1
|
Pedra ACK, de Oliveira NR, Maia MAC, Santos FDS, Bunde TT, Souza PHFC, de V Maiocchi L, Dellagostin OA, Bohn TLO. Production of recombinant cytokines and polyclonal antibodies for analysis of cellular immune response in golden Syrian hamster. Mol Biol Rep 2024; 51:1012. [PMID: 39320611 DOI: 10.1007/s11033-024-09940-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 09/12/2024] [Indexed: 09/26/2024]
Abstract
BACKGROUND The development of therapies and vaccines for various diseases often necessitates the analysis of cellular immunity. However, unlike other rodents, the limited availability of reagents for Syrian hamsters restricts immunological analysis, particularly in the determination of serum effector molecules such as cytokines. In this study, we aim to produce and characterize the cytokines IFN-γ, TGF-β, IL-6, IL-10, and TNF-α from Syrian hamsters in recombinant form and to generate polyclonal antibodies against them in rats. METHODS AND RESULTS Cytokine transcript sequences were cloned into expression vectors in E. coli. Recombinant proteins were produced, purified through affinity chromatography, and characterized by Western blot using an anti-6xHis monoclonal antibody. Rats were immunized with the recombinant proteins to generate polyclonal antibodies (pAbs). These pAbs were characterized by Western blot and titrated by indirect ELISA. The recombinant cytokines rTNF-α, rIL-10, rIFN-γ, rTGF-β, and rIL-6 were produced and specifically recognized at their expected molecular weights of 22.3 kDa, 19.8 kDa, 18.9 kDa, 11.8 kDa, and 22.9 kDa. pAbs were produced and demonstrated the ability to specifically recognize their target proteins with titers of 409,600 (rIL-10), 204,800 (rTNF-α), 102,400 (rIL-10), 51,200 (rTGF-β), and 25,600 (rIFN-ɣ). CONCLUSIONS The reagents produced represent a starting point for developing immunoassays to detect hamster cytokines, facilitating the analysis of cellular immunity in this biomodel.
Collapse
Affiliation(s)
- Ana C K Pedra
- Laboratório de Vacinologia, Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Natasha R de Oliveira
- Laboratório de Vacinologia, Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Mara A C Maia
- Laboratório de Vacinologia, Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Francisco D S Santos
- Laboratório de Vacinologia, Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
- Faculdade de Medicina, Universidade Federal Do Rio Grande, Rio Grande, RS, Brazil
| | - Tiffany T Bunde
- Laboratório de Vacinologia, Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Pedro H F C Souza
- Laboratório de Vacinologia, Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Laura de V Maiocchi
- Laboratório de Vacinologia, Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Odir A Dellagostin
- Laboratório de Vacinologia, Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Thaís L O Bohn
- Laboratório de Vacinologia, Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil.
| |
Collapse
|
2
|
Barbosa LN, LIanes A, Madesh S, Fayne BN, Brangulis K, Linn-Peirano SC, Rajeev S. Enhancement of clinical signs in C3H/HeJ mice vaccinated with a highly immunogenic Leptospira methyl-accepting chemotaxis protein following challenge. PLoS Negl Trop Dis 2024; 18:e0012155. [PMID: 39312584 PMCID: PMC11449317 DOI: 10.1371/journal.pntd.0012155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 10/03/2024] [Accepted: 09/02/2024] [Indexed: 09/25/2024] Open
Abstract
Leptospirosis is the most widespread zoonosis and a life-threatening disease in humans and animals. Licensed killed whole-cell vaccines are available for animals; however, they do not offer heterologous protection, do not induce long-term protection, or prevent renal colonization. In this study, we characterized an immunogenic Leptospira methyl-accepting chemotaxis protein (MCP) identified through a reverse vaccinology approach, predicted its structure, and tested the protective efficacy of a recombinant MCP fragment in the C3H/HeJ mice model. The predicted structure of the full-length MCP revealed an architecture typical for topology class I MCPs. A single dose of MCP vaccine elicited a significant IgG antibody response in immunized mice compared to controls (P < 0.0001), especially the IgG1 and IgG2a subclasses. The vaccination with MCP, despite eliciting a robust immune response, did not protect mice from disease and renal colonization. However, survival curves significantly differed between groups, and the MCP-vaccinated group developed clinical signs faster than the control group. There were differences in gross and histopathological changes between the MCP-vaccinated and control groups. The factors leading to enhanced disease process in vaccinated animals need further investigation. We speculate that anti-MCP antibodies may block the MCP signaling cascade and may limit chemotaxis, preventing Leptospira from reaching its destination, but facilitating its maintenance and replication in the blood stream. Such a phenomenon may exist in endemic areas where humans are highly exposed to Leptospira antigens, and the presence of antibodies might lead to disease enhancement. The role of this protein in Leptospira pathogenesis should be further evaluated to comprehend the lack of protection and potential exacerbation of the disease process. The absence of immune correlates of protection from Leptospira infection is still a major limitation of this field and efforts to gather this knowledge are needed.
Collapse
Affiliation(s)
- Liana Nunes Barbosa
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Alejandro LIanes
- Centro de Biología Celular y Molecular de Enfermedades, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Panama City, Panama
| | - Swetha Madesh
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Bryanna Nicole Fayne
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, Tennessee, United States of America
| | | | - Sarah C. Linn-Peirano
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Sreekumari Rajeev
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, Tennessee, United States of America
| |
Collapse
|
3
|
Tapajóz RCDS, Santos FDS, de Oliveira NR, Maia MAC, Seixas Neto ACP, Maiocchi LDV, Souza PHFC, Oliveira TL, Dellagostin OA. Chimeric lipoproteins for leptospirosis vaccine: immunogenicity and protective potential. Appl Microbiol Biotechnol 2024; 108:424. [PMID: 39037584 PMCID: PMC11263434 DOI: 10.1007/s00253-024-13196-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 05/15/2024] [Accepted: 05/21/2024] [Indexed: 07/23/2024]
Abstract
Leptospirosis, a neglected zoonotic disease, is caused by pathogenic spirochetes belonging to the genus Leptospira and has one of the highest morbidity and mortality rates worldwide. Vaccination stands out as one of the most effective preventive measures for susceptible populations. Within the outer membrane of Leptospira spp., we find the LIC12287, LIC11711, and LIC13259 lipoproteins. These are of interest due to their surface location and potential immunogenicity. Thorough examination revealed the conservation of these proteins among pathogenic Leptospira spp.; we mapped the distribution of T- and B-cell epitopes along their sequences and assessed the 3D structures of each protein. This information aided in selecting immunodominant regions for the development of a chimeric protein. Through gene synthesis, we successfully constructed a chimeric protein, which was subsequently expressed, purified, and characterized. Hamsters were immunized with the chimeric lipoprotein, formulated with adjuvants aluminum hydroxide, EMULSIGEN®-D, Sigma Adjuvant System®, and Montanide™ ISA206VG. Another group was vaccinated with an inactivated Escherichia coli bacterin expressing the chimeric protein. Following vaccination, hamsters were challenged with a virulent L. interrogans strain. Our evaluation of the humoral immune response revealed the production of IgG antibodies, detectable 28 days after the second dose, in contrast to pre-immune samples and control groups. This demonstrates the potential of the chimeric protein to elicit a robust humoral immune response; however, no protection against challenge was achieved. While this study provides valuable insights into the subject, further research is warranted to identify protective antigens that could be utilized in the development of a leptospirosis vaccine. KEY POINTS: • Several T- and B-cell epitopes were identified in all the three proteins. • Four different adjuvants were used in vaccine formulations. • Immunization stimulated significant levels of IgG2/3 in vaccinated animals.
Collapse
Affiliation(s)
| | | | | | - Mara Andrade Colares Maia
- Biotechnology Center, Technological Development Center, Federal University of Pelotas, Pelotas, RS, Brazil
| | | | - Laura de Vargas Maiocchi
- Biotechnology Center, Technological Development Center, Federal University of Pelotas, Pelotas, RS, Brazil
| | | | - Thaís Larré Oliveira
- Biotechnology Center, Technological Development Center, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Odir Antônio Dellagostin
- Biotechnology Center, Technological Development Center, Federal University of Pelotas, Pelotas, RS, Brazil.
| |
Collapse
|
4
|
de Oliveira NR, Maia MAC, Santos FDS, Seixas Neto ACP, Oliveira Bohn TL, Dellagostin OA. Evaluation of protective efficacy, serological responses, and cytokine modulation induced by polyvalent Leptospira vaccines in hamsters. Comp Immunol Microbiol Infect Dis 2024; 108:102159. [PMID: 38490118 DOI: 10.1016/j.cimid.2024.102159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 03/10/2024] [Accepted: 03/10/2024] [Indexed: 03/17/2024]
Abstract
Whole-cell inactivated vaccines (bacterins) are the only licensed vaccines available for leptospirosis prevention and control, especially in domestic and farm animals. However, despite their widespread use, inconsistencies in their efficacy have been reported. Because immunity induced by bacterins is mainly mediated by antibodies against leptospiral lipopolysaccharides, the involvement of cellular responses is not well-known. The aim of this study was to investigate the efficacy and characterize the humoral and cellular immune responses induced by whole-cell inactivated leptospirosis bacterin formulations containing serovars Bratislava, Canicola, Copenhageni, Grippotyphosa, Hardjoprajitno, and Pomona. For the potency test, hamsters were immunized with one dose of polyvalent bacterins (either commercial or experimental) and then challenged with a virulent Pomona strain. Serological (MAT and IgM and IgG-ELISA) and cellular (cytokine transcription in blood evaluated by RT-qPCR) analyses were performed. The results revealed that vaccination with either bacterin formulation was able to protect 90-100% of the hamsters infected with the Pomona serovar, although most of the surviving animals remained as renal carriers. Specific agglutinating antibodies and significant levels of IgM, IgG, and IgG2 (P < 0.05) that were able to react with the six serovars present in the vaccine formulations were produced, indicating that the vaccines can potentially provide immunity against all strains. The protective immunity of these vaccines was mainly mediated by balanced a Th1/Th2 response, characterized by increased IFN-γ, IL-10 and IL-α transcription. These data support the importance of characterizing immunological responses involved in bacterin efficacy and investing in the improvement of these vaccine formulations.
Collapse
Affiliation(s)
- Natasha Rodrigues de Oliveira
- Centro de Desenvolvimento Tecnológico, Núcleo de Biotecnologia, Universidade Federal de Pelotas, Pelotas, RS, Brazil.
| | - Mara Andrade Colares Maia
- Centro de Desenvolvimento Tecnológico, Núcleo de Biotecnologia, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Francisco Denis Souza Santos
- Centro de Desenvolvimento Tecnológico, Núcleo de Biotecnologia, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | | | - Thaís Larré Oliveira Bohn
- Centro de Desenvolvimento Tecnológico, Núcleo de Biotecnologia, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Odir Antônio Dellagostin
- Centro de Desenvolvimento Tecnológico, Núcleo de Biotecnologia, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| |
Collapse
|
5
|
Putz EJ, Fernandes LGV, Sarlo Davila KM, Whitelegge J, Lippolis JD, Nally JE. Proteomic profiles of Leptospira borgpetersenii serovar Hardjo strains JB197 and HB203 cultured at different temperatures. J Proteomics 2024; 295:105106. [PMID: 38320623 DOI: 10.1016/j.jprot.2024.105106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/04/2024] [Accepted: 01/19/2024] [Indexed: 02/08/2024]
Abstract
Leptospirosis is a global zoonotic disease affecting humans, domestic, and wild animals. Leptospira are typically shed in the urine of reservoir hosts which persist in suitable environments where incidental host transmission occurs after direct contact with infected urine or contaminated environments. Interestingly, serologically identical L. borgpetersenii serovar Hardjo strains JB197 and HB203 show divergent disease severity in the hamster model; JB197 causes severe acute infection while HB203 causes persistent chronic infection. Historically, serovar Hardjo was limited to culture at 29 °C, but utilization of HAN media allows propagation from host tissues at 37 °C. Here, the proteome of strains JB197 and HB203 were characterized after culture from experimentally challenged hamsters at 29 °C and 37 °C. Comparative analyses of JB197 and HB203 samples cultured at 29 °C yielded 425 significantly differentially expressed (DE) proteins, while strains at 37 °C yielded 613 DE proteins including prominent outer membrane proteins and known virulence factors. In agreement, membrane protein GO terms were identified by STRING network analyses along with numerous metabolic KEGG pathways consistent with condition differences. Within strain, JB197 cultured at 29 °C vs 37 °C identified 529 DE proteins, while HB203 identified 524 DE proteins. Investigating differential protein profiles provide insights into strain specific behaviors with implications for better understanding host-pathogen interactions, disease transmission, and response to environmental conditions which can contribute to vaccine development, diagnostic improvement, and ultimately leptospirosis control. SIGNIFICANCE: Leptospirosis is a devastating zoonotic disease affecting humans, wild and domestic animals around the globe. Different species and serovars of Leptospira can affect various animal host species differently; for instance, a serovar that is asymptomatic in the rat may cause severe disease in a dog or human. These differences in host response are not only found at the species and serovar level for Leptospira, but also at the strain level. A prime example comes from strains JB197 and HB203, both species L. borgpetersenii, both serovar Hardjo. Interestingly, JB197 causes a severe acute infection in the hamster while HB203 causes an asymptomatic chronic infection. Understanding these unique relationships between pathogen and host species is important, especially in the context of prevention technologies such as vaccine design, where the strain of Leptospira used as a bacterin might have different efficiencies in different hosts. In this study, proteomic profiles of strains JB197 and HB203 were analyzed, and results revealed diverse protein expression profiles of outer membrane proteins, as well as proteins functioning in motility and growth.
Collapse
Affiliation(s)
- Ellie J Putz
- Infectious Bacterial Disease Research Unit, USDA Agriculture Research Service, National Animal Disease Center, Ames, IA, USA.
| | - Luis G V Fernandes
- Infectious Bacterial Disease Research Unit, USDA Agriculture Research Service, National Animal Disease Center, Ames, IA, USA
| | - Kaitlyn M Sarlo Davila
- Infectious Bacterial Disease Research Unit, USDA Agriculture Research Service, National Animal Disease Center, Ames, IA, USA
| | - Julian Whitelegge
- The Pasarow Mass Spectrometry Laboratory, David Geffen School of Medicine, NPI-Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, United States
| | - John D Lippolis
- Ruminant Diseases and Immunology Research Unit, USDA Agriculture Research Service, National Animal Disease Center, Ames, IA, USA
| | - Jarlath E Nally
- Infectious Bacterial Disease Research Unit, USDA Agriculture Research Service, National Animal Disease Center, Ames, IA, USA
| |
Collapse
|
6
|
Vaghasia V, Lata KS, Patel S, Das J. Epitopes mapping for identification of potential cross-reactive peptide against leptospirosis. J Biomol Struct Dyn 2023:1-16. [PMID: 37948196 DOI: 10.1080/07391102.2023.2279285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 10/30/2023] [Indexed: 11/12/2023]
Abstract
Leptospira, the pathogenic helical spirochetes that cause leptospirosis, is an emerging zoonotic disease with effective dissemination tactics in the host and can infect humans and animals with moderate or severe illnesses. Thus, peptide-based vaccines may be the most effective strategy to manage the immune response against Leptospira to close these gaps. In the current investigation, highly immunogenic proteins from the proteome of Leptospira interorgan serogroup Icterohaemorrhagie serovar Lai strain 56601 were identified using immunoinformatic methods. It was discovered that the conserved and most immunogenic outer membrane Lepin protein was both antigenic and non-allergenic by testing 15 linear B-cells and the ten best T-cell (Helper-lymphocyte (HTL) with the most significant number of HLA-DR binding alleles and the eight cytotoxic T lymphocyte (CTL)) epitopes. Furthermore, a 3D structural model of CTL epitopes was created using the Pep-Fold3 platform. Using the Autodock 4.2 docking server, research was conducted to determine how well the top-ranked CTL peptide models attach to HLA-A*0201 (PDB ID: 4U6Y). With HLA-A*0201, the epitope SSGTGNLHV binds with a binding energy of -1.29 kcal/mol. Utilizing molecular dynamics modeling, the projected epitope-allele docked complex structure was optimized, and the stability of the complex system was assessed. Therefore, this epitope can trigger an immunological response and produce effective Leptospira vaccine candidates. Overall, this study offers a unique vaccination candidate and may encourage additional research into leptospirosis vaccines.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Vibhisha Vaghasia
- Department of Botany, Bioinformatics and Climate Change Impacts management, Gujarat University, Ahmedabad, India
| | - Kumari Snehkant Lata
- Department of Botany, Bioinformatics and Climate Change Impacts management, Gujarat University, Ahmedabad, India
| | - Saumya Patel
- Department of Botany, Bioinformatics and Climate Change Impacts management, Gujarat University, Ahmedabad, India
| | | |
Collapse
|
7
|
Azevedo IR, Amamura TA, Isaac L. Human leptospirosis: In search for a better vaccine. Scand J Immunol 2023; 98:e13316. [PMID: 39008520 DOI: 10.1111/sji.13316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 07/17/2024]
Abstract
Leptospirosis is a neglected disease caused by bacteria of the genus Leptospira and is more prevalent in tropical and subtropical countries. This pathogen infects humans and other animals, responsible for the most widespread zoonosis in the world, estimated to be responsible for 60 000 deaths and 1 million cases per year. To date, commercial vaccines against human leptospirosis are available only in some countries such as Japan, China, Cuba and France. These vaccines prepared with inactivated Leptospira (bacterins) induce a short-term and serovar-specific immune response, with strong adverse side effects. To circumvent these limitations, several research groups are investigating new experimental vaccines in order to ensure that they are safe, efficient, and protect against several pathogenic Leptospira serovars, inducing sterilizing immunity. Most of these protocols use attenuated cultures, preparations after LPS removal, recombinant proteins or DNA from pathogenic Leptospira spp. The aim of this review was to highlight several promising vaccine candidates, considering their immunogenicity, presence in different pathogenic Leptospira serovars, their role in virulence or immune evasion and other factors.
Collapse
Affiliation(s)
- Isabela Resende Azevedo
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Thais Akemi Amamura
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Lourdes Isaac
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
8
|
de Oliveira NR, Santos FDS, Dos Santos VAC, Maia MAC, Oliveira TL, Dellagostin OA. Challenges and Strategies for Developing Recombinant Vaccines against Leptospirosis: Role of Expression Platforms and Adjuvants in Achieving Protective Efficacy. Pathogens 2023; 12:787. [PMID: 37375478 DOI: 10.3390/pathogens12060787] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/29/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
The first leptospiral recombinant vaccine was developed in the late 1990s. Since then, progress in the fields of reverse vaccinology (RV) and structural vaccinology (SV) has significantly improved the identification of novel surface-exposed and conserved vaccine targets. However, developing recombinant vaccines for leptospirosis faces various challenges, including selecting the ideal expression platform or delivery system, assessing immunogenicity, selecting adjuvants, establishing vaccine formulation, demonstrating protective efficacy against lethal disease in homologous challenge, achieving full renal clearance using experimental models, and reproducibility of protective efficacy against heterologous challenge. In this review, we highlight the role of the expression/delivery system employed in studies based on the well-known LipL32 and leptospiral immunoglobulin-like (Lig) proteins, as well as the choice of adjuvants, as key factors to achieving the best vaccine performance in terms of protective efficacy against lethal infection and induction of sterile immunity.
Collapse
Affiliation(s)
- Natasha Rodrigues de Oliveira
- Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas 96010-610, RS, Brazil
| | - Francisco Denis Souza Santos
- Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas 96010-610, RS, Brazil
| | | | - Mara Andrade Colares Maia
- Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas 96010-610, RS, Brazil
| | - Thaís Larré Oliveira
- Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas 96010-610, RS, Brazil
| | - Odir Antônio Dellagostin
- Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas 96010-610, RS, Brazil
| |
Collapse
|
9
|
Krangvichian P, Nakornpakdee Y, Sangjun N, Komanee P, Techawiwattanaboon T, Patarakul K. Sublethal infection of C3H/HeNJ against Leptospira interrogans serovar Pomona. Acta Trop 2023; 238:106701. [PMID: 36216095 DOI: 10.1016/j.actatropica.2022.106701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 08/15/2022] [Accepted: 09/27/2022] [Indexed: 01/11/2023]
Abstract
Leptospirosis is a worldwide zoonotic disease caused by pathogenic Leptospira spp. Leptospires can infect a variety of mammalian species. Golden Syrian hamsters are mostly used to study acute leptospirosis. However, the immunopathogenic mechanism is poorly understood because immunological reagents for hamsters are limited. This study aimed to establish C3H/HeNJ mice as an animal model for leptospirosis. Five-week-old C3H/HeNJ mice were infected with either low (103 cells) or high (106 cells) inoculum dose of Leptospira interrogans serovar Pomona. All mice were investigated for survival rate, leptospiral load and histopathology of target organs, antibody levels, and cytokine production (IFN-γ, IL-6 and IL-10) at day 28 post-infection. All infected mice survived and did not develop acute lethal infection. However, C3H/HeNJ mice infected with 106 cells of leptospires showed kidney colonization of leptospires and pathological changes in the lung and kidney including renal fibrosis. The glomerular size in PAS-D stained kidney tissues of C3H/HeNJ mice infected with 106 cells of leptospires was significantly reduced compared to that of mice infected with 103 cells of leptospires and non-infected mice. High-dose leptospires induced significantly greater levels of IFN-gamma and IL-6 than low-dose leptospires, but IL-10 level was not significantly different. Moreover, 106 leptospiral cells induced predominant IgG2a isotype suggesting Th1-like response. These results suggest that C3H/HeNJ mice may be used as a sublethal model of leptospirosis.
Collapse
Affiliation(s)
- Pratomporn Krangvichian
- Medical Microbiology, Interdisciplinary Program, Graduate School, Chulalongkorn University, Pathumwan, Bangkok, 10330 Thailand; Chula Vaccine Research Center (Chula VRC), Center of Excellence in Vaccine Research and Development, Chulalongkorn University, Pathumwan, Bangkok, 10330 Thailand
| | - Yaowarin Nakornpakdee
- Department of Pathobiology, Faculty of Science, Mahidol University, Ratchathewi, Bangkok, 10400 Thailand
| | - Noppadon Sangjun
- Armed Force Research Institute of Medical Sciences (AFRIMS), Ratchathewi, Bangkok, 10400 Thailand
| | - Pat Komanee
- Armed Force Research Institute of Medical Sciences (AFRIMS), Ratchathewi, Bangkok, 10400 Thailand
| | - Teerasit Techawiwattanaboon
- Chula Vaccine Research Center (Chula VRC), Center of Excellence in Vaccine Research and Development, Chulalongkorn University, Pathumwan, Bangkok, 10330 Thailand; Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Pathumwan, Bangkok, 10330 Thailand
| | - Kanitha Patarakul
- Chula Vaccine Research Center (Chula VRC), Center of Excellence in Vaccine Research and Development, Chulalongkorn University, Pathumwan, Bangkok, 10330 Thailand; Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Pathumwan, Bangkok, 10330 Thailand.
| |
Collapse
|
10
|
Prapong S, Tansiri Y, Sritrakul T, Sripattanakul S, Sopitthummakhun A, Katzenmeier G, Hsieh CL, McDonough SP, Prapong T, Chang YF. Leptospira borgpetersenii Leucine-Rich Repeat Proteins Provide Strong Protective Efficacy as Novel Leptospiral Vaccine Candidates. Trop Med Infect Dis 2022; 8:tropicalmed8010006. [PMID: 36668913 PMCID: PMC9863753 DOI: 10.3390/tropicalmed8010006] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Leucine-rich repeat (LRR) proteins are advocated for being assessed in vaccine development. Leptospiral LRR proteins were identified recently in silico from the genome of Leptospira borgpetersenii serogroup Sejroe, the seroprevalence of leptospiral infections of cattle in Thailand. Two LRR recombinant proteins, rKU_Sej_LRR_2012M (2012) and rhKU_Sej_LRR_2271 (2271), containing predicted immunogenic epitopes, were investigated for their cross-protective efficacies in an acute leptospirosis model with heterologous Leptospira serovar Pomona, though, strains from serogroup Sejroe are host-adapted to bovine, leading to chronic disease. Since serovar Pomona is frequently reported as seropositive in cattle, buffaloes, pigs, and dogs in Thailand and causes acute and severe leptospirosis in cattle by incidental infection, the serogroup Sejroe LRR proteins were evaluated for their cross-protective immunity. The protective efficacies were 37.5%, 50.0%, and 75.0% based on the survival rate for the control, 2012, and 2271 groups, respectively. Sera from 2012-immunized hamsters showed weak bactericidal action compared to sera from 2271-immunized hamsters (p < 0.05). Therefore, bacterial tissue clearances, inflammatory responses, and humoral and cell-mediated immune (HMI and CMI) responses were evaluated only in 2271-immunized hamsters challenged with virulent L. interrogans serovar Pomona. The 2271 protein induced prompt humoral immune responses (p < 0.05) and leptospiral tissue clearance, reducing tissue inflammation in immunized hamsters. In addition, protein 2271 and its immunogenic peptides stimulated splenocyte lymphoproliferation and stimulated both HMI and CMI responses by activating Th1 and Th2 cytokine gene expression in vaccinated hamsters. Our data suggest that the immunogenic potential renders rhKU_Sej_LRR_2271 protein a promising candidate for the development of a novel cross-protective vaccine against animal leptospirosis.
Collapse
Affiliation(s)
- Siriwan Prapong
- Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand
- The Interdisciplinary Graduate Program in Genetic Engineering, The Graduate School, Kasetsart University, Bangkok 10900, Thailand
- Center for Advanced Studies for Agriculture and Food (CASAF), Kasetsart University, Bangkok 10900, Thailand
- Correspondence: ; Tel.: +66-871-264-148
| | - Yada Tansiri
- Faculty of Medicine, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| | - Tepyuda Sritrakul
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Kasetsart University, Kamphaengsaen Campus, Nakorn Pathom 73140, Thailand
| | - Sineenat Sripattanakul
- Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand
- The Interdisciplinary Graduate Program in Genetic Engineering, The Graduate School, Kasetsart University, Bangkok 10900, Thailand
| | - Aukkrimapann Sopitthummakhun
- Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand
- Center for Advanced Studies for Agriculture and Food (CASAF), Kasetsart University, Bangkok 10900, Thailand
| | - Gerd Katzenmeier
- Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Chin-Lin Hsieh
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Sean P. McDonough
- Department of Biomedical Science, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Teerasak Prapong
- Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand
| | - Yung-Fu Chang
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
11
|
Varma VP, Kadivella M, Kumar A, Kavela S, Faisal SM. LigA formulated in AS04 or Montanide ISA720VG induced superior immune response compared to alum, which correlated to protective efficacy in a hamster model of leptospirosis. Front Immunol 2022; 13:985802. [PMID: 36300125 PMCID: PMC9590693 DOI: 10.3389/fimmu.2022.985802] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Leptospirosis is a zoonotic disease of global importance. The current vaccine provides serovar-specific and short-term immunity and does not prevent bacterial shedding in infected animals. Subunit vaccines based on surface proteins have shown to induce protection in an animal model. However, these proteins were tested with non-clinical adjuvants and induced low to moderate protective efficacy. We formulated a variable region of Leptospira immunoglobulin-like protein A (LAV) in clinical adjuvants, AS04 and Montanide ISA720VG, and then evaluated the immune response in mice and protective efficacy in a hamster model. Our results show that animals immunized with LAV-AS04 and LAV-Montanide ISA720VG (LAV-M) induced significantly higher levels of LAV-specific antibodies than LAV-Alum. While LAV-Alum induced Th2 response with the induction of IgG1 and IL-4, AS04 and LAV-M induced a mixed Th1/Th2 response with significant levels of both IgG1/IL-4 and IgG2c/IFN-γ. Both LAV-AS04 and LAV-M induced the generation of a significantly higher number of cytotoxic T cells (CTLs). The immune response in LAV-AS04- and LAV-M-immunized animals was maintained for a long period (>180 days) with the generation of a significant level of B- and T-cell memory. The strong immune response by both vaccines correlated to enhanced recruitment and activation of innate immune cells particularly DCs at draining lymph nodes and the formation of germinal centers (GCs). Furthermore, the immune response generated in mice correlated to protective efficacy in the hamster model of leptospirosis. These results indicate that LAV-AS04 and LAV-M are promising vaccines and can be further evaluated in clinical trials.
Collapse
Affiliation(s)
- Vivek P. Varma
- Laboratory of Vaccine Immunology, National Institute of Animal Biotechnology, Hyderabad, India
- Graduate Studies, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Mohammad Kadivella
- Laboratory of Vaccine Immunology, National Institute of Animal Biotechnology, Hyderabad, India
- Regional Centre for Biotechnology, Faridabad, India
| | - Ajay Kumar
- Laboratory of Vaccine Immunology, National Institute of Animal Biotechnology, Hyderabad, India
- Regional Centre for Biotechnology, Faridabad, India
| | - Sridhar Kavela
- Laboratory of Vaccine Immunology, National Institute of Animal Biotechnology, Hyderabad, India
| | - Syed M. Faisal
- Laboratory of Vaccine Immunology, National Institute of Animal Biotechnology, Hyderabad, India
- Regional Centre for Biotechnology, Faridabad, India
- *Correspondence: Syed M. Faisal,
| |
Collapse
|
12
|
Maia MAC, Bettin EB, Barbosa LN, de Oliveira NR, Bunde TT, Pedra ACK, Rosa GA, da Rosa EEB, Seixas Neto ACP, Grassmann AA, McFadden J, Dellagostin OA, McBride AJA. Challenges for the development of a universal vaccine against leptospirosis revealed by the evaluation of 22 vaccine candidates. Front Cell Infect Microbiol 2022; 12:940966. [PMID: 36275031 PMCID: PMC9586249 DOI: 10.3389/fcimb.2022.940966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Leptospirosis is a neglected disease of man and animals that affects nearly half a million people annually and causes considerable economic losses. Current human vaccines are inactivated whole-cell preparations (bacterins) of Leptospira spp. that provide strong homologous protection yet fail to induce a cross-protective immune response. Yearly boosters are required, and serious side-effects are frequently reported so the vaccine is licensed for use in humans in only a handful of countries. Novel universal vaccines require identification of conserved surface-exposed epitopes of leptospiral antigens. Outer membrane β-barrel proteins (βb-OMPs) meet these requirements and have been successfully used as vaccines for other diseases. We report the evaluation of 22 constructs containing protein fragments from 33 leptospiral βb-OMPs, previously identified by reverse and structural vaccinology and cell-surface immunoprecipitation. Three-dimensional structures for each leptospiral βb-OMP were predicted by I-TASSER. The surface-exposed epitopes were predicted using NetMHCII 2.2 and BepiPred 2.0. Recombinant constructs containing regions from one or more βb-OMPs were cloned and expressed in Escherichia coli. IMAC-purified recombinant proteins were adsorbed to an aluminium hydroxide adjuvant to produce the vaccine formulations. Hamsters (4-6 weeks old) were vaccinated with 2 doses containing 50 – 125 μg of recombinant protein, with a 14-day interval between doses. Immunoprotection was evaluated in the hamster model of leptospirosis against a homologous challenge (10 – 20× ED50) with L. interrogans serogroup Icterohaemorrhagiae serovar Copenhageni strain Fiocruz L1-130. Of the vaccine formulations, 20/22 were immunogenic and induced significant humoral immune responses (IgG) prior to challenge. Four constructs induced significant protection (100%, P < 0.001) and sterilizing immunity in two independent experiments, however, this was not reproducible in subsequent evaluations (0 – 33.3% protection, P > 0.05). The lack of reproducibility seen in these challenge experiments and in other reports in the literature, together with the lack of immune correlates and commercially available reagents to characterize the immune response, suggest that the hamster may not be the ideal model for evaluation of leptospirosis vaccines and highlight the need for evaluation of alternative models, such as the mouse.
Collapse
Affiliation(s)
- Mara A. C. Maia
- Biotechnology Unit, Technological Development Centre, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Everton B. Bettin
- Biotechnology Unit, Technological Development Centre, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Liana N. Barbosa
- Biotechnology Unit, Technological Development Centre, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Natasha R. de Oliveira
- Biotechnology Unit, Technological Development Centre, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Tiffany T. Bunde
- Biotechnology Unit, Technological Development Centre, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Ana Carolina K. Pedra
- Biotechnology Unit, Technological Development Centre, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Guilherme A. Rosa
- Biotechnology Unit, Technological Development Centre, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Elias E. B. da Rosa
- Biotechnology Unit, Technological Development Centre, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Amilton C. P. Seixas Neto
- Biotechnology Unit, Technological Development Centre, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - André A. Grassmann
- Department of Medicine, University of Connecticut Health, Farmington, CT, United States
| | - Johnjoe McFadden
- School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Odir A. Dellagostin
- Biotechnology Unit, Technological Development Centre, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Alan J. A. McBride
- Biotechnology Unit, Technological Development Centre, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
- School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
- *Correspondence: Alan J. A. McBride,
| |
Collapse
|
13
|
Chaurasia R, Salovey A, Guo X, Desir G, Vinetz JM. Vaccination With Leptospira interrogans PF07598 Gene Family-Encoded Virulence Modifying Proteins Protects Mice From Severe Leptospirosis and Reduces Bacterial Load in the Liver and Kidney. Front Cell Infect Microbiol 2022; 12:926994. [PMID: 35837473 PMCID: PMC9274288 DOI: 10.3389/fcimb.2022.926994] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 05/24/2022] [Indexed: 12/29/2022] Open
Abstract
The molecular and cellular pathogenesis of leptospirosis remains poorly understood. Based on comparative bacterial genomics data, we recently identified the hypothetical PF07598 gene family as encoding secreted exotoxins (VM proteins) that mediate cytotoxicity in vitro. To address whether VM proteins mediate in vivo leptospirosis pathogenesis, we tested the hypothesis that VM protein immunization of mice would protect against lethal challenge infection and reduce bacterial load in key target organs. C3H/HeJ mice were immunized with recombinant E. coli-produced, endotoxin-free, leptospiral VM proteins (derived from L. interrogans serovar Lai) in combination with the human-compatible adjuvant, glucopyranoside lipid A/squalene oil-in-water. Mice receiving full length recombinant VM proteins were protected from lethal challenge infection by L. interrogans serovar Canicola and had a 3-4 log10 reduction in bacterial load in the liver and kidney. These experiments show that immunization with recombinant VM proteins prevents leptospirosis clinical pathogenesis and leads to markedly reduced key target organ infection in this animal model. These data support the role of leptospiral VM proteins as virulence factors and suggest the possibility that a VM protein-based, serovar-independent, pan-leptospirosis vaccine may be feasible.
Collapse
Affiliation(s)
- Reetika Chaurasia
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Aryeh Salovey
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Xiaojia Guo
- Section of Nephrology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Gary Desir
- Section of Nephrology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Joseph M. Vinetz
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
- *Correspondence: Joseph M. Vinetz,
| |
Collapse
|
14
|
Barazzone GC, Teixeira AF, Azevedo BOP, Damiano DK, Oliveira MP, Nascimento ALTO, Lopes APY. Revisiting the Development of Vaccines Against Pathogenic Leptospira: Innovative Approaches, Present Challenges, and Future Perspectives. Front Immunol 2022; 12:760291. [PMID: 35046936 PMCID: PMC8761801 DOI: 10.3389/fimmu.2021.760291] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 11/16/2021] [Indexed: 12/12/2022] Open
Abstract
Human vaccination against leptospirosis has been relatively unsuccessful in clinical applications despite an expressive amount of vaccine candidates has been tested over years of research. Pathogenic Leptospira encompass a great number of serovars, most of which do not cross-react, and there has been a lack of genetic tools for many years. These obstacles have hampered the understanding of the bacteria's biology and, consequently, the identification of an effective antigen. Thus far, many approaches have been used in an attempt to find a cost-effective and broad-spectrum protective antigen(s) against the disease. In this extensive review, we discuss several strategies that have been used to develop an effective vaccine against leptospirosis, starting with Leptospira-inactivated bacterin, proteins identified in the genome sequences of pathogenic Leptospira, including reverse vaccinology, plasmid DNA, live vaccines, chimeric multi-epitope, and toll- and nod-like receptors agonists. This overview should be able to guide scientists working in the field to select potential antigens and to choose the appropriate formulation to administer the candidates.
Collapse
Affiliation(s)
- Giovana C. Barazzone
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, Brazil
- Programa de Pós-Graduação Interunidades em Biotecnologia, Instituto de Ciências Biomédicas, Universidade de São Paulo (USP), São Paulo, Brazil
| | - Aline F. Teixeira
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, Brazil
| | - Bruna O. P. Azevedo
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, Brazil
- Programa de Pós-Graduação Interunidades em Biotecnologia, Instituto de Ciências Biomédicas, Universidade de São Paulo (USP), São Paulo, Brazil
| | - Deborah K. Damiano
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, Brazil
- Programa de Pós-Graduação Interunidades em Biotecnologia, Instituto de Ciências Biomédicas, Universidade de São Paulo (USP), São Paulo, Brazil
| | - Marcos P. Oliveira
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, Brazil
- Programa de Pós-Graduação Interunidades em Biotecnologia, Instituto de Ciências Biomédicas, Universidade de São Paulo (USP), São Paulo, Brazil
| | - Ana L. T. O. Nascimento
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, Brazil
- Programa de Pós-Graduação Interunidades em Biotecnologia, Instituto de Ciências Biomédicas, Universidade de São Paulo (USP), São Paulo, Brazil
| | - Alexandre P. Y. Lopes
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, Brazil
- Programa de Pós-Graduação Interunidades em Biotecnologia, Instituto de Ciências Biomédicas, Universidade de São Paulo (USP), São Paulo, Brazil
| |
Collapse
|
15
|
de Oliveira NR, Oliveira TL, Jorge S, Dellagostin OA. Development of Human Recombinant Leptospirosis Vaccines. Methods Mol Biol 2022; 2410:325-344. [PMID: 34914055 DOI: 10.1007/978-1-0716-1884-4_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Leptospirosis is a bacterial zoonotic disease with significant impact on health all over the world. Currently, bacterins are the only vaccines available for prevention of this disease, despite several drawbacks. In an effort to develop a more effective vaccine against leptospirosis, reverse and structural vaccinology have been applied to design recombinant constructions composed of leptospiral surface-exposed antigens. Herein, we describe a protocol for design and development of Leptospirosis recombinant vaccines using immunoinformatic approaches.
Collapse
Affiliation(s)
- Natasha Rodrigues de Oliveira
- Universidade Federal de Pelotas, Centro de Desenvolvimento Tecnológico, Campus Universitário s/n, Pelotas, RS, Brazil
| | - Thaís Larré Oliveira
- Universidade Federal de Pelotas, Centro de Desenvolvimento Tecnológico, Campus Universitário s/n, Pelotas, RS, Brazil
| | - Sérgio Jorge
- Universidade Federal de Pelotas, Faculdade de Medicina Veterinária, Campus Universitário s/n, Pelotas, RS, Brazil
| | - Odir Antônio Dellagostin
- Universidade Federal de Pelotas, Centro de Desenvolvimento Tecnológico, Campus Universitário s/n, Pelotas, RS, Brazil.
| |
Collapse
|
16
|
Kumar P, Lata S, Shankar UN, Akif M. Immunoinformatics-Based Designing of a Multi-Epitope Chimeric Vaccine From Multi-Domain Outer Surface Antigens of Leptospira. Front Immunol 2021; 12:735373. [PMID: 34917072 PMCID: PMC8670241 DOI: 10.3389/fimmu.2021.735373] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 11/08/2021] [Indexed: 11/13/2022] Open
Abstract
Accurate information on antigenic epitopes within a multi-domain antigen would provide insights into vaccine design and immunotherapy. The multi-domain outer surface Leptospira immunoglobulin-like (Lig) proteins LigA and LigB, consisting of 12–13 homologous bacterial Ig (Big)-like domains, are potential antigens of Leptospira interrogans. Currently, no effective vaccine is available against pathogenic Leptospira. Both the humoral immunity and cell-mediated immunity of the host play critical roles in defending against Leptospira infection. Here, we used immunoinformatics approaches to evaluate antigenic B-cell lymphocyte (BCL) and cytotoxic T-lymphocyte (CTL) epitopes from Lig proteins. Based on certain crucial parameters, potential epitopes that can stimulate both types of adaptive immune responses were selected to design a chimeric vaccine construct. Additionally, an adjuvant, the mycobacterial heparin-binding hemagglutinin adhesin (HBHA), was incorporated into the final multi-epitope vaccine construct with a suitable linker. The final construct was further scored for its antigenicity, allergenicity, and physicochemical parameters. A three-dimensional (3D) modeled construct of the vaccine was implied to interact with Toll-like receptor 4 (TLR4) using molecular docking. The stability of the vaccine construct with TLR4 was predicted with molecular dynamics simulation. Our results demonstrate the application of immunoinformatics and structure biology strategies to develop an epitope-specific chimeric vaccine from multi-domain proteins. The current findings will be useful for future experimental validation to ratify the immunogenicity of the chimera.
Collapse
Affiliation(s)
- Pankaj Kumar
- Laboratory of Structural Biology, Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Surabhi Lata
- Laboratory of Structural Biology, Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Umate Nachiket Shankar
- Laboratory of Structural Biology, Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Mohd Akif
- Laboratory of Structural Biology, Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India
| |
Collapse
|
17
|
Rodrigues de Oliveira N, Jorge S, Andrade Colares Maia M, Thurow Bunde T, Kurz Pedra AC, Pinto Seixas Neto AC, Larré Oliveira T, Dellagostin OA. Protective efficacy of whole-cell inactivated Leptospira vaccines made using virulent or avirulent strains in a hamster model. Vaccine 2021; 39:5626-5634. [PMID: 34400016 DOI: 10.1016/j.vaccine.2021.08.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 08/02/2021] [Accepted: 08/05/2021] [Indexed: 11/15/2022]
Abstract
Whole-cell inactivated vaccines remain the only licensed vaccines used to control human and animal leptospirosis worldwide. Although they are protective against lethal infections, the efficacy of these vaccines has been divergent. The manufacturing process often involves the use of standard bacterial strains subjected to serial in vitro passages, with a risk of loss of virulence, and may affect the immunogenicity and consequently decrease protection. Thus, the objective of this study was to perform a comparative analysis of the efficacy of in-house bacterins produced with standard (avirulent) and virulent strains. Hamsters were immunized with killed bacteria produced using avirulent and virulent strains of L. interrogans serovars Copenhageni and Canicola. Vaccine efficacy was determined in terms of protection against lethal homologous or heterologous challenges. The results showed that immunization with both avirulent and virulent Canicola strains resulted in 100% protection against homologous challenge. Conversely, Copenhageni bacterins produced using an avirulent strain conferred only 25-37.5% protection against homologous challenge (P > 0.05), while virulent Copenhageni bacterin conferred 100% protection (P < 0.001). A single vaccine dose was sufficient to induce protection, and administration of a prime boost significantly reduced the bacterial load in the kidneys and improved the humoral immune response to the virulent Copenhageni strain. These findings suggest that the maintenance of virulent strains in bacterin formulations is essential for improving the immunogenicity and efficacy of leptospirosis vaccines.
Collapse
Affiliation(s)
- Natasha Rodrigues de Oliveira
- Centro de Desenvolvimento Tecnológico, Núcleo de Biotecnologia, Universidade Federal de Pelotas, Pelotas, RS, Brazil.
| | - Sérgio Jorge
- Faculdade de Veterinária, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Mara Andrade Colares Maia
- Centro de Desenvolvimento Tecnológico, Núcleo de Biotecnologia, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Tiffany Thurow Bunde
- Centro de Desenvolvimento Tecnológico, Núcleo de Biotecnologia, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Ana Carolina Kurz Pedra
- Centro de Desenvolvimento Tecnológico, Núcleo de Biotecnologia, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | | | - Thaís Larré Oliveira
- Centro de Desenvolvimento Tecnológico, Núcleo de Biotecnologia, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Odir Antônio Dellagostin
- Centro de Desenvolvimento Tecnológico, Núcleo de Biotecnologia, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| |
Collapse
|
18
|
Putz EJ, Sivasankaran SK, Fernandes LGV, Brunelle B, Lippolis JD, Alt DP, Bayles DO, Hornsby RL, Nally JE. Distinct transcriptional profiles of Leptospira borgpetersenii serovar Hardjo strains JB197 and HB203 cultured at different temperatures. PLoS Negl Trop Dis 2021; 15:e0009320. [PMID: 33826628 PMCID: PMC8055020 DOI: 10.1371/journal.pntd.0009320] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 04/19/2021] [Accepted: 03/22/2021] [Indexed: 11/18/2022] Open
Abstract
Background Leptospirosis is a zoonotic, bacterial disease, posing significant health risks to humans, livestock, and companion animals around the world. Symptoms range from asymptomatic to multi-organ failure in severe cases. Complex species-specific interactions exist between animal hosts and the infecting species, serovar, and strain of pathogen. Leptospira borgpetersenii serovar Hardjo strains HB203 and JB197 have a high level of genetic homology but cause different clinical presentation in the hamster model of infection; HB203 colonizes the kidney and presents with chronic shedding while JB197 causes severe organ failure and mortality. This study examines the transcriptome of L. borgpetersenii and characterizes differential gene expression profiles of strains HB203 and JB197 cultured at temperatures during routine laboratory conditions (29°C) and encountered during host infection (37°C). Methodology/Principal findings L. borgpetersenii serovar Hardjo strains JB197 and HB203 were isolated from the kidneys of experimentally infected hamsters and maintained at 29°C and 37°C. RNAseq revealed distinct gene expression profiles; 440 genes were differentially expressed (DE) between JB197 and HB203 at 29°C, and 179 genes were DE between strains at 37°C. Comparison of JB197 cultured at 29°C and 37°C identified 135 DE genes while 41 genes were DE in HB203 with those same culture conditions. The consistent differential expression of ligB, which encodes the outer membrane virulence factor LigB, was validated by immunoblotting and 2D-DIGE. Differential expression of lipopolysaccharide was also observed between JB197 and HB203. Conclusions/Significance Investigation of the L. borgpetersenii JB197 and HB203 transcriptome provides unique insight into the mechanistic differences between acute and chronic disease. Characterizing the nuances of strain to strain differences and investigating the environmental sensitivity of Leptospira to temperature is critical to the development and progress of leptospirosis prevention and treatment technologies, and is an important consideration when serovars are selected and propagated for use as bacterin vaccines as well as for the identification of novel therapeutic targets. Leptospirosis is a global zoonotic, neglected tropical disease. Interestingly, a high level of species specificity (both bacteria and host) plays a major role in the severity of disease presentation which can vary from asymptomatic to multi-organ failure. Pathogenic Leptospira colonize the kidneys of infected individuals and are shed in urine into the environment where they can survive until they are contracted by another host. This study looks at two strains of L. borgpetersenii, HB203 and JB197 which are genetically very similar, and identical by serotyping as serovar Hardjo, yet HB203 causes a chronic infection in the hamster while JB197 causes organ failure and mortality. To better characterize bacterial factors causing different disease outcomes, we examined the gene expression profile of these strains in the context of temperatures that would reflect natural Leptospira life cycles (environmentally similar 29°C and 37°C which is more indicative of host environment). We found vast differences in gene expression both between the strains and within strains between temperatures. Characterization of the transcriptome of L. borgpetersenii serovar Hardjo strains JB197 and HB203 provides insights into factors that can determine acute versus chronic disease in the hamster model of infection. Additionally, these studies highlight strain to strain variability within the same species, and serovar, at different growth temperatures, which needs to be considered when serovars are selected and propagated for use as bacterin vaccines used to immunize domestic animal species.
Collapse
Affiliation(s)
- Ellie J. Putz
- Infectious Bacterial Disease Research Unit, USDA Agriculture Research Service, National Animal Disease Center, Ames, Iowa, United States of America
- * E-mail:
| | - Sathesh K. Sivasankaran
- Food Safety and Enteric Pathogens Research Unit, USDA Agriculture Research Service, National Animal Disease Center, Ames, Iowa, United States of America
- Genome Informatics Facility Iowa State University, Ames, Iowa, United States of America
| | - Luis G. V. Fernandes
- Infectious Bacterial Disease Research Unit, USDA Agriculture Research Service, National Animal Disease Center, Ames, Iowa, United States of America
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, Brazil
| | - Brian Brunelle
- Arbor Biosciences, Ann Arbor, Michigan, United States of America
| | - John D. Lippolis
- Ruminant Disease and Immunology Research Unit USDA Agriculture Research Service, National Animal Disease Center, Ames, Iowa, United States of America
| | - David P. Alt
- Infectious Bacterial Disease Research Unit, USDA Agriculture Research Service, National Animal Disease Center, Ames, Iowa, United States of America
| | - Darrell O. Bayles
- Infectious Bacterial Disease Research Unit, USDA Agriculture Research Service, National Animal Disease Center, Ames, Iowa, United States of America
| | - Richard L. Hornsby
- Infectious Bacterial Disease Research Unit, USDA Agriculture Research Service, National Animal Disease Center, Ames, Iowa, United States of America
| | - Jarlath E. Nally
- Infectious Bacterial Disease Research Unit, USDA Agriculture Research Service, National Animal Disease Center, Ames, Iowa, United States of America
| |
Collapse
|
19
|
Anti-Leptospira immunoglobulin profiling in mice reveals strain specific IgG and persistent IgM responses associated with virulence and renal colonization. PLoS Negl Trop Dis 2021; 15:e0008970. [PMID: 33705392 PMCID: PMC8007020 DOI: 10.1371/journal.pntd.0008970] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 03/29/2021] [Accepted: 02/23/2021] [Indexed: 12/14/2022] Open
Abstract
Leptospira interrogans is a pathogenic spirochete responsible for leptospirosis, a neglected, zoonotic reemerging disease. Humans are sensitive hosts and may develop severe disease. Some animal species, such as rats and mice can become asymptomatic renal carriers. More than 350 leptospiral serovars have been identified, classified on the basis of the antibody response directed against the lipopolysaccharide (LPS). Similarly to whole inactivated bacteria used as human vaccines, this response is believed to confer only short-term, serogroup-specific protection. The immune response of hosts against leptospires has not been thoroughly studied, which complicates the testing of vaccine candidates. In this work, we studied the immunoglobulin (Ig) profiles in mice infected with L. interrogans over time to determine whether this humoral response confers long-term protection after homologous challenge six months post-infection. Groups of mice were injected intraperitoneally with 2×107 leptospires of one of three pathogenic serovars (Manilae, Copenhageni or Icterohaemorrhagiae), attenuated mutants or heat-killed bacteria. Leptospira-specific immunoglobulin (IgA, IgM, IgG and 4 subclasses) produced in the first weeks up to 6 months post-infection were measured by ELISA. Strikingly, we found sustained high levels of IgM in mice infected with the pathogenic Manilae and Copenhageni strains, both colonizing the kidney. In contrast, the Icterohaemorrhagiae strain did not lead to kidney colonization, even at high dose, and triggered a classical IgM response that peaked at day 8 post-infection and disappeared. The virulent Manilae and Copenhageni serovars elicited high levels and similar profiles of IgG subclasses in contrast to Icterohaemorrhagiae strains that stimulated weaker antibody responses. Inactivated heat-killed Manilae strains elicited very low responses. However, all mice pre-injected with leptospires challenged with high doses of homologous bacteria did not develop acute leptospirosis, and all antibody responses were boosted after challenge. Furthermore, we showed that 2 months post-challenge, mice pre-infected with the attenuated M895 Manilae LPS mutant or heat-killed bacterin were completely protected against renal colonization. In conclusion, we observed a sustained IgM response potentially associated with chronic leptospiral renal infection. We also demonstrated in mice different profiles of protective and cross-reactive antibodies after L. interrogans infection, depending on the serovar and virulence of strains. Leptospira interrogans is a pathogenic spirochete responsible for leptospirosis, a neglected zoonotic reemerging disease. The immune response of hosts against these bacteria has not been thoroughly studied. Here, we studied over 6 months the antibody profiles in mice infected with L. interrogans and determined whether this humoral response confers long-term protection after homologous challenge six months after primary infection. Groups of mice were infected intraperitoneally with 2×107 bacteria of one of three different pathogenic serovars (Manilae, Copenhageni and Icterohaemorrhagiae) and some corresponding attenuated avirulent mutants. We measured by ELISA each type of Leptospira-specific immunoglobulin (Ig) (IgA, IgM, IgG and 4 subclasses) produced in the first weeks up to 6 months post-infection and studied their cross-reactivities among serovars. We showed different profiles of antibody response after L. interrogans challenge in mice, depending on the serovar and virulence of strains. However, all infected mice, including the ones harboring low antibody levels, like mice vaccinated with an inactivated, heat-killed strain, were protected against leptospirosis after challenge. Notably, we also showed an unusual sustained IgM response associated with chronic leptospiral colonization. Altogether, this long-term immune protection is different from what is known in humans and warrants further investigation.
Collapse
|
20
|
Wunder EA, Adhikarla H, Hamond C, Owers Bonner KA, Liang L, Rodrigues CB, Bisht V, Nally JE, Alt DP, Reis MG, Diggle PJ, Felgner PL, Ko A. A live attenuated-vaccine model confers cross-protective immunity against different species of the Leptospira genus. eLife 2021; 10:e64166. [PMID: 33496263 PMCID: PMC7837694 DOI: 10.7554/elife.64166] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 12/23/2020] [Indexed: 12/24/2022] Open
Abstract
Leptospirosis is the leading zoonotic disease in terms of morbidity and mortality worldwide. Effective prevention is urgently needed as the drivers of disease transmission continue to intensify. The key challenge has been developing a widely applicable vaccine that protects against the >300 serovars that can cause leptospirosis. Live attenuated mutants are enticing vaccine candidates and poorly explored in the field. We evaluated a recently characterized motility-deficient mutant lacking the expression of a flagellar protein, FcpA. Although the fcpA- mutant has lost its ability to cause disease, transient bacteremia was observed. In two animal models, immunization with a single dose of the fcpA- mutant was sufficient to induce a robust anti-protein antibodies response that promoted protection against infection with different pathogenic Leptospira species. Furthermore, characterization of the immune response identified a small repertoire of biologically relevant proteins that are highly conserved among pathogenic Leptospira species and potential correlates of cross-protective immunity.
Collapse
Affiliation(s)
- Elsio A Wunder
- Department of Epidemiology of Microbial Diseases; Yale School of Public HealthNew HavenUnited States
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation; Brazilian Ministry of HealthSalvadorBrazil
| | - Haritha Adhikarla
- Department of Epidemiology of Microbial Diseases; Yale School of Public HealthNew HavenUnited States
| | - Camila Hamond
- Department of Epidemiology of Microbial Diseases; Yale School of Public HealthNew HavenUnited States
| | - Katharine A Owers Bonner
- Department of Epidemiology of Microbial Diseases; Yale School of Public HealthNew HavenUnited States
| | - Li Liang
- Department of Medicine, Division of Infectious Disease; University of California IrvineIrvineUnited States
| | - Camila B Rodrigues
- Department of Medicine, Division of Infectious Disease; University of California IrvineIrvineUnited States
- Institute of Technology in Immunobiology, Oswaldo Cruz Foundation; Brazilian Ministry of HealthRio de JaneiroBrazil
| | - Vimla Bisht
- Department of Epidemiology of Microbial Diseases; Yale School of Public HealthNew HavenUnited States
| | - Jarlath E Nally
- Infectious Bacterial Diseases Research Unit, National Animal Disease Center, Agricultural Research Service; United States Department of AgricultureAmesUnited States
| | - David P Alt
- Infectious Bacterial Diseases Research Unit, National Animal Disease Center, Agricultural Research Service; United States Department of AgricultureAmesUnited States
| | - Mitermayer G Reis
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation; Brazilian Ministry of HealthSalvadorBrazil
| | - Peter J Diggle
- CHICAS, Lancaster Medical School; Lancaster UniversityLancasterUnited Kingdom
| | - Philip L Felgner
- Department of Medicine, Division of Infectious Disease; University of California IrvineIrvineUnited States
| | - Albert Ko
- Department of Epidemiology of Microbial Diseases; Yale School of Public HealthNew HavenUnited States
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation; Brazilian Ministry of HealthSalvadorBrazil
| |
Collapse
|
21
|
Haake DA, Matsunaga J. Leptospiral Immunoglobulin-Like Domain Proteins: Roles in Virulence and Immunity. Front Immunol 2021; 11:579907. [PMID: 33488581 PMCID: PMC7821625 DOI: 10.3389/fimmu.2020.579907] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 11/05/2020] [Indexed: 02/03/2023] Open
Abstract
The virulence mechanisms required for infection and evasion of immunity by pathogenic Leptospira species remain poorly understood. A number of L. interrogans surface proteins have been discovered, lying at the interface between the pathogen and host. Among these proteins, the functional properties of the Lig (leptospiral immunoglobulin-like domain) proteins have been examined most thoroughly. LigA, LigB, and LigC contain a series of, 13, 12, and 12 closely related domains, respectively, each containing a bacterial immunoglobulin (Big) -like fold. The multidomain region forms a mostly elongated structure that exposes a large surface area. Leptospires wield the Lig proteins to promote interactions with a range of specific host proteins, including those that aid evasion of innate immune mechanisms. These diverse binding events mediate adhesion of L. interrogans to the extracellular matrix, inhibit hemostasis, and inactivate key complement proteins. These interactions may help L. interrogans overcome the physical, hematological, and immunological barriers that would otherwise prevent the spirochete from establishing a systemic infection. Despite significant differences in the affinities of the LigA and LigB proteins for host targets, their functions overlap during lethal infection of hamsters; virulence is lost only when both ligA and ligB transcription is knocked down simultaneously. Lig proteins have been shown to be promising vaccine antigens through evaluation of a variety of different adjuvant strategies. This review serves to summarize current knowledge of Lig protein roles in virulence and immunity and to identify directions needed to better understand the precise functions of the Lig proteins during infection.
Collapse
Affiliation(s)
- David A. Haake
- Division of Infectious Diseases, VA Greater Los Angeles Healthcare System, Los Angeles, CA, United States
- Departments of Medicine, and Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, United States
| | - James Matsunaga
- Research Service, VA Greater Los Angeles Healthcare System, Los Angeles, CA, United States
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, United States
| |
Collapse
|
22
|
Teixeira AF, Cavenague MF, Kochi LT, Fernandes LG, Souza GO, de Souza Filho AF, Vasconcellos SA, Heinemann MB, Nascimento ALTO. Immunoprotective Activity Induced by Leptospiral Outer Membrane Proteins in Hamster Model of Acute Leptospirosis. Front Immunol 2020; 11:568694. [PMID: 33193344 PMCID: PMC7662565 DOI: 10.3389/fimmu.2020.568694] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 10/12/2020] [Indexed: 11/13/2022] Open
Abstract
Leptospirosis is a zoonotic disease of worldwide distribution, affecting both humans and animals. The development of an effective vaccine against leptospirosis has long been pursued but without success. Humans are contaminated after direct contact with the urine of infected animals or indirectly by contaminated water or soil. The vaccines available consist of inactivated whole-bacterial cells, and the active immunoprotective antigen is the lipopolysaccharide moiety, which is also the basis for serovar classification. However, these vaccines are short-lasting, and protection is only against serovars contained in the preparation. The search for prevalent antigens, present in pathogenic species of Leptospira, represents the most cost-effective strategy for prevention of leptospirosis. Thus, the identification of these antigens is a priority. In this study, we examined the immunoprotective effect of eight leptospiral recombinant proteins using hamster as the challenge model. Animals received subcutaneously two doses of vaccine containing 50 μg of each recombinant protein adsorbed on alum adjuvant. Two weeks after the booster, animals were challenged with virulent leptospires and monitored for 21 days. All proteins were able to induce a specific immune response, although significant protective effects on survival rate were observed only for the proteins Lsa14, rLIC13259, and rLIC11711. Of these, only rLIC13259 and rLIC11711 were found to be highly prospective in promoting renal clearance. The sterilizing potential of both proteins will be further investigated to elucidate the immunoprotective mechanisms involved in leptospirosis control. These are the first proteins involved with human complement components with the capacity to protect against virulent challenge and to eliminate the bacteria from the host.
Collapse
Affiliation(s)
- Aline F Teixeira
- Laboratorio de Desenvolvimento de Vacinas, Instituto Butantan, Sao Paulo, Brazil
| | - Maria F Cavenague
- Laboratorio de Desenvolvimento de Vacinas, Instituto Butantan, Sao Paulo, Brazil.,Programa de Pos-Graduacao Interunidades em Biotecnologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo (USP), Sao Paulo, Brazil
| | - Leandro T Kochi
- Laboratorio de Desenvolvimento de Vacinas, Instituto Butantan, Sao Paulo, Brazil.,Programa de Pos-Graduacao Interunidades em Biotecnologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo (USP), Sao Paulo, Brazil
| | - Luis G Fernandes
- Laboratorio de Desenvolvimento de Vacinas, Instituto Butantan, Sao Paulo, Brazil
| | - Gisele O Souza
- Laboratorio de Zoonoses Bacterianas, Departamento de Medicina Veterinaria Preventiva e Saude Animal (VPS), Faculdade de Medicina Veterinaria e Zootecnia, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Antonio Francisco de Souza Filho
- Laboratorio de Zoonoses Bacterianas, Departamento de Medicina Veterinaria Preventiva e Saude Animal (VPS), Faculdade de Medicina Veterinaria e Zootecnia, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Silvio A Vasconcellos
- Laboratorio de Zoonoses Bacterianas, Departamento de Medicina Veterinaria Preventiva e Saude Animal (VPS), Faculdade de Medicina Veterinaria e Zootecnia, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Marcos Bryan Heinemann
- Laboratorio de Zoonoses Bacterianas, Departamento de Medicina Veterinaria Preventiva e Saude Animal (VPS), Faculdade de Medicina Veterinaria e Zootecnia, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Ana L T O Nascimento
- Laboratorio de Desenvolvimento de Vacinas, Instituto Butantan, Sao Paulo, Brazil
| |
Collapse
|
23
|
Prasad M, Bothammal P, Akino Mercy CS, Sumaiya K, Saranya P, Muralitharan G, Natarajaseenivasan K. Leptospiral protein LIC11334 display an immunogenic peptide KNSMP01. Microb Pathog 2020; 149:104407. [PMID: 32758519 DOI: 10.1016/j.micpath.2020.104407] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/08/2020] [Accepted: 07/17/2020] [Indexed: 10/23/2022]
Abstract
Leptospirosis is considered as a neglected tropical disease which is caused by pathogenic Leptospira spp. The precise mechanisms of leptospirosis pathogenesis are unclear and hence, the progress in development of treatment modalities has been dismal. The present study aimed to identify novel virulent factors of leptospires to understand the disease pathogenesis and to develop treatment modalities. Leptospira interrogans contains two chromosomes and encodes for ~3703 genes, but the functions of several open reading frames have not yet been explored. Among them, novel virulent associated leptospiral proteins (LIC11334, LIC11542, LIC11436, LIC11120 and LIC12539) were identified using VirulentPredict and the antigenicity of these targets was explored by VaxiJen server. Domain architecture of the pathogen specific proteins revealed that LIC11334 had potential to evoke significant immune response against leptospiral infection and LIC11436 contains four folds of immunoglobulin-like domain and plays a vital role in pathogenesis. Therefore, B-cell epitopes were predicted and the epitope of high virulence (and VaxiJen score from LIC11334) was chemically synthesized as peptide (KNSMP01) and labeled with Biotin (Biotin-SGSGEVENPDPKVAQEC). Binding affinity of KNSMP01 with MHC molecules was predicted and the molecule was discovered to have potential to elicit both humoral and cell mediated immune responses and found to interact with host components via hydrophobic interaction, hydrogen bonding and salt bridges. Rabbit antisera was raised against KNSMP01 and found to elicit antigenicity using Western, ELISA and dot blot assays. In silico and in vitro experiments show KNSMP01 to be a promising immunogen and may be a better vaccine candidate for leptospirosis.
Collapse
Affiliation(s)
- Muthu Prasad
- Medical Microbiology Laboratory, Department of Microbiology, Center for Excellence in Life Sciences, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India
| | - Palanisamy Bothammal
- Medical Microbiology Laboratory, Department of Microbiology, Center for Excellence in Life Sciences, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India
| | - Charles Solomon Akino Mercy
- Medical Microbiology Laboratory, Department of Microbiology, Center for Excellence in Life Sciences, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India
| | - Krishnamoorthi Sumaiya
- Medical Microbiology Laboratory, Department of Microbiology, Center for Excellence in Life Sciences, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India
| | - Perumal Saranya
- Medical Microbiology Laboratory, Department of Microbiology, Center for Excellence in Life Sciences, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India
| | - Gangatharan Muralitharan
- Medical Microbiology Laboratory, Department of Microbiology, Center for Excellence in Life Sciences, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India
| | - Kalimuthusamy Natarajaseenivasan
- Medical Microbiology Laboratory, Department of Microbiology, Center for Excellence in Life Sciences, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India.
| |
Collapse
|
24
|
Duan J, Zhao Y, Zhang X, Jiang H, Xie B, Zhao T, Zhao F. Research status and perspectives for pathogenic spirochete vaccines. Clin Chim Acta 2020; 507:117-124. [DOI: 10.1016/j.cca.2020.04.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 03/31/2020] [Accepted: 04/01/2020] [Indexed: 12/15/2022]
|
25
|
Thi Phung L, Chaiyadet S, Hongsrichan N, Sotillo J, Dinh Thi Dieu H, Quang Tran C, Brindley PJ, Loukas A, Laha T. Partial protection with a chimeric tetraspanin-leucine aminopeptidase subunit vaccine against Opisthorchis viverrini infection in hamsters. Acta Trop 2020; 204:105355. [PMID: 31991114 DOI: 10.1016/j.actatropica.2020.105355] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 01/21/2020] [Accepted: 01/22/2020] [Indexed: 12/21/2022]
Abstract
Opisthorchiasis is a serious public health problem in East Asia and Europe. The pathology involves hepatobiliary abnormalities such as cholangitis, choledocholithiasis and tissue fibrosis that can develop into cholangiocarcinoma. Prevention of infection is difficult as multiple social and behavioral factors are involved, thus, progress on a prophylactic vaccine against opisthorchiasis is urgently needed. Opisthorchis viverrini tetraspanin-2 (Ov-TSP-2) was previously described as a potential vaccine candidate conferring partial protection against O. viverrini infections in hamsters. In this study, we generated a recombinant chimeric form of the large extracellular loop of Ov-TSP-2 and O. viverrini leucine aminopeptidase, designated rOv-TSP-2-LAP. Hamsters were vaccinated with 100 and 200 µg of rOv-TSP-2-LAP formulated with alum-CpG adjuvant via intraperitoneal injection and evaluated the level of protection against O. viverrini infection. Our results demonstrated that the number of worms recovered from hamsters vaccinated with either 100 or 200 µg of rOv-TSP-2-LAP were significantly reduced by 27% compared to the adjuvant control group. Furthermore, the average length of worms recovered from animals vaccinated with 200 μg of rOv-TSP-2-LAP was significantly shorter than those from the control adjuvant group. Immunized hamsters showed significantly increased serum levels of anti-rOv-TSP-2 IgG and IgG1 compared to adjuvant control group, suggesting that rOv-TSP-2-LAP vaccination induces a mixed Th1/Th2 immune response in hamsters. Therefore, the development of a suitable vaccine against opisthorchiasis requires further work involving new vaccine technologies to improve immunogenicity and protective efficacy.
Collapse
Affiliation(s)
- Luyen Thi Phung
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Thailand; Hai Duong Medical Technical University, Hai Duong city, Hai Duong province, Viet Nam
| | - Sujittra Chaiyadet
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Thailand
| | | | - Javier Sotillo
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain; Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Australia
| | - Hang Dinh Thi Dieu
- Hai Duong Medical Technical University, Hai Duong city, Hai Duong province, Viet Nam
| | - Canh Quang Tran
- Hai Duong Medical Technical University, Hai Duong city, Hai Duong province, Viet Nam
| | - Paul J Brindley
- Department of Microbiology, Immunology and Tropical Medicine, George Washington University, Washington DC, USA
| | - Alex Loukas
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Australia
| | - Thewarach Laha
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Thailand.
| |
Collapse
|
26
|
Barbosa AS, Isaac L. Strategies used by Leptospira spirochetes to evade the host complement system. FEBS Lett 2020; 594:2633-2644. [PMID: 32153015 DOI: 10.1002/1873-3468.13768] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 02/27/2020] [Accepted: 02/28/2020] [Indexed: 12/19/2022]
Abstract
Leptospires are highly invasive spirochetes equipped with efficient strategies for dissemination in the host. The Leptospira genus currently comprises 64 species divided into two major clades: the saprophytes composed of nonpathogenic, free-living organisms, and the pathogens encompassing all the species that cause mild or severe infections in humans and animals. While saprophytes are highly susceptible to the lytic action of the complement system, pathogenic (virulent) strains have evolved virulence strategies that allow efficient colonization of a variety of hosts and target organs, including mechanisms to circumvent hosts' innate and acquired immune responses. Pathogenic Leptospira avoid complement-mediated killing by recruiting host complement regulatory proteins and by targeting complement proteins using own and host-expressed proteases. This review outlines the role of complement in eradicating saprophytic Leptospira and the stratagems adopted by pathogenic Leptospira to maneuver the host complement system for their benefit.
Collapse
Affiliation(s)
| | - Lourdes Isaac
- Laboratory of Complement, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, Brazil
| |
Collapse
|
27
|
Felix CR, Siedler BS, Barbosa LN, Timm GR, McFadden J, McBride AJA. An overview of human leptospirosis vaccine design and future perspectives. Expert Opin Drug Discov 2019; 15:179-188. [PMID: 31777290 DOI: 10.1080/17460441.2020.1694508] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Introduction: It's been 20 years since the first report of a recombinant vaccine that protected against leptospirosis. Since then, numerous recombinant vaccines have been evaluated; however, no recombinant vaccine candidate has advanced to clinical trials. With the ever-increasing burden of leptospirosis, there is an urgent need for a universal vaccine against leptospirosis.Areas covered: This review covers the most promising vaccine candidates that induced significant, reproducible, protection and how advances in the field of bioinformatics has led to the discovery of hundreds of novel protein targets. The authors also discuss the most recent findings regarding the innate immune response and host-pathogen interactions and their impact on the discovery of novel vaccine candidates. In addition, the authors have identified what they believe are the most challenging problems for the discovery and development of a universal vaccine and their potential solutions.Expert opinion: A universal vaccine for leptospirosis will likely only be achieved using a recombinant vaccine as the bacterins are of limited use due to the lack of a cross-protective immune response. Although there are hundreds of novel targets, due to the lack of immune correlates and the need for more research into the basic microbiology of Leptospira spp., a universal vaccine is 10-15 years away.
Collapse
Affiliation(s)
- Carolina R Felix
- Biotechnology Department, Centre for Technological Development, Federal University of Pelotas, Pelotas, Brazil
| | - Bianca S Siedler
- Biotechnology Department, Centre for Technological Development, Federal University of Pelotas, Pelotas, Brazil.,School of Biosciences and Medicine, Faculty of Health & Medical Sciences, University of Surrey, Guildford, UK
| | - Liana N Barbosa
- Biotechnology Department, Centre for Technological Development, Federal University of Pelotas, Pelotas, Brazil
| | - Gabriana R Timm
- Biotechnology Department, Centre for Technological Development, Federal University of Pelotas, Pelotas, Brazil
| | - Johnjoe McFadden
- School of Biosciences and Medicine, Faculty of Health & Medical Sciences, University of Surrey, Guildford, UK
| | - Alan J A McBride
- Biotechnology Department, Centre for Technological Development, Federal University of Pelotas, Pelotas, Brazil
| |
Collapse
|
28
|
Miao J, Chard LS, Wang Z, Wang Y. Syrian Hamster as an Animal Model for the Study on Infectious Diseases. Front Immunol 2019; 10:2329. [PMID: 31632404 PMCID: PMC6781508 DOI: 10.3389/fimmu.2019.02329] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 09/16/2019] [Indexed: 11/13/2022] Open
Abstract
Infectious diseases still remain one of the biggest challenges for human health. In order to gain a better understanding of the pathogenesis of infectious diseases and develop effective diagnostic tools, therapeutic agents, and preventive vaccines, a suitable animal model which can represent the characteristics of infectious is required. The Syrian hamster immune responses to infectious pathogens are similar to humans and as such, this model is advantageous for studying pathogenesis of infection including post-bacterial, viral and parasitic pathogens, along with assessing the efficacy and interactions of medications and vaccines for those pathogens. This review summarizes the current status of Syrian hamster models and their use for understanding the underlying mechanisms of pathogen infection, in addition to their use as a drug discovery platform and provides a strong rationale for the selection of Syrian hamster as animal models in biomedical research. The challenges of using Syrian hamster as an alternative animal model for the research of infectious diseases are also addressed.
Collapse
Affiliation(s)
- Jinxin Miao
- Department of Science and Technology, Henan University of Chinese Medicine, Zhengzhou, China
- Sino-British Research Center for Molecular Oncology, National Center for the International Research in Cell and Gene Therapy, School of Basic Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Louisa S. Chard
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Zhimin Wang
- Sino-British Research Center for Molecular Oncology, National Center for the International Research in Cell and Gene Therapy, School of Basic Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yaohe Wang
- Sino-British Research Center for Molecular Oncology, National Center for the International Research in Cell and Gene Therapy, School of Basic Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
29
|
Techawiwattanaboon T, Barnier-Quer C, Palaga T, Jacquet A, Collin N, Sangjun N, Komanee P, Piboonpocanun S, Patarakul K. Reduced Renal Colonization and Enhanced Protection by Leptospiral Factor H Binding Proteins as a Multisubunit Vaccine Against Leptospirosis in Hamsters. Vaccines (Basel) 2019; 7:vaccines7030095. [PMID: 31443566 PMCID: PMC6789851 DOI: 10.3390/vaccines7030095] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 08/19/2019] [Accepted: 08/20/2019] [Indexed: 12/17/2022] Open
Abstract
Subunit vaccines conferring complete protection against leptospirosis are not currently available. The interactions of factor H binding proteins (FHBPs) on pathogenic leptospires and host factor H are crucial for immune evasion by inhibition of complement-mediated killing. The inhibition of these interactions may be a potential strategy to clear leptospires in the host. This study aimed to evaluate a multisubunit vaccine composed of four known leptospiral FHBPs: LigA domain 7–13 (LigAc), LenA, LcpA, and Lsa23, for its protective efficacy in hamsters. The mono and multisubunit vaccines formulated with LMQ adjuvant, a combination of neutral liposome, monophosphoryl lipid A, and Quillaja saponaria fraction 21, induced high and comparable specific antibody (IgG) production against individual antigens. Hamsters immunized with the multisubunit vaccine showed 60% survival following the challenge by 20× LD50 of Leptospira interrogans serovar Pomona. No significant difference in survival rate and pathological findings of target organs was observed after vaccinations with multisubunit or mono-LigAc vaccines. However, the multisubunit vaccine significantly reduced leptospiral burden in surviving hamsters in comparison with the monosubunit vaccines. Therefore, the multisubunit vaccine conferred partial protection and reduced renal colonization against virulence Leptospira infection in hamsters. Our multisubunit formulation could represent a promising vaccine against leptospirosis.
Collapse
Affiliation(s)
- Teerasit Techawiwattanaboon
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand
- Chula Vaccine Research Center (Chula VRC), Center of Excellence in Vaccine Research and Development, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand
| | | | - Tanapat Palaga
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Alain Jacquet
- Chula Vaccine Research Center (Chula VRC), Center of Excellence in Vaccine Research and Development, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand
| | - Nicolas Collin
- Vaccine Formulation Laboratory (VFL), University of Lausanne, 1066 Epalinges, Switzerland
| | - Noppadon Sangjun
- Armed Force Research Institute of Medical Sciences (AFRIMS), Ratchathewi, Bangkok 10400, Thailand
| | - Pat Komanee
- Armed Force Research Institute of Medical Sciences (AFRIMS), Ratchathewi, Bangkok 10400, Thailand
| | - Surapon Piboonpocanun
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Kanitha Patarakul
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand.
- Chula Vaccine Research Center (Chula VRC), Center of Excellence in Vaccine Research and Development, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand.
| |
Collapse
|
30
|
Teixeira AF, Fernandes LG, Cavenague MF, Takahashi MB, Santos JC, Passalia FJ, Daroz BB, Kochi LT, Vieira ML, Nascimento AL. Adjuvanted leptospiral vaccines: Challenges and future development of new leptospirosis vaccines. Vaccine 2019; 37:3961-3973. [DOI: 10.1016/j.vaccine.2019.05.087] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/16/2019] [Accepted: 05/21/2019] [Indexed: 12/26/2022]
|
31
|
da Rosa MC, Martins G, Rocha BR, Correia L, Ferronato G, Lilenbaum W, Dellagostin OA. Assessment of the immunogenicity of the leptospiral LipL32, LigAni, and LigBrep recombinant proteins in the sheep model. Comp Immunol Microbiol Infect Dis 2019; 65:176-180. [PMID: 31300110 DOI: 10.1016/j.cimid.2019.05.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 05/06/2019] [Accepted: 05/07/2019] [Indexed: 12/11/2022]
Abstract
Veterinary leptospirosis vaccines are composed of bacterins and present limitations, for example, the need for bacteriological culture and serovar-dependent immunity. Recombinant antigens represent a promising alternative. LigAni, LigBrep, and LipL32 proteins have been shown to promote a protective immune response against the homologous challenge in hamsters. Therefore, the next step is to evaluate the immunological properties of these immunogens in the actual hosts, as ruminants, which has never been performed before. The objective of this study was to evaluate the immunogenicity and potential adverse effects of the recombinant proteins LigAni, LigBrep, and LipL32 in the ovine model. For this, 16 Santa Inês sheep were allocated into three groups: two experimental (Groups A and B) and one control group (Group C). Group A was inoculated with a formulation containing the recombinant proteins in combination with the aluminum hydroxide adjuvant; Group B was inoculated with a formulation containing the recombinant proteins in combination with the Montanide adjuvant; and Group C was inoculated with adjuvants only. The results revealed that formulations containing the recombinant proteins induced total IgG seroconversion and led to a significant increase in antibody titers in the sheep model. Besides, there were no clinical changes or adverse effects. Thus, LigAni, LigBrep, and LipL32 proteins elicited a significant humoral immune response with elevated serum IgG levels, demonstrating that they possess the immunogenic and safety characteristics necessary to sustain their potential use as leptospirosis vaccines in the ruminant model.
Collapse
Affiliation(s)
- Matheus Costa da Rosa
- Centro de Desenvolvimento Tecnológico, Núcleo de Biotecnologia Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Gabriel Martins
- Laboratório de Bacteriologia Veterinária, Departamento de Microbiologia e Parasitologia, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
| | - Bruno Ribeiro Rocha
- Laboratório de Bacteriologia Veterinária, Departamento de Microbiologia e Parasitologia, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
| | - Lucas Correia
- Laboratório de Bacteriologia Veterinária, Departamento de Microbiologia e Parasitologia, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
| | - Giuliana Ferronato
- Centro de Desenvolvimento Tecnológico, Núcleo de Biotecnologia Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Walter Lilenbaum
- Laboratório de Bacteriologia Veterinária, Departamento de Microbiologia e Parasitologia, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
| | - Odir Antônio Dellagostin
- Centro de Desenvolvimento Tecnológico, Núcleo de Biotecnologia Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brazil.
| |
Collapse
|
32
|
da Cunha CEP, Bettin EB, Bakry AFAAY, Seixas Neto ACP, Amaral MG, Dellagostin OA. Evaluation of different strategies to promote a protective immune response against leptospirosis using a recombinant LigA and LigB chimera. Vaccine 2019; 37:1844-1852. [PMID: 30826147 DOI: 10.1016/j.vaccine.2019.02.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 01/30/2019] [Accepted: 02/03/2019] [Indexed: 11/17/2022]
Abstract
Leptospirosis is a zoonosis of worldwide distribution, caused by infection with pathogenic Leptospira species. The vaccines that are currently available are bacterins, with limited human use, that confer short-term, serovar-specific immunity. Lig proteins are considered to be the best vaccine candidates to date. Here, we aimed to construct a recombinant Lig chimera (LC) comprised of LigAni and LigBrep fragments, and to evaluate it as subunit or DNA vaccine using different administration strategies. Vaccines were formulated with 50 µg of recombinant LC associated with different adjuvants or with 100 µg of pTARGET/LC. Four-week-old hamsters received two doses of vaccine with different strategies and were challenged with 5 × DL50Leptospira interrogans serovar Copenhageni strain Fiocruz L1-130. The immune response generated by Lig chimera conferred 100% protection to hamsters treated with at least one dose of recombinant LC. Despite the high levels of antibodies that vaccinated animals produced, a sterilizing immunity was not achieved. The lack of a sterilizing immunity could indicate the importance of a mixed humoral and cellular immune response. The present study generated insights that will be useful in the future development of improved subunit vaccines against leptospirosis.
Collapse
Affiliation(s)
| | | | | | | | - Marta Gonçalves Amaral
- Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Odir Antonio Dellagostin
- Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, Brazil.
| |
Collapse
|
33
|
Oliveira TL, Rizzi C, da Cunha CEP, Dorneles J, Seixas Neto ACP, Amaral MG, Hartwig DD, Dellagostin OA. Recombinant BCG strains expressing chimeric proteins derived from Leptospira protect hamsters against leptospirosis. Vaccine 2019; 37:776-782. [DOI: 10.1016/j.vaccine.2018.12.050] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 12/10/2018] [Accepted: 12/30/2018] [Indexed: 01/25/2023]
|
34
|
Ghazali-Bina M, Pourmand MR, Mirshafiey A, Bakhtiari R, Khaledi A, Kazemian H, Afshar D, Getso MI, Eshraghi S. Vaccine potential of LenA and LcpA proteins of Leptospira interrogans in combination with Escherichia coli heat-labile enterotoxin, B subunit (LTB). IRANIAN JOURNAL OF MICROBIOLOGY 2019; 11:39-47. [PMID: 30996830 PMCID: PMC6462271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
BACKGROUND AND OBJECTIVES Leptospirosis is a zooanthroponosis caused by the genus of Leptospira. It is an emerging public health problem due to its increasing incidence. The achievement to a vaccine that prevent from entrance of Leptospira interrogans to the deeper tissues of the host is needed. This study aimed to investigate the immunogenicity of LcpA (rLcpA) and LenA (rLenA) recombinant proteins in combination with LTB (rLTB) recombinant protein as an adjuvant against leptospiral infection in hamsters. MATERIALS AND METHODS The genes encoding these proteins were cloned into pGH cloning vector and then lenA, lcpA and ltb genes subcloned into pET-15b and pET-28a expression vectors, respectively. The hamsters were immunized with the purified recombinant proteins and challenged with Leptospira interrogans for evaluation of their survival. The antibody responses to the recombinant proteins were determined by ELISA. Then, data entered into SPSS software. Statistical Kruskal-Wallis test was used to compare the significant differences among different groups. The groups with significant differences were further analyzed by post hoc tests. The p value < 0.05 statistically was considered significant. RESULTS Immunized hamsters with rLenA-plus-rLTB, rLcpA-plus-rLTB and rLenA-plus-rLcpA-plus-rLTB proteins showed 60%, 74%, and 80% survival rates, respectively. A significant amount of interleukin-17 (IL-17), interleukin-4 (IL-4) and gamma interferon (IFNγ) cytokines were produced in immunized hamsters. CONCLUSION Based on our findings, rLcpA and rLenA proteins in combination with rLTB can protect the hamsters against L. interrogans and effectively induce a protective antibody response. Thus, these proteins can be used as an additional prophylactic tool against leptospira.
Collapse
Affiliation(s)
- Mehran Ghazali-Bina
- Department of Microbiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Pourmand
- Department of Microbiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Mirshafiey
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Ronak Bakhtiari
- Department of Microbiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Azad Khaledi
- Infectious Diseases Research Center, Kashan University of Medical Sciences, Kashan, Iran,Department of Microbiology and Immunology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamid Kazemian
- Department of Microbiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Davoud Afshar
- Department of Microbiology and Virology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Muhammad Ibrahim Getso
- Department of Medical Mycology, School of Public Health, Tehran University of Medical Sciences, Intenational College, Tehran, Iran
| | - Saeid Eshraghi
- Department of Microbiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran,Corresponding author: Saeid Eshraghi, Ph.D, Department of Microbiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran. Tel: +98 9126363134, Fax: +98 2188954913,
| |
Collapse
|
35
|
Ptak CP, Akif M, Hsieh C, Devarajan A, He P, Xu Y, Oswald RE, Chang Y. Comparative screening of recombinant antigen thermostability for improved leptospirosis vaccine design. Biotechnol Bioeng 2018; 116:260-271. [DOI: 10.1002/bit.26864] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 10/29/2018] [Accepted: 11/07/2018] [Indexed: 12/29/2022]
Affiliation(s)
- Christopher P. Ptak
- Department of Population Medicine and Diagnostic SciencesCollege of Veterinary Medicine, Cornell UniversityIthaca New York
- Department of Molecular MedicineCollege of Veterinary Medicine, Cornell UniversityIthaca New York
| | - Mohd. Akif
- Department of Population Medicine and Diagnostic SciencesCollege of Veterinary Medicine, Cornell UniversityIthaca New York
- Department of BiochemistryUniversity of HyderabadHyderabad India
| | - Ching‐Lin Hsieh
- Department of Population Medicine and Diagnostic SciencesCollege of Veterinary Medicine, Cornell UniversityIthaca New York
| | - Alex Devarajan
- Department of Molecular MedicineCollege of Veterinary Medicine, Cornell UniversityIthaca New York
| | - Ping He
- Department of Microbiology and ImmunologyInstitutes of Medical Science, Shanghai Jiao Tong University School of MedicineShanghai China
| | - Yinghua Xu
- Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug ControlBeijing China
| | - Robert E. Oswald
- Department of Molecular MedicineCollege of Veterinary Medicine, Cornell UniversityIthaca New York
| | - Yung‐Fu Chang
- Department of Population Medicine and Diagnostic SciencesCollege of Veterinary Medicine, Cornell UniversityIthaca New York
| |
Collapse
|
36
|
Evaluation of Lsa46 and Lsa77 Leptospiral Proteins for Their Immunoprotective Activities in Hamster Model of Leptospirosis. BIOMED RESEARCH INTERNATIONAL 2018; 2018:1813745. [PMID: 29984227 PMCID: PMC6015724 DOI: 10.1155/2018/1813745] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 05/13/2018] [Indexed: 11/18/2022]
Abstract
Leptospirosis is a neglected tropical disease caused by pathogenic Leptospira spp. The lack of an effective vaccine favors the increase of the disease. Currently, surface-exposed proteins are the main targets for the search of vaccine candidates. In this study, we examined whether the surface Lsa46 and Lsa77 proteins, previously identified as laminin and plasminogen binding proteins, have the capacity of inducing protection and sterilizing immunity against challenge with virulent Leptospira in hamster model. Animals were subcutaneously immunized with Lsa46, Lsa77, or a combination of both in Alum adjuvant and challenged intraperitoneally with L. interrogans serovar Kennewicki strain Pomona Fromm. Hamster immunization with Lsa46 or Lsa77 or both promoted a strong IgG response. Th2- and Th1-biased immune responses were observed when Lsa46 and Lsa77 were individually administered, respectively, as detected by the IgG1/IgG2/3 ratio. Immunized hamsters with the combined proteins induced a Th1-biased immune response. Although the immunization with Lsa46 and Lsa77 stimulated protective immunity with reduction of bacterial burden, when compared to animals individually immunized with the proteins, the data was not statistically significant. Thus, although promising, more studies are needed before the role of these proteins in stimulating sterilizing immunity in mammals is conclusively determined.
Collapse
|
37
|
Characterization of the microtranscriptome of macrophages infected with virulent, attenuated and saprophyte strains of Leptospira spp. PLoS Negl Trop Dis 2018; 12:e0006621. [PMID: 29979677 PMCID: PMC6051669 DOI: 10.1371/journal.pntd.0006621] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 07/18/2018] [Accepted: 06/19/2018] [Indexed: 01/18/2023] Open
Abstract
Leptospirosis is a bacterial zoonosis, caused by Leptospira spp., that leads to significant morbidity and mortality worldwide. Despite considerable advances, much is yet to be discovered about disease pathogenicity. The influence of epigenetic mechanisms, particularly RNA-mediated post-transcriptional regulation of host immune response has been described following a variety of bacterial infections. The current study examined the microtranscriptome of macrophages J774A.1 following an 8h infection with virulent, attenuated and saprophyte strains of Leptospira. Microarray analysis revealed that 29 miRNAs were misregulated following leptospiral infection compared to control macrophages in a strain and virulence-specific manner. Pathway analysis for targets of these differentially expressed miRNAs suggests that several processes involved in immune response could be regulated by miRNAs. Our data provides the first evidence that host miRNAs are regulated by Leptospira infection in macrophages. A number of the identified miRNA targets participate in key immune response processes. We suggest that post-transcriptional regulation by miRNAs may play a role in host response to infection in leptospirosis. Leptospirosis is a zoonotic disease, distributed worldwide, affecting millions of people each year, and leading to sixty thousand deaths per year. These bacteria are found in soil and water and are eliminated by the urine of rodents, their natural reservoir. Through skin contact, bacteria can be acquired, infecting the host. Infection process in leptospirosis is not completely understood and here we add another layer of disease regulation. Recent studies have shown that pathogens can modulate host response. Our current study examined the expression of microRNAs in murine macrophages following an 8h infection with virulent, attenuated and saprophyte strains of Leptospira. This study provides the first evidence that these post-transcriptional regulatory molecules, microRNAs, are modulated in macrophages in a species and virulence-specific manner, following infection with different strains of Leptospira spp. These microRNAs are involved in the regulation of inflammatory and antimicrobial responses in the host and could lead to the identification of biomarkers or therapeutic targets for this disease.
Collapse
|
38
|
Lata KS, Kumar S, Vaghasia V, Sharma P, Bhairappanvar SB, Soni S, Das J. Exploring Leptospiral proteomes to identify potential candidates for vaccine design against Leptospirosis using an immunoinformatics approach. Sci Rep 2018; 8:6935. [PMID: 29720698 PMCID: PMC5932004 DOI: 10.1038/s41598-018-25281-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 04/18/2018] [Indexed: 01/12/2023] Open
Abstract
Leptospirosis is the most widespread zoonotic disease, estimated to cause severe infection in more than one million people each year, particularly in developing countries of tropical areas. Several factors such as variable and nonspecific clinical manifestation, existence of large number of serovars and asymptomatic hosts spreading infection, poor sanitation and lack of an effective vaccine make prophylaxis difficult. Consequently, there is an urgent need to develop an effective vaccine to halt its spread all over the world. In this study, an immunoinformatics approach was employed to identify the most vital and effective immunogenic protein from the proteome of Leptospira interrogans serovar Copenhageni strain L1-130 that may be suitable to stimulate a significant immune response aiding in the development of peptide vaccine against leptospirosis. Both B-cell and T-cell (Helper T-lymphocyte (HTL) and cytotoxic T lymphocyte (CTL)) epitopes were predicted for the conserved and most immunogenic outer membrane lipoprotein. Further, the binding interaction of CTL epitopes with Major Histocompatibility Complex class I (MHC-I) was evaluated using docking techniques. A Molecular Dynamics Simulation study was also performed to evaluate the stability of the resulting epitope-MHC-I complexes. Overall, this study provides novel vaccine candidates and may prompt further development of vaccines against leptospirosis.
Collapse
Affiliation(s)
- Kumari Snehkant Lata
- Gujarat Institute of Bioinformatics, Gujarat State Biotechnology Mission, Department of Science & Technology, Government of Gujarat, Gandhinagar, 382011, India.,Gujarat Biotechnology Research Centre (GBRC), Department of Science & Technology, Government of Gujarat, Gandhinagar, 382011, India
| | - Swapnil Kumar
- Gujarat Institute of Bioinformatics, Gujarat State Biotechnology Mission, Department of Science & Technology, Government of Gujarat, Gandhinagar, 382011, India.,Gujarat Biotechnology Research Centre (GBRC), Department of Science & Technology, Government of Gujarat, Gandhinagar, 382011, India
| | - Vibhisha Vaghasia
- Gujarat Institute of Bioinformatics, Gujarat State Biotechnology Mission, Department of Science & Technology, Government of Gujarat, Gandhinagar, 382011, India.,Gujarat Biotechnology Research Centre (GBRC), Department of Science & Technology, Government of Gujarat, Gandhinagar, 382011, India
| | - Priyanka Sharma
- Gujarat Institute of Bioinformatics, Gujarat State Biotechnology Mission, Department of Science & Technology, Government of Gujarat, Gandhinagar, 382011, India.,Gujarat Biotechnology Research Centre (GBRC), Department of Science & Technology, Government of Gujarat, Gandhinagar, 382011, India
| | - Shivarudrappa B Bhairappanvar
- Gujarat Institute of Bioinformatics, Gujarat State Biotechnology Mission, Department of Science & Technology, Government of Gujarat, Gandhinagar, 382011, India.,Gujarat Biotechnology Research Centre (GBRC), Department of Science & Technology, Government of Gujarat, Gandhinagar, 382011, India
| | - Subhash Soni
- Gujarat State Biotechnology Mission, Department of Science & Technology, Government of Gujarat, Gandhinagar, 382011, India.,Gujarat Biotechnology Research Centre (GBRC), Department of Science & Technology, Government of Gujarat, Gandhinagar, 382011, India
| | - Jayashankar Das
- Gujarat State Biotechnology Mission, Department of Science & Technology, Government of Gujarat, Gandhinagar, 382011, India. .,Gujarat Biotechnology Research Centre (GBRC), Department of Science & Technology, Government of Gujarat, Gandhinagar, 382011, India.
| |
Collapse
|
39
|
Heterologous DNA prime-protein boost immunization with RecA and FliD offers cross-clade protection against leptospiral infection. Sci Rep 2018; 8:6447. [PMID: 29691454 PMCID: PMC5915591 DOI: 10.1038/s41598-018-24674-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 04/03/2018] [Indexed: 01/01/2023] Open
Abstract
The emergence of >300 serovars of Leptospira confounded the use of generalized bacterin, the whole cell lysate, as vaccines to control leptospirosis. Because of substantial genetic and geographic heterogeneity among circulating serovars, one vaccine strain per serovar cannot be efficacious against all the serovars. We have performed heterologous DNA prime-protein boost vaccination challenge studies in hamsters using in vivo expressed, leptospiral recombinase A (RecA) and flagellar hook associated protein (FliD). We prepared the monovalent recombinant protein, plasmid DNA, and DNA prime protein boost adjuvant vaccines. The whole cell bacterin served as a control. Our data show that (i) RecA and FliD have multiple immunogenic B and T-cell epitopes with highly conserved domains among most prevalent pathogenic Leptospira spp., (ii) humoral and cell mediated immune responses were induced remarkably, (iii) provides significant protection against homologous (Autumnalis strain N2) and cross-clade heterologous (Canicola strain PAI-1) challenge infection for the heterologous prime-protein boost (∼91–100%) and, the DNA vaccine (∼75–83%). Recombinant protein vaccine shows only partial protection (∼58–66%), (iv) RecA prime-protein boost vaccine shows sterilizing immunity, with heterologous protection. This RecA/FliD prime-protein boost strategy holds potential for vaccination against animal leptospirosis and for a better control of zoonotic transmission.
Collapse
|
40
|
Oliveira TL, Schuch RA, Inda GR, Roloff BC, Neto ACPS, Amaral M, Dellagostin OA, Hartwig DD. LemA and Erp Y-like recombinant proteins from Leptospira interrogans protect hamsters from challenge using AddaVax™ as adjuvant. Vaccine 2018; 36:2574-2580. [PMID: 29625765 DOI: 10.1016/j.vaccine.2018.03.078] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 03/24/2018] [Accepted: 03/28/2018] [Indexed: 11/18/2022]
Abstract
BACKGROUND Recombinant subunit vaccines have been extensively evaluated as promising alternatives against leptospirosis. Here, we evaluated two proteins in formulations containing the adjuvant AddaVax™ as vaccine candidates for prevention and control of leptospirosis. METHODS Recombinant proteins rErp Y-like and rLemA were characterized by ELISA to assess their ability to bind extracellular matrix (ECM) components and fibrinogen. Groups of eight hamsters were immunized intramuscularly with rErp Y-like or rLemA mixed with a squalene-based adjuvant (AddaVax), and then vaccine efficacy was determined in terms of protection against a lethal challenge. The humoral immune response was determined by ELISA, and the evidence of sub-lethal infection was evaluated by histopathology and kidney culture. RESULTS rLemA protein binds laminin, fibrinogen, and collagen type IV, while rErp Y-like interacts with fibrinogen. Significant protection was achieved for rLemA and rErp Y-like vaccines, which showed 87.5% and 62.5% survivals, respectively. On day 28, the humoral immune response was significantly greater in the vaccine groups as compared to that in the control group, and the response was predominantly based on IgG2/3. The surviving animals showed negative results in culture isolation but presented with tissue lesions in the lungs and kidneys. CONCLUSION Cumulatively, our findings suggest that LemA and Erp Y-like proteins act as adhesins and are able to protect against mortality, but not against tissue lesions. Moreover, AddaVax is a novel adjuvant with potential for improving the immunogenicity of leptospiral vaccines.
Collapse
Affiliation(s)
- Thaís Larré Oliveira
- Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Rodrigo Andrade Schuch
- Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Guilherme Roig Inda
- Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Bárbara Couto Roloff
- Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Amilton Clair Pinto Seixas Neto
- Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Marta Amaral
- Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Odir Antonio Dellagostin
- Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Daiane Drawanz Hartwig
- Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil; Departamento de Microbiologia e Parasitologia, Instituto de Biologia, Universidade Federal de Pelotas, Pelotas, RS, Brazil.
| |
Collapse
|
41
|
Recent findings related to immune responses against leptospirosis and novel strategies to prevent infection. Microbes Infect 2018; 20:578-588. [PMID: 29452258 DOI: 10.1016/j.micinf.2018.02.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 02/02/2018] [Accepted: 02/06/2018] [Indexed: 12/11/2022]
Abstract
What are the new approaches and emerging ideas to prevent leptospirosis, a neglected bacterial re-emerging zoonotic disease? How do Leptospira interrogans escape the host defenses? We aim here to review and discuss the most recent literature that provides some answers to these questions, in particular data related to a better understanding of adaptive and innate immunity towards leptospires, and design of vaccines. This is an opinion paper, not a comprehensive review. We will try to highlight the new strategies and technologies boosting the search for drugs and vaccines. We will also address the bottlenecks and difficulties impairing the search for efficient vaccines and the many gaps in our knowledge of immunity against leptospirosis. Finally, we aim to delineate how Leptospira spp. escape the innate immune responses of Toll-Like receptors (TLR) and Nod-Like receptors (NLR). The rational use of TLR and NLR agonists as adjuvants could be key to design future vaccines against pathogenic leptospires.
Collapse
|
42
|
Santos JC, Nascimento ALT. Chimeras could help in the fight against leptospirosis. eLife 2018; 7:34087. [PMID: 29350615 PMCID: PMC5774897 DOI: 10.7554/elife.34087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 01/16/2018] [Indexed: 01/07/2023] Open
Abstract
Understanding the structure of an antigen can guide the design of improved antigen-based vaccines.
Collapse
Affiliation(s)
- Jademilson C Santos
- Laboratório Especial de Desenvolvimento de Vacinas-Centro de Biotecnologia, Instituto Butantan, São Paulo, Brazil
| | - Ana Lucia To Nascimento
- Laboratório Especial de Desenvolvimento de Vacinas-Centro de Biotecnologia, Instituto Butantan, São Paulo, Brazil
| |
Collapse
|
43
|
Pawar AD, Verma D, Sankeshi V, Raman R, Sharma Y. Strategizing for the purification of a multiple Big domain-containing protein in native conformation is worth it! Protein Expr Purif 2017; 145:25-31. [PMID: 29287899 DOI: 10.1016/j.pep.2017.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 12/15/2017] [Accepted: 12/21/2017] [Indexed: 11/30/2022]
Abstract
The reliability and accuracy of conformational or functional studies of any novel multidomain protein rely on the quality of protein. The bottleneck in structural studies with the complete Big_2 domain containing proteins like LigA, LigB or MpIBP is usually their large molecular size owing to their multidomain (>10-12 domains) architectures. Interestingly, a soil bacterium Paenarthrobacter aurescens TC1, harbours a gene that encodes a protein comprising of four predicted Big_2 domains. We report here the expression and purification of this novel, multiple Big_2 domains containing protein, Arig of P. aurescens TC1. During overexpression, recombinant Arig formed inclusion bodies and hence was purified by on-column refolding. The refolded Arig revealed a β-sheet conformation and a well-resolved near-UV CD spectra but did not exhibit a well-dispersed 2D [1H-15N]-HSQC NMR spectrum, as expected for a well-folded β-sheet native conformation. We, therefore, further optimized Arig overexpression in the soluble fraction by including osmolytes. CD spectroscopic and 2D [1H-15N]-HSQC analyses consolidate that Arig purified alternatively has a well-folded native conformation. While we describe different strategies for purification of Arig, we also present the spectral properties of this novel all-β-sheet protein.
Collapse
Affiliation(s)
- Asmita D Pawar
- CSIR-Centre for Cellular and Molecular Biology (CCMB), Uppal Road, Hyderabad 500 007, India.
| | - Deepshikha Verma
- Department of Chemical Sciences, Tata Institute of Fundamental Research, 1, Homi Bhabha Road, Colaba, Mumbai, 400005, India
| | - Venu Sankeshi
- CSIR-Centre for Cellular and Molecular Biology (CCMB), Uppal Road, Hyderabad 500 007, India
| | - Rajeev Raman
- CSIR-Centre for Cellular and Molecular Biology (CCMB), Uppal Road, Hyderabad 500 007, India
| | - Yogendra Sharma
- CSIR-Centre for Cellular and Molecular Biology (CCMB), Uppal Road, Hyderabad 500 007, India; Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| |
Collapse
|
44
|
Abstract
The present incidence of leptospirosis in China is significantly lower than past rates, although small localized outbreaks continue to occur in epidemic regions. Improvements in sanitation, as well as vaccination of high-risk populations, have played crucial roles in reducing the disease burden. Several types of human leptospirosis vaccines have been developed, including inactivated whole-cell, outer-envelope, and recombinant vaccines. Of these, only a multivalent inactivated leptospirosis vaccine is available in China, which was added to the Chinese Expanded Program on Immunization in 2007. However, this vaccine elicits serogroup-specific immunity, and serogroup epidemiology should continue to be monitored to enhance vaccine coverage and distribution. On the other hand, the efficiency of the inactivated vaccine should be further improved by optimizing the formulation, and by expanding the target population. More importantly, additional investments should be made to develop universal recombinant vaccines.
Collapse
Affiliation(s)
- Yinghua Xu
- a Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control, Bio-pharmaceutical Industrial Base , Daxing District, Beijing , People's Republic of China
| | - Qiang Ye
- a Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control, Bio-pharmaceutical Industrial Base , Daxing District, Beijing , People's Republic of China
| |
Collapse
|
45
|
Hsieh CL, Ptak CP, Tseng A, Suguiura IMDS, McDonough SP, Sritrakul T, Li T, Lin YP, Gillilan RE, Oswald RE, Chang YF. Extended low-resolution structure of a Leptospira antigen offers high bactericidal antibody accessibility amenable to vaccine design. eLife 2017; 6:e30051. [PMID: 29210669 PMCID: PMC5749957 DOI: 10.7554/elife.30051] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 12/02/2017] [Indexed: 01/16/2023] Open
Abstract
Pathogens rely on proteins embedded on their surface to perform tasks essential for host infection. These obligatory structures exposed to the host immune system provide important targets for rational vaccine design. Here, we use a systematically designed series of multi-domain constructs in combination with small angle X-ray scattering (SAXS) to determine the structure of the main immunoreactive region from a major antigen from Leptospira interrogans, LigB. An anti-LigB monoclonal antibody library exhibits cell binding and bactericidal activity with extensive domain coverage complementing the elongated architecture observed in the SAXS structure. Combining antigenic motifs in a single-domain chimeric immunoglobulin-like fold generated a vaccine that greatly enhances leptospiral protection over vaccination with single parent domains. Our study demonstrates how understanding an antigen's structure and antibody accessible surfaces can guide the design and engineering of improved recombinant antigen-based vaccines.
Collapse
Affiliation(s)
- Ching-Lin Hsieh
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary MedicineCornell UniversityIthacaUnited States
| | - Christopher P Ptak
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary MedicineCornell UniversityIthacaUnited States
- Department of Molecular Medicine, College of Veterinary MedicineCornell UniversityIthacaUnited States
| | - Andrew Tseng
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary MedicineCornell UniversityIthacaUnited States
| | | | - Sean P McDonough
- Department of Biomedical Sciences, College of Veterinary MedicineCornell UniversityIthacaUnited States
| | - Tepyuda Sritrakul
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary MedicineCornell UniversityIthacaUnited States
| | - Ting Li
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary MedicineCornell UniversityIthacaUnited States
| | - Yi-Pin Lin
- Division of Infectious DiseaseWadsworth Center, New York State Department of HealthAlbanyUnited States
| | - Richard E Gillilan
- Macromolecular Diffraction Facility at CHESS (MacCHESS)Cornell UniversityIthacaUnited States
| | - Robert E Oswald
- Department of Molecular Medicine, College of Veterinary MedicineCornell UniversityIthacaUnited States
| | - Yung-Fu Chang
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary MedicineCornell UniversityIthacaUnited States
| |
Collapse
|
46
|
Evangelista KV, Lourdault K, Matsunaga J, Haake DA. Immunoprotective properties of recombinant LigA and LigB in a hamster model of acute leptospirosis. PLoS One 2017; 12:e0180004. [PMID: 28704385 PMCID: PMC5509140 DOI: 10.1371/journal.pone.0180004] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 06/05/2017] [Indexed: 12/05/2022] Open
Abstract
Leptospirosis is the most widespread zoonosis and is considered a major public health problem worldwide. Currently, there is no widely available vaccine against leptospirosis for use in humans. A purified, recombinant subunit vaccine that includes the last six immunoglobulin-like (Ig-like) domains of the leptospiral protein LigA (LigA7'-13) protects against lethal infection but not renal colonization after challenge by Leptospira interrogans. In this study, we examined whether the addition of the first seven Ig-like domains of LigB (LigB0-7) to LigA7'-13, can enhance immune protection and confer sterilizing immunity in the Golden Syrian hamster model of acute leptospirosis. Hamsters were subcutaneously immunized with soluble, recombinant LigA7'-13, LigB0-7, or a combination of LigA7'-13 and LigB0-7 in Freund's adjuvant. Immunization with Lig proteins generated a strong humoral immune response with high titers of IgG that recognized homologous protein, and cross-reacted with the heterologous protein as assessed by ELISA. LigA7'-13 alone, or in combination with LigB0-7, protected all hamsters from intraperitoneal challenge with a lethal dose of L. interrogans serovar Copenhageni strain Fiocruz L1-130. However, bacteria were recovered from the kidneys of all animals. Of eight animals immunized with LigB0-7, only three survived Leptospira challenge, one of which lacked renal colonization and had antibodies to native LigB by immunoblot. In addition, sera from two of the three LigB0-7 immunized survivors cross-reacted with LigA11-13, a region of LigA that is sufficient for protection. In summary, we confirmed that LigA7'-13 protects hamsters from death but not infection, and immunization with LigB0-7, either alone or in combination with LigA7'-13, did not confer sterilizing immunity.
Collapse
Affiliation(s)
- Karen V. Evangelista
- Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California, United States of America
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Kristel Lourdault
- Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California, United States of America
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - James Matsunaga
- Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California, United States of America
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - David A. Haake
- Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California, United States of America
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
- Department of Urology, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
- Department of Microbiology, Immunology and Molecular Genetics, UCLA, Los Angeles, California, United States of America
| |
Collapse
|
47
|
Grassmann AA, Kremer FS, Dos Santos JC, Souza JD, Pinto LDS, McBride AJA. Discovery of Novel Leptospirosis Vaccine Candidates Using Reverse and Structural Vaccinology. Front Immunol 2017; 8:463. [PMID: 28496441 PMCID: PMC5406399 DOI: 10.3389/fimmu.2017.00463] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Accepted: 04/04/2017] [Indexed: 12/03/2022] Open
Abstract
Leptospira spp. are diderm (two membranes) bacteria that infect mammals causing leptospirosis, a public health problem with global implications. Thousands of people die every year due to leptospirosis, especially in developing countries with tropical climates. Prophylaxis is difficult due to multiple factors, including the large number of asymptomatic hosts that transmit the bacteria, poor sanitation, increasing numbers of slum dwellers, and the lack of an effective vaccine. Several leptospiral recombinant antigens were evaluated as a replacement for the inactivated (bacterin) vaccine; however, success has been limited. A prospective vaccine candidate is likely to be a surface-related protein that can stimulate the host immune response to clear leptospires from blood and organs. In this study, a comprehensive bioinformatics approach based on reverse and structural vaccinology was applied toward the discovery of novel leptospiral vaccine candidates. The Leptospira interrogans serovar Copenhageni strain L1-130 genome was mined in silico for the enhanced identification of conserved β-barrel (βb) transmembrane proteins and outer membrane (OM) lipoproteins. Orthologs of the prospective vaccine candidates were screened in the genomes of 20 additional Leptospira spp. Three-dimensional structural models, with a high degree of confidence, were created for each of the surface-exposed proteins. Major histocompatibility complex II (MHC-II) epitopes were identified, and their locations were mapped on the structural models. A total of 18 βb transmembrane proteins and 8 OM lipoproteins were identified. These proteins were conserved among the pathogenic Leptospira spp. and were predicted to have epitopes for several variants of MHC-II receptors. A structural and functional analysis of the sequence of these surface proteins demonstrated that most βb transmembrane proteins seem to be TonB-dependent receptors associated with transportation. Other proteins identified included, e.g., TolC efflux pump proteins, a BamA-like OM component of the βb transmembrane protein assembly machinery, and the LptD-like LPS assembly protein. The structural mapping of the immunodominant epitopes identified the location of conserved, surface-exposed, immunogenic regions for each vaccine candidate. The proteins identified in this study are currently being evaluated for experimental evidence for their involvement in virulence, disease pathogenesis, and physiology, in addition to vaccine development.
Collapse
Affiliation(s)
- André Alex Grassmann
- Biotechnology Unit, Technological Development Center, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Frederico Schmitt Kremer
- Biotechnology Unit, Technological Development Center, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Júlia Cougo Dos Santos
- Biotechnology Unit, Technological Development Center, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Jéssica Dias Souza
- Biotechnology Unit, Technological Development Center, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Luciano da Silva Pinto
- Biotechnology Unit, Technological Development Center, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Alan John Alexander McBride
- Biotechnology Unit, Technological Development Center, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil.,Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Ministry of Health, Salvador, Bahia, Brazil
| |
Collapse
|
48
|
Control of bovine leptospirosis: Aspects for consideration in a tropical environment. Res Vet Sci 2017; 112:156-160. [PMID: 28391058 DOI: 10.1016/j.rvsc.2017.03.021] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 03/27/2017] [Accepted: 03/31/2017] [Indexed: 11/23/2022]
Abstract
Due to the complex and dynamic epidemiology of leptospirosis on livestock, control is still controversial and frustrating. In this context, this paper discusses the main challenges and perspectives for the control of bovine leptospirosis, particularly under tropical conditions. In order to reduce the effects of the disease in cattle, it has been proposed that the control should integrate the trinomial antibiotic therapy (mainly streptomycin); vaccination (whole-cell bacterins); and environmental management. This last element should be carefully considered in tropics. Despite the enormous economic impact of the disease, mainly on its chronic and silent reproductive presentation, research on control programs is not proportional. Conversely, the number of studies regarding the new vaccine strategies, such as recombinant antigens has been increasing and should be encouraged.
Collapse
|
49
|
Abstract
Lipoproteins are lipid-modified proteins that dominate the spirochetal proteome. While found in all bacteria, spirochetal lipoproteins have unique features and play critical roles in spirochete biology. For this reason, considerable effort has been devoted to determining how the lipoproteome is generated. Essential features of the structural elements of lipoproteins are now understood with greater clarity, enabling greater confidence in identification of lipoproteins from genomic sequences. The journey from the ribosome to the outer membrane, and in some cases, to the cellular surface has been defined, including secretion, lipidation, sorting, and export across the outer membrane. Given their abundance and importance, it is not surprising that spirochetes have developed a number of strategies for regulating the spatiotemporal expression of lipoproteins. In some cases, lipoprotein expression is tied to various environmental cues, while in other cases, it is linked to growth rate. This regulation enables spirochetes to express certain lipoproteins at high levels in one phase of the spirochete lifecycle, while dramatically downregulating the same lipoproteins in other phases. The mammalian host has developed specialized mechanisms for recognizing lipoproteins and triggering an immune response. Evasion of that immune response is essential for spirochete persistence. For this reason, spirochetes have developed mechanisms for altering lipoproteins. Lipoproteins recognized by antibodies formed during infection are key serodiagnostic antigens. In addition, lipoprotein vaccines have been developed for generating an immune response to control or prevent a spirochete infection. This chapter summarizes our current understanding of lipoproteins in interactions of spirochetes with their hosts.
Collapse
|