1
|
Fang T, Lu H, Jiang Y. Extracellular fungal Hsp90 represents a promising therapeutic target for combating fungal infections. Eur J Pharm Sci 2025; 207:107041. [PMID: 39947525 DOI: 10.1016/j.ejps.2025.107041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 12/17/2024] [Accepted: 02/10/2025] [Indexed: 02/16/2025]
Abstract
Heat shock protein 90 (Hsp90) is a pivotal virulence factor in pathogenic fungi, playing a significant role in conferring drug resistance. However, due to the high amino acid sequence similarity between fungal and mammalian Hsp90, targeting fungal intracellular Hsp90 therapeutically is associated with marked toxic side effects, thereby limiting clinical application. Studies have demonstrated that intracellular fungal Hsp90 can be secreted as extracellular Hsp90 (eHsp90), which plays a crucial role in fungal infections. Strategies targeting fungal eHsp90 have exhibited promising therapeutic outcomes. Unlike intracellular targeting, such antifungal approaches can operate without cell penetration, thereby circumventing the toxic side effects due to Hsp90's high conservation. This review summarizes the potential extracellular secretion pathways of fungal eHsp90, its roles in fungal pathogenesis, as well as the development of vaccines and antibodies targeting fungal eHsp90. The review underlines the significance of eHsp90 in fungal infections and suggests that eHsp90 represents a promising therapeutic target for fungal infection treatment.
Collapse
Affiliation(s)
- Ting Fang
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Hui Lu
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200092, China.
| | - Yuanying Jiang
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200092, China.
| |
Collapse
|
2
|
Zobi C, Algul O. The Significance of Mono- and Dual-Effective Agents in the Development of New Antifungal Strategies. Chem Biol Drug Des 2025; 105:e70045. [PMID: 39841631 PMCID: PMC11753615 DOI: 10.1111/cbdd.70045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/25/2024] [Accepted: 01/04/2025] [Indexed: 01/24/2025]
Abstract
Invasive fungal infections (IFIs) pose significant challenges in clinical settings, particularly due to their high morbidity and mortality rates. The rising incidence of these infections, coupled with increasing antifungal resistance, underscores the urgent need for novel therapeutic strategies. Current antifungal drugs target the fungal cell membrane, cell wall, or intracellular components, but resistance mechanisms such as altered drug-target interactions, enhanced efflux, and adaptive cellular responses have diminished their efficacy. Recent research has highlighted the potential of dual inhibitors that simultaneously target multiple pathways or enzymes involved in fungal growth and survival. Combining pharmacophores, such as lanosterol 14α-demethylase (CYP51), heat shock protein 90 (HSP90), histone deacetylase (HDAC), and squalene epoxidase (SE) inhibitors, has led to the development of compounds with enhanced antifungal activity and reduced resistance. This dual-target approach, along with novel chemical scaffolds, not only represents a promising strategy for combating antifungal resistance but is also being utilized in the development of anticancer agents. This review explores the development of new antifungal agents that employ mono-, dual-, or multi-target strategies to combat IFIs. We discuss emerging antifungal targets, resistance mechanisms, and innovative therapeutic approaches that offer hope in managing these challenging infections.
Collapse
Affiliation(s)
- Cengiz Zobi
- Department of Pharmaceutical Chemistry, Faculty of PharmacyErzincan Binali Yildirim UniversityErzincanTurkiye
- Department of İliç Dursun Yildirim MYOErzincan Binali Yildirim UniversityErzincanTurkiye
| | - Oztekin Algul
- Department of Pharmaceutical Chemistry, Faculty of PharmacyErzincan Binali Yildirim UniversityErzincanTurkiye
- Department of Pharmaceutical Chemistry, Faculty of PharmacyMersin UniversityMersinTurkiye
| |
Collapse
|
3
|
Ball B, Sukumaran A, Pladwig S, Kazi S, Chan N, Honeywell E, Modrakova M, Geddes-McAlister J. Proteome signatures reveal homeostatic and adaptive oxidative responses by a putative co-chaperone, Wos2, to influence fungal virulence determinants in cryptococcosis. Microbiol Spectr 2024; 12:e0015224. [PMID: 38953322 PMCID: PMC11302251 DOI: 10.1128/spectrum.00152-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/27/2024] [Indexed: 07/04/2024] Open
Abstract
The increasing prevalence of invasive fungal pathogens is dramatically changing the clinical landscape of infectious diseases, posing an imminent threat to public health. Specifically, Cryptococcus neoformans, the human opportunistic pathogen, expresses elaborate virulence mechanisms and is equipped with sophisticated adaptation strategies to survive in harsh host environments. This study extensively characterizes Wos2, an Hsp90 co-chaperone homolog, featuring bilateral functioning for both cryptococcal adaptation and the resulting virulence response. In this study, we evaluated the proteome and secretome signatures associated with wos2 deletion in enriched and infection-mimicking conditions to reveal Wos2-dependent regulation of the oxidative stress response through global translational reprogramming. The wos2Δ strain demonstrates defective intracellular and extracellular antioxidant protection systems, measurable through a decreased abundance of critical antioxidant enzymes and reduced growth in the presence of peroxide stress. Additional Wos2-associated stress phenotypes were observed upon fungal challenge with heat shock, osmotic stress, and cell membrane stressors. We demonstrate the importance of Wos2 for intracellular lifestyle of C. neoformans during in vitro macrophage infection and provide evidence for reduced phagosomal replication levels associated with wos2Δ. Accordingly, wos2Δ featured significantly reduced virulence within impacting fungal burden in a murine model of cryptococcosis. Our study highlights a vulnerable point in the fungal chaperone network that offers a therapeutic opportunity to interfere with both fungal virulence and fitness.IMPORTANCEThe global impact of fungal pathogens, both emerging and emerged, is undeniable, and the alarming increase in antifungal resistance rates hampers our ability to protect the global population from deadly infections. For cryptococcal infections, a limited arsenal of antifungals and increasing rates of resistance demand alternative therapeutic strategies, including an anti-virulence approach, which disarms the pathogen of critical virulence factors, empowering the host to remove the pathogens and clear the infection. To this end, we apply state-of-the-art mass spectrometry-based proteomics to evaluate the impact of a recently defined novel co-chaperone, Wos2, toward cryptococcal virulence using in vitro and in vivo models of infection. We explore global proteome and secretome remodeling driven by the protein and uncover the novel role in modulating the fungal oxidative stress response. Complementation of proteome findings with in vitro infectivity assays demonstrated the protective role of Wos2 within the macrophage phagosome, influencing fungal replication and survival. These results underscore differential cryptococcal survivability and weakened patterns of dissemination in the absence of wos2. Overall, our study establishes Wos2 as an important contributor to fungal pathogenesis and warrants further research into critical proteins within global stress response networks as potential druggable targets to reduce fungal virulence and clear infection.
Collapse
Affiliation(s)
- Brianna Ball
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Arjun Sukumaran
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Samanta Pladwig
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Samiha Kazi
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Norris Chan
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Effie Honeywell
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Manuela Modrakova
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | | |
Collapse
|
4
|
Qureshi ZA, Ghazanfar H, Altaf F, Ghazanfar A, Hasan KZ, Kandhi S, Fortuzi K, Dileep A, Shrivastava S. Cryptococcosis and Cryptococcal Meningitis: A Narrative Review and the Up-to-Date Management Approach. Cureus 2024; 16:e55498. [PMID: 38571832 PMCID: PMC10990067 DOI: 10.7759/cureus.55498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2024] [Indexed: 04/05/2024] Open
Abstract
Cryptococcosis is a fungal infectious disease that enormously impacts human health worldwide. Cryptococcal meningitis is the most severe disease caused by the fungus Cryptococcus, and can lead to death, if left untreated. Many patients develop resistance and progress to death even after treatment. It requires a prolonged treatment course in people with AIDS. This narrative review provides an evidence-based summary of the current treatment modalities and future trial options, including newer ones, namely, 18B7, T-2307, VT-1598, AR12, manogepix, and miltefosine. This review also evaluated the management and empiric treatment of cryptococcus meningitis. The disease can easily evade diagnosis with subacute presentation. Despite the severity of the disease, treatment options for cryptococcosis remain limited, and more research is needed.
Collapse
Affiliation(s)
- Zaheer A Qureshi
- Medicine, Frank H. Netter MD School of Medicine, Quinnipiac University, Bridgeport, USA
| | | | - Faryal Altaf
- Internal Medicine, BronxCare Health System, New York City, USA
| | - Ali Ghazanfar
- Internal Medicine, Federal Medical and Dental College, Islamabad, PAK
| | - Khushbu Z Hasan
- Internal Medicine, Mohtarma Benazir Bhutto Shaheed Medical College, Mirpur, PAK
| | - Sameer Kandhi
- Gastroenterology and Hepatology, BronxCare Health System, New York City, USA
| | - Ked Fortuzi
- Internal Medicine, BronxCare Health System, New York City, USA
| | | | - Shitij Shrivastava
- Internal Medicine, BronxCare Health System, New York City, USA
- Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| |
Collapse
|
5
|
Feng Z, Lu H, Jiang Y. Promising immunotherapeutic targets for treating candidiasis. Front Cell Infect Microbiol 2024; 14:1339501. [PMID: 38404288 PMCID: PMC10884116 DOI: 10.3389/fcimb.2024.1339501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 01/29/2024] [Indexed: 02/27/2024] Open
Abstract
In the last twenty years, there has been a significant increase in invasive fungal infections, which has corresponded with the expanding population of individuals with compromised immune systems. As a result, the mortality rate linked to these infections remains unacceptably high. The currently available antifungal drugs, such as azoles, polyenes, and echinocandins, face limitations in terms of their diversity, the escalating resistance of fungi and the occurrence of significant adverse effects. Consequently, there is an urgent need to develop new antifungal medications. Vaccines and antibodies present a promising avenue for addressing fungal infections due to their targeted antifungal properties and ability to modulate the immune response. This review investigates the structure and function of cell wall proteins, secreted proteins, and functional proteins within C. albicans. Furthermore, it seeks to analyze the current advancements and challenges in macromolecular drugs to identify new targets for the effective management of candidiasis.
Collapse
Affiliation(s)
| | - Hui Lu
- Department of Pharmacy, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yuanying Jiang
- Department of Pharmacy, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
6
|
Cheng J, Yin X, Wang L, Liu X, Yang F, Zhang L, Liu T. Decoding molecular mechanism of species-selective targeting of fungal versus human HSP90 using multiple replica molecular dynamics simulations and binding free energy calculations. J Biomol Struct Dyn 2023; 42:12478-12488. [PMID: 37850420 DOI: 10.1080/07391102.2023.2270687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/09/2023] [Indexed: 10/19/2023]
Abstract
As a highly evolutionarily conserved molecular chaperone, heat shock protein (HSP90), plays an important role in virulence traits, representing a therapeutic target for the treatment of fungal infections. The close evolutionary relationship between fungi and their human hosts poses a key challenge for the development of selective antifungal agents. In this work, molecular docking, multiple replica microsecond-based molecular dynamics (MD) simulations, and binding free energy calculations were performed to decode molecular mechanism of species-selective targeting of fungal versus human HSP90 triggered by the compound A11. MD simulations reveal that binding of compound A11 to human HSP90 nucleotide-binding domain (NBD) leads to obvious conformational changes relative to fungal HSP90 NBD. Binding free energy calculations show that the binding of compound A11 to fungal HSP90 NBD is stronger than that to human HSP90 NBD. Per residue-based free energy decomposition analysis was used to evaluate the inhibitor - residue interaction profile. The results efficiently identify the hot spot residues that play vital roles in favorable binding of compound A11 to fungal HSP90 NBD. This study is expected to provide a useful guidance for the development of selective inhibitors toward fungal HSP90.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Jinying Cheng
- Department of Infectious Diseases, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Xue Yin
- Department of Infectious Diseases, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Lulu Wang
- Department of Critical Care Medicine, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Xianxian Liu
- Department of Infectious Diseases, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Fang Yang
- Department of Infectious Diseases, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Liguo Zhang
- Department of Infectious Diseases, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Tonggang Liu
- Department of Infectious Diseases, Binzhou Medical University Hospital, Binzhou, Shandong, China
| |
Collapse
|
7
|
Lu H, Hong T, Jiang Y, Whiteway M, Zhang S. Candidiasis: From cutaneous to systemic, new perspectives of potential targets and therapeutic strategies. Adv Drug Deliv Rev 2023; 199:114960. [PMID: 37307922 DOI: 10.1016/j.addr.2023.114960] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/14/2023]
Abstract
Candidiasis is an infection caused by fungi from a Candida species, most commonly Candida albicans. C. albicans is an opportunistic fungal pathogen typically residing on human skin and mucous membranes of the mouth, intestines or vagina. It can cause a wide variety of mucocutaneous barrier and systemic infections; and becomes a severe health problem in HIV/AIDS patients and in individuals who are immunocompromised following chemotherapy, treatment with immunosuppressive agents or after antibiotic-induced dysbiosis. However, the immune mechanism of host resistance to C. albicans infection is not fully understood, there are a limited number of therapeutic antifungal drugs for candidiasis, and these have disadvantages that limit their clinical application. Therefore, it is urgent to uncover the immune mechanisms of the host protecting against candidiasis and to develop new antifungal strategies. This review synthesizes current knowledge of host immune defense mechanisms from cutaneous candidiasis to invasive C. albicans infection and documents promising insights for treating candidiasis through inhibitors of potential antifungal target proteins.
Collapse
Affiliation(s)
- Hui Lu
- Department of Pharmacology, Shanghai Tenth People's Hospital, Tongji University, School of Medicine, Shanghai, China
| | - Ting Hong
- Department of Anesthesiology, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Yuanying Jiang
- Department of Pharmacology, Shanghai Tenth People's Hospital, Tongji University, School of Medicine, Shanghai, China
| | - Malcolm Whiteway
- Department of Biology, Concordia University, Montreal, QC, Canada.
| | - Shiqun Zhang
- Department of Pharmacology, Shanghai Tenth People's Hospital, Tongji University, School of Medicine, Shanghai, China.
| |
Collapse
|
8
|
Neves-da-Rocha J, Santos-Saboya MJ, Lopes MER, Rossi A, Martinez-Rossi NM. Insights and Perspectives on the Role of Proteostasis and Heat Shock Proteins in Fungal Infections. Microorganisms 2023; 11:1878. [PMID: 37630438 PMCID: PMC10456932 DOI: 10.3390/microorganisms11081878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/30/2023] [Accepted: 07/06/2023] [Indexed: 08/27/2023] Open
Abstract
Fungi are a diverse group of eukaryotic organisms that infect humans, animals, and plants. To successfully colonize their hosts, pathogenic fungi must continuously adapt to the host's unique environment, e.g., changes in temperature, pH, and nutrient availability. Appropriate protein folding, assembly, and degradation are essential for maintaining cellular homeostasis and survival under stressful conditions. Therefore, the regulation of proteostasis is crucial for fungal pathogenesis. The heat shock response (HSR) is one of the most important cellular mechanisms for maintaining proteostasis. It is activated by various stresses and regulates the activity of heat shock proteins (HSPs). As molecular chaperones, HSPs participate in the proteostatic network to control cellular protein levels by affecting their conformation, location, and degradation. In recent years, a growing body of evidence has highlighted the crucial yet understudied role of stress response circuits in fungal infections. This review explores the role of protein homeostasis and HSPs in fungal pathogenicity, including their contributions to virulence and host-pathogen interactions, as well as the concerted effects between HSPs and the main proteostasis circuits in the cell. Furthermore, we discuss perspectives in the field and the potential for targeting the components of these circuits to develop novel antifungal therapies.
Collapse
Affiliation(s)
- João Neves-da-Rocha
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil; (M.J.S.-S.); (M.E.R.L.); (A.R.)
| | | | | | | | - Nilce M. Martinez-Rossi
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil; (M.J.S.-S.); (M.E.R.L.); (A.R.)
| |
Collapse
|
9
|
Laux K, Teixeira MDM, Barker B. Love in the time of climate change: A review of sexual reproduction in the order Onygenales. Fungal Genet Biol 2023; 167:103797. [PMID: 37100376 DOI: 10.1016/j.fgb.2023.103797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 02/02/2023] [Accepted: 04/03/2023] [Indexed: 04/28/2023]
Abstract
Life-threatening infections caused by fungi in the order Onygenales have been rising over the last few decades. Increasing global temperature due to anthropogenic climate change is one potential abiotic selection pressure that may explain the increase in infections. The generation of genetically novel offspring with novel phenotypes through the process of sexual recombination could allow fungi to adapt to changing climate conditions. The basic structures associated with sexual reproduction have been identified in Histoplasma, Blastomyces, Malbranchea, and Brunneospora. However, for Coccidioides and Paracoccidioides, the actual structural identification of these processes has yet to be identified despite having genetic evidence that suggests sexual recombination is occurring in these organisms. This review highlights the importance of assessing sexual recombination in the order Onygenales as a means of understanding the mechanisms these organisms might employ to enhance fitness in the face of a changing climate and provides details regarding the known reproductive mechanisms in the Onygenales.
Collapse
Affiliation(s)
- Klaire Laux
- The Pathogen and Microbiome Institute, Northern Arizona University, 1395 S Knoles Dr., Bldg 56 Ste 210, Flagstaff, AZ 86011, USA.
| | - Marcus de Melo Teixeira
- The Pathogen and Microbiome Institute, Northern Arizona University, 1395 S Knoles Dr., Bldg 56 Ste 210, Flagstaff, AZ 86011, USA; Nùcleo de Medicina Tropical, University of Brasilia, Universitário Darcy Ribeiro, s/n -Asa Norte, Brasília, DF 70910-900, Brazil
| | - Bridget Barker
- The Pathogen and Microbiome Institute, Northern Arizona University, 1395 S Knoles Dr., Bldg 56 Ste 210, Flagstaff, AZ 86011, USA.
| |
Collapse
|
10
|
de Castro Teixeira AP, Fernandes Queiroga Moraes G, de Oliveira RJ, Silva Santos C, Alves Caiana RR, Rufino de Freitas JC, Vasconcelos U, de Oliveira Pereira F, Oliveira Lima I. Antifungal Activity, Antibiofilm and Association Studies with O-Alkylamidoximes against Cryptococcus spp. Chem Biodivers 2023; 20:e202200539. [PMID: 36730650 DOI: 10.1002/cbdv.202200539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 12/23/2022] [Accepted: 02/01/2023] [Indexed: 02/04/2023]
Abstract
This is the first study that describes the antifungal and anti-biofilm potential of O-alkylamidoximes against strains of Cryptococcus neoformans and Cryptococcus gattii. In vitro tests have shown that O-alkylamidoximes are capable of inhibiting fungal growth and biofilm formation of the C. neoformans and C. gattii strains, suggesting, from molecular docking, the potential for interaction with the Hsp90. The associations between O-alkylamidoximes and amphotericin B were beneficial. Therefore, O-alkylamidoximes can be a useful alternative to contribute to the limited arsenal of drugs, since they showed a powerful action against the primary agents of Cryptococcosis.
Collapse
Affiliation(s)
- Anna Paula de Castro Teixeira
- Postgraduate Program in Natural Sciences and Biotechnology, Education and Health Center, Federal University of Campina Grande, Cuité, Brazil
| | | | | | - Cosme Silva Santos
- Postgraduate Program in Chemistry, Federal Rural University of Pernambuco, Recife, Brazil
| | - Rodrigo Ribeiro Alves Caiana
- Postgraduate Program in Natural Sciences and Biotechnology, Education and Health Center, Federal University of Campina Grande, Cuité, Brazil
| | - Juliano Carlo Rufino de Freitas
- Postgraduate Program in Natural Sciences and Biotechnology, Education and Health Center, Federal University of Campina Grande, Cuité, Brazil
- Postgraduate Program in Chemistry, Federal Rural University of Pernambuco, Recife, Brazil
| | - Ulrich Vasconcelos
- Laboratory of Animal Microbiology, Biotechnology Center, Federal University of Paraíba, João Pessoa, Brazil
| | | | - Igara Oliveira Lima
- Postgraduate Program in Natural Sciences and Biotechnology, Education and Health Center, Federal University of Campina Grande, Cuité, Brazil
| |
Collapse
|
11
|
Motta H, Catarina Vieira Reuwsaat J, Daidrê Squizani E, da Silva Camargo M, Wichine Acosta Garcia A, Schrank A, Henning Vainstein M, Christian Staats C, Kmetzsch L. The small heat shock protein Hsp12.1 has a major role in the stress response and virulence of Cryptococcus gattii. Fungal Genet Biol 2023; 165:103780. [PMID: 36780981 DOI: 10.1016/j.fgb.2023.103780] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/09/2022] [Accepted: 02/08/2023] [Indexed: 02/13/2023]
Abstract
Cryptococcus gattii is one of the etiological agents of cryptococcosis. To achieve a successful infection, C. gattii cells must overcome the inhospitable host environment and deal with the highly specialized immune system and poor nutrients availability. Inside the host, C. gattii uses a diversified set of tools to maintain homeostasis and establish infection, such as the expression of remarkable and diverse heat shock proteins (Hsps). Grouped by molecular weight, little is known about the Hsp12 subset in pathogenic fungi. In this study, the function of the C. gattii HSP12.1 and HSP12.2 genes was characterized. Both genes were upregulated during murine infection and heat shock. The hsp12.1 Δ null mutant cells were sensitive to plasma membrane and oxidative stressors. Moreover, HSP12 deletion induced C. gattii reactive oxygen species (ROS) accumulation associated with a differential expression pattern of oxidative stress-responsive genes compared to the wild type strain. Apart from these findings, the deletion of the paralog gene HSP12.2 did not lead to any detectable phenotype. Additionally, the double-deletion mutant strain hsp12.1 Δ /hsp12.2 Δ presented a similar phenotype to the single-deletion mutant hsp12.1 Δ, suggesting a minor participation of Hsp12.2 in these processes. Furthermore, HSP12.1 disruption remarkably affected C. gattii virulence and phagocytosis by macrophages in an invertebrate model of infection, demonstrating its importance for C. gattii pathogenicity.
Collapse
Affiliation(s)
- Heryk Motta
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | | - Eamim Daidrê Squizani
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | | | | - Augusto Schrank
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Departamento de Biologia Molecular e Biotecnologia, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Marilene Henning Vainstein
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Departamento de Biologia Molecular e Biotecnologia, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Charley Christian Staats
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Departamento de Biologia Molecular e Biotecnologia, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Lívia Kmetzsch
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Departamento de Biologia Molecular e Biotecnologia, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| |
Collapse
|
12
|
Engineering thermotolerant Yarrowia lipolytica for sustainable biosynthesis of mannitol and fructooligosaccharides. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
13
|
Regulation of Hsp80 involved in the acquisition of induced thermotolerance, and NCA-2 involved in calcium stress tolerance by the calcineurin-CRZ-1 signaling pathway in Neurospora crassa. Mycol Prog 2022. [DOI: 10.1007/s11557-022-01833-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
14
|
Moghimi S, Shafiei M, Foroumadi A. Drug design strategies for the treatment azole-resistant candidiasis. Expert Opin Drug Discov 2022; 17:879-895. [PMID: 35793245 DOI: 10.1080/17460441.2022.2098949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Despite the availability of novel antifungals and therapeutic strategies, the rate of global mortality linked to invasive fungal diseases from fungal infection remains high. Candida albicans account for the most invasive mycosis produced by yeast. Thus, the current arsenal of medicinal chemists is focused on finding new effective agents with lower toxicity and broad-spectrum activity. In this review article, recent efforts to find effective agents against azole-resistant candidiasis, a common fungal infection, are covered. AREAS COVERED Herein, the authors outlined all azole-based compounds, dual target, and new scaffolds (non-azole-based compounds) which were effective against azole-resistant candidiasis. In addition, the mechanism of action and SAR studies were also discussed, if the data were available. EXPERT OPINION The current status of fungal infections and the drawbacks of existing drugs have encouraged scientists to find novel scaffolds based on different methods like virtual screening and fragment-based drug discovery. Machine learning and in-silico methods have found their role in this field and experts are hopeful to find novel scaffolds/compounds by using these methods.
Collapse
Affiliation(s)
- Setareh Moghimi
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Shafiei
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran.,Department of Medicinal Chemistry, Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Alireza Foroumadi
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran.,Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Liu L, Zhang X, Kayastha S, Tan L, Zhang H, Tan J, Li L, Mao J, Sun Y. A Preliminary in vitro and in vivo Evaluation of the Effect and Action Mechanism of 17-AAG Combined With Azoles Against Azole-Resistant Candida spp. Front Microbiol 2022; 13:825745. [PMID: 35875545 PMCID: PMC9300965 DOI: 10.3389/fmicb.2022.825745] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 06/20/2022] [Indexed: 01/09/2023] Open
Abstract
Invasive candidiasis is the primary reason for the increased cases of mortality in a medical environment. The resistance spectra of Candida species to antifungal drugs have gradually expanded. Particularly, the resistance spectra of Candida auris are the most prominent. Hsp90 plays a protective role in the stress response of fungi and facilitates their virulence. In contrast, Hsp90 inhibitors can improve the resistance of fungi to antifungal drugs by regulating the heat resistance of Hsp90, which destroys the integrity of the fungal cell walls. Hsp90 inhibitors thus offer a great potential to reduce or address fungal drug resistance. The drugs tested for the resistance include itraconazole, voriconazole, posaconazole, fluconazole, and 17-AAG. A total of 20 clinical strains of Candida were investigated. The broth microdilution checkerboard technique, as adapted from the CLSI M27-A4 method, was applied in this study. We found that 17-AAG alone exerted limited antifungal activity against all tested strains. The MIC range of 17-AAG was 8 to >32 μg/ml. A synergy was observed among 17-AAG and itraconazole, voriconazole, and posaconazole against 10 (50%), 7 (35%), and 13 (65%) of all isolates, respectively. Moreover, the synergy between 17-AAG and fluconazole was observed against 5 (50%) strains of azole-resistant Candida. However, no antagonism was recorded overall. Our result adequately verifies the influence of 17-AAG on the formation of Candida spp. biofilm. Moreover, we determined that with the use of rhodamine 6G to detect drug efflux and that of dihydrorhodamine-123 to detect intracellular reactive oxygen species (ROS), treatment with 17-AAG combined with azole drugs could inhibit the efflux pump of fungi and promote the accumulation of ROS in the fungal cells, thereby inducing fungal cell apoptosis. Thus, the mechanism of 17-AAG combined with azoles can kill fungi. Our results thus provide a new idea to further explore drugs against drug-resistant Candida spp.
Collapse
Affiliation(s)
| | | | | | | | | | - Jingwen Tan
- Department of Medical Mycology, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
| | - Linyun Li
- Clinical Lab, Jingzhou Hospital, Yangtze University, Jingzhou, China
| | - Jinghua Mao
- Department of Cardiology, Jingzhou Hospital, Yangtze University, Jingzhou, China
- *Correspondence: Jinghua Mao,
| | - Yi Sun
- Department of Dermatology, Jingzhou Hospital, Yangtze University, Candidate Branch of National Clinical Research Center for Skin and Immune Diseases, Jingzhou, China
- Yi Sun,
| |
Collapse
|
16
|
Secretome Profiling by Proteogenomic Analysis Shows Species-Specific, Temperature-Dependent, and Putative Virulence Proteins of Pythium insidiosum. J Fungi (Basel) 2022; 8:jof8050527. [PMID: 35628782 PMCID: PMC9144242 DOI: 10.3390/jof8050527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 05/15/2022] [Accepted: 05/16/2022] [Indexed: 02/04/2023] Open
Abstract
In contrast to most pathogenic oomycetes, which infect plants, Pythium insidiosum infects both humans and animals, causing a difficult-to-treat condition called pythiosis. Most patients undergo surgical removal of an affected organ, and advanced cases could be fetal. As a successful human/animal pathogen, P. insidiosum must tolerate body temperature and develop some strategies to survive and cause pathology within hosts. One of the general pathogen strategies is virulence factor secretion. Here, we used proteogenomic analysis to profile and validate the secretome of P. insidiosum, in which its genome contains 14,962 predicted proteins. Shotgun LC–MS/MS analysis of P. insidiosum proteins prepared from liquid cultures incubated at 25 and 37 °C mapped 2980 genome-predicted proteins, 9.4% of which had a predicted signal peptide. P. insidiosum might employ an alternative secretory pathway, as 90.6% of the validated secretory/extracellular proteins lacked the signal peptide. A comparison of 20 oomycete genomes showed 69 P. insidiosum–specific secretory/extracellular proteins, and these may be responsible for the host-specific infection. The differential expression analysis revealed 14 markedly upregulated proteins (particularly cyclophilin and elicitin) at body temperature which could contribute to pathogen fitness and thermotolerance. Our search through a microbial virulence database matched 518 secretory/extracellular proteins, such as urease and chaperones (including heat shock proteins), that might play roles in P. insidiosum virulence. In conclusion, the identification of the secretome promoted a better understanding of P. insidiosum biology and pathogenesis. Cyclophilin, elicitin, chaperone, and urease are top-listed secreted/extracellular proteins with putative pathogenicity properties. Such advances could lead to developing measures for the efficient detection and treatment of pythiosis.
Collapse
|
17
|
Marone MP, Campanari MFZ, Raya FT, Pereira GAG, Carazzolle MF. Fungal communities represent the majority of root-specific transcripts in the transcriptomes of Agave plants grown in semiarid regions. PeerJ 2022; 10:e13252. [PMID: 35529479 PMCID: PMC9070324 DOI: 10.7717/peerj.13252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 03/21/2022] [Indexed: 01/13/2023] Open
Abstract
Agave plants present drought resistance mechanisms, commercial applications, and potential for bioenergy production. Currently, Agave species are used to produce alcoholic beverages and sisal fibers in semi-arid regions, mainly in Mexico and Brazil. Because of their high productivities, low lignin content, and high shoot-to-root ratio, agaves show potential as biomass feedstock to bioenergy production in marginal areas. Plants host many microorganisms and understanding their metabolism can inform biotechnological purposes. Here, we identify and characterize fungal transcripts found in three fiber-producing agave cultivars (Agave fourcroydes, A. sisalana, and hybrid 11648). We used leaf, stem, and root samples collected from the agave germplasm bank located in the state of Paraiba, in the Brazilian semiarid region, which has faced irregular precipitation periods. We used data from a de novo assembled transcriptome assembly (all tissues together). Regardless of the cultivar, around 10% of the transcripts mapped to fungi. Surprisingly, most root-specific transcripts were fungal (58%); of these around 64% were identified as Ascomycota and 28% as Basidiomycota in the three communities. Transcripts that code for heat shock proteins (HSPs) and enzymes involved in transport across the membrane in Ascomycota and Basidiomycota, abounded in libraries generated from the three cultivars. Indeed, among the most expressed transcripts, many were annotated as HSPs, which appear involved in abiotic stress resistance. Most HSPs expressed by Ascomycota are small HSPs, highly related to dealing with temperature stresses. Also, some KEGG pathways suggest interaction with the roots, related to transport to outside the cell, such as exosome (present in the three Ascomycota communities) and membrane trafficking, which were further investigated. We also found chitinases among secreted CAZymes, that can be related to pathogen control. We anticipate that our results can provide a starting point to the study of the potential uses of agaves' fungi as biotechnological tools.
Collapse
Affiliation(s)
- Marina Püpke Marone
- Department of Genetics, Evolution, Microbiology, and Immunology, University of Campinas, Campinas, São Paulo, Brazil
| | | | - Fabio Trigo Raya
- Department of Genetics, Evolution, Microbiology, and Immunology, University of Campinas, Campinas, São Paulo, Brazil
| | - Gonçalo Amarante Guimarães Pereira
- Department of Genetics, Evolution, Microbiology, and Immunology, University of Campinas, Campinas, São Paulo, Brazil,Center for Computing and Engineering Sciences, University of Campinas, Campinas, São Paulo, Brazil
| | - Marcelo Falsarella Carazzolle
- Department of Genetics, Evolution, Microbiology, and Immunology, University of Campinas, Campinas, São Paulo, Brazil,Center for Computing and Engineering Sciences, University of Campinas, Campinas, São Paulo, Brazil
| |
Collapse
|
18
|
Fu C, Beattie SR, Jezewski AJ, Robbins N, Whitesell L, Krysan DJ, Cowen LE. Genetic analysis of Hsp90 function in Cryptococcus neoformans highlights key roles in stress tolerance and virulence. Genetics 2022; 220:iyab164. [PMID: 34849848 PMCID: PMC8733452 DOI: 10.1093/genetics/iyab164] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/27/2021] [Indexed: 11/13/2022] Open
Abstract
The opportunistic human fungal pathogen Cryptococcus neoformans has tremendous impact on global health, causing 181,000 deaths annually. Current treatment options are limited, and the frequent development of drug resistance exacerbates the challenge of managing invasive cryptococcal infections. In diverse fungal pathogens, the essential molecular chaperone Hsp90 governs fungal survival, drug resistance, and virulence. Therefore, targeting this chaperone has emerged as a promising approach to combat fungal infections. However, the role of Hsp90 in supporting C. neoformans pathogenesis remains largely elusive due to a lack of genetic characterization. To help dissect the functions of Hsp90 in C. neoformans, we generated a conditional expression strain in which HSP90 is under control of the copper-repressible promoter CTR4-2. Addition of copper to culture medium depleted Hsp90 transcript and protein levels in this strain, resulting in compromised fungal growth at host temperature; increased sensitivity to stressors, including the azole class of antifungals; altered C. neoformans morphology; and impaired melanin production. Finally, leveraging the fact that copper concentrations vary widely in different mouse tissues, we demonstrated attenuated virulence for the CTR4-2p-HSP90 mutant specifically in an inhalation model of Cryptococcus infection. During invasion and establishment of infection in this mouse model, the pathogen is exposed to the relatively high copper concentrations found in the lung as compared to blood. Overall, this work generates a tractable genetic system to study the role of Hsp90 in supporting the pathogenicity of C. neoformans and provides proof-of-principle that targeting Hsp90 holds great promise as a strategy to control cryptococcal infection.
Collapse
Affiliation(s)
- Ci Fu
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Sarah R Beattie
- Departments of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Andrew J Jezewski
- Departments of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Nicole Robbins
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Luke Whitesell
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Damian J Krysan
- Departments of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- Microbiology/Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Leah E Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1, Canada
| |
Collapse
|
19
|
Crunden JL, Diezmann S. Hsp90 interaction networks in fungi-tools and techniques. FEMS Yeast Res 2021; 21:6413543. [PMID: 34718512 PMCID: PMC8599792 DOI: 10.1093/femsyr/foab054] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 10/26/2021] [Indexed: 01/01/2023] Open
Abstract
Heat-shock protein 90 (Hsp90) is a central regulator of cellular proteostasis. It stabilizes numerous proteins that are involved in fundamental processes of life, including cell growth, cell-cycle progression and the environmental response. In addition to stabilizing proteins, Hsp90 governs gene expression and controls the release of cryptic genetic variation. Given its central role in evolution and development, it is important to identify proteins and genes that interact with Hsp90. This requires sophisticated genetic and biochemical tools, including extensive mutant collections, suitable epitope tags, proteomics approaches and Hsp90-specific pharmacological inhibitors for chemogenomic screens. These usually only exist in model organisms, such as the yeast Saccharomyces cerevisiae. Yet, the importance of other fungal species, such as Candida albicans and Cryptococcus neoformans, as serious human pathogens accelerated the development of genetic tools to study their virulence and stress response pathways. These tools can also be exploited to map Hsp90 interaction networks. Here, we review tools and techniques for Hsp90 network mapping available in different fungi and provide a summary of existing mapping efforts. Mapping Hsp90 networks in fungal species spanning >500 million years of evolution provides a unique vantage point, allowing tracking of the evolutionary history of eukaryotic Hsp90 networks.
Collapse
Affiliation(s)
- Julia L Crunden
- School of Cellular and Molecular Medicine, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Stephanie Diezmann
- School of Cellular and Molecular Medicine, University of Bristol, University Walk, Bristol BS8 1TD, UK
| |
Collapse
|
20
|
Fabri JHTM, Rocha MC, Fernandes CM, Persinoti GF, Ries LNA, da Cunha AF, Goldman GH, Del Poeta M, Malavazi I. The Heat Shock Transcription Factor HsfA Is Essential for Thermotolerance and Regulates Cell Wall Integrity in Aspergillus fumigatus. Front Microbiol 2021; 12:656548. [PMID: 33897671 PMCID: PMC8062887 DOI: 10.3389/fmicb.2021.656548] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/11/2021] [Indexed: 12/13/2022] Open
Abstract
The deleterious effects of human-induced climate change have long been predicted. However, the imminent emergence and spread of new diseases, including fungal infections through the rise of thermotolerant strains, is still neglected, despite being a potential consequence of global warming. Thermotolerance is a remarkable virulence attribute of the mold Aspergillus fumigatus. Under high-temperature stress, opportunistic fungal pathogens deploy an adaptive mechanism known as heat shock (HS) response controlled by heat shock transcription factors (HSFs). In eukaryotes, HSFs regulate the expression of several heat shock proteins (HSPs), such as the chaperone Hsp90, which is part of the cellular program for heat adaptation and a direct target of HSFs. We recently observed that the perturbation in cell wall integrity (CWI) causes concomitant susceptibility to elevated temperatures in A. fumigatus, although the mechanisms underpinning the HS response and CWI cross talking are not elucidated. Here, we aim at further deciphering the interplay between HS and CWI. Our results show that cell wall ultrastructure is severely modified when A. fumigatus is exposed to HS. We identify the transcription factor HsfA as essential for A. fumigatus viability, thermotolerance, and CWI. Indeed, HS and cell wall stress trigger the coordinated expression of both hsfA and hsp90. Furthermore, the CWI signaling pathway components PkcA and MpkA were shown to be important for HsfA and Hsp90 expression in the A. fumigatus biofilms. Lastly, RNA-sequencing confirmed that hsfA regulates the expression of genes related to the HS response, cell wall biosynthesis and remodeling, and lipid homeostasis. Our studies collectively demonstrate the connection between the HS and the CWI pathway, with HsfA playing a crucial role in this cross-pathway regulation, reinforcing the importance of the cell wall in A. fumigatus thermophily.
Collapse
Affiliation(s)
| | - Marina Campos Rocha
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos, Brazil
| | - Caroline Mota Fernandes
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY, United States
| | - Gabriela Felix Persinoti
- Laboratório Nacional de Biorrenováveis (LNBR), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas, São Paulo, Brazil
| | | | - Anderson Ferreira da Cunha
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos, Brazil
| | - Gustavo Henrique Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Maurizio Del Poeta
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY, United States
- Division of Infectious Diseases, School of Medicine, Stony Brook University, Stony Brook, NY, United States
- Institute of Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, NY, United States
- Veterans Administration Medical Center, Northport, NY, United States
| | - Iran Malavazi
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos, Brazil
| |
Collapse
|
21
|
Ueno K, Otani Y, Yanagihara N, Urai M, Nagamori A, Sato-Fukushima M, Shimizu K, Saito N, Miyazaki Y. Cryptococcus gattii evades CD11b-mediated fungal recognition by coating itself with capsular polysaccharides. Eur J Immunol 2021; 51:2281-2295. [PMID: 33728652 DOI: 10.1002/eji.202049042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/25/2021] [Accepted: 03/10/2021] [Indexed: 12/15/2022]
Abstract
Cryptococcus gattii is a capsular pathogenic fungus causing life-threatening cryptococcosis. Although the capsular polysaccharides (CPs) of C. gattii are considered as virulence factors, the physiological significance of CP biosynthesis and of CPs themselves is not fully understood, with many conflicting data reported. First, we demonstrated that CAP gene deletant of C. gattii completely lacked capsule layer and its virulence, and that the strain was susceptible to host-related factors including oxidizing, hypoxic, and hypotrophic conditions in vitro. Extracellular CPs recovered from culture supernatant bound specifically to C. gattii acapsular strains, not to other fungi and immune cells, and rendered them the immune escape effects. In fact, dendritic cells (DCs) did not efficiently uptake the CP-treated acapsular strains, which possessed no visible capsule layer, and a decreased amount of phosphorylated proteins and cytokine levels after the stimulation. DCs recognized C. gattii acapuslar cells via an immune receptor CD11b- and Syk-related pathway; however, CD11b did not bind to CP-treated acapsular cells. These results suggested that CPs support immune evasion by coating antigens on C. gattii and blocking the interaction between CD11b and C. gattii cells. Here, we describe the importance of CPs in pathogenicity and immune evasion mechanisms of C. gattii.
Collapse
Affiliation(s)
- Keigo Ueno
- Department of Chemotherapy and Mycoses, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Yoshiko Otani
- Department of Chemotherapy and Mycoses, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan.,Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Katsushika-ku, Tokyo, Japan
| | - Nao Yanagihara
- Department of Chemotherapy and Mycoses, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan.,Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Katsushika-ku, Tokyo, Japan
| | - Makoto Urai
- Department of Chemistry for Life Sciences and Agriculture, Faculty of Life Sciences, Tokyo University of Agriculture, Setagaya-ku, Tokyo, Japan
| | - Akiko Nagamori
- Department of Chemotherapy and Mycoses, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Miyuki Sato-Fukushima
- Department of Chemotherapy and Mycoses, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Kiminori Shimizu
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Katsushika-ku, Tokyo, Japan
| | - Noriko Saito
- Laboratory of Electron Microscopy, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Yoshitsugu Miyazaki
- Department of Chemotherapy and Mycoses, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| |
Collapse
|
22
|
Horianopoulos LC, Kronstad JW. Chaperone Networks in Fungal Pathogens of Humans. J Fungi (Basel) 2021; 7:209. [PMID: 33809191 PMCID: PMC7998936 DOI: 10.3390/jof7030209] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 03/05/2021] [Accepted: 03/10/2021] [Indexed: 12/14/2022] Open
Abstract
The heat shock proteins (HSPs) function as chaperones to facilitate proper folding and modification of proteins and are of particular importance when organisms are subjected to unfavourable conditions. The human fungal pathogens are subjected to such conditions within the context of infection as they are exposed to human body temperature as well as the host immune response. Herein, the roles of the major classes of HSPs are briefly reviewed and their known contributions in human fungal pathogens are described with a focus on Candida albicans, Cryptococcus neoformans, and Aspergillus fumigatus. The Hsp90s and Hsp70s in human fungal pathogens broadly contribute to thermotolerance, morphological changes required for virulence, and tolerance to antifungal drugs. There are also examples of J domain co-chaperones and small HSPs influencing the elaboration of virulence factors in human fungal pathogens. However, there are diverse members in these groups of chaperones and there is still much to be uncovered about their contributions to pathogenesis. These HSPs do not act in isolation, but rather they form a network with one another. Interactions between chaperones define their specific roles and enhance their protein folding capabilities. Recent efforts to characterize these HSP networks in human fungal pathogens have revealed that there are unique interactions relevant to these pathogens, particularly under stress conditions. The chaperone networks in the fungal pathogens are also emerging as key coordinators of pathogenesis and antifungal drug tolerance, suggesting that their disruption is a promising strategy for the development of antifungal therapy.
Collapse
Affiliation(s)
| | - James W. Kronstad
- Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada;
| |
Collapse
|
23
|
Exploring Small Heat Shock Proteins (sHSPs) for Targeting Drug Resistance in Candida albicans and other Pathogenic Fungi. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2021. [DOI: 10.22207/jpam.15.1.42] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Fungal infections have predominantly increased worldwide that leads to morbidity and mortality in severe cases. Invasive candidiasis and other pathogenic fungal infections are a major problem in immunocompromised individuals and post-operative patients. Increasing resistance to existing antifungal drugs calls for the identification of novel antifungal drug targets for chemotherapeutic interventions. This demand for identification and characterization of novel drug targets leads to the development of effective antifungal therapy against drug resistant fungi. Heat shock proteins (HSPs) are important for various biological processes like protein folding, posttranslational modifications, transcription, translation, and protein aggregation. HSPs are involved in maintaining homeostasis of the cell. A subgroup of HSPs is small heat shock proteins (sHSPs), which functions as cellular chaperones. They are having a significant role in the many cellular functions like development, cytoskeletal organization, apoptosis, membrane lipid polymorphism, differentiation, autophagy, in infection recognition and are major players in various stresses like osmotic stress, pH stress, etc. Studies have shown that fungal cells express increased levels of sHSPs upon antifungal drug induced stress responses. Here we review the important role of small heat shock proteins (sHSPs) in fungal diseases and their potential as antifungal targets.
Collapse
|
24
|
Rocha MC, Minari K, Fabri JHTM, Kerkaert JD, Gava LM, da Cunha AF, Cramer RA, Borges JC, Malavazi I. Aspergillus fumigatus Hsp90 interacts with the main components of the cell wall integrity pathway and cooperates in heat shock and cell wall stress adaptation. Cell Microbiol 2021; 23:e13273. [PMID: 33010083 PMCID: PMC7855945 DOI: 10.1111/cmi.13273] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/12/2020] [Accepted: 09/27/2020] [Indexed: 12/18/2022]
Abstract
The initiation of Aspergillus fumigatus infection occurs via dormant conidia deposition into the airways. Therefore, conidial germination and subsequent hyphal extension and growth occur in a sustained heat shock (HS) environment promoted by the host. The cell wall integrity pathway (CWIP) and the essential eukaryotic chaperone Hsp90 are critical for fungi to survive HS. Although A. fumigatus is a thermophilic fungus, the mechanisms underpinning the HS response are not thoroughly described and important to define its role in pathogenesis, virulence and antifungal drug responses. Here, we investigate the contribution of the CWIP in A. fumigatus thermotolerance. We observed that the CWIP components PkcA, MpkA and RlmA are Hsp90 clients and that a PkcAG579R mutation abolishes this interaction. PkcAG579R also abolishes MpkA activation in the short-term response to HS. Biochemical and biophysical analyses indicated that Hsp90 is a dimeric functional ATPase, which has a higher affinity for ADP than ATP and prevents MpkA aggregation in vitro. Our data suggest that the CWIP is constitutively required for A. fumigatus to cope with the temperature increase found in the mammalian lung environment, emphasising the importance of this pathway in supporting thermotolerance and cell wall integrity.
Collapse
Affiliation(s)
- Marina Campos Rocha
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos, Brazil
| | - Karine Minari
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos, Brazil
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, Brazil
| | | | - Joshua D Kerkaert
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Lisandra Marques Gava
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos, Brazil
| | - Anderson Ferreira da Cunha
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos, Brazil
| | - Robert A Cramer
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Júlio César Borges
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, Brazil
| | - Iran Malavazi
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos, Brazil
| |
Collapse
|
25
|
Marcyk PT, LeBlanc EV, Kuntz DA, Xue A, Ortiz F, Trilles R, Bengtson S, Kenney TM, Huang DS, Robbins N, Williams NS, Krysan DJ, Privé GG, Whitesell L, Cowen LE, Brown LE. Fungal-Selective Resorcylate Aminopyrazole Hsp90 Inhibitors: Optimization of Whole-Cell Anticryptococcal Activity and Insights into the Structural Origins of Cryptococcal Selectivity. J Med Chem 2021; 64:1139-1169. [PMID: 33444025 PMCID: PMC8493596 DOI: 10.1021/acs.jmedchem.0c01777] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The essential eukaryotic chaperone Hsp90 regulates the form and function of diverse client proteins, many of which govern thermotolerance, virulence, and drug resistance in fungal species. However, use of Hsp90 inhibitors as antifungal therapeutics has been precluded by human host toxicities and suppression of immune responses. We recently described resorcylate aminopyrazoles (RAPs) as the first class of Hsp90 inhibitors capable of discriminating between fungal (Cryptococcus neoformans, Candida albicans) and human isoforms of Hsp90 in biochemical assays. Here, we report an iterative structure-property optimization toward RAPs capable of inhibiting C. neoformans growth in culture. In addition, we report the first X-ray crystal structures of C. neoformans Hsp90 nucleotide binding domain (NBD), as the apoprotein and in complexes with the non-species-selective Hsp90 inhibitor NVP-AUY922 and three RAPs revealing unique ligand-induced conformational rearrangements, which reaffirm the hypothesis that intrinsic differences in protein flexibility can confer selective inhibition of fungal versus human Hsp90 isoforms.
Collapse
Affiliation(s)
- Paul T. Marcyk
- Department of Chemistry and Center for Molecular Discovery (BU-CMD), Boston University, Boston, Massachusetts 02215, United States
| | - Emmanuelle V. LeBlanc
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5G 1M1, Canada
| | - Douglas A. Kuntz
- Princess Margaret Cancer Centre, Toronto, Ontario, M5G 1L7, Canada
| | - Alice Xue
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5G 1M1, Canada
| | - Francisco Ortiz
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, Texas 75390-9038, United States
| | - Richard Trilles
- Department of Chemistry and Center for Molecular Discovery (BU-CMD), Boston University, Boston, Massachusetts 02215, United States
| | - Stephen Bengtson
- Department of Chemistry and Center for Molecular Discovery (BU-CMD), Boston University, Boston, Massachusetts 02215, United States
| | - Tristan M.G. Kenney
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, M5G 1L7, Canada
| | - David S. Huang
- Department of Chemistry and Center for Molecular Discovery (BU-CMD), Boston University, Boston, Massachusetts 02215, United States
| | - Nicole Robbins
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5G 1M1, Canada
| | - Noelle S. Williams
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, Texas 75390-9038, United States
| | - Damian J. Krysan
- Departments of Pediatrics and Microbiology/Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, 52242, United States
| | - Gilbert G. Privé
- Princess Margaret Cancer Centre, Toronto, Ontario, M5G 1L7, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, M5G 1L7, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | - Luke Whitesell
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5G 1M1, Canada
| | - Leah E. Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5G 1M1, Canada
| | - Lauren E. Brown
- Department of Chemistry and Center for Molecular Discovery (BU-CMD), Boston University, Boston, Massachusetts 02215, United States
| |
Collapse
|
26
|
Treatment strategies for cryptococcal infection: challenges, advances and future outlook. Nat Rev Microbiol 2021; 19:454-466. [PMID: 33558691 PMCID: PMC7868659 DOI: 10.1038/s41579-021-00511-0] [Citation(s) in RCA: 163] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2021] [Indexed: 01/31/2023]
Abstract
Cryptococcus spp., in particular Cryptococcus neoformans and Cryptococcus gattii, have an enormous impact on human health worldwide. The global burden of cryptococcal meningitis is almost a quarter of a million cases and 181,000 deaths annually, with mortality rates of 100% if infections remain untreated. Despite these alarming statistics, treatment options for cryptococcosis remain limited, with only three major classes of drugs approved for clinical use. Exacerbating the public health burden is the fact that the only new class of antifungal drugs developed in decades, the echinocandins, displays negligible antifungal activity against Cryptococcus spp., and the efficacy of the remaining therapeutics is hampered by host toxicity and pathogen resistance. Here, we describe the current arsenal of antifungal agents and the treatment strategies employed to manage cryptococcal disease. We further elaborate on the recent advances in our understanding of the intrinsic and adaptive resistance mechanisms that are utilized by Cryptococcus spp. to evade therapeutic treatments. Finally, we review potential therapeutic strategies, including combination therapy, the targeting of virulence traits, impairing stress response pathways and modulating host immunity, to effectively treat infections caused by Cryptococcus spp. Overall, understanding of the mechanisms that regulate anti-cryptococcal drug resistance, coupled with advances in genomics technologies and high-throughput screening methodologies, will catalyse innovation and accelerate antifungal drug discovery.
Collapse
|
27
|
Yu CH, Chen Y, Desjardins CA, Tenor JL, Toffaletti DL, Giamberardino C, Litvintseva A, Perfect JR, Cuomo CA. Landscape of gene expression variation of natural isolates of Cryptococcus neoformans in response to biologically relevant stresses. Microb Genom 2020; 6. [PMID: 31860441 PMCID: PMC7067042 DOI: 10.1099/mgen.0.000319] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Cryptococcus neoformans is an opportunistic fungal pathogen that at its peak epidemic levels caused an estimated million cases of cryptococcal meningitis per year worldwide. This species can grow in diverse environmental (trees, soil and bird excreta) and host niches (intracellular microenvironments of phagocytes and free-living in host tissues). The genetic basic for adaptation to these different conditions is not well characterized, as most experimental work has relied on a single reference strain of C. neoformans. To identify genes important for yeast infection and disease progression, we profiled the gene expression of seven C. neoformans isolates grown in five representative in vitro environmental and in vivo conditions. We characterized gene expression differences using RNA-Seq (RNA sequencing), comparing clinical and environmental isolates from two of the major lineages of this species, VNI and VNBI. These comparisons highlighted genes showing lineage-specific expression that are enriched in subtelomeric regions and in lineage-specific gene clusters. By contrast, we find few expression differences between clinical and environmental isolates from the same lineage. Gene expression specific to in vivo stages reflects available nutrients and stresses, with an increase in fungal metabolism within macrophages, and an induction of ribosomal and heat-shock gene expression within the subarachnoid space. This study provides the widest view to date of the transcriptome variation of C. neoformans across natural isolates, and provides insights into genes important for in vitro and in vivo growth stages.
Collapse
Affiliation(s)
- Chen-Hsin Yu
- Division of Infectious Diseases, Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Yuan Chen
- Division of Infectious Diseases, Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | | | - Jennifer L Tenor
- Division of Infectious Diseases, Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Dena L Toffaletti
- Division of Infectious Diseases, Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Charles Giamberardino
- Division of Infectious Diseases, Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Anastasia Litvintseva
- Mycotic Diseases Branch, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - John R Perfect
- Division of Infectious Diseases, Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | | |
Collapse
|
28
|
LeBlanc EV, Polvi EJ, Veri AO, Privé GG, Cowen LE. Structure-guided approaches to targeting stress responses in human fungal pathogens. J Biol Chem 2020; 295:14458-14472. [PMID: 32796038 DOI: 10.1074/jbc.rev120.013731] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 08/11/2020] [Indexed: 11/06/2022] Open
Abstract
Fungi inhabit extraordinarily diverse ecological niches, including the human body. Invasive fungal infections have a devastating impact on human health worldwide, killing ∼1.5 million individuals annually. The majority of these deaths are attributable to species of Candida, Cryptococcus, and Aspergillus Treating fungal infections is challenging, in part due to the emergence of resistance to our limited arsenal of antifungal agents, necessitating the development of novel therapeutic options. Whereas conventional antifungal strategies target proteins or cellular components essential for fungal growth, an attractive alternative strategy involves targeting proteins that regulate fungal virulence or antifungal drug resistance, such as regulators of fungal stress responses. Stress response networks enable fungi to adapt, grow, and cause disease in humans and include regulators that are highly conserved across eukaryotes as well as those that are fungal-specific. This review highlights recent developments in elucidating crystal structures of fungal stress response regulators and emphasizes how this knowledge can guide the design of fungal-selective inhibitors. We focus on the progress that has been made with highly conserved regulators, including the molecular chaperone Hsp90, the protein phosphatase calcineurin, and the small GTPase Ras1, as well as with divergent stress response regulators, including the cell wall kinase Yck2 and trehalose synthases. Exploring structures of these important fungal stress regulators will accelerate the design of selective antifungals that can be deployed to combat life-threatening fungal diseases.
Collapse
Affiliation(s)
- Emmanuelle V LeBlanc
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Elizabeth J Polvi
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Amanda O Veri
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Gilbert G Privé
- Departments of Medical Biophysics and Biochemistry, University of Toronto, Toronto, Ontario, Canada.,Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Leah E Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
29
|
The Novel J-Domain Protein Mrj1 Is Required for Mitochondrial Respiration and Virulence in Cryptococcus neoformans. mBio 2020; 11:mBio.01127-20. [PMID: 32518190 PMCID: PMC7373193 DOI: 10.1128/mbio.01127-20] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Cryptococcus neoformans is the causative agent of cryptococcal meningitis, a disease responsible for ∼15% of all HIV-related deaths. Unfortunately, development of antifungal drugs is challenging because potential targets are conserved between humans and C. neoformans. In this context, we characterized a unique J-domain protein, Mrj1, which lacks orthologs in humans. We showed that Mrj1 was required for normal mitochondrial respiration and that mutants lacking Mrj1 were deficient in growth, capsule elaboration, and virulence. Furthermore, we were able to phenocopy the defects in growth and capsule elaboration by inhibiting respiration. This result suggests that the role of Mrj1 in mitochondrial function was responsible for the observed virulence defects and reinforces the importance of mitochondria to fungal pathogenesis. Mitochondria are difficult to target, as their function is also key to human cells; however, Mrj1 presents an opportunity to target a unique fungal protein required for mitochondrial function and virulence in C. neoformans. The opportunistic fungal pathogen Cryptococcus neoformans must adapt to the mammalian environment to establish an infection. Proteins facilitating adaptation to novel environments, such as chaperones, may be required for virulence. In this study, we identified a novel mitochondrial co-chaperone, Mrj1 (mitochondrial respiration J-domain protein 1), necessary for virulence in C. neoformans. The mrj1Δ and J-domain-inactivated mutants had general growth defects at both routine laboratory and human body temperatures and were deficient in the major virulence factor of capsule elaboration. The latter phenotype was associated with cell wall changes and increased capsular polysaccharide shedding. Accordingly, the mrj1Δ mutant was avirulent in a murine model of cryptococcosis. Mrj1 has a mitochondrial localization and co-immunoprecipitated with Qcr2, a core component of complex III of the electron transport chain. The mrj1 mutants were deficient in mitochondrial functions, including growth on alternative carbon sources, growth without iron, and mitochondrial polarization. They were also insensitive to complex III inhibitors and hypersensitive to an alternative oxidase (AOX) inhibitor, suggesting that Mrj1 functions in respiration. In support of this conclusion, mrj1 mutants also had elevated basal oxygen consumption rates which were completely abolished by the addition of the AOX inhibitor, confirming that Mrj1 is required for mitochondrial respiration through complexes III and IV. Furthermore, inhibition of complex III phenocopied the capsule and cell wall defects of the mrj1 mutants. Taken together, these results indicate that Mrj1 is required for normal mitochondrial respiration, a key aspect of adaptation to the host environment and virulence.
Collapse
|
30
|
Huang DS, LeBlanc EV, Shekhar-Guturja T, Robbins N, Krysan DJ, Pizarro J, Whitesell L, Cowen LE, Brown LE. Design and Synthesis of Fungal-Selective Resorcylate Aminopyrazole Hsp90 Inhibitors. J Med Chem 2020; 63:2139-2180. [PMID: 31513387 PMCID: PMC7069776 DOI: 10.1021/acs.jmedchem.9b00826] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The molecular chaperone Hsp90, essential in all eukaryotes, plays a multifaceted role in promoting survival, virulence, and drug resistance across diverse pathogenic fungal species. The chaperone is also critically important, however, to the pathogen's human host, preventing the use of known clinical Hsp90 inhibitors in antifungal applications due to concomitant host toxicity issues. With the goal of developing Hsp90 inhibitors with acceptable therapeutic indices for the treatment of invasive fungal infections, we initiated a program to design and synthesize potent inhibitors with selective activity against fungal Hsp90 isoforms over their human counterparts. Building on our previously reported derivatization of resorcylate natural products to produce fungal-selective compounds, we have developed a series of synthetic aminopyrazole-substituted resorcylate amides with broad, potent, and fungal-selective Hsp90 inhibitory activity. Herein we describe the synthesis of this series, as well as biochemical structure-activity relationships driving selectivity for the Hsp90 isoforms expressed by Cryptococcus neoformans and Candida albicans, two pathogenic fungi of major clinical importance.
Collapse
Affiliation(s)
- David S. Huang
- Department of Chemistry and Center for Molecular Discovery (BU-CMD), Boston University, Boston, MA, 02215, USA
| | - Emmanuelle V. LeBlanc
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5G 1M1, Canada
| | - Tanvi Shekhar-Guturja
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5G 1M1, Canada
| | - Nicole Robbins
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5G 1M1, Canada
| | - Damian J. Krysan
- Departments of Pediatrics and Microbiology/Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, 52242, USA
| | - Juan Pizarro
- Department of Tropical Medicine, School of Public Health and Tropical Medicine and Vector-Borne Infectious Disease Research Center, Tulane University, New Orleans, LA, 70112, USA
| | - Luke Whitesell
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5G 1M1, Canada
| | - Leah E. Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5G 1M1, Canada
| | - Lauren E. Brown
- Department of Chemistry and Center for Molecular Discovery (BU-CMD), Boston University, Boston, MA, 02215, USA
| |
Collapse
|
31
|
Maliehe M, Ntoi MA, Lahiri S, Folorunso OS, Ogundeji AO, Pohl CH, Sebolai OM. Environmental Factors That Contribute to the Maintenance of Cryptococcus neoformans Pathogenesis. Microorganisms 2020; 8:microorganisms8020180. [PMID: 32012843 PMCID: PMC7074686 DOI: 10.3390/microorganisms8020180] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/04/2019] [Accepted: 12/11/2019] [Indexed: 02/07/2023] Open
Abstract
The ability of microorganisms to colonise and display an intracellular lifestyle within a host body increases their fitness to survive and avoid extinction. This host–pathogen association drives microbial evolution, as such organisms are under selective pressure and can become more pathogenic. Some of these microorganisms can quickly spread through the environment via transmission. The non-transmittable fungal pathogens, such as Cryptococcus, probably return into the environment upon decomposition of the infected host. This review analyses whether re-entry of the pathogen into the environment causes restoration of its non-pathogenic state or whether environmental factors and parameters assist them in maintaining pathogenesis. Cryptococcus (C.) neoformans is therefore used as a model organism to evaluate the impact of environmental stress factors that aid the survival and pathogenesis of C. neoformans intracellularly and extracellularly.
Collapse
|
32
|
Krajaejun T, Reamtong O, Lohnoo T, Yingyong W, Thammasudjarit R. Assessment of temperature-dependent proteomes of Pythium insidiosum by using the SWISS-PROT database. Med Mycol 2019; 57:918-921. [PMID: 30649412 DOI: 10.1093/mmy/myy164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 11/19/2018] [Accepted: 12/26/2018] [Indexed: 02/02/2023] Open
Abstract
Pythium insidiosum causes the life-threatening disease, called pythiosis. Information on microbial pathogenesis could lead to an effective method of infection control. This study aims at assessing temperature-dependent proteomes, and identifying putative virulence factors of P. insidiosum. Protein extracts from growths at 25°C and 37°C were analyzed by mass spectrometry and SWISS-PROT database. A total of 1052 proteins were identified. Upon exposure to increased temperature, 219 proteins were markedly expressed, eight of which were putative virulence factors of P. insidiosum. These temperature-dependent proteins should be further investigated for their roles in pathogenesis, and some of which could be potential therapeutic targets.
Collapse
Affiliation(s)
- Theerapong Krajaejun
- Department of Pathology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Onrapak Reamtong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Tassanee Lohnoo
- Research Center, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Wanta Yingyong
- Research Center, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Ratchainant Thammasudjarit
- Section of Clinical Epidemiology and Biostatistics, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
33
|
Mourad A, Perfect JR. Present and Future Therapy of Cryptococcus Infections. J Fungi (Basel) 2018; 4:jof4030079. [PMID: 29970809 PMCID: PMC6162641 DOI: 10.3390/jof4030079] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 06/25/2018] [Accepted: 06/26/2018] [Indexed: 01/05/2023] Open
Abstract
Cryptococcal infections burden the immunocompromised population with unacceptably high morbidity and mortality. This population includes HIV-infected individuals and those undergoing organ transplants, as well as seemingly immunocompetent patients (non-HIV, non-transplant). These groups are difficult to manage with the current therapeutic options and strategies, particularly in resource-limited settings. New trials aimed at providing the best treatment strategies for resource-limited countries that will reduce costs and adverse reactions have focused on decreasing the length of therapy and using more readily accessible antifungal agents such as fluconazole. Furthermore, the emergence of antifungal resistance poses another challenge for successful treatment and may require the development of new agents for improved management. This review will discuss the principles of management, current and future antifungal agents, as well as emerging techniques and future directions of care for this deadly infection.
Collapse
Affiliation(s)
- Ahmad Mourad
- Division of Infectious Diseases, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA.
| | - John R Perfect
- Division of Infectious Diseases, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
34
|
Martinez-Rossi NM, Bitencourt TA, Peres NTA, Lang EAS, Gomes EV, Quaresemin NR, Martins MP, Lopes L, Rossi A. Dermatophyte Resistance to Antifungal Drugs: Mechanisms and Prospectus. Front Microbiol 2018; 9:1108. [PMID: 29896175 PMCID: PMC5986900 DOI: 10.3389/fmicb.2018.01108] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 05/09/2018] [Indexed: 12/24/2022] Open
Abstract
Dermatophytes comprise pathogenic fungi that have a high affinity for the keratinized structures present in nails, skin, and hair, causing superficial infections known as dermatophytosis. A reasonable number of antifungal drugs currently exist on the pharmaceutical market to control mycoses; however, their cellular targets are restricted, and fungi may exhibit tolerance or resistance to these agents. For example, the stress caused by antifungal and cytotoxic drugs in sub-inhibitory concentrations promotes compensatory stress responses, with the over-expression of genes involved in cellular detoxification, drug efflux, and signaling pathways being among the various mechanisms that may contribute to drug tolerance. In addition, the ATP-binding cassette transporters in dermatophytes that are responsible for cellular efflux can act synergistically, allowing one to compensate for the absence of the other, revealing the complexity of drug tolerance phenomena. Moreover, mutations in genes coding for target enzymes could lead to substitutions in amino acids involved in the binding of antifungal agents, hindering their performance and leading to treatment failure. The relevance of each one of these mechanisms of resistance to fungal survival is hard to define, mainly because they can act simultaneously in the cell. However, an understanding of the molecular mechanisms involved in the resistance/tolerance processes, the identification of new antifungal targets, as well as the prospective of new antifungal compounds among natural or synthetic products, are expected to bring advances and new insights that facilitate the improvement or development of novel strategies for antifungal therapy.
Collapse
Affiliation(s)
- Nilce M Martinez-Rossi
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Tamires A Bitencourt
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Nalu T A Peres
- Department of Morphology, Federal University of Sergipe, Aracaju, Brazil
| | - Elza A S Lang
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Eriston V Gomes
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Natalia R Quaresemin
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Maíra P Martins
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Lucia Lopes
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Antonio Rossi
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
35
|
Singh M, Beri D, Nageshan RK, Chavaan L, Gadara D, Poojary M, Subramaniam S, Tatu U. A secreted Heat shock protein 90 of Trichomonas vaginalis. PLoS Negl Trop Dis 2018; 12:e0006493. [PMID: 29768419 PMCID: PMC5973626 DOI: 10.1371/journal.pntd.0006493] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 05/29/2018] [Accepted: 05/03/2018] [Indexed: 11/18/2022] Open
Abstract
Trichomonas vaginalis is a causative agent of Trichomoniasis, a leading non-viral sexually transmitted disease worldwide. In the current study, we show Heat shock protein 90 is essential for its growth. Upon genomic analysis of the parasite, it was found to possess seven ORFs which could potentially encode Hsp90 isoforms. We identified a cytosolic Hsp90 homolog, four homologs which can align to truncated cytosolic Hsp90 gene products along with two Grp94 homologs (ER isoform of Hsp90). However, both Grp94 orthologs lacked an ER retention motif. In cancer cells, it is very well established that Hsp90 is secreted and regulates key clients involved in metastases, migration, and invasion. Since Trichomonas Grp94 lacks ER retention motif, we examined the possibility of its secretion. By using cell biology and biochemical approaches we show that the Grp94 isoform of Hsp90 is secreted by the parasite by the classical ER-Golgi pathway. This is the first report of a genome encoded secreted Hsp90 in a clinically important parasitic protozoan. Hsp90 is an essential chaperone in eukaryotes and it is often described as a master regulator of cellular homeostasis. In addition to its well-known functions inside the cell, extracellular Hsp90 has also been implicated in migration and invasion of tumor cells. We have, for the first time, identified the presence of an extracellular Hsp90 in a parasitic protozoan, Trichomonas vaginalis. The extracellular Hsp90 is a Grp94 homolog that lacks a canonical ER retention signal. Our analysis of Grp94 sequences from protozoa shows that it is uncommon for a Grp94 to lack ER retention signal. In the current study, we characterized the biochemical parameters and established the extracellular localization of this Hsp90 paralog. This secreted Hsp90 in Trichomonas can potentially modulate host-pathogen interaction.
Collapse
Affiliation(s)
- Meetali Singh
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Divya Beri
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | | | - Leena Chavaan
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Darshak Gadara
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Mukta Poojary
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Suraj Subramaniam
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Utpal Tatu
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
- * E-mail:
| |
Collapse
|
36
|
Gong Y, Li T, Yu C, Sun S. Candida albicans Heat Shock Proteins and Hsps-Associated Signaling Pathways as Potential Antifungal Targets. Front Cell Infect Microbiol 2017; 7:520. [PMID: 29312897 PMCID: PMC5742142 DOI: 10.3389/fcimb.2017.00520] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 12/07/2017] [Indexed: 11/28/2022] Open
Abstract
In recent decades, the incidence of invasive fungal infections has increased notably. Candida albicans (C. albicans), a common opportunistic fungal pathogen that dwells on human mucosal surfaces, can cause fungal infections, especially in immunocompromised and high-risk surgical patients. In addition, the wide use of antifungal agents has likely contributed to resistance of C. albicans to traditional antifungal drugs, increasing the difficulty of treatment. Thus, it is urgent to identify novel antifungal drugs to cope with C. albicans infections. Heat shock proteins (Hsps) exist in most organisms and are expressed in response to thermal stress. In C. albicans, Hsps control basic physiological activities or virulence via interaction with a variety of diverse regulators of cellular signaling pathways. Moreover, it has been demonstrated that Hsps confer drug resistance to C. albicans. Many studies have shown that disrupting the normal functions of C. albicans Hsps inhibits fungal growth or reverses the tolerance of C. albicans to traditional antifungal drugs. Here, we review known functions of the diverse Hsp family, Hsp-associated intracellular signaling pathways and potential antifungal targets based on these pathways in C. albicans. We hope this review will aid in revealing potential new roles of C. albicans Hsps in addition to canonical heat stress adaptions and provide more insight into identifying potential novel antifungal targets.
Collapse
Affiliation(s)
- Ying Gong
- School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Tao Li
- Intensive Care Unit, Qianfoshan Hospital Affiliated to Shandong University, Jinan, China
| | - Cuixiang Yu
- Respiration Medicine, Qianfoshan Hospital Affiliated to Shandong University, Jinan, China
| | - Shujuan Sun
- Department of Pharmacy, Qianfoshan Hospital Affiliated to Shandong University, Jinan, China
| |
Collapse
|