1
|
Silva EO, Cruz-Borges PF, Jensen BB, Santana RB, Pinheiro FG, Moura HSD, Porto E, Malheiro A, Costa AG, Barcellos JFM, Espir TT, Franco AMR. Immunoregulatory effects of soluble antigens of Leishmania sp. in human lymphocytes in vitro. BRAZ J BIOL 2024; 84:e284001. [PMID: 39319928 DOI: 10.1590/1519-6984.284001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/26/2024] [Indexed: 09/26/2024] Open
Abstract
The clinical manifestations of cutaneous leishmaniasis (CL) depend not only on the infecting species involved, but also on the immune response of the individual. Although not yet well understood in humans, parasite survival and persistence are related to the cytokine profile and T cell proliferation, with the Th1 profile being related to cure, and the Th2 profile to disease progression. Considering the need for studies focused on the species with the highest circulation in the state of Amazonas, this study aimed to analyze the immunoregulation stimulated by soluble antigens (SLAs) of Leishmania (L.) amazonensis and Leishmania (V.) guyanensis in human lymphocytes in vitro, in order to understand the immune response of patients with CL. Lymphoproliferation was evaluated against stimuli of SLAs from L. amazonensis (100 µg/mL), SLAs from L. guyanensis (100 µg/mL) and phytohemagglutinin (10 µg/mL) using a BrdU Cell Proliferation ELISA kit after 72 h of incubation. Quantification of the cytokines IL-1b, IL-6, IL-8, IL-10, IL-12 and TNF was performed using the BD™ cytometric bead array human Th1/Th2/Th17 cytokine kit. Our results demonstrated that soluble antigens from L. amazonensis and L. guyanensis stimulated the lymphoproliferation of PBMCs from patients primo-infected with CL. Among the cytokines dosed, the highest concentrations were of IL-6 and IL-8, thus demonstrating that the soluble antigens evaluated are capable of inducing regulatory mechanisms.
Collapse
Affiliation(s)
- E O Silva
- Instituto Nacional de Pesquisas da Amazônia, Manaus, AM, Brasil
| | - P F Cruz-Borges
- Instituto Nacional de Pesquisas da Amazônia, Manaus, AM, Brasil
| | - B B Jensen
- Instituto Nacional de Pesquisas da Amazônia, Manaus, AM, Brasil
| | - R B Santana
- Universidade Federal do Amazonas, Programa de Pós-Graduação em Imunologia, Manaus, AM, Brasil
| | - F G Pinheiro
- Instituto Nacional de Pesquisas da Amazônia, Manaus, AM, Brasil
| | - H S D Moura
- Universidade de São Paulo, Escola de Enfermagem de Ribeirão Preto, Ribeirão Preto, SP, Brasil
| | - E Porto
- Instituto de Educação Particular Brasileiro, Polo Pocinhos, PB, Brasil
| | - A Malheiro
- Universidade Federal do Amazonas, Programa de Pós-Graduação em Imunologia, Manaus, AM, Brasil
- Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas, Manaus, AM, Brasil
| | - A G Costa
- Universidade Federal do Amazonas, Programa de Pós-Graduação em Imunologia, Manaus, AM, Brasil
- Universidade Federal do Amazonas, Programa de Pós-Graduação em Biotecnologia, Manaus, AM, Brasil
| | - J F M Barcellos
- Universidade Federal do Amazonas, Instituto de Ciências Biológicas, Departamento de Morfologia, Manaus, AM, Brasil
| | - T T Espir
- Universidade Federal do Amazonas, Programa de Pós-Graduação em Imunologia Básica e Aplicada, Manaus, AM, Brasil
| | - A M R Franco
- Instituto Nacional de Pesquisas da Amazônia, Manaus, AM, Brasil
| |
Collapse
|
2
|
Mansfield CR, Chirgwin ME, Derbyshire ER. Labeling strategies to track protozoan parasite proteome dynamics. Curr Opin Chem Biol 2023; 75:102316. [PMID: 37192562 PMCID: PMC10895934 DOI: 10.1016/j.cbpa.2023.102316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/07/2023] [Accepted: 04/10/2023] [Indexed: 05/18/2023]
Abstract
Intracellular protozoan parasites are responsible for wide-spread infectious diseases. These unicellular pathogens have complex, multi-host life cycles, which present challenges for investigating their basic biology and for discovering vulnerabilities that could be exploited for disease control. Throughout development, parasite proteomes are dynamic and support stage-specific functions, but detection of these proteins is often technically challenging and complicated by the abundance of host proteins. Thus, to elucidate key parasite processes and host-pathogen interactions, labeling strategies are required to track pathogen proteins during infection. Herein, we discuss the application of bioorthogonal non-canonical amino acid tagging and proximity-dependent labeling to broadly study protozoan parasites and include outlooks for future applications to study Plasmodium, the causative agent of malaria. We highlight the potential of these technologies to provide spatiotemporal labeling with selective parasite protein enrichment, which could enable previously unattainable insight into the biology of elusive developmental stages.
Collapse
Affiliation(s)
| | | | - Emily R Derbyshire
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA; Department of Chemistry, Duke University, Durham, NC, USA.
| |
Collapse
|
3
|
Liu C, Wong N, Watanabe E, Hou W, Biral L, DeCastro J, Mehdipour M, Aran K, Conboy M, Conboy I. Mechanisms and minimization of false discovery of metabolic bio-orthogonal non-canonical amino acid proteomics. Rejuvenation Res 2022; 25:95-109. [PMID: 35323026 PMCID: PMC9063144 DOI: 10.1089/rej.2022.0019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Metabolic proteomics has been widely used to characterize dynamic protein networks in many areas of biomedicine, including in the arena of tissue aging and rejuvenation. Bio-orthogonal non-canonical amino acid tagging (BONCAT) is based on mutant methionine-tRNA synthases (MetRS) that incorporates metabolic tags, e.g., azido-nor leucine, ANL, into newly synthesized proteins. BONCAT revolutionizes metabolic proteomics, because mutant MetRS transgene allows one to identify cell type specific proteomes in mixed biological environments. This is not possible with other methods, such as stable isotope labeling with amino acids in cell culture (SILAC), isobaric tags for relative and absolute quantitation (iTRAQ) and tandem mass tags (TMT). At the same time, an inherent weakness of BONCAT is that after click chemistry-based enrichment, all identified proteins are assumed to have been metabolically tagged, but there is no confirmation in Mass Spectrometry data that only tagged proteins are detected. As we show here, such assumption is incorrect and accurate negative controls uncover a surprisingly high degree of false positives in BONCAT proteomics. We show not only how to reveal the false discovery and thus improve the accuracy of the analyses and conclusions but also approaches for avoiding it through minimizing non-specific detection of biotin, biotin-independent direct detection of metabolic tags, and improvement of signal to noise ratio through machine learning algorithms.
Collapse
Affiliation(s)
- Chao Liu
- University of California Berkeley, 1438, Stanley Hall B104, Berkeley, Berkeley, California, United States, 94720;
| | - Nathan Wong
- University of California Berkeley, 1438, Berkeley, California, United States;
| | - Etsuko Watanabe
- University of California Berkeley, 1438, Berkeley, California, United States;
| | - William Hou
- University of California Berkeley, 1438, Berkeley, California, United States;
| | - Leonardo Biral
- University of California Berkeley, 1438, Berkeley, California, United States;
| | - Jonalyn DeCastro
- Keck Graduate Institute, 48927, Claremont, California, United States;
| | - Melod Mehdipour
- University of California Berkeley, 1438, Berkeley, California, United States;
| | - Kiana Aran
- Keck Graduate Institute, 48927, Claremont, California, United States;
| | - Michael Conboy
- University of California Berkeley, 1438, Berkeley, California, United States;
| | - Irina Conboy
- UC Berkeley, 1438, Bioengineering and QB3, 174, Stanley Hall, Berkeley, California, United States, 94720;
| |
Collapse
|
4
|
Craig E, Calarco A, Conte R, Ambrogi V, d'Ayala GG, Alabi P, Sello JK, Cerruti P, Kima PE. Thermoresponsive Copolymer Nanovectors Improve the Bioavailability of Retrograde Inhibitors in the Treatment of Leishmania Infections. Front Cell Infect Microbiol 2021; 11:702676. [PMID: 34490142 PMCID: PMC8417477 DOI: 10.3389/fcimb.2021.702676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/09/2021] [Indexed: 11/13/2022] Open
Abstract
Clinical manifestations of leishmaniasis range from self-healing, cutaneous lesions to fatal infections of the viscera. With no preventative Leishmania vaccine available, the frontline option against leishmaniasis is chemotherapy. Unfortunately, currently available anti-Leishmania drugs face several obstacles, including toxicity that limits dosing and emergent drug resistant strains in endemic regions. It is, therefore, imperative that more effective drug formulations with decreased toxicity profiles are developed. Previous studies had shown that 2-(((5-Methyl-2-thienyl)methylene)amino)-N-phenylbenzamide (also called Retro-2) has efficacy against Leishmania infections. Structure–activity relationship (SAR) analogs of Retro-2, using the dihydroquinazolinone (DHQZ) base structure, were subsequently described that are more efficacious than Retro-2. However, considering the hydrophobic nature of these compounds that limits their solubility and uptake, the current studies were initiated to determine whether the solubility of Retro-2 and its SAR analogs could be enhanced through encapsulation in amphiphilic polymer nanoparticles. We evaluated encapsulation of these compounds in the amphiphilic, thermoresponsive oligo(ethylene glycol) methacrylate-co-pentafluorostyrene (PFG30) copolymer that forms nanoparticle aggregates upon heating past temperatures of 30°C. The hydrophobic tracer, coumarin 6, was used to evaluate uptake of a hydrophobic molecule into PFG30 aggregates. Mass spectrometry analysis showed considerably greater delivery of encapsulated DHQZ analogs into infected cells and more rapid shrinkage of L. amazonensis communal vacuoles. Moreover, encapsulation in PFG30 augmented the efficacy of Retro-2 and its SAR analogs to clear both L. amazonensis and L. donovani infections. These studies demonstrate that encapsulation of compounds in PFG30 is a viable approach to dramatically increase bioavailability and efficacy of anti-Leishmania compounds.
Collapse
Affiliation(s)
- Evan Craig
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, United States
| | - Anna Calarco
- Research Institute on Terrestrial Ecosystems (IRET-CNR), Napoli, Italy
| | - Raffaele Conte
- Research Institute on Terrestrial Ecosystems (IRET-CNR), Napoli, Italy
| | - Veronica Ambrogi
- Department of Chemical, Materials and Production Engineering (DICMaPI) - University of Naples Federico II, Napoli, Italy
| | | | - Philip Alabi
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, United States
| | - Jason K Sello
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, United States
| | | | - Peter E Kima
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, United States
| |
Collapse
|
5
|
Mendes B, Proaño-Bolaños C, Gadelha FR, Almeida JR, Miguel DC. Cruzioseptins, antibacterial peptides from Cruziohyla calcarifer skin, as promising leishmanicidal agents. Pathog Dis 2021; 78:5905406. [PMID: 32926094 DOI: 10.1093/femspd/ftaa053] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 09/09/2020] [Indexed: 12/27/2022] Open
Abstract
Screenings of natural products have significantly contributed to the discovery of novel leishmanicidal agents. In this study, three known cruzioseptins-antibacterial peptides from Cruziohyla calcarifer skin-were synthesized and evaluated against promastigotes and amastigotes stages of Leishmania (L.) amazonensis and L. (V.) braziliensis. EC50 ranged from 9.17 to 74.82 μM, being cruzioseptin-1 the most active and selective compound, with selectivity index > 10 for both promastigotes and amastigotes of L. (V.) braziliensis. In vitro infections incubated with cruzioseptins at 50 μM showed up to ∼86% reduction in the amastigote number. Cruzioseptins were able to destabilize the parasite's cell membrane, allowing the incorporation of a DNA-fluorescent dye. Our data also demonstrated that hydrophobicity and charge appear to be advantageous features for enhancing parasiticidal activity. Antimicrobial cruzioseptins are suitable candidates and alternative molecules that deserve further in vivo investigation focusing on the development of novel antileishmanial therapies.
Collapse
Affiliation(s)
- Bruno Mendes
- Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, Brasil. CEP 13083-862
| | - Carolina Proaño-Bolaños
- Biomolecules Discovery Group, Universidad Regional Amazónica Ikiam, Km 7 Via Muyuna, Tena, Napo, Ecuador
| | - Fernanda R Gadelha
- Departamento de Bioquímica e Biologia Tecidual, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, Brasil. CEP 13083-862
| | - José R Almeida
- Biomolecules Discovery Group, Universidad Regional Amazónica Ikiam, Km 7 Via Muyuna, Tena, Napo, Ecuador
| | - Danilo C Miguel
- Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, Brasil. CEP 13083-862
| |
Collapse
|
6
|
Pomel S, Cojean S, Pons V, Cintrat JC, Nguyen L, Vacus J, Pruvost A, Barbier J, Gillet D, Loiseau PM. An adamantamine derivative as a drug candidate for the treatment of visceral leishmaniasis. J Antimicrob Chemother 2021; 76:2640-2650. [PMID: 34212184 DOI: 10.1093/jac/dkab226] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 06/03/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND This study aimed to investigate compounds acting on the host cell machinery to impair parasite installation with the possible advantage of limiting drug resistance. The strategy therefore consisted of selecting compounds that are poorly active on the axenic parasite, but very active on the intramacrophage form of Leishmania. OBJECTIVES To identify a drug candidate from focused screening of adamantamine derivatives that can inhibit the development of Leishmania infantum in macrophages. METHODS In vitro screening was performed on a library of 142 adamantamine derivatives with axenic and intramacrophage forms of L. infantum, as well as cytotoxicity assays, allowing selection of the most promising compound. Absorption, distribution, metabolism and excretion (ADME) experiments, including pharmacokinetics and microsomal stability, were performed and finally the physicochemical stability of the compound was investigated to assess its suitability for further drug development. RESULTS VP343 was identified first in vitro, with a CC50 value of 63.7 μM and an IC50 value of 0.32 μM for L. infantum intramacrophage amastigotes and then in vivo, with a 59% reduction of the liver parasite burden after oral administration at 10 mg/kg/day for 5 days. In addition, the ADME data were compatible with moving this compound further through the antileishmanial drug candidate pipeline. CONCLUSIONS VP343 has the properties of a good drug candidate and merits further investigations.
Collapse
Affiliation(s)
- Sébastien Pomel
- Université Paris-Saclay, CNRS, BioCIS, 92290, Châtenay-Malabry, France
| | - Sandrine Cojean
- Université Paris-Saclay, CNRS, BioCIS, 92290, Châtenay-Malabry, France
| | - Valérie Pons
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SCBM, 91191, Gif-sur-Yvette, France
| | - Jean-Christophe Cintrat
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SCBM, 91191, Gif-sur-Yvette, France
| | - Laetitia Nguyen
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, 91191, Gif-sur-Yvette, France
| | - Joël Vacus
- Drugabilis, 7, Allée de Londres, 91140, Villejust, France
| | - Alain Pruvost
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, 91191, Gif-sur-Yvette, France
| | - Julien Barbier
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SIMoS, 91191, Gif-sur-Yvette, France
| | - Daniel Gillet
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SIMoS, 91191, Gif-sur-Yvette, France
| | | |
Collapse
|
7
|
The macrophage microtubule network acts as a key cellular controller of the intracellular fate of Leishmania infantum. PLoS Negl Trop Dis 2020; 14:e0008396. [PMID: 32722702 PMCID: PMC7386624 DOI: 10.1371/journal.pntd.0008396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 05/16/2020] [Indexed: 11/19/2022] Open
Abstract
The parasitophorous vacuoles (PVs) that insulate Leishmania spp. in host macrophages are vacuolar compartments wherein promastigote forms differentiate into amastigote that are the replicative form of the parasite and are also more resistant to host responses. We revisited the biogenesis of tight-fitting PVs that insulate L. infantum in promastigote-infected macrophage-like RAW 264.7 cells by time-dependent confocal laser multidimensional imaging analysis. Pharmacological disassembly of the cellular microtubule network and silencing of the dynein gene led to an impaired interaction of L. infantum-containing phagosomes with late endosomes and lysosomes, resulting in the tight-fitting parasite-containing phagosomes never transforming into mature PVs. Analysis of the shape of the L. infantum parasite within PVs, showed that factors that impair promastigote-amastigote differentiation can also result in PVs whose maturation is arrested. These findings highlight the importance of the MT-dependent interaction of L. infantum-containing phagosomes with the host macrophage endolysosomal pathway to secure the intracellular fate of the parasite. Kinetoplastid parasites of the genus Leishmania are responsible for a diverse spectrum of mammalian infectious diseases, the leishmaniases, including cutaneous, mucocutaneous, and mucosal pathologies. Infectious metacyclic promastigotes of infected female Phlebotomus sandflies are injected into the host at the site of the bite during the sandfly blood meal, after which they are internalized by host professional phagocytic neutrophils and macrophages. Leishmania infantum is an etiological agent of potentially fatal visceral pathology. This study molecularly dissects the maturation of L. infantum-containing phagosomes/parasitophorous vacuoles (PVs) in host macrophages. We reveal the requirement of vacuolar movement along macrophage microtubule tracks for the phagosome trafficking toward the endolysosomal pathway necessary for the development of the mature tight-fitting PV crucial for L. infantum survival and proliferation.
Collapse
|
8
|
Nadaes NR, Silva da Costa L, Santana RC, LaRocque-de-Freitas IF, Vivarini ÁDC, Soares DC, Wardini AB, Gazos Lopes U, Saraiva EM, Freire-de-Lima CG, Decote-Ricardo D, Pinto-da-Silva LH. DH82 Canine and RAW264.7 Murine Macrophage Cell Lines Display Distinct Activation Profiles Upon Interaction With Leishmania infantum and Leishmania amazonensis. Front Cell Infect Microbiol 2020; 10:247. [PMID: 32596164 PMCID: PMC7303514 DOI: 10.3389/fcimb.2020.00247] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 04/29/2020] [Indexed: 11/15/2022] Open
Abstract
Leishmaniasis is an anthropozoonotic disease, and dogs are considered the main urban reservoir of the parasite. Macrophages, the target cells of Leishmania sp., play an important role during infection. Although dogs have a major importance in the epidemiology of the disease, the majority of the current knowledge about Leishmania–macrophage interaction comes from murine experimental models. To assess whether the canine macrophage strain DH82 is an accurate model for the study of Leishmania interaction, we compared its infection by two species of Leishmania (Leishmania infantum and L. amazonensis) with the murine macrophage cell line (RAW264.7). Our results demonstrated that L. amazonensis survival was around 40% at 24 h of infection inside both macrophage cell lines; however, a reduction of 4.3 times in L. amazonensis infection at 48 h post-infection in RAW 264.7 macrophages was observed. The survival index of L. infantum in DH82 canine macrophages was around 3 times higher than that in RAW264.7 murine cells at 24 and 48 h post-infection; however, at 48 h a reduction in both macrophages was observed. Surprisingly at 24 h post-infection, NO and ROS production by DH82 canine cells stimulated with LPS or menadione or during Leishmania infection was minor compared to murine RAW264.7. However, basal arginase activity was higher in DH82 cells when compared to murine RAW264.7 cells. Analysis of the cytokines showed that these macrophages present a different response profile. L. infantum induced IL-12, and L. amazonensis induced IL-10 in both cell lines. However, L. infantum and L. amazonensis also induced TGF-β in RAW 264.7. CD86 and MHC expression showed that L. amazonensis modulated them in both cell lines. Conversely, the parasite load profile did not show significant difference between both macrophage cell lines after 48 h of infection, which suggests that other mechanisms of Leishmania control could be involved in DH82 cells.
Collapse
Affiliation(s)
- Natalia Rocha Nadaes
- Instituto de Veterinária, Universidade Federal Rural Do Rio de Janeiro, Seropédica, Brazil
| | - Leandro Silva da Costa
- Instituto de Bioquímica Médica Leopoldo De Meis, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Raissa Couto Santana
- Instituto de Veterinária, Universidade Federal Rural Do Rio de Janeiro, Seropédica, Brazil
| | | | | | - Deivid Costa Soares
- Instituto de Microbiologia Paulo de Góes, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Amanda Brito Wardini
- Instituto de Veterinária, Universidade Federal Rural Do Rio de Janeiro, Seropédica, Brazil
| | - Ulisses Gazos Lopes
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Elvira M Saraiva
- Instituto de Microbiologia Paulo de Góes, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Debora Decote-Ricardo
- Instituto de Veterinária, Universidade Federal Rural Do Rio de Janeiro, Seropédica, Brazil
| | | |
Collapse
|
9
|
Cojean S, Nicolas V, Lievin-Le Moal V. Key role of the macrophage microtubule network in the intracellular lifestyle of Leishmania amazonensis. Cell Microbiol 2020; 22:e13218. [PMID: 32406568 DOI: 10.1111/cmi.13218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 04/11/2020] [Accepted: 04/28/2020] [Indexed: 11/30/2022]
Abstract
We conducted a study to decipher the mechanism of the formation of the large communal Leishmania amazonensis-containing parasitophorous vacuole (PV) and found that the macrophage microtubule (MT) network dynamically orchestrates the intracellular lifestyle of this intracellular parasite. Physical disassembly of the MT network of macrophage-like RAW 264.7 cells or silencing of the dynein gene, encoding the MT-associated molecular motor that powers MT-dependent vacuolar movement, by siRNA resulted in most of the infected cells hosting only tight parasite-containing phagosome-like vacuoles randomly distributed throughout the cytoplasm, each insulating a single parasite. Only a minority of the infected cells hosted both isolated parasite-containing phagosome-like vacuoles and a small communal PV, insulating a maximum of two to three parasites. The tight parasite-containing phagosome-like vacuoles never matured, whereas the small PVs only matured to a small degree, shown by the absence or faint acquisition of host-cell endolysosomal characteristics. As a consequence, the parasites were unable to successfully complete promastigote-to-amastigote differentiation and died, regardless of the type of insulation.
Collapse
Affiliation(s)
- Sandrine Cojean
- CNRS, UMR 8076 BioCis, University Paris-Saclay, Châtenay-Malabry, France
| | - Valérie Nicolas
- Institut Paris-Saclay d'Innovation Thérapeutique (IPSIT), UMS -US31 -UMS3679, Microscopy facility (MIPSIT), University Paris-Saclay, Châtenay-Malabry, France
| | - Vanessa Lievin-Le Moal
- Inserm, UMR-S 996 Inflammation, Microbiome and Immunosurveillance, University Paris-Saclay, Clamart, France
| |
Collapse
|
10
|
Priyamvada L, Alabi P, Leon A, Kumar A, Sambhara S, Olson VA, Sello JK, Satheshkumar PS. Discovery of Retro-1 Analogs Exhibiting Enhanced Anti-vaccinia Virus Activity. Front Microbiol 2020; 11:603. [PMID: 32390964 PMCID: PMC7190985 DOI: 10.3389/fmicb.2020.00603] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 03/18/2020] [Indexed: 11/13/2022] Open
Abstract
Orthopoxviruses (OPXVs) are an increasing threat to human health due to the growing population of OPXV-naive individuals after the discontinuation of routine smallpox vaccination. Antiviral drugs that are effective as postexposure treatments against variola virus (the causative agent of smallpox) or other OPXVs are critical in the event of an OPXV outbreak or exposure. The only US Food and Drug Administration-approved drug to treat smallpox, Tecovirimat (ST-246), exerts its antiviral effect by inhibiting extracellular virus (EV) formation, thereby preventing cell-cell and long-distance spread. We and others have previously demonstrated that host Golgi-associated retrograde proteins play an important role in monkeypox virus (MPXV) and vaccinia virus (VACV) EV formation. Inhibition of the retrograde pathway by small molecules such as Retro-2 has been shown to decrease VACV infection in vitro and to a lesser extent in vivo. To identify more potent inhibitors of the retrograde pathway, we screened a large panel of compounds containing a benzodiazepine scaffold like that of Retro-1, against VACV infection. We found that a subset of these compounds displayed better anti-VACV activity, causing a reduction in EV particle formation and viral spread compared to Retro-1. PA104 emerged as the most potent analog, inhibiting 90% viral spread at 1.3 μM with a high selectivity index. In addition, PA104 strongly inhibited two distinct ST-246-resistant viruses, demonstrating its potential benefit for use in combination therapy with ST-246. These data and further characterizations of the specific protein targets and in vivo efficacy of PA104 may have important implications for the design of effective antivirals against OPXV.
Collapse
Affiliation(s)
- Lalita Priyamvada
- Poxvirus and Rabies Branch, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Philip Alabi
- Department of Chemistry, Brown University, Providence, RI, United States
| | - Andres Leon
- Department of Chemistry, Brown University, Providence, RI, United States
| | - Amrita Kumar
- Immunology and Pathogenesis Branch, Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Suryaprakash Sambhara
- Immunology and Pathogenesis Branch, Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Victoria A Olson
- Poxvirus and Rabies Branch, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Jason K Sello
- Department of Chemistry, Brown University, Providence, RI, United States
| | | |
Collapse
|
11
|
Luong P, Li Q, Chen PF, Wrighton PJ, Chang D, Dwyer S, Bayer MT, Snapper SB, Hansen SH, Thiagarajah JR, Goessling W, Lencer WI. A quantitative single-cell assay for retrograde membrane traffic enables rapid detection of defects in cellular organization. Mol Biol Cell 2019; 31:511-519. [PMID: 31774722 PMCID: PMC7202069 DOI: 10.1091/mbc.e19-07-0375] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Retrograde membrane trafficking from plasma membrane to Golgi and endoplasmic reticulum typifies one of the key sorting steps emerging from the early endosome that affects cell surface and intracellular protein dynamics underlying cell function. While some cell surface proteins and lipids are known to sort retrograde, there are few effective methods to quantitatively measure the extent or kinetics of these events. Here we took advantage of the well-known retrograde trafficking of cholera toxin and newly defined split fluorescent protein technology to develop a quantitative, sensitive, and effectively real-time single-cell flow cytometry assay for retrograde membrane transport. The approach can be applied in high throughput to elucidate the underlying biology of membrane traffic and how endosomes adapt to the physiologic needs of different cell types and cell states.
Collapse
Affiliation(s)
- Phi Luong
- Department of Pediatrics, Harvard Medical School, and.,Division of Gastroenterology, Boston Children's Hospital, Boston, MA 02115
| | - Qian Li
- Department of Pediatrics, Harvard Medical School, and.,Division of Gastroenterology, Boston Children's Hospital, Boston, MA 02115.,Shanghai Children's Hospital, Shanghai Jiaotong University, Shanghai 200000, China
| | - Pin-Fang Chen
- F.M. Kirby Neurobiology Center, Translational Neuroscience Center, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115
| | - Paul J Wrighton
- Division of Genetics, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115
| | - Denis Chang
- Department of Pediatrics, Harvard Medical School, and.,Division of Gastroenterology, Boston Children's Hospital, Boston, MA 02115
| | - Sean Dwyer
- F.M. Kirby Neurobiology Center, Translational Neuroscience Center, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115
| | - Marie-Theres Bayer
- Department of Pediatrics, Harvard Medical School, and.,Division of Gastroenterology, Boston Children's Hospital, Boston, MA 02115
| | - Scott B Snapper
- Department of Pediatrics, Harvard Medical School, and.,Division of Gastroenterology, Boston Children's Hospital, Boston, MA 02115.,Harvard Digestive Disease Center, Harvard Medical School, Boston, MA 02115
| | - Steen H Hansen
- Department of Pediatrics, Harvard Medical School, and.,Division of Gastroenterology, Boston Children's Hospital, Boston, MA 02115
| | - Jay R Thiagarajah
- Department of Pediatrics, Harvard Medical School, and.,Division of Gastroenterology, Boston Children's Hospital, Boston, MA 02115.,Harvard Digestive Disease Center, Harvard Medical School, Boston, MA 02115
| | - Wolfram Goessling
- Harvard Stem Cell Institute, Cambridge, MA 02138.,Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115.,Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
| | - Wayne I Lencer
- Department of Pediatrics, Harvard Medical School, and.,Division of Gastroenterology, Boston Children's Hospital, Boston, MA 02115.,Harvard Digestive Disease Center, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
12
|
Morgens DW, Chan C, Kane AJ, Weir NR, Li A, Dubreuil MM, Tsui CK, Hess GT, Lavertu A, Han K, Polyakov N, Zhou J, Handy EL, Alabi P, Dombroski A, Yao D, Altman RB, Sello JK, Denic V, Bassik MC. Retro-2 protects cells from ricin toxicity by inhibiting ASNA1-mediated ER targeting and insertion of tail-anchored proteins. eLife 2019; 8:48434. [PMID: 31674906 PMCID: PMC6858068 DOI: 10.7554/elife.48434] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 10/28/2019] [Indexed: 12/11/2022] Open
Abstract
The small molecule Retro-2 prevents ricin toxicity through a poorly-defined mechanism of action (MOA), which involves halting retrograde vesicle transport to the endoplasmic reticulum (ER). CRISPRi genetic interaction analysis revealed Retro-2 activity resembles disruption of the transmembrane domain recognition complex (TRC) pathway, which mediates post-translational ER-targeting and insertion of tail-anchored (TA) proteins, including SNAREs required for retrograde transport. Cell-based and in vitro assays show that Retro-2 blocks delivery of newly-synthesized TA-proteins to the ER-targeting factor ASNA1 (TRC40). An ASNA1 point mutant identified using CRISPR-mediated mutagenesis abolishes both the cytoprotective effect of Retro-2 against ricin and its inhibitory effect on ASNA1-mediated ER-targeting. Together, our work explains how Retro-2 prevents retrograde trafficking of toxins by inhibiting TA-protein targeting, describes a general CRISPR strategy for predicting the MOA of small molecules, and paves the way for drugging the TRC pathway to treat broad classes of viruses known to be inhibited by Retro-2.
Collapse
Affiliation(s)
- David W Morgens
- Department of Genetics, Stanford University, Stanford, United States
| | - Charlene Chan
- Department of Molecular and Cellular Biology, Northwest Labs, Harvard University, Cambridge, United States
| | - Andrew J Kane
- Department of Molecular and Cellular Biology, Northwest Labs, Harvard University, Cambridge, United States
| | - Nicholas R Weir
- Department of Molecular and Cellular Biology, Northwest Labs, Harvard University, Cambridge, United States
| | - Amy Li
- Department of Genetics, Stanford University, Stanford, United States
| | | | - C Kimberly Tsui
- Department of Genetics, Stanford University, Stanford, United States
| | - Gaelen T Hess
- Department of Genetics, Stanford University, Stanford, United States
| | - Adam Lavertu
- Biomedical Informatics Training Program, Stanford University, Stanford, United States
| | - Kyuho Han
- Department of Genetics, Stanford University, Stanford, United States
| | - Nicole Polyakov
- Department of Molecular and Cellular Biology, Northwest Labs, Harvard University, Cambridge, United States
| | - Jing Zhou
- Department of Molecular and Cellular Biology, Northwest Labs, Harvard University, Cambridge, United States
| | - Emma L Handy
- Department of Chemistry, Brown University, Providence, United States
| | - Philip Alabi
- Department of Chemistry, Brown University, Providence, United States
| | - Amanda Dombroski
- Department of Chemistry, Brown University, Providence, United States
| | - David Yao
- Department of Genetics, Stanford University, Stanford, United States
| | - Russ B Altman
- Department of Genetics, Stanford University, Stanford, United States.,Bioengineering, Stanford University, Stanford, United States
| | - Jason K Sello
- Department of Chemistry, Brown University, Providence, United States
| | - Vladimir Denic
- Department of Molecular and Cellular Biology, Northwest Labs, Harvard University, Cambridge, United States
| | - Michael C Bassik
- Department of Genetics, Stanford University, Stanford, United States.,Program in Cancer Biology, Stanford University, Stanford, United States.,Stanford University Chemistry, Engineering, and Medicine for Human Health (ChEM-H), Stanford, United States
| |
Collapse
|