted to a small number of reference laboratories, and none of the few available molecular or serological tests had been validated for extensive use in an outbreak setting. In the early weeks of the crisis, key funders stepped in to accelerate research and development efforts, and the WHO took responsibility for steering diagnostic standardization, a role it had successfully played during the West Africa Ebola virus outbreak. Yet when the WHO declared the end of the Zika Public Health Emergency of International Concern in November 2016, diagnostic capacity remained patchy, and few tools were available at the scale required in the countries that bore the brunt of the epidemic, particularly Brazil. This article analyses the limited impact of global R&D efforts on the availability of Zika diagnostic options where they were most needed and for those most vulnerable: women who might have been exposed to the virus during their pregnancy and children born with suspected congenital Zika syndrome. The truncated legacies of testing during the Zika crisis reveal some of the fault lines in the global health enterprise, particularly the limits of 'emergency R&D' to operate in geopolitical contexts that do not conform to the ideal type of a humanitarian crisis, or to tackle technical issues that are inextricably linked to domestic struggles over the scope and distribution of biological citizenship. Diagnostic shortcomings, we argue, lie at the heart of the stunning transformation, in less than two years, in the status of Zika: from international public health emergency to neglected disease.
Collapse
Affiliation(s)
- Koichi Kameda
- Institute for Research and
Innovation in Society (IFRIS), Paris, France
| | - Ann H Kelly
- Department of Global Health and
Social Medicine, King’s College London, London, UK
| | - Javier Lezaun
- Institute for Science, Innovation
and Society, University of Oxford, Oxford, UK
| | | |
Collapse
|
8
|
Loeffler FF, Viana IFT, Fischer N, Coêlho DF, Silva CS, Purificação AF, Araújo CMCS, Leite BHS, Durães-Carvalho R, Magalhães T, Morais CNL, Cordeiro MT, Lins RD, Marques ETA, Jaenisch T. Identification of a Zika NS2B epitope as a biomarker for severe clinical phenotypes. RSC Med Chem 2021; 12:1525-1539. [PMID: 34671736 DOI: 10.1039/d1md00124h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 06/17/2021] [Indexed: 01/04/2023] Open
Abstract
The identification of specific biomarkers for Zika infection and its clinical complications is fundamental to mitigate the infection spread, which has been associated with a broad range of neurological sequelae. We present the characterization of antibody responses in serum samples from individuals infected with Zika, presenting non-severe (classical) and severe (neurological disease) phenotypes, with high-density peptide arrays comprising the Zika NS1 and NS2B proteins. The data pinpoints one strongly IgG-targeted NS2B epitope in non-severe infections, which is absent in Zika patients, where infection progressed to the severe phenotype. This differential IgG profile between the studied groups was confirmed by multivariate data analysis. Molecular dynamics simulations and circular dichroism have shown that the peptide in solution presents itself in a sub-optimal conformation for antibody recognition, which led us to computationally engineer an artificial protein able to stabilize the NS2B epitope structure. The engineered protein was used to interrogate paired samples from mothers and their babies presenting Zika-associated microcephaly and confirmed the absence of NS2B IgG response in those samples. These findings suggest that the assessment of antibody responses to the herein identified NS2B epitope is a strong candidate biomarker for the diagnosis and prognosis of Zika-associated neurological disease.
Collapse
Affiliation(s)
- Felix F Loeffler
- Max Planck Institute of Colloids and Interfaces, Department of Biomolecular Systems Potsdam Germany
| | - Isabelle F T Viana
- Department of Virology, Aggeu Magalhães Institute, Oswaldo Cruz Foundation Recife PE Brazil
| | - Nico Fischer
- Section Clinical Tropical Medicine, Department of Infectious Diseases, Heidelberg University Hospital Germany
| | - Danilo F Coêlho
- Department of Virology, Aggeu Magalhães Institute, Oswaldo Cruz Foundation Recife PE Brazil.,Department of Fundamental Chemistry, Federal University of Pernambuco Recife PE Brazil
| | - Carolina S Silva
- Department of Chemical Engineering, Federal University of Pernambuco Recife PE Brazil
| | - Antônio F Purificação
- Department of Virology, Aggeu Magalhães Institute, Oswaldo Cruz Foundation Recife PE Brazil
| | - Catarina M C S Araújo
- Department of Virology, Aggeu Magalhães Institute, Oswaldo Cruz Foundation Recife PE Brazil
| | - Bruno H S Leite
- Department of Virology, Aggeu Magalhães Institute, Oswaldo Cruz Foundation Recife PE Brazil
| | | | - Tereza Magalhães
- Department of Virology, Aggeu Magalhães Institute, Oswaldo Cruz Foundation Recife PE Brazil
| | - Clarice N L Morais
- Department of Virology, Aggeu Magalhães Institute, Oswaldo Cruz Foundation Recife PE Brazil
| | - Marli T Cordeiro
- Department of Virology, Aggeu Magalhães Institute, Oswaldo Cruz Foundation Recife PE Brazil
| | - Roberto D Lins
- Department of Virology, Aggeu Magalhães Institute, Oswaldo Cruz Foundation Recife PE Brazil
| | - Ernesto T A Marques
- Department of Virology, Aggeu Magalhães Institute, Oswaldo Cruz Foundation Recife PE Brazil.,Department of Infectious Diseases and Microbiology, University of Pittsburgh Pittsburgh PA USA
| | - Thomas Jaenisch
- Section Clinical Tropical Medicine, Department of Infectious Diseases, Heidelberg University Hospital Germany .,German Centre for Infection Research (DZIF) Heidelberg Site Heidelberg Germany
| |
Collapse
|
9
|
Evaluation of Two Serological Assays for Diagnosing Zika Virus Infection. Diagnostics (Basel) 2021; 11:diagnostics11091696. [PMID: 34574037 PMCID: PMC8469165 DOI: 10.3390/diagnostics11091696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/09/2021] [Accepted: 09/13/2021] [Indexed: 11/17/2022] Open
Abstract
Zika virus (ZIKV) emerged and spread rapidly in South American countries during 2015. Efforts to diagnose ZIKV infection using serological tools were challenging in dengue-endemic areas because of antigenic similarities between both viruses. Here, we assessed the performance of an in-house developed IgM antibody capture enzyme-linked immunosorbent assay (MAC-ELISA) and the plaque reduction neutralization test (PRNT) to diagnose ZIKV infection. Acute and convalescent paired serum samples from 51 patients who presented with clinical symptoms suggestive of an arbovirus illness in dengue-endemic areas of Honduras, Venezuela, Colombia and Peru were used in the assessment. Samples were tested for ZIKV, dengue and chikungunya virus using a variety of laboratory techniques. The results for the ZIKV-RNA screening and seroconversion detected by the microneutralization test were used to construct a composite reference standard. The overall sensitivity and specificity for the MAC-ELISA were 93.5% and 100.0%, respectively. Contrastingly, the overall sensitivity and specificity for the PRNT were 96.8% and 95.0%, respectively. Restricting the analysis according to IgM or neutralizing antibodies against dengue, the performances of both serological assays were adequate. The findings of this study reveal that the MAC-ELISA and PRNT would provide initial reliable laboratory diagnostic assays for ZIKV infection in dengue-endemic areas.
Collapse
|
10
|
Rosinger AY, Olson SM, Ellington SR, Perez-Padilla J, Simeone RM, Pedati CS, Schroeder BA, Santiago GA, Medina FA, Muñoz-Jordán JL, Adams LE, Galang RR, Valencia-Prado M, Bakkour S, Colón C, Goodwin M, Meaney-Delman D, Read JS, Petersen LR, Jamieson DJ, Deseda CC, Honein MA, Rivera-García B, Shapiro-Mendoza CK. Evaluating Differences in Whole Blood, Serum, and Urine Screening Tests for Zika Virus, Puerto Rico, USA, 2016. Emerg Infect Dis 2021; 27:1505-1508. [PMID: 33900183 PMCID: PMC8084515 DOI: 10.3201/eid2705.203960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
We evaluated nucleic acid amplification testing (NAAT) for Zika virus on whole-blood specimens compared with NAAT on serum and urine specimens among asymptomatic pregnant women during the 2015–2016 Puerto Rico Zika outbreak. Using NAAT, more infections were detected in serum and urine than in whole blood specimens.
Collapse
|
11
|
Siew QY, Tan SH, Pang EL, Loh HS, Tan MTT. A graphene-based dengue immunosensor using plant-derived envelope glycoprotein domain III (EDIII) as the novel probe antigen. Analyst 2021; 146:2009-2018. [PMID: 33523052 DOI: 10.1039/d0an02219e] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The envelope glycoprotein domain III (EDIII) of dengue virus (DENV) has been recognised as the antigenic region responsible for receptor binding. In the present work, we have proposed a novel immunosensor constructed on a graphene-coated screen-printed carbon electrode (SPCE) using plant-derived EDIII as the probe antigen to target DENV IgG antibodies. The developed immunosensor demonstrated high sensitivity towards DENV IgG within a wide linear working range (125-2000 ng mL-1) under the optimised sensing conditions. The limit of detection was determined to be 22.5 ng mL-1. The immunosensor also showed high specificity towards DENV IgG, capable of differentiating DENV IgG from the antibodies of other infectious diseases including the similarly structured Zika virus (ZIKV). The ability of the immunosensor to detect dengue antibodies in serum samples was also verified by conducting tests on mouse serum samples. The proposed immunosensor was able to provide a binary (positive/negative) response towards the serum samples comparable to the conventional enzyme-linked immunosorbent assay (ELISA), indicating promising potential for realistic applications.
Collapse
Affiliation(s)
- Qi Yan Siew
- Department of Electrical and Electronic Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor, Malaysia.
| | | | | | | | | |
Collapse
|
12
|
Plaque Reduction Neutralization Test (PRNT) in the Congenital Zika Syndrome: Positivity and Associations with Laboratory, Clinical, and Imaging Characteristics. Viruses 2020; 12:v12111244. [PMID: 33142747 PMCID: PMC7692785 DOI: 10.3390/v12111244] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/16/2020] [Accepted: 10/30/2020] [Indexed: 02/07/2023] Open
Abstract
The short duration of viremia, low blood viral load, inaccessibility to timely specific diagnostic tests, and cross-reactions with other flaviviruses have hindered laboratory confirmation of Congenital Zika Syndrome (CZS). This study analyzes the positivity of the plaque reduction neutralization test (PRNT) in children with clinical or imaging characteristics of CZS and its association with laboratory, clinical, and imaging characteristics. The 94 clinical cases of CZS submitted to the ZIKV PRNT90 test were followed from 2016 to 2018. The mean age of children at PRNT90 collection was 22 ± 6 months Standard Deviation. The ZIKV PRNT90 was positive (titer ≥ 10) in 40 (42.5%) children. ZIKV PRNT90 positivity was associated with severe microcephaly in newborns (p = 0.016), lower head circumference z-score at birth (p = 0.043) and 24 months of age (p = 0.031), and severe reduction of the cerebral parenchyma volume (p = 0.021), expressing greater disease severity. Negative PRNT90 in children with characteristic signs of CZS may be due to false-negative results, indicating that the diagnosis of CZS should be primarily syndromic.
Collapse
|
13
|
Cocco P, Ayaz-Shah A, Messenger MP, West RM, Shinkins B. Target Product Profiles for medical tests: a systematic review of current methods. BMC Med 2020; 18:119. [PMID: 32389127 PMCID: PMC7212678 DOI: 10.1186/s12916-020-01582-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 04/01/2020] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND A Target Product Profile (TPP) outlines the necessary characteristics of an innovative product to address an unmet clinical need. TPPs could be used to better guide manufacturers in the development of 'fit for purpose' tests, thus increasing the likelihood that novel tests will progress from bench to bedside. However, there is currently no guidance on how to produce a TPP specifically for medical tests. METHODS A systematic review was conducted to summarise the methods currently used to develop TPPs for medical tests, the sources used to inform these recommendations and the test characteristics for which targets are made. Database and website searches were conducted in November 2018. TPPs written in English for any medical test were included. Based on an existing framework, test characteristics were clustered into commonly recognised themes. RESULTS Forty-four TPPs were identified, all of which focused on diagnostic tests for infectious diseases. Three core decision-making phases for developing TPPs were identified: scoping, drafting and consensus-building. Consultations with experts and the literature mostly informed the scoping and drafting of TPPs. All TPPs provided information on unmet clinical need and desirable analytical performance, and the majority specified clinical validity characteristics. Few TPPs described specifications for clinical utility, and none included cost-effectiveness. CONCLUSIONS We have identified a commonly used framework that could be beneficial for anyone interested in drafting a TPP for a medical test. Currently, key outcomes such as utility and cost-effectiveness are largely overlooked within TPPs though and we foresee this as an area for further improvement.
Collapse
Affiliation(s)
- Paola Cocco
- Test Evaluation Group, Academic Unit of Health Economics, Leeds Institute for Health Sciences, University of Leeds, Leeds, UK.
| | - Anam Ayaz-Shah
- Academic Unit of Primary Care, Leeds Institute for Health Sciences, University of Leeds, Leeds, UK
| | - Michael Paul Messenger
- Centre for Personalised Health and Medicine, University of Leeds, Leeds, UK
- NIHR Leeds In Vitro Diagnostic (IVD) Co-operative, Leeds, UK
| | | | - Bethany Shinkins
- Test Evaluation Group, Academic Unit of Health Economics, Leeds Institute for Health Sciences, University of Leeds, Leeds, UK
- NIHR Leeds In Vitro Diagnostic (IVD) Co-operative, Leeds, UK
| |
Collapse
|
14
|
Kanno AI, Leite LCDC, Pereira LR, de Jesus MJR, Andreata-Santos R, Alves RPDS, Durigon EL, Ferreira LCDS, Gonçalves VM. Optimization and scale-up production of Zika virus ΔNS1 in Escherichia coli: application of Response Surface Methodology. AMB Express 2019; 10:1. [PMID: 31893321 PMCID: PMC6938527 DOI: 10.1186/s13568-019-0926-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 12/03/2019] [Indexed: 02/01/2023] Open
Abstract
Diagnosing Zika virus (ZIKV) infections has been challenging due to the cross-reactivity of induced antibodies with other flavivirus. The concomitant occurrence of ZIKV and Dengue virus (DENV) in endemic regions requires diagnostic tools with the ability to distinguish these two viral infections. Recent studies demonstrated that immunoassays using the C-terminal fragment of ZIKV NS1 antigen (ΔNS1) can be used to discriminate ZIKV from DENV infections. In order to be used in serological tests, the expression/solubility of ΔNS1 and growth of recombinant E. coli strain were optimized by Response Surface Methodology. Temperature, time and IPTG concentration were evaluated. According to the model, the best condition determined in small scale cultures was 21 °C for 20 h with 0.7 mM of IPTG, which predicted 7.5 g/L of biomass and 962 mg/L of ΔNS1. These conditions were validated and used in a 6-L batch in the bioreactor, which produced 6.4 g/L of biomass and 500 mg/L of ΔNS1 in 12 h of induction. The serological ELISA test performed with purified ΔNS1 showed low cross-reactivity with antibodies from DENV-infected human subjects. Denaturation of ΔNS1 decreased the detection of anti-ZIKV antibodies, thus indicating the contribution of conformational epitopes and confirming the importance of properly folded ΔNS1 for the specificity of the serological analyses. Obtaining high yields of soluble ΔNS1 supports the viability of an effective serologic diagnostic test capable of differentiating ZIKV from other flavivirus infections.
Collapse
|
15
|
Abstract
Zika virus (ZIKV) is an arthropod-borne virus that belongs to the Flaviviridae family. Although most cases are mild or go undetected, rare severe neurologic effects, including congenital ZIKV syndrome (CZS) and Guillain-Barré syndrome, have been identified. The serious neurologic complications associated with ZIKV prompted the declaration of the public health emergency of international concern by the World Health Organization. Overall, transmission occurred throughout South and Central America as well as the Caribbean, affecting 48 countries and territories from March 2015 to March 2017. Long-term management of CZS requires a comprehensive combination of supportive services throughout early development.
Collapse
Affiliation(s)
- Savina Reid
- Department of Neurology, Columbia University Medical Center, Milstein Hospital, 177 Fort Washington Avenue, 8GS-300, New York, NY 10032, USA
| | - Kathryn Rimmer
- Department of Neurology, Columbia University Medical Center, Milstein Hospital, 177 Fort Washington Avenue, 8GS-300, New York, NY 10032, USA
| | - Kiran Thakur
- Division of Critical Care and Hospitalist Neurology, Department of Neurology, Columbia University Medical Center, Milstein Hospital, 177 Fort Washington Avenue, 8GS-300, New York, NY 10032, USA.
| |
Collapse
|
16
|
Roberts CC. Emerging infectious disease laboratory and diagnostic preparedness to accelerate vaccine development. Hum Vaccin Immunother 2019; 15:2258-2263. [PMID: 31268394 PMCID: PMC6816404 DOI: 10.1080/21645515.2019.1634992] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Rapid vaccine development in response to an outbreak of a new emerging infectious disease (EID) is a goal targeted by public health agencies worldwide. This goal becomes more complicated when there are no standardized sets of viral and immunological assays, no accepted and well-characterized samples, standards or reagents, and no approved diagnostic tests for the EID pathogen. The diagnosis of infections is of critical importance to public health, but also in vaccine development in order to track incident infections during clinical trials, to differentiate natural infection responses from those that are vaccine-related and, if called for by study design, to exclude subjects with prior exposure from vaccine efficacy trials. Here we review emerging infectious disease biological standards development, vaccine clinical assay development and trial execution with the recent experiences of MERS-CoV and Zika virus as examples. There is great need to establish, in advance, the standardized reagents, sample panels, controls, and assays to support the rapid advancement of vaccine development efforts in response to EID outbreaks.
Collapse
Affiliation(s)
- Christine C. Roberts
- Clinical Laboratory Development, GeneOne Life Science, Inc., Blue Bell, PA, USA,Contact Christine C. Roberts Clinical Laboratory Development, GeneOne Life Science, Inc., 1040 DeKalb Pike, Suite 200, Blue Bell, PA 19422, USA
| |
Collapse
|
17
|
Goncalves A, Peeling RW, Chu MC, Gubler DJ, de Silva AM, Harris E, Murtagh M, Chua A, Rodriguez W, Kelly C, Wilder-Smith A. Innovative and New Approaches to Laboratory Diagnosis of Zika and Dengue: A Meeting Report. J Infect Dis 2019; 217:1060-1068. [PMID: 29294035 DOI: 10.1093/infdis/jix678] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 12/22/2017] [Indexed: 12/30/2022] Open
Abstract
Epidemics of dengue, Zika, and other arboviral diseases are increasing in frequency and severity. Current efforts to rapidly identify and manage these epidemics are limited by the short diagnostic window in acute infection, the extensive serologic cross-reactivity among flaviviruses, and the lack of point-of-care diagnostic tools to detect these viral species in primary care settings. The Partnership for Dengue Control organized a workshop to review the current landscape of Flavivirus diagnostic tools, identified current gaps, and developed strategies to accelerate the adoption of promising novel technologies into national programs. The rate-limiting step to bringing new diagnostic tools to the market is access to reference materials and well-characterized clinical samples to facilitate performance evaluation. We suggest the creation of an international laboratory-response consortium for flaviviruses with a decentralized biobank of well-characterized samples to facilitate assay validation. Access to proficiency panels are needed to ensure quality control, in additional to in-country capacity building.
Collapse
Affiliation(s)
| | | | - May C Chu
- Department of Epidemiology, Colorado School of Public Health, University of Colorado, Anschutz Medical Center, Aurora
| | - Duane J Gubler
- Emerging Infectious Diseases Program, Duke-NUS Medical School, Singapore
| | - Aravinda M de Silva
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley
| | | | | | | | | | - Annelies Wilder-Smith
- Lee Kong Chian School of Medicine, Singapore.,Institute of Public Health, University of Heidelberg, Germany.,Department of Global Health and Epidemiology, University of Umea, Sweden
| |
Collapse
|
18
|
Borges ED, Vireque AA, Berteli TS, Ferreira CR, Silva AS, Navarro PA. An update on the aspects of Zika virus infection on male reproductive system. J Assist Reprod Genet 2019; 36:1339-1349. [PMID: 31147867 PMCID: PMC6642278 DOI: 10.1007/s10815-019-01493-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 05/17/2019] [Indexed: 01/07/2023] Open
Abstract
Zika virus (ZIKV) is mainly transmitted through Aedes mosquito bites, but sexual and post-transfusion transmissions have been reported. During acute infection, ZIKV is detectable in most organs and body fluids including human semen. Although it is not currently epidemic, there is a concern that the virus can still reemerge since the male genital tract might harbor persistent reservoirs that could facilitate viral transmission over extended periods, raising concerns among public health and assisted reproductive technologies (ART) experts and professionals. So far, the consensus is that ZIKV infection in the testes or epididymis might affect sperm development and, consequently, male fertility. Still, diagnostic tests have not yet been adapted to resource-restricted countries. This manuscript provides an updated overview of the cellular and molecular mechanisms of ZIKV infection and reviews data on ZIKV persistence in semen and associated risks to the male reproductive system described in human and animal models studies. We provide an updated summary of the impact of the recent ZIKV outbreak on human-ART, weighing on current recommendations and diagnostic approaches, both available and prospective, with special emphasis on mass spectrometry-based biomarker discovery. In the light of the identified gaps in our accumulated knowledge on the subject, we highlight the importance for couples seeking ART to follow the constantly revised guidelines and the need of specific ZIKV diagnosis tools for semen screening to contain ZIKV virus spread and make ART safer.
Collapse
Affiliation(s)
- E D Borges
- Department of Obstetrics and Gynecology, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, 14049-900, Brazil.
- Invitra - Assisted Reproductive Technologies LTD, Supera Innovation and Technology Park, Ribeirão Preto, São Paulo, 14056-680, Brazil.
| | - A A Vireque
- Invitra - Assisted Reproductive Technologies LTD, Supera Innovation and Technology Park, Ribeirão Preto, São Paulo, 14056-680, Brazil
| | - T S Berteli
- Department of Obstetrics and Gynecology, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, 14049-900, Brazil
| | - C R Ferreira
- Metabolite Profiling Facility, Bindley Bioscience Center, Purdue University, West Lafayette, IN, USA
| | - A S Silva
- Department of Social Medicine, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, 14049-900, Brazil
| | - P A Navarro
- Department of Obstetrics and Gynecology, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, 14049-900, Brazil
- National Institutes of Hormones and Woman's Health, CNPq, Brasilia, Brazil
| |
Collapse
|
19
|
Coarsey C, Coleman B, Kabir MA, Sher M, Asghar W. Development of a Flow-Free Magnetic Actuation Platform for an Automated Microfluidic ELISA. RSC Adv 2019; 9:8159-8168. [PMID: 31777654 PMCID: PMC6880949 DOI: 10.1039/c8ra07607c] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
There is a need to create an easily deployable and point-of-care (POC) diagnostic platform for disease outbreaks and for monitoring and maintenance of chronic illnesses. Such platforms are useful in regions where access to clinical laboratories may be limited or constrained using cost-effective solutions to quickly process high numbers of samples. Using oil and water liquid–liquid interphase separation, immunoassays developed for microfluidic chips can potentially meet this need when leveraged with electromagnetic actuation and antibody-coated superparamagnetic beads. We have developed a microfluidic immunoassay detection platform, which enables assay automation and maintains successful liquid containment for future use in the field. The assay was studied through a series of magnetic and fluid simulations to demonstrate these optimizations, and an optimized chip was tested using a target model for HIV-1, the p24 capsid antigen. The use of minimal reagents further lowers the cost of each assay and lowers the required sample volume for testing (<50 μL), that can offer easy turnaround for sample collection and assay results. The developed microfluidic immunoassay platform can be easily scaled for multiplex or multi-panel specific testing at the POC. A flow-free device is developed for automated and rapid ELISA testing at the point-of-care settings.![]()
Collapse
Affiliation(s)
- Chad Coarsey
- Asghar-Lab, Micro and Nanotechnology for Medicine, College of Engineering and Computer Science, Boca Raton, FL 33431.,Department of Computer & Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431
| | - Benjamin Coleman
- Asghar-Lab, Micro and Nanotechnology for Medicine, College of Engineering and Computer Science, Boca Raton, FL 33431.,Department of Computer & Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431
| | - Md Alamgir Kabir
- Asghar-Lab, Micro and Nanotechnology for Medicine, College of Engineering and Computer Science, Boca Raton, FL 33431.,Department of Computer & Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431
| | - Mazhar Sher
- Asghar-Lab, Micro and Nanotechnology for Medicine, College of Engineering and Computer Science, Boca Raton, FL 33431.,Department of Computer & Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431
| | - Waseem Asghar
- Asghar-Lab, Micro and Nanotechnology for Medicine, College of Engineering and Computer Science, Boca Raton, FL 33431.,Department of Computer & Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431.,Department of Biological Sciences, Florida Atlantic University, Boca Raton, FL 33431
| |
Collapse
|
20
|
Lee HJ, Cho Y, Kang HJ, Choi H, Han KR, Chong CK, Kim YB. Identification of peptide based B-cell epitopes in Zika virus NS1. Biochem Biophys Res Commun 2018; 505:1010-1014. [PMID: 30309651 DOI: 10.1016/j.bbrc.2018.10.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 10/04/2018] [Indexed: 10/28/2022]
Abstract
Zika virus (ZIKV), a mosquito-borne flavivirus that has recently emerged globally, poses a major threat to public health. To control this emerging disease, accurate diagnostics are required for monitoring current ZIKV outbreaks. Owing to the high nucleotide sequence similarity and cross-reactivity of ZIKV with other members of the Flaviviridae family, discrimination from other flavivirus infections is often difficult in endemic areas. ZIKV NS1 induces major virus-specific antibodies and is therefore utilized as a serological marker for ZIKV diagnosis. To identify ZIKV specific epitopes for clinical application, 33 NS1 peptides that are 15-30 amino acid in length covering whole NS1 were synthesized and analyzed linear B-cell epitopes with 38 human serum samples (20 ZIKV-positive and 18 ZIKV-negative). As a result of screening, eight epitope regions were identified. In particular, the Z8 and Z14 peptides located in the β-ladder surface region showed higher levels of binding activity in ZIKV-positive sera without cross-reactivity to other flaviviruses. These identified sensitive and specific epitopes provide a tool for design of diagnostics and structure-based vaccine antigens for ZIKV infection.
Collapse
Affiliation(s)
- Hee-Jung Lee
- Department of Biomedical Science and Engineering, Konkuk University, Seoul, 05029, South Korea.
| | - Yeondong Cho
- Department of Biomedical Science and Engineering, Konkuk University, Seoul, 05029, South Korea; Department of Bio-industrial Technologies, Konkuk University, Seoul, 05029, South Korea.
| | - Hyeon Jeong Kang
- Department of Biomedical Science and Engineering, Konkuk University, Seoul, 05029, South Korea; Department of Bio-industrial Technologies, Konkuk University, Seoul, 05029, South Korea.
| | - Hanul Choi
- Department of Biomedical Science and Engineering, Konkuk University, Seoul, 05029, South Korea; Department of Bio-industrial Technologies, Konkuk University, Seoul, 05029, South Korea.
| | | | | | - Young Bong Kim
- Department of Biomedical Science and Engineering, Konkuk University, Seoul, 05029, South Korea; Department of Bio-industrial Technologies, Konkuk University, Seoul, 05029, South Korea.
| |
Collapse
|
21
|
An Innovative Multiplexed and Flexible Molecular Approach for the Differential Detection of Arboviruses. J Mol Diagn 2018; 21:81-88. [PMID: 30268947 DOI: 10.1016/j.jmoldx.2018.08.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 07/20/2018] [Accepted: 08/13/2018] [Indexed: 01/23/2023] Open
Abstract
Nucleic acid testing during the preseroconversion viremic phase is required to differentially diagnose arboviral infections. The continuing emergence of arboviruses, such as Zika virus (ZIKV), dengue virus (DENV), and chikungunya virus (CHIKV), necessitates the development of a flexible diagnostic approach. Similar clinical signs and the priority to protect pregnant women from ZIKV infection indicate that the differential diagnosis of arboviruses is essential for effective patient management, clinical care, and epidemiologic surveillance. We describe an innovative diagnostic approach that combines generic RT-PCR amplification and identification by hybridization to specific probes. Original tetrathiolated probes were designed for the robust, sensitive, and specific detection of amplified arboviral genomes. The limit of detection using cultured and quantified stocks of whole viruses was 1 TCID50/mL for DENV-1, DENV-3, and CHIKV and 10 TCID50/mL for DENV-2, DENV-4, and ZIKV. The assay had 100% specificity with no false-positive results. The approach was evaluated using 179 human samples that previously tested as positive for the presence of ZIKV, DENV, or CHIKV genomes. Accordingly, the diagnostic sensitivity for ZIKV, DENV, and CHIKV was 87.88% (n = 58/66), 96.67% (n = 58/60), and 94.34% (n = 50/53), respectively. This method could be easily adapted to include additional molecular targets. Moreover, this approach may also be adapted to develop highly specific, sensitive, and easy to handle platforms dedicated to the multiplex screening and identification of emerging viruses.
Collapse
|
22
|
Donoso Mantke O, McCulloch E, Wallace PS, Yue C, Baylis SA, Niedrig M. External Quality Assessment (EQA) for Molecular Diagnostics of Zika Virus: Experiences from an International EQA Programme, 2016⁻2018. Viruses 2018; 10:v10090491. [PMID: 30216988 PMCID: PMC6163558 DOI: 10.3390/v10090491] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 09/10/2018] [Accepted: 09/12/2018] [Indexed: 11/16/2022] Open
Abstract
Quality Control for Molecular Diagnostics (QCMD), an international provider for External Quality Assessment (EQA) programmes, has introduced a programme for molecular diagnostics of Zika virus (ZIKV) in 2016, which has been continuously offered to interested laboratories since that time. The EQA schemes provided from 2016 to 2018 revealed that 86.7% (92/106), 82.4% (89/108), and 88.2% (90/102) of the participating laboratories reported correct results for all samples, respectively in 2016, 2017, and 2018. The review of results indicated a need for improvement concerning analytical sensitivity and specificity of the test methods. Comparison with the outcomes of other EQA initiatives briefly summarized here show that continuous quality assurance is important to improve laboratory performance and to increase preparedness with reliable diagnostic assays for effective patient management, infection and outbreak control.
Collapse
Affiliation(s)
- Oliver Donoso Mantke
- Quality Control for Molecular Diagnostics (QCMD), Unit 5, Technology Terrace, Todd Campus, West of Scotland Science Park, Glasgow G20 0XA, UK.
| | - Elaine McCulloch
- Quality Control for Molecular Diagnostics (QCMD), Unit 5, Technology Terrace, Todd Campus, West of Scotland Science Park, Glasgow G20 0XA, UK.
| | - Paul S Wallace
- Quality Control for Molecular Diagnostics (QCMD), Unit 5, Technology Terrace, Todd Campus, West of Scotland Science Park, Glasgow G20 0XA, UK.
| | - Constanze Yue
- Division of Virology, Paul-Ehrlich-Institut (PEI), Federal Institute for Vaccines and Biomedicines, 63225 Langen, Germany.
| | - Sally A Baylis
- Division of Virology, Paul-Ehrlich-Institut (PEI), Federal Institute for Vaccines and Biomedicines, 63225 Langen, Germany.
| | | |
Collapse
|
23
|
Huits R, Van Den Bossche D, Bottieau E, Van Esbroeck M. Re: Lack of Zika virus antibody response in confirmed patients in non-endemic countries. J Clin Virol 2018; 106:33. [DOI: 10.1016/j.jcv.2018.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 07/14/2018] [Indexed: 11/28/2022]
|
24
|
Targeting vaccinations for the licensed dengue vaccine: Considerations for serosurvey design. PLoS One 2018; 13:e0199450. [PMID: 29944696 PMCID: PMC6019750 DOI: 10.1371/journal.pone.0199450] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 06/07/2018] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The CYD-TDV vaccine was unusual in that the recommended target population for vaccination was originally defined not only by age, but also by transmission setting as defined by seroprevalence. WHO originally recommended countries consider vaccination against dengue with CYD-TDV vaccine in geographic settings only where prior infection with any dengue serotype, as measured by seroprevalence, was >170% in the target age group. Vaccine was not recommended in settings where seroprevalence was <50%. Test-and-vaccinate strategies suggested following new analysis by Sanofi will still require age-stratified seroprevalence surveys to optimise age-group targeting. Here we address considerations for serosurvey design in the context of vaccination program planning. METHODS To explore how the design of seroprevalence surveys affects estimates of transmission intensity, 100 age-specific seroprevalence surveys were simulated using a beta-binomial distribution and a simple catalytic model for different combinations of age-range, survey size, transmission setting, and test sensitivity/specificity. We then used a Metropolis-Hastings Markov Chain Monte-Carlo algorithm to estimate the force of infection from each simulated dataset. RESULTS Sampling from a wide age-range led to more accurate estimates than merely increasing sample size in a narrow age-range. This finding was consistent across all transmission settings. The optimum test sensitivity and specificity given an imperfect test differed by setting with high sensitivity being important in high transmission settings and high specificity important in low transmission settings. CONCLUSIONS When assessing vaccination suitability by seroprevalence surveys, countries should ensure an appropriate age-range is sampled, considering epidemiological evidence about the local burden of disease.
Collapse
|
25
|
External Quality Assessment (EQA) of Molecular Detection of Zika Virus: Value of the 1st World Health Organization International Standard. J Clin Microbiol 2018; 56:56/3/e01997-17. [PMID: 29472437 DOI: 10.1128/jcm.01997-17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
|
26
|
Soriano-Arandes A, Rivero-Calle I, Nastouli E, Espiau M, Frick MA, Alarcon A, Martinón-Torres F. What we know and what we don't know about perinatal Zika virus infection: a systematic review. Expert Rev Anti Infect Ther 2018; 16:243-254. [PMID: 29415586 DOI: 10.1080/14787210.2018.1438265] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
INTRODUCTION Zika virus (ZIKV) infection has caused the most challenging worldwide infectious epidemic outbreak in recent months. ZIKV causes microcephaly and other congenital malformations. There is a need to perform updated systematic reviews on ZIKV infection periodically because this epidemic is bringing up new evidence with extraordinary speed. Areas covered: Evidence related to ZIKV infection in the gestational, perinatal, and early infant periods covering epidemiology, virology, pathogenesis, risk factors, time of infection during pregnancy, newborn symptoms, treatment, and vaccines. To this end, a search was performed using terms ['Zika'] AND ['Perinatal Infection'] OR ['Congenital Infection'] in the PubMed® international electronic database. Out of a total of 1,538 articles published until 30 November 2017, we finally assessed 106 articles articles that were relevant to the research areas included in this study. Expert commentary: ZIKV is a new teratogenic/neurotropic virus affecting fetuses. Many challenges are still far from being solved regarding the epidemiology, case definition, clinical and laboratory diagnosis, and preventive measures. An approach using 'omics' and new biomarkers for diagnosis, and a ZIKV-vaccine for treatment, might finally give us the tools to solve these challenges.
Collapse
Affiliation(s)
- Antoni Soriano-Arandes
- a Pediatric Infectious Diseases and Immunodeficiencies Unit , Hospital Universitari Vall d'Hebron , Barcelona , Spain
| | - Irene Rivero-Calle
- b Translational Pediatrics and Infectious Diseases, Department of Pediatrics , Complejo Hospitalario Universitario de Santiago de Compostela , Santiago de Compostela , Spain
| | - Eleni Nastouli
- c Department of Virology , University College of London Hospitals NHS Foundation Trust , London , UK
| | - Maria Espiau
- a Pediatric Infectious Diseases and Immunodeficiencies Unit , Hospital Universitari Vall d'Hebron , Barcelona , Spain
| | - M A Frick
- a Pediatric Infectious Diseases and Immunodeficiencies Unit , Hospital Universitari Vall d'Hebron , Barcelona , Spain
| | - Ana Alarcon
- d Department of Neonatology , Hospital Universitari Sant Joan de Déu , Barcelona , Spain
| | - Federico Martinón-Torres
- b Translational Pediatrics and Infectious Diseases, Department of Pediatrics , Complejo Hospitalario Universitario de Santiago de Compostela , Santiago de Compostela , Spain
| |
Collapse
|
27
|
Dubaut JP, Agudelo Higuita NI, Quaas AM. Impact of Zika virus for infertility specialists: current literature, guidelines, and resources. J Assist Reprod Genet 2017; 34:1237-1250. [PMID: 28687969 PMCID: PMC5633575 DOI: 10.1007/s10815-017-0988-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Accepted: 06/16/2017] [Indexed: 01/28/2023] Open
Abstract
In the past 2 years, Zika virus has emerged from obscurity onto the world stage-traversing and transcending clinical specialties, basic science disciplines, and public health efforts. The spread of Zika virus has serious implications for the specialty of reproductive endocrinology and infertility. Our patients, practices, and labs-worldwide and specifically in the USA-have been impacted by this teratogenic, sexually transmitted, largely asymptomatic virus. While the World Health Organization's Public Emergency of International Concern designation has lapsed as major epidemics have subsided and understanding of risks is in part clarified, the acute and long-term threat to pregnant patients is not over. The risk of wider spread in the USA is not insignificant, the subtler and long-ranging consequences beyond microcephaly are not fully known, large geographic areas of risk still contain naïve populations, and whether Zika will continue to be an intermittent risk in endemic areas is uncertain. Staying up to date with the burgeoning research on Zika virus is an important objective for the infertility specialist. Here, we review in detail the most relevant recent developments, discuss applicable guidelines, and propose strategies for contributing to a reduction in the risk and burden of Zika virus.
Collapse
Affiliation(s)
- Jamie P Dubaut
- Section of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, P.O. Box 26901, COMB 2400, Oklahoma City, OK, 73126-0901, USA.
| | - Nelson I Agudelo Higuita
- Section of Infectious Disease, Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73014, USA
| | - Alexander M Quaas
- Section of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, P.O. Box 26901, COMB 2400, Oklahoma City, OK, 73126-0901, USA
| |
Collapse
|
28
|
Aliota MT, Bassit L, Bradrick SS, Cox B, Garcia-Blanco MA, Gavegnano C, Friedrich TC, Golos TG, Griffin DE, Haddow AD, Kallas EG, Kitron U, Lecuit M, Magnani DM, Marrs C, Mercer N, McSweegan E, Ng LFP, O'Connor DH, Osorio JE, Ribeiro GS, Ricciardi M, Rossi SL, Saade G, Schinazi RF, Schott-Lerner GO, Shan C, Shi PY, Watkins DI, Vasilakis N, Weaver SC. Zika in the Americas, year 2: What have we learned? What gaps remain? A report from the Global Virus Network. Antiviral Res 2017; 144:223-246. [PMID: 28595824 PMCID: PMC5920658 DOI: 10.1016/j.antiviral.2017.06.001] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 06/01/2017] [Indexed: 12/25/2022]
Abstract
In response to the outbreak of Zika virus (ZIKV) infection in the Western Hemisphere and the recognition of a causal association with fetal malformations, the Global Virus Network (GVN) assembled an international taskforce of virologists to promote basic research, recommend public health measures and encourage the rapid development of vaccines, antiviral therapies and new diagnostic tests. In this article, taskforce members and other experts review what has been learned about ZIKV-induced disease in humans, its modes of transmission and the cause and nature of associated congenital manifestations. After describing the make-up of the taskforce, we summarize the emergence of ZIKV in the Americas, Africa and Asia, its spread by mosquitoes, and current control measures. We then review the spectrum of primary ZIKV-induced disease in adults and children, sites of persistent infection and sexual transmission, then examine what has been learned about maternal-fetal transmission and the congenital Zika syndrome, including knowledge obtained from studies in laboratory animals. Subsequent sections focus on vaccine development, antiviral therapeutics and new diagnostic tests. After reviewing current understanding of the mechanisms of emergence of Zika virus, we consider the likely future of the pandemic.
Collapse
Affiliation(s)
- Matthew T Aliota
- Department of Pathobiological Sciences, University of Wisconsin-Madison, USA
| | - Leda Bassit
- Center for AIDS Research, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Shelton S Bradrick
- Department of Biochemistry and Molecular Biology, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | - Bryan Cox
- Center for AIDS Research, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Mariano A Garcia-Blanco
- Department of Biochemistry and Molecular Biology, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | - Christina Gavegnano
- Center for AIDS Research, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Thomas C Friedrich
- Department of Pathobiological Sciences, University of Wisconsin-Madison, USA; Wisconsin National Primate Research Center, University of Wisconsin-Madison, USA
| | - Thaddeus G Golos
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, USA; Department of Comparative Biosciences, University of Wisconsin-Madison, USA; Department of Obstetrics and Gynecology, University of Wisconsin-Madison, USA
| | - Diane E Griffin
- Global Virus Network, 725 West Lombard St., Baltimore, MD, USA; W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - Andrew D Haddow
- Global Virus Network, 725 West Lombard St., Baltimore, MD, USA; Virology Division, United States Army Medical Research Institute of Infectious Diseases, Ft. Detrick, MD, 21702, USA
| | - Esper G Kallas
- Global Virus Network, 725 West Lombard St., Baltimore, MD, USA; Division of Clinical Immunology and Allergy, School of Medicine, University of São Paulo, Brazil
| | - Uriel Kitron
- Department of Environmental Sciences, Emory University, Atlanta, GA, USA
| | - Marc Lecuit
- Global Virus Network, 725 West Lombard St., Baltimore, MD, USA; Institut Pasteur, Biology of Infection Unit and INSERM Unit 1117, France; Paris Descartes University, Sorbonne Paris Cité, Division of Infectious Diseases and Tropical Medicine, Necker- Enfants Malades University Hospital, Institut Imagine, Paris, France
| | - Diogo M Magnani
- Department of Pathology, University of Miami, Miami, FL, USA
| | - Caroline Marrs
- Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, TX, USA
| | - Natalia Mercer
- Global Virus Network, 725 West Lombard St., Baltimore, MD, USA
| | | | - Lisa F P Ng
- Global Virus Network, 725 West Lombard St., Baltimore, MD, USA; Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - David H O'Connor
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, USA; Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, USA
| | - Jorge E Osorio
- Global Virus Network, 725 West Lombard St., Baltimore, MD, USA; Department of Pathobiological Sciences, University of Wisconsin-Madison, USA
| | - Guilherme S Ribeiro
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz and Instituto de Saúde Coletiva, Universidade Federal da Bahia, Salvador, Bahia, Brazil
| | | | - Shannan L Rossi
- Department of Microbiology & Immunology, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | - George Saade
- Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, TX, USA
| | - Raymond F Schinazi
- Global Virus Network, 725 West Lombard St., Baltimore, MD, USA; Center for AIDS Research, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Geraldine O Schott-Lerner
- Department of Biochemistry and Molecular Biology, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | - Chao Shan
- Department of Biochemistry and Molecular Biology, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | - Pei-Yong Shi
- Department of Biochemistry and Molecular Biology, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | - David I Watkins
- Global Virus Network, 725 West Lombard St., Baltimore, MD, USA; Department of Pathology, University of Miami, Miami, FL, USA
| | - Nikos Vasilakis
- Department of Pathology, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | - Scott C Weaver
- Global Virus Network, 725 West Lombard St., Baltimore, MD, USA; Department of Microbiology & Immunology, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
29
|
Retracing Zika's footsteps across the Americas with computational modeling. Proc Natl Acad Sci U S A 2017; 114:5558-5560. [PMID: 28533416 DOI: 10.1073/pnas.1705969114] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|