1
|
Lu F, Xu J, Liu Y, Ren Z, Chen J, Gong W, Yin Y, Li Y, Qian L, He X, Han X, Lin Z, Lu J, Zhang W, Liu J, Menard D, Han ET, Cao J. Plasmodium vivax serological exposure markers: PvMSP1-42-induced humoral and memory B-cell response generates long-lived antibodies. PLoS Pathog 2024; 20:e1012334. [PMID: 38941356 PMCID: PMC11239109 DOI: 10.1371/journal.ppat.1012334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 07/11/2024] [Accepted: 06/10/2024] [Indexed: 06/30/2024] Open
Abstract
Plasmodium vivax serological exposure markers (SEMs) have emerged as promising tools for the actionable surveillance and implementation of targeted interventions to accelerate malaria elimination. To determine the dynamic profiles of SEMs in current and past P. vivax infections, we screened and selected 11 P. vivax proteins from 210 putative proteins using protein arrays, with a set of serum samples obtained from patients with acute P. vivax and documented past P. vivax infections. Then we used a murine protein immune model to initially investigate the humoral and memory B cell response involved in the generation of long-lived antibodies. We show that of the 11 proteins, especially C-terminal 42-kDa region of P. vivax merozoite surface protein 1 (PvMSP1-42) induced longer-lasting long-lived antibodies, as these antibodies were detected in individuals infected with P. vivax in the 1960-1970s who were not re-infected until 2012. In addition, we provide a potential mechanism for the maintenance of long-lived antibodies after the induction of PvMSP1-42. The results indicate that PvMSP1-42 induces more CD73+CD80+ memory B cells (MBCs) compared to P. vivax GPI-anchored micronemal antigen (PvGAMA), allowing IgG anti-PvMSP1-42 antibodies to be maintained for a long time.
Collapse
Affiliation(s)
- Feng Lu
- Department of Pathogenic Biology and Immunology, School of Medicine, Key laboratory of Jiangsu province university for Nucleic Acid & Cell Fate Manipulation, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Jiahui Xu
- Department of Pathogenic Biology and Immunology, School of Medicine, Key laboratory of Jiangsu province university for Nucleic Acid & Cell Fate Manipulation, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Yaobao Liu
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Provincial Medical Key Laboratory, Jiangsu Institute of Parasitic Diseases, Wuxi, China
| | - Zhenyu Ren
- Department of Pathogenic Biology and Immunology, School of Medicine, Key laboratory of Jiangsu province university for Nucleic Acid & Cell Fate Manipulation, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Junhu Chen
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, China
| | - Weijuan Gong
- Department of Pathogenic Biology and Immunology, School of Medicine, Key laboratory of Jiangsu province university for Nucleic Acid & Cell Fate Manipulation, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Yi Yin
- Department of Pathogenic Biology and Immunology, School of Medicine, Key laboratory of Jiangsu province university for Nucleic Acid & Cell Fate Manipulation, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Yinyue Li
- Department of Pathogenic Biology and Immunology, School of Medicine, Key laboratory of Jiangsu province university for Nucleic Acid & Cell Fate Manipulation, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Li Qian
- Department of Pathogenic Biology and Immunology, School of Medicine, Key laboratory of Jiangsu province university for Nucleic Acid & Cell Fate Manipulation, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Xinlong He
- Department of Pathogenic Biology and Immunology, School of Medicine, Key laboratory of Jiangsu province university for Nucleic Acid & Cell Fate Manipulation, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Xiu Han
- Department of Pathogenic Biology and Immunology, School of Medicine, Key laboratory of Jiangsu province university for Nucleic Acid & Cell Fate Manipulation, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Zhijie Lin
- Department of Pathogenic Biology and Immunology, School of Medicine, Key laboratory of Jiangsu province university for Nucleic Acid & Cell Fate Manipulation, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Jingyuan Lu
- Department of Pathogenic Biology and Immunology, School of Medicine, Key laboratory of Jiangsu province university for Nucleic Acid & Cell Fate Manipulation, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Wenwen Zhang
- Department of Pathogenic Biology and Immunology, School of Medicine, Key laboratory of Jiangsu province university for Nucleic Acid & Cell Fate Manipulation, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Jiali Liu
- Department of Pathogenic Biology and Immunology, School of Medicine, Key laboratory of Jiangsu province university for Nucleic Acid & Cell Fate Manipulation, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Didier Menard
- Institut Pasteur, Université Paris Cité, Malaria Parasite Biology and Vaccines Unit, Paris, France
- Université de Strasbourg, UR 3073—Pathogens Host Arthropods Vectors Interactions Unit, Malaria Genetics and Resistance Team (MEGATEAM), Strasbourg, France
- CHU Strasbourg, Laboratory of Parasitology and Medical Mycology, Strasbourg, France
| | - Eun-Taek Han
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon, Republic of Korea
| | - Jun Cao
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Provincial Medical Key Laboratory, Jiangsu Institute of Parasitic Diseases, Wuxi, China
| |
Collapse
|
2
|
Ventocilla JA, Tapia LL, Ponce R, Franco A, Leelawong M, Aguiar JC, Baldeviano GC, Wilder BK. Evaluation of naturally acquired immune responses against novel pre-erythrocytic Plasmodium vivax proteins in a low endemic malaria population located in the Peruvian Amazon Basin. Malar J 2024; 23:163. [PMID: 38783317 PMCID: PMC11118720 DOI: 10.1186/s12936-024-04978-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 05/09/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Plasmodium vivax represents the most geographically widespread human malaria parasite affecting civilian and military populations in endemic areas. Targeting the pre-erythrocytic (PE) stage of the parasite life cycle is especially appealing for developing P. vivax vaccines as it would prevent disease and transmission. Here, naturally acquired immunity to a panel of P. vivax PE antigens was explored, which may facilitate vaccine development and lead to a better understanding of naturally acquired PE immunity. METHODS Twelve P. vivax PE antigens orthologous to a panel of P. falciparum antigens previously identified as highly immunogenic in protected subjects after immunization with radiation attenuated sporozoites (RAS) were used for evaluation of humoral and cellular immunity by ELISA and IFN-γ ELISpot. Samples from P. vivax infected individuals (n = 76) from a low endemic malaria region in the Peruvian Amazon Basin were used. RESULTS In those clinical samples, all PE antigens evaluated showed positive IgG antibody reactivity with a variable prevalence of 58-99% in recently P. vivax diagnosed patients. The magnitude of the IgG antibody response against PE antigens was lower compared with blood stage antigens MSP1 and DBP-II, although antibody levels persisted better for PE antigens (average decrease of 6% for PE antigens and 43% for MSP1, p < 0.05). Higher IgG antibodies was associated with one or more previous malaria episodes only for blood stage antigens (p < 0.001). High IgG responders across PE and blood stage antigens showed significantly lower parasitaemia compared to low IgG responders (median 1,921 vs 4,663 par/µl, p < 0.05). In a subgroup of volunteers (n = 17),positive IFN-γ T cell response by ELISPOT was observed in 35% vs 9-35% against blood stage MSP1 and PE antigens, respectively, but no correlation with IgG responses. CONCLUSIONS These results demonstrate clear humoral and T cell responses against P. vivax PE antigens in individuals naturally infected with P. vivax. These data identify novel attractive PE antigens suitable for use in the potential development and selection of new malaria vaccine candidates which can be used as a part of malaria prevention strategies in civilian and military populations living in P. vivax endemic areas.
Collapse
Affiliation(s)
- Julio A Ventocilla
- Vysnova Partners Inc., Bethesda, USA
- Universidad Peruana Cayetano Heredia, Lima, Peru
| | - L Lorena Tapia
- U.S. Naval Medical Research Unit South, Lima-Peru (NAMRU SOUTH), Bellavista, Peru
| | | | | | - Mindy Leelawong
- U.S. Naval Medical Research Unit South, Lima-Peru (NAMRU SOUTH), Bellavista, Peru
- NYC Department of Health and Mental Hygiene, Long Island City, USA
| | | | - G Christian Baldeviano
- U.S. Naval Medical Research Unit South, Lima-Peru (NAMRU SOUTH), Bellavista, Peru
- Bluebird Bio, Inc, Somerville, USA
| | - Brandon K Wilder
- U.S. Naval Medical Research Unit South, Lima-Peru (NAMRU SOUTH), Bellavista, Peru.
- Oregon Health & Science University, Portland, USA.
| |
Collapse
|
3
|
Momoh EO, Ghag SK, White J, Mudeppa DG, Rathod PK. Multiplex Assays for Analysis of Antibody Responses to South Asian Plasmodium falciparum and Plasmodium vivax Malaria Infections. Vaccines (Basel) 2023; 12:1. [PMID: 38276660 PMCID: PMC10818873 DOI: 10.3390/vaccines12010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/01/2023] [Accepted: 12/13/2023] [Indexed: 01/27/2024] Open
Abstract
Malaria remains a major global health challenge, causing over 0.6 million yearly deaths. To understand naturally acquired immunity in adult human populations in malaria-prevalent regions, improved serological tools are needed, particularly where multiple malaria parasite species co-exist. Slide-based and bead-based multiplex approaches can help characterize antibodies in malaria patients from endemic regions, but these require pure, well-defined antigens. To efficiently bypass purification steps, codon-optimized malaria antigen genes with N-terminal FLAG-tag and C-terminal Ctag sequences were expressed in a wheat germ cell-free system and adsorbed on functionalized BioPlex beads. In a pilot study, 15 P. falciparum antigens, 8 P. vivax antigens, and a negative control (GFP) were adsorbed individually on functionalized bead types through their Ctag. To validate the multiplexing powers of this platform, 10 P. falciparum-infected patient sera from a US NIH MESA-ICEMR study site in Goa, India, were tested against all 23 parasite antigens. Serial dilution of patient sera revealed variations in potency and breadth of antibodies to various parasite antigens. Individual patients revealed informative variations in immunity to P. falciparum versus P. vivax. This multiplex approach to malaria serology captures varying immunity to different human malaria parasite species and different parasite antigens. This approach can be scaled to track the dynamics of antibody production during one or more human malaria infections.
Collapse
Affiliation(s)
| | | | | | - Devaraja G. Mudeppa
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA; (E.O.M.); (S.K.G.); (J.W.)
| | - Pradipsinh K. Rathod
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA; (E.O.M.); (S.K.G.); (J.W.)
| |
Collapse
|
4
|
Hassan I, Kanoi BN, Nagaoka H, Sattabongkot J, Udomsangpetch R, Tsuboi T, Takashima E. High-Throughput Antibody Profiling Identifies Targets of Protective Immunity against P. falciparum Malaria in Thailand. Biomolecules 2023; 13:1267. [PMID: 37627332 PMCID: PMC10452476 DOI: 10.3390/biom13081267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/09/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
Malaria poses a significant global health challenge, resulting in approximately 600,000 deaths each year. Individuals living in regions with endemic malaria have the potential to develop partial immunity, thanks in part to the presence of anti-plasmodium antibodies. As efforts are made to optimize and implement strategies to reduce malaria transmission and ultimately eliminate the disease, it is crucial to understand how these interventions impact naturally acquired protective immunity. To shed light on this, our study focused on assessing antibody responses to a carefully curated library of P. falciparum recombinant proteins (n = 691) using samples collected from individuals residing in a low-malaria-transmission region of Thailand. We conducted the antibody assays using the AlphaScreen system, a high-throughput homogeneous proximity-based bead assay that detects protein interactions. We observed that out of the 691 variable surface and merozoite stage proteins included in the library, antibodies to 268 antigens significantly correlated with the absence of symptomatic malaria in an univariate analysis. Notably, the most prominent antigens identified were P. falciparum erythrocyte membrane protein 1 (PfEMP1) domains. These results align with our previous research conducted in Uganda, suggesting that similar antigens like PfEMP1s might play a pivotal role in determining infection outcomes in diverse populations. To further our understanding, it remains critical to conduct functional characterization of these identified proteins, exploring their potential as correlates of protection or as targets for vaccine development.
Collapse
Affiliation(s)
- Ifra Hassan
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama 790-8577, Japan; (I.H.); (H.N.)
| | - Bernard N. Kanoi
- Centre for Malaria Elimination, Institute of Tropical Medicine, Mount Kenya University, Thika 01000, Kenya;
| | - Hikaru Nagaoka
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama 790-8577, Japan; (I.H.); (H.N.)
| | - Jetsumon Sattabongkot
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Rachanee Udomsangpetch
- Center for Research and Innovation, Faculty of Medical Technology, Mahidol University, Salaya, Nakhon Pathom 73170, Thailand;
| | - Takafumi Tsuboi
- Division of Cell-Free Sciences, Proteo-Science Center, Ehime University, Matsuyama 790-8577, Japan;
| | - Eizo Takashima
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama 790-8577, Japan; (I.H.); (H.N.)
| |
Collapse
|
5
|
Gonzalez-Ceron L, Dema B, Palomeque-Culebro OL, Santillan-Valenzuela F, Montoya A, Reyes-Sandoval A. Plasmodium vivax MSP1-42 kD Variant Proteins Detected Naturally Induced IgG Antibodies in Patients Regardless of the Infecting Parasite Phenotype in Mesoamerica. Life (Basel) 2023; 13:life13030704. [PMID: 36983859 PMCID: PMC10058798 DOI: 10.3390/life13030704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
Background: The serological tests using blood stage antigens might be helpful for detecting recent exposure to Plasmodium parasites, and seroepidemiological studies would aid in the elimination of malaria. This work produced recombinant proteins of PvMSP142 variants and evaluated their capacity to detect IgG antibodies in symptomatic patients from Mesoamerica. Methods: Three variant Pvmsp142 genes were cloned in the pHL-sec plasmid, expressed in the Expi293F™ eukaryotic system, and the recombinant proteins were purified by affinity chromatography. Using an ELISA, 174 plasma or eluted samples from patients infected with different P. vivax haplotypes were evaluated against PvMSP142 proteins and to a native blood stage antigen (NBSA). Results: The antibody IgG OD values toward PvMSP142 variants (v88, v21, and v274) were heterogeneous (n = 178; median = 0.84 IQR 0.28–1.64). The correlation of IgG levels among all proteins was very high (spearman’s rho = 0.96–0.98; p < 0.0001), but was lower between them and the NBSA (rho = 0.771; p < 0.0001). In only a few samples, higher reactivity to the homologous protein was evident. Patients with a past infection who were seropositive had higher IgG levels and lower parasitemia levels than those who did not (p < 0.0001). Conclusions: The PvMSP142 variants were similarly efficient in detecting specific IgG antibodies in P. vivax patients from Mesoamerica, regardless of the infecting parasite’s haplotype, and might be good candidates for malaria surveillance and epidemiological studies in the region.
Collapse
Affiliation(s)
- Lilia Gonzalez-Ceron
- Regional Centre of Public Health Research, National Institute for Public Health Research, Tapachula 30700, Mexico
- Correspondence: (L.G.-C.); (A.R.-S.); Tel.: +52-9626262219 (L.G.-C.); +52-5557296000 (A.R.-S.)
| | - Barbara Dema
- Pandemic Science Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
| | - Olga L. Palomeque-Culebro
- Regional Centre of Public Health Research, National Institute for Public Health Research, Tapachula 30700, Mexico
| | - Frida Santillan-Valenzuela
- Regional Centre of Public Health Research, National Institute for Public Health Research, Tapachula 30700, Mexico
| | - Alberto Montoya
- Parasitology Department, National Centre for Diagnosis Reference, Ministry of Health, Managua 11165, Nicaragua
| | - Arturo Reyes-Sandoval
- Instituto Politécnico Nacional (IPN), Unidad Adolfo López Mateos, Av. Luis Enrique Erro s/n., Mexico City 07738, Mexico
- Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada (CICATA), Unidad Morelos, Instituto Politécnico Nacional (IPN), Boulevard de la Tecnología, 1036 Z-1, P 2/2, Atlacholoaya 62790, Mexico
- Correspondence: (L.G.-C.); (A.R.-S.); Tel.: +52-9626262219 (L.G.-C.); +52-5557296000 (A.R.-S.)
| |
Collapse
|
6
|
Mazhari R, Takashima E, Longley RJ, Ruybal-Pesantez S, White MT, Kanoi BN, Nagaoka H, Kiniboro B, Siba P, Tsuboi T, Mueller I. Identification of novel Plasmodium vivax proteins associated with protection against clinical malaria. Front Cell Infect Microbiol 2023; 13:1076150. [PMID: 36761894 PMCID: PMC9905245 DOI: 10.3389/fcimb.2023.1076150] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 01/09/2023] [Indexed: 01/26/2023] Open
Abstract
As progress towards malaria elimination continues, the challenge posed by the parasite species Plasmodium vivax has become more evident. In many regions co-endemic for P. vivax and Plasmodium falciparum, as transmission has declined the proportion of cases due to P. vivax has increased. Novel tools that directly target P. vivax are thus warranted for accelerated elimination. There is currently no advanced vaccine for P. vivax and only a limited number of potential candidates in the pipeline. In this study we aimed to identify promising P. vivax proteins that could be used as part of a subunit vaccination approach. We screened 342 P. vivax protein constructs for their ability to induce IgG antibody responses associated with protection from clinical disease in a cohort of children from Papua New Guinea. This approach has previously been used to successfully identify novel candidates. We were able to confirm previous results from our laboratory identifying the proteins reticulocyte binding protein 2b and StAR-related lipid transfer protein, as well as at least four novel candidates with similar levels of predicted protective efficacy. Assessment of these P. vivax proteins in further studies to confirm their potential and identify functional mechanisms of protection against clinical disease are warranted.
Collapse
Affiliation(s)
- Ramin Mazhari
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Eizo Takashima
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Ehime, Japan
| | - Rhea J Longley
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Shazia Ruybal-Pesantez
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Michael T White
- Institut Pasteur, Université de Paris Cité, G5 Épidémiologie et Analyse des Maladies Infectieuses, Département de Santé Globale, Paris, France
| | - Bernard N Kanoi
- Centre for Research in Infectious Diseases, Directorate of Research and Innovation, Mount Kenya University, Thika, Kenya
| | - Hikaru Nagaoka
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Ehime, Japan
| | - Benson Kiniboro
- Vector Borne Disease Unit, Papua New Guinea Institute of Medical Research, Goroka, Papua New Guinea
| | - Peter Siba
- Vector Borne Disease Unit, Papua New Guinea Institute of Medical Research, Goroka, Papua New Guinea
| | - Takafumi Tsuboi
- Division of Cell-Free Sciences, Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Ivo Mueller
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
7
|
Tashi T, Upadhye A, Kundu P, Wu C, Menant S, Soares RR, Ferreira MU, Longley RJ, Mueller I, Hoang QQ, Tham WH, Rayner JC, Scopel KKG, Lima-Junior JC, Tran TM. Longitudinal IgG antibody responses to Plasmodium vivax blood-stage antigens during and after acute vivax malaria in individuals living in the Brazilian Amazon. PLoS Negl Trop Dis 2022; 16:e0010773. [PMID: 36417454 PMCID: PMC9728838 DOI: 10.1371/journal.pntd.0010773] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/07/2022] [Accepted: 11/11/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND To make progress towards malaria elimination, a highly effective vaccine targeting Plasmodium vivax is urgently needed. Evaluating the kinetics of natural antibody responses to vaccine candidate antigens after acute vivax malaria can inform the design of serological markers of exposure and vaccines. METHODOLOGY/PRINCIPAL FINDINGS The responses of IgG antibodies to 9 P. vivax vaccine candidate antigens were evaluated in longitudinal serum samples from Brazilian individuals collected at the time of acute vivax malaria and 30, 60, and 180 days afterwards. Antigen-specific IgG correlations, seroprevalence, and half-lives were determined for each antigen using the longitudinal data. Antibody reactivities against Pv41 and PVX_081550 strongly correlated with each other at each of the four time points. The analysis identified robust responses in terms of magnitude and seroprevalence against Pv41 and PvGAMA at 30 and 60 days. Among the 8 P. vivax antigens demonstrating >50% seropositivity across all individuals, antibodies specific to PVX_081550 had the longest half-life (100 days; 95% CI, 83-130 days), followed by PvRBP2b (91 days; 95% CI, 76-110 days) and Pv12 (82 days; 95% CI, 64-110 days). CONCLUSION/SIGNIFICANCE This study provides an in-depth assessment of the kinetics of antibody responses to key vaccine candidate antigens in Brazilians with acute vivax malaria. Follow-up studies are needed to determine whether the longer-lived antibody responses induced by natural infection are effective in controlling blood-stage infection and mediating clinical protection.
Collapse
Affiliation(s)
- Tenzin Tashi
- Division of Infectious Diseases, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- Department of Microbiology and Immunology, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Aditi Upadhye
- Division of Infectious Diseases, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Prasun Kundu
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, United Kingdom
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Chunxiang Wu
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Sébastien Menant
- Infectious Diseases and Immune Defence Division, Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Roberta Reis Soares
- Department of Parasitology, Microbiology and Immunology, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Marcelo U. Ferreira
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- Global Health and Tropical Medicine, Institute of Hygiene and Tropical Medicine, Nova University of Lisbon, Lisbon, Portugal
| | - Rhea J. Longley
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Ivo Mueller
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Quyen Q. Hoang
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Wai-Hong Tham
- Infectious Diseases and Immune Defence Division, Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Julian C. Rayner
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, United Kingdom
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Kézia KG Scopel
- Department of Parasitology, Microbiology and Immunology, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Josué C. Lima-Junior
- Laboratory of Immunoparasitology, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil
| | - Tuan M. Tran
- Division of Infectious Diseases, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- Department of Microbiology and Immunology, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- Ryan White Center for Pediatric Infectious Diseases and Global Health, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- * E-mail:
| |
Collapse
|
8
|
Rotich AK, Takashima E, Yanow SK, Gitaka J, Kanoi BN. Towards identification and development of alternative vaccines against pregnancy-associated malaria based on naturally acquired immunity. FRONTIERS IN TROPICAL DISEASES 2022. [DOI: 10.3389/fitd.2022.988284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Pregnant women are particularly susceptible to Plasmodium falciparum malaria, leading to substantial maternal and infant morbidity and mortality. While highly effective malaria vaccines are considered an essential component towards malaria elimination, strides towards development of vaccines for pregnant women have been minimal. The leading malaria vaccine, RTS,S/AS01, has modest efficacy in children suggesting that it needs to be strengthened and optimized if it is to be beneficial for pregnant women. Clinical trials against pregnancy-associated malaria (PAM) focused on the classical VAR2CSA antigen are ongoing. However, additional antigens have not been identified to supplement these initiatives despite the new evidence that VAR2CSA is not the only molecule involved in pregnancy-associated naturally acquired immunity. This is mainly due to a lack of understanding of the immune complexities in pregnancy coupled with difficulties associated with expression of malaria recombinant proteins, low antigen immunogenicity in humans, and the anticipated complications in conducting and implementing a vaccine to protect pregnant women. With the accelerated evolution of molecular technologies catapulted by the global pandemic, identification of novel alternative vaccine antigens is timely and feasible. In this review, we discuss approaches towards novel antigen discovery to support PAM vaccine studies.
Collapse
|
9
|
Tayipto Y, Rosado J, Gamboa D, White MT, Kiniboro B, Healer J, Opi DH, Beeson JG, Takashima E, Tsuboi T, Harbers M, Robinson L, Mueller I, Longley RJ. Assessment of IgG3 as a serological exposure marker for Plasmodium vivax in areas with moderate-high malaria transmission intensity. Front Cell Infect Microbiol 2022; 12:950909. [PMID: 36017364 PMCID: PMC9395743 DOI: 10.3389/fcimb.2022.950909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 07/15/2022] [Indexed: 02/01/2023] Open
Abstract
A more sensitive surveillance tool is needed to identify Plasmodium vivax infections for treatment and to accelerate malaria elimination efforts. To address this challenge, our laboratory has developed an eight-antigen panel that detects total IgG as serological markers of P. vivax exposure within the prior 9 months. The value of these markers has been established for use in areas with low transmission. In moderate-high transmission areas, there is evidence that total IgG is more long-lived than in areas with low transmission, resulting in poorer performance of these markers in these settings. Antibodies that are shorter-lived may be better markers of recent infection for use in moderate-high transmission areas. Using a multiplex assay, the antibody temporal kinetics of total IgG, IgG1, IgG3, and IgM against 29 P. vivax antigens were measured over 36 weeks following asymptomatic P. vivax infection in Papua New Guinean children (n = 31), from an area with moderate-high transmission intensity. IgG3 declined faster to background than total IgG, IgG1, and IgM. Based on these kinetics, IgG3 performance was then assessed for classifying recent exposure in a cohort of Peruvian individuals (n = 590; age 3-85 years) from an area of moderate transmission intensity. Using antibody responses against individual antigens, the highest performance of IgG3 in classifying recent P. vivax infections in the prior 9 months was to one of the Pv-fam-a proteins assessed (PVX_125728) (AUC = 0.764). Surprisingly, total IgG was overall a better marker of recent P. vivax infection, with the highest individual classification performance to RBP2b1986-2653 (PVX_094255) (AUC = 0.838). To understand the acquisition of IgG3 in this Peruvian cohort, relevant epidemiological factors were explored using a regression model. IgG3 levels were positively associated with increasing age, living in an area with (relatively) higher transmission intensity, and having three or more PCR-detected blood-stage P. vivax infections within the prior 13 months. Overall, we found that IgG3 did not have high accuracy for detecting recent exposure to P. vivax in the Peruvian cohort, with our data suggesting that this is due to the high levels of prior exposure required to acquire high IgG3 antibody levels.
Collapse
Affiliation(s)
- Yanie Tayipto
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Jason Rosado
- Unité Malaria: Parasites et Hôtes, Département Parasites et Insectes Vecteurs, Institut Pasteur, Paris, France
| | - Dionicia Gamboa
- Laboratorio International Centers of Excellence for Malaria Research (ICEMR)-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Michael T. White
- Unité Malaria: Parasites et Hôtes, Département Parasites et Insectes Vecteurs, Institut Pasteur, Paris, France
| | - Benson Kiniboro
- Vector Borne Disease Unit, Papua New Guinea Institute of Medical Research, Goroka, Papua New Guinea
| | - Julie Healer
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
| | - D. Herbert Opi
- Life Sciences, Burnet Institute, Melbourne, VIC, Australia
- Department of Immunology and Pathology, Monash University, Melbourne, VIC, Australia
- Department of Medicine, The Doherty Institute, The University of Melbourne, Melbourne, VIC, Australia
| | - James G. Beeson
- Life Sciences, Burnet Institute, Melbourne, VIC, Australia
- Department of Immunology and Pathology, Monash University, Melbourne, VIC, Australia
- Department of Medicine, The Doherty Institute, The University of Melbourne, Melbourne, VIC, Australia
- Department of Microbiology and Central Clinical School, Monash University, Clayton, VIC, Australia
| | - Eizo Takashima
- Proteo-Science Center, Ehime University, Matsuyama, Japan
| | | | - Matthias Harbers
- CellFree Sciences Co., Ltd., Yokohama, Japan
- RIKEN Centre for Integrative Medical Sciences, Yokohama, Japan
| | - Leanne Robinson
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Life Sciences, Burnet Institute, Melbourne, VIC, Australia
| | - Ivo Mueller
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Rhea J. Longley
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
10
|
Takashima E, Kanoi BN, Nagaoka H, Morita M, Hassan I, Palacpac NMQ, Egwang TG, Horii T, Gitaka J, Tsuboi T. Meta-Analysis of Human Antibodies Against Plasmodium falciparum Variable Surface and Merozoite Stage Antigens. Front Immunol 2022; 13:887219. [PMID: 35757771 PMCID: PMC9218060 DOI: 10.3389/fimmu.2022.887219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/11/2022] [Indexed: 11/30/2022] Open
Abstract
Concerted efforts to fight malaria have caused significant reductions in global malaria cases and mortality. Sustaining this will be critical to avoid rebound and outbreaks of seasonal malaria. Identifying predictive attributes that define clinical malaria will be key to guide development of second-generation tools to fight malaria. Broadly reactive antibodies against variable surface antigens that are expressed on the surface of infected erythrocytes and merozoites stage antigens are targets of naturally acquired immunity and prime candidates for anti-malaria therapeutics and vaccines. However, predicting the relationship between the antigen-specific antibodies and protection from clinical malaria remains unresolved. Here, we used new datasets and multiple approaches combined with re-analysis of our previous data to assess the multi-dimensional and complex relationship between antibody responses and clinical malaria outcomes. We observed 22 antigens (17 PfEMP1 domains, 3 RIFIN family members, merozoite surface protein 3 (PF3D7_1035400), and merozoites-associated armadillo repeats protein (PF3D7_1035900) that were selected across three different clinical malaria definitions (1,000/2,500/5,000 parasites/µl plus fever). In addition, Principal Components Analysis (PCA) indicated that the first three components (Dim1, Dim2 and Dim3 with eigenvalues of 306, 48, and 29, respectively) accounted for 66.1% of the total variations seen. Specifically, the Dim1, Dim2 and Dim3 explained 52.8%, 8.2% and 5% of variability, respectively. We further observed a significant relationship between the first component scores and age with antibodies to PfEMP1 domains being the key contributing variables. This is consistent with a recent proposal suggesting that there is an ordered acquisition of antibodies targeting PfEMP1 proteins. Thus, although limited, and further work on the significance of the selected antigens will be required, these approaches may provide insights for identification of drivers of naturally acquired protective immunity as well as guide development of additional tools for malaria elimination and eradication.
Collapse
Affiliation(s)
- Eizo Takashima
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Bernard N Kanoi
- Centre for Research in Infectious Diseases, Directorate of Research and Innovation, Mount Kenya University, Thika, Kenya
| | - Hikaru Nagaoka
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Masayuki Morita
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Ifra Hassan
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Nirianne M Q Palacpac
- Department of Malaria Vaccine Development, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | | | - Toshihiro Horii
- Department of Malaria Vaccine Development, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Jesse Gitaka
- Centre for Research in Infectious Diseases, Directorate of Research and Innovation, Mount Kenya University, Thika, Kenya
| | - Takafumi Tsuboi
- Division of Cell-Free Sciences, Proteo-Science Center, Ehime University, Matsuyama, Japan
| |
Collapse
|
11
|
Liu ZSJ, Sattabongkot J, White M, Chotirat S, Kumpitak C, Takashima E, Harbers M, Tham WH, Healer J, Chitnis CE, Tsuboi T, Mueller I, Longley RJ. Naturally acquired antibody kinetics against Plasmodium vivax antigens in people from a low malaria transmission region in western Thailand. BMC Med 2022; 20:89. [PMID: 35260169 PMCID: PMC8904165 DOI: 10.1186/s12916-022-02281-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 02/02/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Plasmodium vivax (P. vivax) is the dominant Plasmodium spp. causing the disease malaria in low-transmission regions outside of Africa. These regions often feature high proportions of asymptomatic patients with sub-microscopic parasitaemia and relapses. Naturally acquired antibody responses are induced after Plasmodium infection, providing partial protection against high parasitaemia and clinical episodes. However, previous work has failed to address the presence and maintenance of such antibody responses to P. vivax particularly in low-transmission regions. METHODS We followed 34 patients in western Thailand after symptomatic P. vivax infections to monitor antibody kinetics over 9 months, during which no recurrent infections occurred. We assessed total IgG, IgG subclass and IgM levels to up to 52 P. vivax proteins every 2-4 weeks using a multiplexed Luminex® assay and identified protein-specific variation in antibody longevity. Mathematical modelling was used to generate the estimated half-life of antibodies, long-, and short-lived antibody-secreting cells. RESULTS Generally, an increase in antibody level was observed within 1-week post symptomatic infection, followed by an exponential decay of different rates. We observed mostly IgG1 dominance and IgG3 sub-dominance in this population. IgM responses followed similar kinetic patterns to IgG, with some proteins unexpectedly inducing long-lived IgM responses. We also monitored antibody responses against 27 IgG-immunogenic antigens in 30 asymptomatic individuals from a similar region. Our results demonstrate that most antigens induced robust and long-lived total IgG responses following asymptomatic infections in the absence of (detected) boosting infections. CONCLUSIONS Our work provides new insights into the development and maintenance of naturally acquired immunity to P. vivax and will guide the potential use of serology to indicate immune status and/or identify populations at risk.
Collapse
Affiliation(s)
- Zoe Shih-Jung Liu
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria, 3010, Australia.,Current affiliation: Deakin University, School of Medicine, IMPACT, Institute for Innovation in Physical and Mental Health and Clinical Translation, Geelong, Victoria, 3220, Australia
| | - Jetsumon Sattabongkot
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Michael White
- Infectious Disease Epidemiology and Analytics G5 Unit, Department of Global Health, Institut Pasteur, Paris, France
| | - Sadudee Chotirat
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Chalermpon Kumpitak
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Eizo Takashima
- Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Matthias Harbers
- CellFree Sciences Co., Ltd., Yokohama, Japan and RIKEN Centre for Integrative Medical Sciences, Yokohama, Japan
| | - Wai-Hong Tham
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Julie Healer
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Chetan E Chitnis
- Malaria Parasite Biology and Vaccines, Department of Parasites & Insect Vectors, Institut Pasteur, Paris, France
| | | | - Ivo Mueller
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Rhea J Longley
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia. .,Department of Medical Biology, University of Melbourne, Parkville, Victoria, 3010, Australia.
| |
Collapse
|
12
|
Distinct kinetics of antibodies to 111 Plasmodium falciparum proteins identifies markers of recent malaria exposure. Nat Commun 2022; 13:331. [PMID: 35039519 PMCID: PMC8764098 DOI: 10.1038/s41467-021-27863-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 12/15/2021] [Indexed: 11/09/2022] Open
Abstract
Strengthening malaria surveillance is a key intervention needed to reduce the global disease burden. Reliable serological markers of recent malaria exposure could improve current surveillance methods by allowing for accurate estimates of infection incidence from limited data. We studied the IgG antibody response to 111 Plasmodium falciparum proteins in 65 adult travellers followed longitudinally after a natural malaria infection in complete absence of re-exposure. We identified a combination of five serological markers that detect exposure within the previous three months with >80% sensitivity and specificity. Using mathematical modelling, we examined the antibody kinetics and determined that responses informative of recent exposure display several distinct characteristics: rapid initial boosting and decay, less inter-individual variation in response kinetics, and minimal persistence over time. Such serological exposure markers could be incorporated into routine malaria surveillance to guide efforts for malaria control and elimination. Serological markers of recent Plasmodium falciparum infection could be useful to estimate incidence. Here, the authors identify a combination of five serological markers to detect exposure to infection within the previous three months with >80% sensitivity and specificity.
Collapse
|
13
|
Spatiotemporal Changes in Plasmodium vivax msp142 Haplotypes in Southern Mexico: From the Control to the Pre-Elimination Phase. Microorganisms 2022; 10:microorganisms10010186. [PMID: 35056635 PMCID: PMC8779127 DOI: 10.3390/microorganisms10010186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 01/27/2023] Open
Abstract
For 20 years, Plasmodium vivax has been the only prevalent malaria species in Mexico, and cases have declined significantly and continuously. Spatiotemporal genetic studies can be helpful for understanding parasite dynamics and developing strategies to weaken malaria transmission, thus facilitating the elimination of the parasite. The aim of the current contribution was to analyze P. vivax-infected blood samples from patients in southern Mexico during the control (1993–2007) and pre-elimination phases (2008–2011). Nucleotide and haplotype changes in the pvmsp142 fragment were evaluated over time. The majority of multiple genotype infections occurred in the 1990s, when the 198 single nucleotide sequences exhibited 57 segregating sites, 64 mutations, and 17 haplotypes. Nucleotide and genetic diversity parameters showed subtle fluctuations from across time, in contrast to the reduced haplotype diversity and the increase in the R2 index and Tajima’s D value from 2008 to 2011. The haplotype network consisted of four haplogroups, the geographical distribution of which varied slightly over time. Haplogroup-specific B-cell epitopes were predicted. Since only high-frequency and divergent haplotypes persisted, there was a contraction of the parasite population. Given that 84% of haplotypes were exclusive to Mesoamerica, P. vivax flow is likely circumscribed to this region, representing important information for parasite surveillance.
Collapse
|
14
|
Spatial cluster analysis of Plasmodium vivax and P. malariae exposure using serological data among Haitian school children sampled between 2014 and 2016. PLoS Negl Trop Dis 2022; 16:e0010049. [PMID: 34986142 PMCID: PMC8765618 DOI: 10.1371/journal.pntd.0010049] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 01/18/2022] [Accepted: 12/03/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Estimation of malaria prevalence in very low transmission settings is difficult by even the most advanced diagnostic tests. Antibodies against malaria antigens provide an indicator of active or past exposure to these parasites. The prominent malaria species within Haiti is Plasmodium falciparum, but P. vivax and P. malariae infections are also known to be endemic. METHODOLOGY/PRINCIPAL FINDINGS From 2014-2016, 28,681 Haitian children were enrolled in school-based serosurveys and were asked to provide a blood sample for detection of antibodies against multiple infectious diseases. IgG against the P. falciparum, P. vivax, and P. malariae merozoite surface protein 19kD subunit (MSP119) antigens was detected by a multiplex bead assay (MBA). A subset of samples was also tested for Plasmodium DNA by PCR assays, and for Plasmodium antigens by a multiplex antigen detection assay. Geospatial clustering of high seroprevalence areas for P. vivax and P. malariae antigens was assessed by both Ripley's K-function and Kulldorff's spatial scan statistic. Of 21,719 children enrolled in 680 schools in Haiti who provided samples to assay for IgG against PmMSP119, 278 (1.27%) were seropositive. Of 24,559 children enrolled in 788 schools providing samples for PvMSP119 serology, 113 (0.46%) were seropositive. Two significant clusters of seropositivity were identified throughout the country for P. malariae exposure, and two identified for P. vivax. No samples were found to be positive for Plasmodium DNA or antigens. CONCLUSIONS/SIGNIFICANCE From school-based surveys conducted from 2014 to 2016, very few Haitian children had evidence of exposure to P. vivax or P. malariae, with no children testing positive for active infection. Spatial scan statistics identified non-overlapping areas of the country with higher seroprevalence for these two malarias. Serological data provides useful information of exposure to very low endemic malaria species in a population that is unlikely to present to clinics with symptomatic infections.
Collapse
|
15
|
Shi TQ, Shen HM, Chen SB, Kassegne K, Cui YB, Xu B, Chen JH, Zheng B, Wang Y. Genetic Diversity and Natural Selection of Plasmodium vivax Duffy Binding Protein-II From China-Myanmar Border of Yunnan Province, China. Front Microbiol 2021; 12:758061. [PMID: 34912313 PMCID: PMC8667024 DOI: 10.3389/fmicb.2021.758061] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/12/2021] [Indexed: 11/15/2022] Open
Abstract
Malaria incidence has declined dramatically over the past decade and China was certified malaria-free in 2021. However, the presence of malaria in border areas and the importation of cases of malaria parasites are major challenges for the consolidation of the achievements made by China. Plasmodium vivax Duffy binding protein (PvDBP) performs a significant role in erythrocyte invasion, and is considered a promising P. vivax vaccine. However, the highly polymorphic region of PvDBP (PvDBP-II) impedes the development of blood-stage vaccine against P. vivax. In this study, we investigated the genetic diversity and natural selection of PvDBP-II among 124 P. vivax isolates collected from the China-Myanmar border (CMB) in Yunnan Province, China, during 2009–2011. To compare genetic diversity, natural selection, and population structure with CMB isolates, 85 pvdbp-II sequences of eastern Myanmar isolates were obtained from GenBank. In addition, global sequences of pvdbp-II were retrieved from GenBank to establish genetic differentiation relationships and networks with the CMB isolates. In total, 22 single nucleotide polymorphisms reflected in 20 non-synonymous and two synonymous mutations were identified. The overall nucleotide diversity of PvDBP-II from the 124 CMB isolates was 0.0059 with 21 haplotypes identified (Hd = 0.91). The high ratio of non-synonymous to synonymous mutations suggests that PvDBP-II had evolved under positive selection. Population structure analysis of the CMB and eastern Myanmar isolates were optimally grouped into five sub-populations (K = 5). Polymorphisms of PvDBP-II display that CMB isolates were genetically diverse. Mutation, recombination, and positive selection promote polymorphism of PvDBP-II of P. vivax population. Although low-level genetic differentiation in eastern Myanmar was identified along with the more effective malaria control measures, the complexity of population structure in malaria parasites has maintained. In conclusion, findings from this study advance knowledge of the understanding of the dynamic of P. vivax population, which will contribute to guiding the rational design of a PvDBP-II based vaccine.
Collapse
Affiliation(s)
- Tian-Qi Shi
- National Institute of Parasitic Diseases, Chinese Center for Diseases Control and Prevention (Chinese Center for Tropical Diseases Research), Shanghai, China.,National Health Commission of the People's Republic of China (NHC) Key Laboratory of Parasite and Vector Biology, Shanghai, China.,World Health Organization (WHO) Collaborating Center for Tropical Diseases, Shanghai, China.,National Center for International Research on Tropical Diseases, Shanghai, China
| | - Hai-Mo Shen
- National Institute of Parasitic Diseases, Chinese Center for Diseases Control and Prevention (Chinese Center for Tropical Diseases Research), Shanghai, China.,National Health Commission of the People's Republic of China (NHC) Key Laboratory of Parasite and Vector Biology, Shanghai, China.,World Health Organization (WHO) Collaborating Center for Tropical Diseases, Shanghai, China.,National Center for International Research on Tropical Diseases, Shanghai, China
| | - Shen-Bo Chen
- National Institute of Parasitic Diseases, Chinese Center for Diseases Control and Prevention (Chinese Center for Tropical Diseases Research), Shanghai, China.,National Health Commission of the People's Republic of China (NHC) Key Laboratory of Parasite and Vector Biology, Shanghai, China.,World Health Organization (WHO) Collaborating Center for Tropical Diseases, Shanghai, China.,National Center for International Research on Tropical Diseases, Shanghai, China
| | - Kokouvi Kassegne
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan-Bing Cui
- National Institute of Parasitic Diseases, Chinese Center for Diseases Control and Prevention (Chinese Center for Tropical Diseases Research), Shanghai, China.,National Health Commission of the People's Republic of China (NHC) Key Laboratory of Parasite and Vector Biology, Shanghai, China.,World Health Organization (WHO) Collaborating Center for Tropical Diseases, Shanghai, China.,National Center for International Research on Tropical Diseases, Shanghai, China
| | - Bin Xu
- National Institute of Parasitic Diseases, Chinese Center for Diseases Control and Prevention (Chinese Center for Tropical Diseases Research), Shanghai, China.,National Health Commission of the People's Republic of China (NHC) Key Laboratory of Parasite and Vector Biology, Shanghai, China.,World Health Organization (WHO) Collaborating Center for Tropical Diseases, Shanghai, China.,National Center for International Research on Tropical Diseases, Shanghai, China
| | - Jun-Hu Chen
- National Institute of Parasitic Diseases, Chinese Center for Diseases Control and Prevention (Chinese Center for Tropical Diseases Research), Shanghai, China.,National Health Commission of the People's Republic of China (NHC) Key Laboratory of Parasite and Vector Biology, Shanghai, China.,World Health Organization (WHO) Collaborating Center for Tropical Diseases, Shanghai, China.,National Center for International Research on Tropical Diseases, Shanghai, China.,School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bin Zheng
- National Institute of Parasitic Diseases, Chinese Center for Diseases Control and Prevention (Chinese Center for Tropical Diseases Research), Shanghai, China.,National Health Commission of the People's Republic of China (NHC) Key Laboratory of Parasite and Vector Biology, Shanghai, China.,World Health Organization (WHO) Collaborating Center for Tropical Diseases, Shanghai, China.,National Center for International Research on Tropical Diseases, Shanghai, China.,School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yue Wang
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Institute of Parasitic Diseases, Hangzhou, China
| |
Collapse
|
16
|
Angrisano F, Robinson LJ. Plasmodium vivax - How hidden reservoirs hinder global malaria elimination. Parasitol Int 2021; 87:102526. [PMID: 34896312 DOI: 10.1016/j.parint.2021.102526] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/03/2021] [Accepted: 12/04/2021] [Indexed: 01/23/2023]
Abstract
Plasmodium vivax is the most geographically widespread human malaria parasite. Global malaria efforts have been less successful at reducing the burden of P. vivax compared to P. falciparum, owing to the unique biology and related treatment complexity of P. vivax. As a result, P. vivax is now the dominant malaria parasite throughout the Asia-Pacific and South America causing up to 14 million clinical cases every year and is considered a major obstacle to malaria elimination. Key features circumventing existing malaria control tools are the transmissibility of asymptomatic, low-density circulating infections and reservoirs of persistent dormant liver stages (hypnozoites) that are undetectable but reactivate to cause relapsing infections and sustain transmission. In this review we summarise the new knowledge shaping our understanding of the global epidemiology of P. vivax infections, highlighting the challenges for elimination and the tools that will be required achieve this.
Collapse
|
17
|
Bantuchai S, Imad H, Nguitragool W. Plasmodium vivax gametocytes and transmission. Parasitol Int 2021; 87:102497. [PMID: 34748969 DOI: 10.1016/j.parint.2021.102497] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 08/14/2021] [Accepted: 10/30/2021] [Indexed: 10/19/2022]
Abstract
Malaria elimination means cessation of parasite transmission. At present, the declining malaria incidence in many countries has made elimination a feasible goal. Transmission control has thus been placed at the center of the national malaria control programs. The efficient transmission of Plasmodium vivax from humans to mosquitoes is a key factor that helps perpetuate malaria in endemic areas. A better understanding of transmission is crucial to the success of elimination efforts. Biological delineation of the parasite transmission process is important for identifying and prioritizing new targets of intervention. Identification of the infectious parasite reservoir in the community is key to devising an effective elimination strategy. Here we describe the fundamental characteristics of P. vivax gametocytes - the dynamics of their production, longevity, and the relationship with the total parasitemia - as well as recent advances in the molecular understanding of parasite sexual development. In relation to malaria elimination, factors influencing the human infectivity and the current evidence for a role of asymptomatic carriers in transmission are presented.
Collapse
Affiliation(s)
- Sirasate Bantuchai
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, 420/6 Ratchawithi Road, Ratchathewi, Bangkok 10400, Thailand.
| | - Hisham Imad
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, 420/6 Ratchawithi Road, Ratchathewi, Bangkok 10400, Thailand.
| | - Wang Nguitragool
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, 420/6 Ratchawithi Road, Ratchathewi, Bangkok 10400, Thailand; Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, 420/6 Ratchawithi Road, Ratchathewi, Bangkok 10400, Thailand.
| |
Collapse
|
18
|
Tayipto Y, Liu Z, Mueller I, Longley RJ. Serology for Plasmodium vivax surveillance: A novel approach to accelerate towards elimination. Parasitol Int 2021; 87:102492. [PMID: 34728377 DOI: 10.1016/j.parint.2021.102492] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 08/30/2021] [Accepted: 10/28/2021] [Indexed: 01/13/2023]
Abstract
Plasmodium vivax is the most widespread causative agent of human malaria in the world. Despite the ongoing implementation of malaria control programs, the rate of case reduction has declined over the last 5 years. Hence, surveillance of malaria transmission should be in place to identify and monitor areas that require intensified malaria control interventions. Serological tools may offer additional insights into transmission intensity over parasite and entomological measures, especially as transmission levels decline. Antibodies can be detected in the host system for months to even years after parasite infections have been cleared from the blood, enabling malaria exposure history to be captured. Because the Plasmodium parasite expresses more than 5000 proteins, it is important to a) understand antibody longevity following infection and b) measure antibodies to more than one antigen in order to accurately inform on the exposure and/or immune status of populations. This review summarises current practices for surveillance of P. vivax malaria, the current state of research into serological exposure markers and their potential role for accelerating malaria elimination, and discusses further studies that need to be undertaken to see such technology implemented in malaria-endemic areas.
Collapse
Affiliation(s)
- Yanie Tayipto
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia; Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Zoe Liu
- The Institute for Mental and Physical Health and Clinical Translation, Barwon Health, Deakin University, Geelong, Victoria, Australia; School of Medicine, Centre for Molecular and Medical Research, Deakin University, Geelong, Australia
| | - Ivo Mueller
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia; Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Rhea J Longley
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia; Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia.
| |
Collapse
|
19
|
Asymptomatic Plasmodium vivax malaria in the Brazilian Amazon: Submicroscopic parasitemic blood infects Nyssorhynchus darlingi. PLoS Negl Trop Dis 2021; 15:e0009077. [PMID: 34714821 PMCID: PMC8555776 DOI: 10.1371/journal.pntd.0009077] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 08/30/2021] [Indexed: 11/19/2022] Open
Abstract
Individuals with asymptomatic infection due to Plasmodium vivax are posited to be important reservoirs of malaria transmission in endemic regions. Here we studied a cohort of P. vivax malaria patients in a suburban area in the Brazilian Amazon. Overall 1,120 individuals were screened for P. vivax infection and 108 (9.6%) had parasitemia detected by qPCR but not by microscopy. Asymptomatic individuals had higher levels of antibodies against P. vivax and similar hematological and biochemical parameters compared to uninfected controls. Blood from asymptomatic individuals with very low parasitemia transmitted P. vivax to the main local vector, Nyssorhynchus darlingi. Lower mosquito infectivity rates were observed when blood from asymptomatic individuals was used in the membrane feeding assay. While blood from symptomatic patients infected 43.4% (199/458) of the mosquitoes, blood from asymptomatic infected 2.5% (43/1,719). However, several asymptomatic individuals maintained parasitemia for several weeks indicating their potential role as an infectious reservoir. These results suggest that asymptomatic individuals are an important source of malaria parasites and Science and Technology for Vaccines granted by Conselho Nacional de may contribute to the transmission of P. vivax in low-endemicity areas of malaria.
Collapse
|
20
|
Alves JRS, de Araújo FF, Pires CV, Teixeira-Carvalho A, Lima BAS, Torres LM, Ntumngia FB, Adams JH, Kano FS, Carvalho LH. Multiplexed Microsphere-Based Flow Cytometric Assay to Assess Strain Transcending Antibodies to Plasmodium vivax Duffy Binding Protein II Reveals an Efficient Tool to Identify Binding-Inhibitory Antibody Responders. Front Immunol 2021; 12:704653. [PMID: 34675915 PMCID: PMC8523986 DOI: 10.3389/fimmu.2021.704653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 09/13/2021] [Indexed: 11/24/2022] Open
Abstract
Malaria remains a major public health problem worldwide, and Plasmodium vivax is the most widely distributed malaria parasite. Naturally acquired binding inhibitory antibodies (BIAbs) to region II of the Duffy binding protein (DBPII), a P. vivax ligand that is critical for reticulocyte invasion, are associated with a reduced risk of clinical malaria. Owing to methodological issues in evaluating antibodies that inhibit the DBPII-DARC interaction, a limited number of studies have investigated DBPII BIAbs in P. vivax-exposed populations. Based on the assumption that individuals with a consistent BIAb response are characterized by strain-transcending immune responses, we hypothesized that detecting broadly reactive DBPII antibodies would indicate the presence of BIAb response. By taking advantage of an engineered DBPII immunogen targeting conserved DBPII neutralizing epitopes (DEKnull-2), we standardized a multiplex flow cytometry-based serological assay to detect broadly neutralizing IgG antibodies. For this study, a standard in vitro cytoadherence assay with COS-7 cells expressing DBPII was used to test for DBPII BIAb response in long-term P. vivax-exposed Amazonian individuals. Taken together, the results demonstrate that this DBPII-based multiplex assay facilitates identifying DBPII BIAb carriers. Of relevance, the ability of the multiplex assay to identify BIAb responders was highly accurate when the positivity for all antigens was considered. In conclusion, the standardized DBPII-based flow cytometric assay confirmed that DBPII-BIAb activity was associated with the breadth rather than the magnitude of anti-DBPII antibodies. Altogether, our results suggest that multiplex detection of broadly DBPII-reactive antibodies facilitates preliminary screening of BIAb responders.
Collapse
Affiliation(s)
- Jéssica R. S. Alves
- Molecular Biology and Malaria Immunology, René Rachou Institute, Oswaldo Cruz Foundation (FIOCRUZ), Belo Horizonte, Brazil
| | - Fernanda F. de Araújo
- Integrated Research Group in Biomarkers, René Rachou Institute, Oswaldo Cruz Foundation (FIOCRUZ), Belo Horizonte, Brazil
| | - Camilla V. Pires
- Center for Global Health and Infectious Diseases Research, Department of Global Health, College of Public Health, University of South Florida, Tampa, FL, United States
| | - Andréa Teixeira-Carvalho
- Integrated Research Group in Biomarkers, René Rachou Institute, Oswaldo Cruz Foundation (FIOCRUZ), Belo Horizonte, Brazil
| | - Barbara A. S. Lima
- Molecular Biology and Malaria Immunology, René Rachou Institute, Oswaldo Cruz Foundation (FIOCRUZ), Belo Horizonte, Brazil
| | - Letícia M. Torres
- Molecular Biology and Malaria Immunology, René Rachou Institute, Oswaldo Cruz Foundation (FIOCRUZ), Belo Horizonte, Brazil
| | - Francis B. Ntumngia
- Center for Global Health and Infectious Diseases Research, Department of Global Health, College of Public Health, University of South Florida, Tampa, FL, United States
| | - John H. Adams
- Center for Global Health and Infectious Diseases Research, Department of Global Health, College of Public Health, University of South Florida, Tampa, FL, United States
| | - Flora S. Kano
- Molecular Biology and Malaria Immunology, René Rachou Institute, Oswaldo Cruz Foundation (FIOCRUZ), Belo Horizonte, Brazil
| | - Luzia H. Carvalho
- Molecular Biology and Malaria Immunology, René Rachou Institute, Oswaldo Cruz Foundation (FIOCRUZ), Belo Horizonte, Brazil
| |
Collapse
|
21
|
Chotirat S, Nekkab N, Kumpitak C, Hietanen J, White MT, Kiattibutr K, Sa-angchai P, Brewster J, Schoffer K, Takashima E, Tsuboi T, Harbers M, Chitnis CE, Healer J, Tham WH, Nguitragool W, Mueller I, Sattabongkot J, Longley RJ. Application of 23 Novel Serological Markers for Identifying Recent Exposure to Plasmodium vivax Parasites in an Endemic Population of Western Thailand. Front Microbiol 2021; 12:643501. [PMID: 34276583 PMCID: PMC8279756 DOI: 10.3389/fmicb.2021.643501] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 06/03/2021] [Indexed: 01/24/2023] Open
Abstract
Thailand is aiming for malaria elimination by the year 2030. However, the high proportion of asymptomatic infections and the presence of the hidden hypnozoite stage of Plasmodium vivax are impeding these efforts. We hypothesized that a validated surveillance tool utilizing serological markers of recent exposure to P. vivax infection could help to identify areas of ongoing transmission. The objective of this exploratory study was to assess the ability of P. vivax serological exposure markers to detect residual transmission "hot-spots" in Western Thailand. Total IgG levels were measured against a panel of 23 candidate P. vivax serological exposure markers using a multiplexed bead-based assay. A total of 4,255 plasma samples from a cross-sectional survey conducted in 2012 of endemic areas in the Kanchanaburi and Ratchaburi provinces were assayed. We compared IgG levels with multiple epidemiological factors that are associated with an increased risk of P. vivax infection in Thailand, including age, gender, and spatial location, as well as Plasmodium infection status itself. IgG levels to all proteins were significantly higher in the presence of a P. vivax infection (n = 144) (T-test, p < 0.0001). Overall seropositivity rates varied from 2.5% (PVX_097625, merozoite surface protein 8) to 16.8% (PVX_082670, merozoite surface protein 7), with 43% of individuals seropositive to at least 1 protein. Higher IgG levels were associated with older age (>18 years, p < 0.05) and males (17/23 proteins, p < 0.05), supporting the paradigm that men have a higher risk of infection than females in this setting. We used a Random Forests algorithm to predict which individuals had exposure to P. vivax parasites in the last 9-months, based on their IgG antibody levels to a panel of eight previously validated P. vivax proteins. Spatial clustering was observed at the village and regional level, with a moderate correlation between PCR prevalence and sero-prevalence as predicted by the algorithm. Our data provides proof-of-concept for application of such surrogate markers as evidence of recent exposure in low transmission areas. These data can be used to better identify geographical areas with asymptomatic infection burdens that can be targeted in elimination campaigns.
Collapse
Affiliation(s)
- Sadudee Chotirat
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Narimane Nekkab
- Malaria Parasites and Hosts Unit, Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France
| | - Chalermpon Kumpitak
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Jenni Hietanen
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Michael T. White
- Malaria Parasites and Hosts Unit, Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France
| | - Kirakorn Kiattibutr
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Patiwat Sa-angchai
- Department of Tropical Hygiene, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Jessica Brewster
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Kael Schoffer
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Eizo Takashima
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Takafumi Tsuboi
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Matthias Harbers
- CellFree Sciences Co., Ltd., Yokohama, Japan
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Chetan E. Chitnis
- Malaria Parasite Biology and Vaccines Unit, Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France
| | - Julie Healer
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Wai-Hong Tham
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Wang Nguitragool
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Ivo Mueller
- Malaria Parasites and Hosts Unit, Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Jetsumon Sattabongkot
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Rhea J. Longley
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
22
|
Edwards HM, Dixon R, Zegers de Beyl C, Celhay O, Rahman M, Myint Oo M, Lwin T, Lin Z, San T, Thwe Han K, Myaing Nyunt M, Plowe C, Stresman G, Hall T, Drakeley C, Hamade P, Aryal S, Roca-Feltrer A, Hlaing T, Thi A. Prevalence and seroprevalence of Plasmodium infection in Myanmar reveals highly heterogeneous transmission and a large hidden reservoir of infection. PLoS One 2021; 16:e0252957. [PMID: 34106995 PMCID: PMC8189444 DOI: 10.1371/journal.pone.0252957] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 05/25/2021] [Indexed: 01/09/2023] Open
Abstract
Malaria incidence in Myanmar has significantly reduced over recent years, however, completeness and timeliness of incidence data remain a challenge. The first ever nationwide malaria infection and seroprevalence survey was conducted in Myanmar in 2015 to better understand malaria epidemiology and highlight gaps in Annual Parasite Index (API) data. The survey was a cross-sectional two-stage stratified cluster-randomised household survey conducted from July-October 2015. Blood samples were collected from household members for ultra-sensitive PCR and serology testing for P. falciparum and P. vivax. Data was gathered on demography and a priori risk factors of participants. Data was analysed nationally and within each of four domains defined by API data. Prevalence and seroprevalence of malaria were 0.74% and 16.01% nationwide, respectively. Prevalent infection was primarily asymptomatic P. vivax, while P. falciparum was predominant in serology. There was large heterogeneity between villages and by domain. At the township level, API showed moderate correlation with P. falciparum seroprevalence. Risk factors for infection included socioeconomic status, domain, and household ownership of nets. Three K13 P. falciparum mutants were found in highly prevalent villages. There results highlight high heterogeneity of both P. falciparum and P. vivax transmission between villages, accentuated by a large hidden reservoir of asymptomatic P. vivax infection not captured by incidence data, and representing challenges for malaria elimination. Village-level surveillance and stratification to guide interventions to suit local context and targeting of transmission foci with evidence of drug resistance would aid elimination efforts.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Zaw Lin
- Ministry of Health and Sports, Yangon, Myanmar
| | - Thiri San
- Ministry of Health and Sports, Yangon, Myanmar
| | - Kay Thwe Han
- Parasitology Research Division, Department of Medical Research, Yangon, Myanmar
| | - Myaing Myaing Nyunt
- University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Christopher Plowe
- University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Gillian Stresman
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Tom Hall
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Chris Drakeley
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | | | | | | | | | - Aung Thi
- Ministry of Health and Sports, Yangon, Myanmar
| |
Collapse
|
23
|
Hietanen J, Chim-Ong A, Sattabongkot J, Nguitragool W. Naturally induced humoral response against Plasmodium vivax reticulocyte binding protein 2P1. Malar J 2021; 20:246. [PMID: 34082763 PMCID: PMC8173506 DOI: 10.1186/s12936-021-03784-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/25/2021] [Indexed: 11/28/2022] Open
Abstract
Background Plasmodium vivax is the most prevalent malaria parasite in many countries. A better understanding of human immunity to this parasite can provide new insights for vaccine development. Plasmodium vivax Reticulocyte Binding Proteins (RBPs) are key parasite proteins that interact with human proteins during erythrocyte invasion and are targets of the human immune response. The aim of this study is to characterize the human antibody response to RBP2P1, the most recently described member of the RBP family. Methods The levels of total IgG and IgM against RBP2P1 were measured using plasmas from 68 P. vivax malaria patients and 525 villagers in a malarious village of western Thailand. The latter group comprises asymptomatic carriers and healthy uninfected individuals. Subsets of plasma samples were evaluated for anti-RBP2P1 IgG subtypes and complement-fixing activity. Results As age increased, it was found that the level of anti-RBP2P1 IgG increased while the level of IgM decreased. The main anti-RBP2P1 IgG subtypes were IgG1 and IgG3. The IgG3-seropositive rate was higher in asymptomatic carriers than in patients. The higher level of IgG3 was correlated with higher in vitro RBP2P1-mediated complement fixing activity. Conclusions In natural infection, the primary IgG response to RBP2P1 was IgG1 and IgG3. The predominance of these cytophilic subtypes and the elevated level of IgG3 correlating with complement fixing activity, suggest a possible role of anti-RBP2P1 antibodies in immunity against P. vivax.
Collapse
Affiliation(s)
- Jenni Hietanen
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, 420/6 Ratchawithi Road, Ratchathewi, 10400, Bangkok, Thailand
| | - Anongruk Chim-Ong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, 420/6 Ratchawithi Road, Ratchathewi, 10400, Bangkok, Thailand
| | - Jetsumon Sattabongkot
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, 420/6 Ratchawithi Road, Ratchathewi, 10400, Bangkok, Thailand
| | - Wang Nguitragool
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, 420/6 Ratchawithi Road, Ratchathewi, 10400, Bangkok, Thailand.
| |
Collapse
|
24
|
Rosado J, White MT, Longley RJ, Lacerda M, Monteiro W, Brewster J, Sattabongkot J, Guzman-Guzman M, Llanos-Cuentas A, Vinetz JM, Gamboa D, Mueller I. Heterogeneity in response to serological exposure markers of recent Plasmodium vivax infections in contrasting epidemiological contexts. PLoS Negl Trop Dis 2021; 15:e0009165. [PMID: 33591976 PMCID: PMC7909627 DOI: 10.1371/journal.pntd.0009165] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 02/26/2021] [Accepted: 01/21/2021] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Antibody responses as serological markers of Plasmodium vivax infection have been shown to correlate with exposure, but little is known about the other factors that affect antibody responses in naturally infected people from endemic settings. To address this question, we studied IgG responses to novel serological exposure markers (SEMs) of P. vivax in three settings with different transmission intensity. METHODOLOGY We validated a panel of 34 SEMs in a Peruvian cohort with up to three years' longitudinal follow-up using a multiplex platform and compared results to data from cohorts in Thailand and Brazil. Linear regression models were used to characterize the association between antibody responses and age, the number of detected blood-stage infections during follow-up, and time since previous infection. Receiver Operating Characteristic (ROC) analysis was used to test the performance of SEMs to identify P. vivax infections in the previous 9 months. PRINCIPAL FINDINGS Antibody titers were associated with age, the number of blood-stage infections, and time since previous P. vivax infection in all three study sites. The association between antibody titers and time since previous P. vivax infection was stronger in the low transmission settings of Thailand and Brazil compared to the higher transmission setting in Peru. Of the SEMs tested, antibody responses to RBP2b had the highest performance for classifying recent exposure in all sites, with area under the ROC curve (AUC) = 0.83 in Thailand, AUC = 0.79 in Brazil, and AUC = 0.68 in Peru. CONCLUSIONS In low transmission settings, P. vivax SEMs can accurately identify individuals with recent blood-stage infections. In higher transmission settings, the accuracy of this approach diminishes substantially. We recommend using P. vivax SEMs in low transmission settings pursuing malaria elimination, but they are likely to be less effective in high transmission settings focused on malaria control.
Collapse
Affiliation(s)
- Jason Rosado
- Unit of Malaria: Parasites and hosts, Institut Pasteur, Paris, France
- Sorbonne Université, ED 393, Paris, France
| | - Michael T. White
- Unit of Malaria: Parasites and hosts, Institut Pasteur, Paris, France
| | - Rhea J. Longley
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
- Department of Medical Biology, University of Melbourne, Australia
| | - Marcus Lacerda
- Instituto Leônidas & Maria Deane (Fiocruz), Manaus, Brazil
- Tropical Medicine Foundation Dr Heitor Vieira Dourado, Manaus, Amazonas, Brazil
| | - Wuelton Monteiro
- Tropical Medicine Foundation Dr Heitor Vieira Dourado, Manaus, Amazonas, Brazil
| | - Jessica Brewster
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | - Jetsumon Sattabongkot
- Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Mitchel Guzman-Guzman
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Alejandro Llanos-Cuentas
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Joseph M. Vinetz
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, United States of America
- Departamento de Ciencias Celulares y Moleculares, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Dionicia Gamboa
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
- Departamento de Ciencias Celulares y Moleculares, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Ivo Mueller
- Unit of Malaria: Parasites and hosts, Institut Pasteur, Paris, France
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
- Department of Medical Biology, University of Melbourne, Australia
| |
Collapse
|
25
|
Antibody Dynamics for Plasmodium vivax Malaria: A Mathematical Model. Bull Math Biol 2021; 83:6. [PMID: 33387082 DOI: 10.1007/s11538-020-00837-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 11/13/2020] [Indexed: 10/22/2022]
Abstract
Malaria is a mosquito-borne disease that, despite intensive control and mitigation initiatives, continues to pose an enormous public health burden. Plasmodium vivax is one of the principal causes of malaria in humans. Antibodies, which play a fundamental role in the host response to P. vivax, are acquired through exposure to the parasite. Here, we introduce a stochastic, within-host model of antibody responses to P. vivax for an individual in a general transmission setting. We begin by developing an epidemiological framework accounting for P. vivax infections resulting from new mosquito bites (primary infections), as well as the activation of dormant-liver stages known as hypnozoites (relapses). By constructing an infinite server queue, we obtain analytic results for the distribution of relapses in a general transmission setting. We then consider a simple model of antibody kinetics, whereby antibodies are boosted with each infection, but are subject to decay over time. By embedding this model for antibody kinetics in the epidemiological framework using a generalised shot noise process, we derive analytic expressions governing the distribution of antibody levels for a single individual in a general transmission setting. Our work provides a means to explore exposure-dependent antibody dynamics for P. vivax, with the potential to address key questions in the context of serological surveillance and acquired immunity.
Collapse
|
26
|
Kanoi BN, Nagaoka H, Morita M, Tsuboi T, Takashima E. Leveraging the wheat germ cell-free protein synthesis system to accelerate malaria vaccine development. Parasitol Int 2020; 80:102224. [PMID: 33137499 DOI: 10.1016/j.parint.2020.102224] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/04/2020] [Accepted: 09/16/2020] [Indexed: 01/29/2023]
Abstract
Vaccines against infectious diseases have had great successes in the history of public health. Major breakthroughs have occurred in the development of vaccine-based interventions against viral and bacterial pathogens through the application of classical vaccine design strategies. In contrast the development of a malaria vaccine has been slow. Plasmodium falciparum malaria affects millions of people with nearly half of the world population at risk of infection. Decades of dedicated research has taught us that developing an effective vaccine will be time consuming, challenging, and expensive. Nevertheless, recent advancements such as the optimization of robust protein synthesis platforms, high-throughput immunoscreening approaches, reverse vaccinology, structural design of immunogens, lymphocyte repertoire sequencing, and the utilization of artificial intelligence, have renewed the prospects of an accelerated discovery of the key antigens in malaria. A deeper understanding of the major factors underlying the immunological and molecular mechanisms of malaria might provide a comprehensive approach to identifying novel and highly efficacious vaccines. In this review we discuss progress in novel antigen discoveries that leverage on the wheat germ cell-free protein synthesis system (WGCFS) to accelerate malaria vaccine development.
Collapse
Affiliation(s)
- Bernard N Kanoi
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Ehime 790-8577, Japan
| | - Hikaru Nagaoka
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Ehime 790-8577, Japan
| | - Masayuki Morita
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Ehime 790-8577, Japan
| | - Takafumi Tsuboi
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Ehime 790-8577, Japan
| | - Eizo Takashima
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Ehime 790-8577, Japan.
| |
Collapse
|
27
|
Costa EMF, Amador ECC, Silva ES, Alvarenga CO, Pereira PE, Póvoa MM, Cunha MG. Malaria transmission and individual variability of the naturally acquired IgG antibody against the Plasmodium vivax blood-stage antigen in an endemic area in Brazil. Acta Trop 2020; 209:105537. [PMID: 32454033 DOI: 10.1016/j.actatropica.2020.105537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 05/11/2020] [Accepted: 05/11/2020] [Indexed: 11/20/2022]
Abstract
Plasmodium vivax remains an important cause of malaria in South America and Asia, and analyses of the antibody immune response are being used to identify biomarker of parasite exposure. The IgG antibody naturally acquired predominantly occurs against targets on blood-stage parasites, including C-terminal of the merozoite surface protein 1 (MSP1-19). Epidemiological and immunological evidence has been showed that antibodies to malaria parasite antigens are lost in the absence of ongoing exposure. We describe the IgG antibody response in individuals living in an unstable malaria transmission area in Pará state, Amazon region, Brazil, where an epidemic of P. vivax malaria was recorded and monitored over time. As indicated by epidemiological data, the number of P. vivax-caused malaria cases decreased by approximately 90% after three years and the prevalence of IgG positive to PvMSP1-19 decreased significantly over time, in 2010 (93.4%), 2012 (78.3%), and 2013 (85.1%). Acquisition and decay of the IgG antibody against P. vivax MSP1-19 showed variability among individuals living in areas with recent circulating parasites, where the malaria epidemic was being monitored until transmission had been completely controlled. We also found that previous malaria episodes were associated with an increased in the IgG positivity . Our results showed epidemiological, spatial, temporal and individual variability. The understanding on dynamics of antibodies may have implications for the design of serosurveillance tools for monitoring parasite circulation, especially in a context with spatial and temporal changes in P. vivax malaria transmission.
Collapse
Affiliation(s)
- Edna Maria F Costa
- Universidade Federal do Pará, Instituto de Ciências Biológicas, CEP: 66075-110, Belém, Pará, Brazil
| | | | - Eliane S Silva
- Fundação Centro de Hemoterapia e Hematologia do Pará, CEP: 660033-000, Belém, Pará, Brazil
| | - Cassiana O Alvarenga
- Universidade Federal do Pará, Instituto de Ciências Biológicas, CEP: 66075-110, Belém, Pará, Brazil
| | - Pedro Elias Pereira
- Fundação Centro de Hemoterapia e Hematologia do Pará, CEP: 660033-000, Belém, Pará, Brazil
| | - Marinete M Póvoa
- Instituto Evandro Chagas, CEP: 66087-082, Ananindeua, Pará, Brazil
| | - Maristela G Cunha
- Universidade Federal do Pará, Instituto de Ciências Biológicas, CEP: 66075-110, Belém, Pará, Brazil.
| |
Collapse
|
28
|
Oyong DA, Wilson DW, Barber BE, William T, Jiang J, Galinski MR, Fowkes FJI, Grigg MJ, Beeson JG, Anstey NM, Boyle MJ. Induction and Kinetics of Complement-Fixing Antibodies Against Plasmodium vivax Merozoite Surface Protein 3α and Relationship With Immunoglobulin G Subclasses and Immunoglobulin M. J Infect Dis 2020; 220:1950-1961. [PMID: 31419296 DOI: 10.1093/infdis/jiz407] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 08/07/2019] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Complement-fixing antibodies are important mediators of protection against Plasmodium falciparum malaria. However, complement-fixing antibodies remain uncharacterized for Plasmodium vivax malaria. P. vivax merozoite surface protein 3α (PvMSP3α) is a target of acquired immunity and a potential vaccine candidate. METHODS Plasma from children and adults with P. vivax malaria in Sabah, Malaysia, were collected during acute infection, 7 and 28 days after drug treatment. Complement-fixing antibodies and immunoglobulin M and G (IgM and IgG), targeting 3 distinctive regions of PvMSP3α, were measured by means of enzyme-linked immunosorbent assay. RESULTS The seroprevalence of complement-fixing antibodies was highest against the PvMSP3α central region (77.6%). IgG1, IgG3, and IgM were significantly correlated with C1q fixation, and both purified IgG and IgM were capable of mediating C1q fixation to PvMSP3α. Complement-fixing antibody levels were similar between age groups, but IgM was predominant in children and IgG3 more prevalent in adults. Levels of functional antibodies increased after acute infection through 7 days after treatment but rapidly waned by day 28. CONCLUSION Our study demonstrates that PvMSP3α antibodies acquired during P. vivax infection can mediate complement fixation and shows the important influence of age in shaping these specific antibody responses. Further studies are warranted to understand the role of these functional antibodies in protective immunity against P. vivax malaria.
Collapse
Affiliation(s)
- Damian A Oyong
- Menzies School of Health Research, Darwin, Australia.,Charles Darwin University, Darwin, Australia
| | - Danny W Wilson
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Melbourne, Australia.,Burnet Institute, Melbourne, Australia
| | - Bridget E Barber
- Menzies School of Health Research, Darwin, Australia.,Infectious Diseases Society Kota Kinabalu, Sabah-Menzies School of Health Research Clinical Research Unit, Queen Elizabeth Hospital, Kota Kinabalu, Malaysia.,QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Timothy William
- Infectious Diseases Society Kota Kinabalu, Sabah-Menzies School of Health Research Clinical Research Unit, Queen Elizabeth Hospital, Kota Kinabalu, Malaysia.,Gleneagles Medical Centre, Kota Kinabalu, Malaysia
| | - Jianlin Jiang
- Emory Vaccine Center, Yerkes National Primate Research Center, Atlanta, Georgia
| | - Mary R Galinski
- Emory Vaccine Center, Yerkes National Primate Research Center, Atlanta, Georgia.,Division of Infectious Diseases, Department of Medicine, Emory University, Atlanta, Georgia
| | - Freya J I Fowkes
- Burnet Institute, Melbourne, Australia.,Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Australia.,Department of Infectious Diseases, Monash University, Melbourne, Australia.,Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Australia.,Department of Immunology and Pathology, Monash University, Melbourne, Australia
| | - Matthew J Grigg
- Menzies School of Health Research, Darwin, Australia.,Infectious Diseases Society Kota Kinabalu, Sabah-Menzies School of Health Research Clinical Research Unit, Queen Elizabeth Hospital, Kota Kinabalu, Malaysia
| | - James G Beeson
- Burnet Institute, Melbourne, Australia.,Department of Microbiology, Monash University, Clayton, Australia.,Department of Medicine, University of Melbourne, Parkville, Australia
| | - Nicholas M Anstey
- Menzies School of Health Research, Darwin, Australia.,Infectious Diseases Society Kota Kinabalu, Sabah-Menzies School of Health Research Clinical Research Unit, Queen Elizabeth Hospital, Kota Kinabalu, Malaysia
| | - Michelle J Boyle
- Menzies School of Health Research, Darwin, Australia.,Burnet Institute, Melbourne, Australia.,QIMR Berghofer Medical Research Institute, Brisbane, Australia
| |
Collapse
|
29
|
Infection-induced plasmablasts are a nutrient sink that impairs humoral immunity to malaria. Nat Immunol 2020; 21:790-801. [PMID: 32424361 PMCID: PMC7316608 DOI: 10.1038/s41590-020-0678-5] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 04/01/2020] [Indexed: 01/07/2023]
Abstract
Plasmodium parasite-specific antibodies are critical for
protection against malaria, yet the development of long-lived and effective
humoral immunity against Plasmodium takes many years and
multiple rounds of infection and cure. Here we report that the rapid development
of short-lived plasmablasts during experimental malaria unexpectedly hindered
parasite control by impeding germinal center (GC) responses. Metabolic
hyperactivity of plasmablasts resulted in nutrient deprivation of the GC
reaction limiting the generation of memory B cell and long-lived plasma cell
responses. Therapeutic administration of a single amino acid to experimentally
infected mice was sufficient to overcome the metabolic constraints imposed by
plasmablasts and enhanced parasite clearance and the formation of protective
humoral immune memory responses. Thus, our studies not only challenge the
current paradigm describing the role and function of blood-stage
Plasmodium-induced plasmablasts, but also reveal new
targets and strategies to improve anti-Plasmodium humoral
immunity.
Collapse
|
30
|
Kanoi BN, Nagaoka H, White MT, Morita M, Palacpac NMQ, Ntege EH, Balikagala B, Yeka A, Egwang TG, Horii T, Tsuboi T, Takashima E. Global Repertoire of Human Antibodies Against Plasmodium falciparum RIFINs, SURFINs, and STEVORs in a Malaria Exposed Population. Front Immunol 2020; 11:893. [PMID: 32477363 PMCID: PMC7235171 DOI: 10.3389/fimmu.2020.00893] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 04/17/2020] [Indexed: 11/15/2022] Open
Abstract
Clinical immunity to malaria develops after repeated exposure to Plasmodium falciparum parasites. Broadly reactive antibodies against parasite antigens expressed on the surface of infected erythrocytes (variable surface antigens; VSAs) are candidates for anti-malaria therapeutics and vaccines. Among the VSAs, several RIFIN, STEVOR, and SURFIN family members have been demonstrated to be targets of naturally acquired immunity against malaria. For example, RIFIN family members are important ligands for opsonization of P. falciparum infected erythrocytes with specific immunoglobulins (IgG) acquiring broad protective reactivity. However, the global repertoire of human anti-VSAs IgG, its variation in children, and the key protective targets remain poorly understood. Here, we report wheat germ cell-free system-based production and serological profiling of a comprehensive library of A-RIFINs, B-RIFINs, STEVORs, and SURFINs derived from the P. falciparum 3D7 parasite strain. We observed that >98% of assayed proteins (n = 265) were immunogenic in malaria-exposed individuals in Uganda. The overall breadth of immune responses was significantly correlated with age but not with clinical malaria outcome among the study volunteers. However, children with high levels of antibodies to four RIFINs (PF3D7_0201000, PF3D7_1254500, PF3D7_1040600, PF3D7_1041100), STEVOR (PF3D7_0732000), and SURFIN 1.2 (PF3D7_0113600) had prospectively reduced the risk of developing febrile malaria, suggesting that the 5 antigens are important targets of protective immunity. Further studies on the significance of repeated exposure to malaria infection and maintenance of such high-level antibodies would contribute to a better understanding of susceptibility and naturally acquired immunity to malaria.
Collapse
Affiliation(s)
- Bernard N Kanoi
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Hikaru Nagaoka
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Michael T White
- Department of Parasites and Insect Vectors, Pasteur Institute, Paris, France
| | - Masayuki Morita
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Nirianne M Q Palacpac
- Department of Malaria Vaccine Development, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Edward H Ntege
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine and Hospital, University of the Ryukyus, Okinawa, Japan
| | - Betty Balikagala
- Department of Tropical Medicine and Parasitology, School of Medicine, Juntendo University, Tokyo, Japan
| | - Adoke Yeka
- Makerere University School of Public Health, Kampala, Uganda
| | | | - Toshihiro Horii
- Department of Malaria Vaccine Development, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Takafumi Tsuboi
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Eizo Takashima
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Japan
| |
Collapse
|
31
|
Longley RJ, White MT, Takashima E, Brewster J, Morita M, Harbers M, Obadia T, Robinson LJ, Matsuura F, Liu ZSJ, Li-Wai-Suen CSN, Tham WH, Healer J, Huon C, Chitnis CE, Nguitragool W, Monteiro W, Proietti C, Doolan DL, Siqueira AM, Ding XC, Gonzalez IJ, Kazura J, Lacerda M, Sattabongkot J, Tsuboi T, Mueller I. Development and validation of serological markers for detecting recent Plasmodium vivax infection. Nat Med 2020; 26:741-749. [DOI: 10.1038/s41591-020-0841-4] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 03/18/2020] [Indexed: 11/09/2022]
|
32
|
Chim-Ong A, Surit T, Chainarin S, Roobsoong W, Sattabongkot J, Cui L, Nguitragool W. The Blood Stage Antigen RBP2-P1 of Plasmodium vivax Binds Reticulocytes and Is a Target of Naturally Acquired Immunity. Infect Immun 2020; 88:e00616-19. [PMID: 32014895 PMCID: PMC7093139 DOI: 10.1128/iai.00616-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 01/21/2020] [Indexed: 11/20/2022] Open
Abstract
The interactions between Plasmodium parasites and human erythrocytes are prime targets of blood stage malaria vaccine development. The reticulocyte binding protein 2-P1 (RBP2-P1) of Plasmodium vivax, a member of the reticulocyte binding protein family, has recently been shown to be highly antigenic in several settings endemic for malaria. Yet, its functional characteristics and the relevance of its antibody response in human malaria have not been examined. In this study, the potential function of RBP2-P1 as an invasion ligand of P. vivax was evaluated. The protein was found to be expressed in schizonts, be localized at the apical end of the merozoite, and preferentially bind reticulocytes over normocytes. Human antibodies to this protein also exhibit erythrocyte binding inhibition at physiologically relevant concentrations. Furthermore, RBP2-P1 antibodies are associated with lower parasitemia and tend to be higher in asymptomatic carriers than in patients. This study provides evidence supporting a role of RBP2-P1 as an invasion ligand and its consideration as a vaccine target.
Collapse
Affiliation(s)
- Anongruk Chim-Ong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Thitiporn Surit
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Sittinont Chainarin
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Wanlapa Roobsoong
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Jetsumon Sattabongkot
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Liwang Cui
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Wang Nguitragool
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| |
Collapse
|
33
|
Chan L, Dietrich MH, Nguitragool W, Tham W. Plasmodium vivax Reticulocyte Binding Proteins for invasion into reticulocytes. Cell Microbiol 2020; 22:e13110. [PMID: 31469946 PMCID: PMC7003471 DOI: 10.1111/cmi.13110] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/25/2019] [Accepted: 08/25/2019] [Indexed: 12/22/2022]
Abstract
Plasmodium vivax is responsible for most of the malaria infections outside Africa and is currently the predominant malaria parasite in countries under elimination programs. P. vivax preferentially enters young red cells called reticulocytes. Advances in understanding the molecular and cellular mechanisms of entry are hampered by the inability to grow large numbers of P. vivax parasites in a long-term in vitro culture. Recent progress in understanding the biology of the P. vivax Reticulocyte Binding Protein (PvRBPs) family of invasion ligands has led to the identification of a new invasion pathway into reticulocytes, an understanding of their structural architecture and PvRBPs as targets of the protective immune response to P. vivax infection. This review summarises current knowledge on the role of reticulocytes in P. vivax infection, the function of the PvRBP family of proteins in generating an immune response in human populations, and the characterization of anti-PvRBP antibodies in blocking parasite invasion.
Collapse
Affiliation(s)
- Li‐Jin Chan
- The Walter and Eliza Hall Institute of Medical ResearchParkvilleVictoriaAustralia
- Department of Medical BiologyThe University of MelbourneMelbourneVictoriaAustralia
| | - Melanie H. Dietrich
- The Walter and Eliza Hall Institute of Medical ResearchParkvilleVictoriaAustralia
- Department of Medical BiologyThe University of MelbourneMelbourneVictoriaAustralia
| | - Wang Nguitragool
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical MedicineMahidol UniversityBangkokThailand
| | - Wai‐Hong Tham
- The Walter and Eliza Hall Institute of Medical ResearchParkvilleVictoriaAustralia
- Department of Medical BiologyThe University of MelbourneMelbourneVictoriaAustralia
| |
Collapse
|
34
|
Antonelli LR, Junqueira C, Vinetz JM, Golenbock DT, Ferreira MU, Gazzinelli RT. The immunology of Plasmodium vivax malaria. Immunol Rev 2019; 293:163-189. [PMID: 31642531 DOI: 10.1111/imr.12816] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 09/10/2019] [Indexed: 12/13/2022]
Abstract
Plasmodium vivax infection, the predominant cause of malaria in Asia and Latin America, affects ~14 million individuals annually, with considerable adverse effects on wellbeing and socioeconomic development. A clinical hallmark of Plasmodium infection, the paroxysm, is driven by pyrogenic cytokines produced during the immune response. Here, we review studies on the role of specific immune cell types, cognate innate immune receptors, and inflammatory cytokines on parasite control and disease symptoms. This review also summarizes studies on recurrent infections in individuals living in endemic regions as well as asymptomatic infections, a serious barrier to eliminating this disease. We propose potential mechanisms behind these repeated and subclinical infections, such as poor induction of immunological memory cells and inefficient T effector cells. We address the role of antibody-mediated resistance to P. vivax infection and discuss current progress in vaccine development. Finally, we review immunoregulatory mechanisms, such as inhibitory receptors, T regulatory cells, and the anti-inflammatory cytokine, IL-10, that antagonizes both innate and acquired immune responses, interfering with the development of protective immunity and parasite clearance. These studies provide new insights for the clinical management of symptomatic as well as asymptomatic individuals and the development of an efficacious vaccine for vivax malaria.
Collapse
Affiliation(s)
- Lis R Antonelli
- Instituto de Pesquisas Rene Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
| | - Caroline Junqueira
- Instituto de Pesquisas Rene Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
| | - Joseph M Vinetz
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Douglas T Golenbock
- Division of Infectious Disease and immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Marcelo U Ferreira
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Ricardo T Gazzinelli
- Instituto de Pesquisas Rene Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil.,Division of Infectious Disease and immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA.,Plataforma de Medicina Translacional, Fundação Oswaldo Cruz, Ribeirão Preto, Brazil
| |
Collapse
|
35
|
Greenhouse B, Smith DL, Rodríguez-Barraquer I, Mueller I, Drakeley CJ. Taking Sharper Pictures of Malaria with CAMERAs: Combined Antibodies to Measure Exposure Recency Assays. Am J Trop Med Hyg 2019; 99:1120-1127. [PMID: 30298804 PMCID: PMC6221205 DOI: 10.4269/ajtmh.18-0303] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Antibodies directed against malaria parasites are easy and inexpensive to measure but remain an underused surveillance tool because of a lack of consensus on what to measure and how to interpret results. High-throughput screening of antibodies from well-characterized cohorts offers a means to substantially improve existing assays by rationally choosing the most informative sets of responses and analytical methods. Recent data suggest that high-resolution information on malaria exposure can be obtained from a small number of samples by measuring a handful of properly chosen antibody responses. In this review, we discuss how standardized multi-antibody assays can be developed and efficiently integrated into existing surveillance activities, with potential to greatly augment the breadth and quality of information available to direct and monitor malaria control and elimination efforts.
Collapse
Affiliation(s)
- Bryan Greenhouse
- Department of Medicine, University of California, San Francisco, San Francisco, California.,Chan Zuckerberg Biohub, San Francisco, California
| | - David L Smith
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, Washington
| | | | - Ivo Mueller
- Institute Pasteur, Paris, France.,Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Chris J Drakeley
- London School of Hygiene & Tropical Medicine, London, United Kingdom
| |
Collapse
|
36
|
Yman V, Wandell G, Mutemi DD, Miglar A, Asghar M, Hammar U, Karlsson M, Lind I, Nordfjell C, Rooth I, Ngasala B, Homann MV, Färnert A. Persistent transmission of Plasmodium malariae and Plasmodium ovale species in an area of declining Plasmodium falciparum transmission in eastern Tanzania. PLoS Negl Trop Dis 2019; 13:e0007414. [PMID: 31136585 PMCID: PMC6555537 DOI: 10.1371/journal.pntd.0007414] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 06/07/2019] [Accepted: 04/26/2019] [Indexed: 11/18/2022] Open
Abstract
A reduction in the global burden of malaria over the past two decades has encouraged efforts for regional malaria elimination. Despite the need to target all Plasmodium species, current focus is mainly directed towards Plasmodium falciparum, and to a lesser extent P. vivax. There is a substantial lack of data on both global and local transmission patterns of the neglected malaria parasites P. malariae and P. ovale spp. We used a species-specific real-time PCR assay targeting the Plasmodium 18s rRNA gene to evaluate temporal trends in the prevalence of all human malaria parasites over a 22-year period in a rural village in Tanzania.We tested 2897 blood samples collected in five cross-sectional surveys conducted between 1994 and 2016. Infections with P. falciparum, P. malariae, and P. ovale spp. were detected throughout the study period, while P. vivax was not detected. Between 1994 and 2010, we found a more than 90% reduction in the odds of infection with all detected species. The odds of P. falciparum infection was further reduced in 2016, while the odds of P. malariae and P. ovale spp. infection increased 2- and 6-fold, respectively, compared to 2010. In 2016, non-falciparum species occurred more often as mono-infections. The results demonstrate the persistent transmission of P. ovale spp., and to a lesser extent P. malariae despite a continued decline in P. falciparum transmission. This illustrates that the transmission patterns of the non-falciparum species do not necessarily follow those of P. falciparum, stressing the need for attention towards non-falciparum malaria in Africa. Malaria elimination will require a better understanding of the epidemiology of P. malariae and P. ovale spp. and improved tools for monitoring the transmission of all Plasmodium species, with a particular focus towards identifying asymptomatic carriers of infection and designing appropriate interventions to enhance malaria control. The reduction in the global burden of malaria has encouraged efforts for elimination. Attempts to control and monitor transmission have mainly focused on the predominant malaria parasites Plasmodium falciparum and P. vivax. However, eliminating malaria requires the elimination of all human malaria parasites and limited interest has been directed towards estimating the disease burden attributable to the neglected malaria parasites P. ovale spp. and P. malariae. The authors used molecular methods to analyse 2897 blood samples collected in five cross-sectional surveys over a period of 22 years, and described the transmission patterns of all human malaria parasites in a Tanzanian village. They demonstrate a persistent transmission of P. malariae and P. ovale spp. despite a substantial reduction in transmission of P. falciparum, highlighting the need for more attention towards non-falciparum malaria. The authors discuss the implications of these findings in the context of current efforts for regional malaria elimination.
Collapse
Affiliation(s)
- Victor Yman
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Grace Wandell
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden.,Department of Otolaryngology, University of Washington Medical Center, Seattle, Washington, United States of America
| | - Doreen D Mutemi
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden.,Department of Parasitology and Medical Entomology, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Aurelie Miglar
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Muhammad Asghar
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Ulf Hammar
- Unit of Biostatistics, Department of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Mattias Karlsson
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Ingrid Lind
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Cleis Nordfjell
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Ingegerd Rooth
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Billy Ngasala
- Department of Parasitology and Medical Entomology, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania.,Department of Women's and Children's Health, International Maternal and Child Health (IMCH), Uppsala University, Uppsala, Sweden
| | - Manijeh Vafa Homann
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Anna Färnert
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden.,Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
37
|
Mosquito Bite-Induced Controlled Human Malaria Infection with Plasmodium vivax or P. falciparum Generates Immune Responses to Homologous and Heterologous Preerythrocytic and Erythrocytic Antigens. Infect Immun 2019; 87:IAI.00541-18. [PMID: 30559218 DOI: 10.1128/iai.00541-18] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 12/07/2018] [Indexed: 11/20/2022] Open
Abstract
Seroepidemiological studies on the prevalence of antibodies to malaria antigens are primarily conducted on individuals from regions of endemicity. It is therefore difficult to accurately correlate the antibody responses to the timing and number of prior malaria infections. This study was undertaken to assess the evolution of antibodies to the dominant surface antigens of Plasmodium vivax and P. falciparum following controlled human malaria infection (CHMI) in malaria-naive individuals. Serum samples from malaria-naive adults, collected before and after CHMI with either P. vivax (n = 18) or P. falciparum (n = 18), were tested for the presence of antibodies to the circumsporozoite protein (CSP) and the 42-kDa fragment of merozoite surface protein 1 (MSP-142) of P. vivax and P. falciparum using an enzyme-linked immunosorbent assay (ELISA). Approximately 1 month following CHMI with either P. vivax or P. falciparum, >60% of subjects seroconverted to homologous CSP and MSP-1. More than 50% of the subjects demonstrated reactivity to heterologous CSP and MSP-142, and a similar proportion of subjects remained seropositive to homologous MSP-142 >5 months after CHMI. Computational analysis provides insight into the presence of cross-reactive responses. The presence of long-lived and heterologous reactivity and its functional significance, if any, need to be taken into account while evaluating malaria exposure in field settings.
Collapse
|
38
|
Greenhouse B, Daily J, Guinovart C, Goncalves B, Beeson J, Bell D, Chang MA, Cohen JM, Ding X, Domingo G, Eisele TP, Lammie PJ, Mayor A, Merienne N, Monteiro W, Painter J, Rodriguez I, White M, Drakeley C, Mueller I. Priority use cases for antibody-detecting assays of recent malaria exposure as tools to achieve and sustain malaria elimination. Gates Open Res 2019; 3:131. [PMID: 31172051 PMCID: PMC6545519 DOI: 10.12688/gatesopenres.12897.1] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/28/2019] [Indexed: 01/12/2023] Open
Abstract
Measurement of malaria specific antibody responses represents a practical and informative method for malaria control programs to assess recent exposure to infection. Technical advances in recombinant antigen production, serological screening platforms, and analytical methods have enabled the identification of several target antigens for laboratory based and point-of-contact tests. Questions remain as to how these serological assays can best be integrated into malaria surveillance activities to inform programmatic decision-making. This report synthesizes discussions from a convening at Institut Pasteur in Paris in June 2017 aimed at defining practical and informative use cases for serology applications and highlights five programmatic uses for serological assays including: documenting the absence of transmission; stratification of transmission; measuring the effect of interventions; informing a decentralized immediate response; and testing and treating P. vivax hypnozoite carriers.
Collapse
Affiliation(s)
- Bryan Greenhouse
- Department of Medicine,, University of California San Francisco, San Francisco, CA, USA
| | | | - Caterina Guinovart
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
- PATH, Seattle, WA, USA
| | | | | | - David Bell
- Intellectual Ventures, Bellevue, WA, USA
| | | | | | | | | | - Thomas P. Eisele
- Center for Applied Malaria Research and Evaluation, Tulane School of Public Health and Tropical Medicine, New Orleans, LA, USA
| | | | - Alfredo Mayor
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | | | - Wuelto Monteiro
- Tropical Medicine Foundation Dr. Heitor Viera Dourado, Manaus, Amazonas, Brazil
| | - John Painter
- Centers of Disease Control and Prevention, Atlanta, GA, USA
| | - Isabel Rodriguez
- Department of Medicine,, University of California San Francisco, San Francisco, CA, USA
| | | | - Chris Drakeley
- London School of Tropical Medicine & Hygiene, London, UK
| | - Ivo Mueller
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - The Malaria Serology Convening
- Department of Medicine,, University of California San Francisco, San Francisco, CA, USA
- Consultant to UNITAID, Denver, CO, USA
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
- PATH, Seattle, WA, USA
- London School of Tropical Medicine & Hygiene, London, UK
- The Burnet Institute, Melbourne, Australia
- Intellectual Ventures, Bellevue, WA, USA
- Centers of Disease Control and Prevention, Atlanta, GA, USA
- Clinton Health Access Initiative (CHAI), Boston, MA, USA
- FIND, Geneva, Switzerland
- Center for Applied Malaria Research and Evaluation, Tulane School of Public Health and Tropical Medicine, New Orleans, LA, USA
- Institut Pasteur, Paris, France
- Tropical Medicine Foundation Dr. Heitor Viera Dourado, Manaus, Amazonas, Brazil
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| |
Collapse
|
39
|
Pires CV, Alves JRS, Lima BAS, Paula RB, Costa HL, Torres LM, Sousa TN, Soares IS, Sanchez BAM, Fontes CJF, Ntumngia FB, Adams JH, Kano FS, Carvalho LH. Blood-stage Plasmodium vivax antibody dynamics in a low transmission setting: A nine year follow-up study in the Amazon region. PLoS One 2018; 13:e0207244. [PMID: 30419071 PMCID: PMC6231651 DOI: 10.1371/journal.pone.0207244] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 10/26/2018] [Indexed: 11/23/2022] Open
Abstract
Plasmodium vivax remains a global health problem and its ability to cause relapses and subpatent infections challenge control and elimination strategies. Even in low malaria transmission settings, such as the Amazon basin, where progress in malaria control has caused a remarkable reduction in case incidence, a recent increase in P. vivax transmission demonstrates the continued vulnerability of P.vivax-exposed populations. As part of a search for complementary approaches to P.vivax surveillance in areas in which adults are the majority of the exposed-population, here we evaluated the potential of serological markers covering a wide range of immunogenicity to estimate malaria transmission trends. For this, antibodies against leading P. vivax blood-stage vaccine candidates were assessed during a 9 year follow-up study among adults exposed to unstable malaria transmission in the Amazon rainforest. Circulating antibody levels against immunogenic P. vivax proteins, such as the Apical Membrane Antigen-1, were a sensitive measure of recent P. vivax exposure, while antibodies against less immunogenic proteins were indicative of naturally-acquired immunity, including the novel engineered Duffy binding protein II immunogen (DEKnull-2). Our results suggest that the robustness of serology to estimate trends in P.vivax malaria transmission will depend on the immunological background of the study population, and that for adult populations exposed to unstable P.vivax malaria transmission, the local heterogeneity of antibody responses should be considered when considering use of serological surveillance.
Collapse
Affiliation(s)
- Camilla V. Pires
- Instituto René Rachou/FIOCRUZ, Belo Horizonte, Minas Gerais, Brazil
| | | | | | - Ruth B. Paula
- Instituto René Rachou/FIOCRUZ, Belo Horizonte, Minas Gerais, Brazil
| | - Helena L. Costa
- Instituto René Rachou/FIOCRUZ, Belo Horizonte, Minas Gerais, Brazil
| | | | - Taís N. Sousa
- Instituto René Rachou/FIOCRUZ, Belo Horizonte, Minas Gerais, Brazil
| | - Irene S. Soares
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Bruno A. M. Sanchez
- Instituto de Ciências da Saúde, Universidade Federal de Mato Grosso, Campus Sinop, Sinop, Mato Grosso, Brazil
| | - Cor J. F. Fontes
- Hospital Júlio Muller, Universidade Federal de Mato Grosso, Cuiabá, Mato Grosso, Brazil
| | - Francis B. Ntumngia
- Center for Global Health and Infectious Diseases Research, Department of Global Health, College of Public Health, University of South Florida, Tampa, Florida, United States of America
| | - John H. Adams
- Center for Global Health and Infectious Diseases Research, Department of Global Health, College of Public Health, University of South Florida, Tampa, Florida, United States of America
| | - Flora S. Kano
- Instituto René Rachou/FIOCRUZ, Belo Horizonte, Minas Gerais, Brazil
- * E-mail: (LHC); (FSK)
| | - Luzia H. Carvalho
- Instituto René Rachou/FIOCRUZ, Belo Horizonte, Minas Gerais, Brazil
- * E-mail: (LHC); (FSK)
| |
Collapse
|
40
|
Kanjee U, Rangel GW, Clark MA, Duraisingh MT. Molecular and cellular interactions defining the tropism of Plasmodium vivax for reticulocytes. Curr Opin Microbiol 2018; 46:109-115. [PMID: 30366310 DOI: 10.1016/j.mib.2018.10.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 10/03/2018] [Accepted: 10/05/2018] [Indexed: 01/19/2023]
Abstract
Plasmodium vivax is uniquely restricted to invading reticulocytes, the youngest of red blood cells. Parasite invasion relies on the sequential deployment of multiple parasite invasion ligands. Correct targeting of the host reticulocyte is mediated by two families of invasion ligands: the reticulocyte binding proteins (RBPs) and erythrocyte binding proteins (EBPs). The Duffy receptor has long been established as a key determinant for P. vivax invasion. However, recently, the RBP protein PvRBP2b has been shown to bind to transferrin receptor, which is expressed on reticulocytes but lost on normocytes, implicating the ligand-receptor in the reticulocyte tropism of P. vivax. Furthermore there is increasing evidence for P. vivax growth and sexual development in reticulocyte-enriched tissues such as the bone marrow.
Collapse
Affiliation(s)
- Usheer Kanjee
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Gabriel W Rangel
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Martha A Clark
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Manoj T Duraisingh
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
41
|
Comprehensive analysis of antibody responses to Plasmodium falciparum erythrocyte membrane protein 1 domains. Vaccine 2018; 36:6826-6833. [PMID: 30262245 DOI: 10.1016/j.vaccine.2018.08.058] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 08/03/2018] [Accepted: 08/22/2018] [Indexed: 12/31/2022]
Abstract
Acquired antibodies directed towards antigens expressed on the surface of merozoites and infected erythrocytes play an important role in protective immunity to Plasmodium falciparum malaria. P. falciparum erythrocyte membrane protein 1 (PfEMP1), the major parasite component of the infected erythrocyte surface, has been implicated in malaria pathology, parasite sequestration and host immune evasion. However, the extent to which unique PfEMP1 domains interact with host immune response remains largely unknown. In this study, we sought to comprehensively understand the naturally acquired antibody responses targeting different Duffy binding-like (DBL), and Cysteine-rich interdomain region (CIDR) domains in a Ugandan cohort. Consequently, we created a protein library consisting of full-length DBL (n = 163) and CIDR (n = 108) domains derived from 62-var genes based on 3D7 genome. The proteins were expressed by a wheat germ cell-free system; a system that yields plasmodial proteins that are comparatively soluble, intact, biologically active and immunoreactive to human sera. Our findings suggest that all PfEMP1 DBL and CIDR domains, regardless of PfEMP1 group, are targets of naturally acquired immunity. The breadth of the immune response expands with children's age. We concurrently identified 10 DBL and 8 CIDR domains whose antibody responses were associated with reduced risk to symptomatic malaria in the Ugandan children cohort. This study highlights that only a restricted set of specific domains are essential for eliciting naturally acquired protective immunity in malaria. In light of current data, tandem domains in PfEMP1s PF3D7_0700100 and PF3D7_0425800 (DC4) are recommended for extensive evaluation in larger population cohorts to further assess their potential as alternative targets for malaria vaccine development.
Collapse
|