1
|
Tapaopong P, da Silva G, Holzschuh A, Rungsarityotin W, Suansomjit C, Pumchuea K, Manopwisedjaroen K, Khamsiriwatchara A, Khuntong P, Cui L, Koepfli C, Sattabongkot J, Nguitragool W. Molecular epidemiology and genetic diversity of disappearing Plasmodium vivax in southern Thailand. Sci Rep 2025; 15:2620. [PMID: 39838039 PMCID: PMC11751107 DOI: 10.1038/s41598-025-86578-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 01/13/2025] [Indexed: 01/23/2025] Open
Abstract
The evolution of genetic diversity and population structure of Plasmodium vivax as malaria elimination approaches remains unclear. This study analyzed the genetic variation and molecular epidemiology of P. vivax from Yala Province in southern Thailand, an area in the pre-elimination phase. Seventy P. vivax isolates, collected between 2017 and 2020, were genotyped for domain II of pvdbp and the 42-kDa region of pvmsp1 using amplicon deep sequencing. Data from Yala province were compared to published data from Tak province, where transmission was higher. Key analyses included nucleotide diversity (π), haplotype diversity (Hd), natural selection, recombination rates, and complexity of infection (COI). Genetic diversity in Yala was relatively low (π = 0.008dbp and 0.014msp1; Hd = 0.774dbp and 0.407msp1) compared to Tak (π = 0.012dbp and 0.027msp1; Hd = 0.849dbp and 0.962msp1). In Yala, polyclonal infections were found in 53.7% of pvdbpII and 47.8% of pvmsp142 isolates, with average COI of 1.6 and 1.7. Both genes were under balancing selection. Distinct genetic differences were found between Yala and Tak in pvmsp142, providing a local genotypic profile useful for tracing parasite origins.
Collapse
Affiliation(s)
- Parsakorn Tapaopong
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Gustavo da Silva
- Department of Biological Sciences, Eck Institute for Global Health, Galvin Life Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Aurel Holzschuh
- Department of Medicine, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Wasinee Rungsarityotin
- Mahidol University Frontier Research Facility, Mahidol University, Salaya, Nakhon Pathom, Thailand
| | - Chayanut Suansomjit
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Kanit Pumchuea
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | | | - Amnat Khamsiriwatchara
- Faculty of Tropical Medicine, Center of Excellence for Biomedical and Public Health Informatics (BIOPHICS), Mahidol University, Bangkok, Thailand
| | - Podjadeach Khuntong
- Faculty of Tropical Medicine, Center of Excellence for Biomedical and Public Health Informatics (BIOPHICS), Mahidol University, Bangkok, Thailand
| | - Liwang Cui
- Division of Infectious Diseases and International Medicine, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Cristian Koepfli
- Department of Biological Sciences, Eck Institute for Global Health, Galvin Life Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Jetsumon Sattabongkot
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Wang Nguitragool
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
2
|
Ali Albsheer MM, Hubbard A, Dieng CC, Gebremeskel EI, Ahmed S, Rougeron V, Ibrahim ME, Lo E, Abdel Hamid MM. Extensive genetic diversity in Plasmodium vivax from Sudan and its genetic relationships with other geographical isolates. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2024; 123:105643. [PMID: 39053565 DOI: 10.1016/j.meegid.2024.105643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/03/2024] [Accepted: 07/13/2024] [Indexed: 07/27/2024]
Abstract
Plasmodium vivax, traditionally overlooked has experienced a notable increase in cases in East Africa. This study investigated the geographical origin and genetic diversity of P. vivax in Sudan using 14 microsatellite markers. A total of 113 clinical P. vivax samples were collected from two different ecogeographical zones, New Halfa and Khartoum, in Sudan. Additionally, 841 geographical samples from the database were incorporated for a global genetic analysis to discern genetic relationships among P. vivax isolates on regional and worldwide scales. On the regional scale, our findings revealed 91 unique and 8 shared haplotypes among the Sudan samples, showcasing a remarkable genetic diversity compared to other geographical isolates and supporting the hypothesis that P. vivax originated from Africa. On a global scale, distinct genetic clustering of P. vivax isolates from Africa, South America, and Asia (including Papua New Guinea and Solomon Island) was observed, with limited admixture among the three clusters. Principal component analysis emphasized the substantial contribution of African isolates to the observed global genetic variation. The Sudanese populations displayed extensive genetic diversity, marked by significant multi-locus linkage disequilibrium, suggesting an ancestral source of P. vivax variation globally and frequent recombination among the isolates. Notably, the East African P. vivax exhibited similarity with some Asian isolates, indicating potential recent introductions. Overall, our results underscore the effectiveness of utilizing microsatellite markers for implementing robust control measures, given their ability to capture extensive genetic diversity and linkage disequilibrium patterns.
Collapse
Affiliation(s)
- Musab M Ali Albsheer
- Department of Parasitology and Medical Entomology, Institute of Endemic Diseases, University of Khartoum, Khartoum, Sudan; Faculty of Medical Laboratory Sciences, Sinnar University, Sudan
| | - Alfred Hubbard
- Department of Bioinformatics and Genomics, University of North Carolina, Charlotte, NC 28223, USA
| | - Cheikh Cambel Dieng
- Department of Microbiology and Immunology, Drexel University, Philadelphia, PA 19129, USA
| | | | - Safaa Ahmed
- Department of Parasitology and Medical Entomology, Institute of Endemic Diseases, University of Khartoum, Khartoum, Sudan
| | - Virginie Rougeron
- Laboratoire MIVEGEC (Université de Montpellier-CNRS-IRD), CREES, 34394 Montpellier, France
| | - Muntaser E Ibrahim
- Department of Parasitology and Medical Entomology, Institute of Endemic Diseases, University of Khartoum, Khartoum, Sudan
| | - Eugenia Lo
- Department of Microbiology and Immunology, Drexel University, Philadelphia, PA 19129, USA.
| | - Muzamil M Abdel Hamid
- Department of Parasitology and Medical Entomology, Institute of Endemic Diseases, University of Khartoum, Khartoum, Sudan.
| |
Collapse
|
3
|
Hu Y, Li Y, Brashear AM, Zeng W, Wu Z, Wang L, Wei H, Soe MT, Aung PL, Sattabongkot J, Kyaw MP, Yang Z, Zhao Y, Cui L, Cao Y. Plasmodium vivax populations in the western Greater Mekong Subregion evaluated using a genetic barcode. PLoS Negl Trop Dis 2024; 18:e0012299. [PMID: 38959285 PMCID: PMC11251639 DOI: 10.1371/journal.pntd.0012299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 07/16/2024] [Accepted: 06/18/2024] [Indexed: 07/05/2024] Open
Abstract
An improved understanding of the Plasmodium vivax populations in the Great Mekong Subregion (GMS) is needed to monitor the progress of malaria elimination. This study aimed to use a P. vivax single nucleotide polymorphism (SNP) barcode to evaluate the population dynamics and explore the gene flow among P. vivax parasite populations in the western GMS (China, Myanmar and Thailand). A total of 315 P. vivax patient samples collected in 2011 and 2018 from four regions of the western GMS were genotyped for 42 SNPs using the high-throughput MassARRAY SNP genotyping technology. Population genetic analysis was conducted to estimate the genetic diversity, effective population size, and population structure among the P. vivax populations. Overall, 291 samples were successfully genotyped at 39 SNPs. A significant difference was observed in the proportion of polyclonal infections among the five P. vivax populations (P = 0.0012, Pearson Chi-square test, χ2 = 18.1), with western Myanmar having the highest proportion (96.2%, 50/52) in 2018. Likewise, the average complexity of infection was also highest in western Myanmar (1.31) and lowest in northeast Myanmar (1.01) in 2018. The older samples from western China in 2011 had the highest pairwise nucleotide diversity (π, 0.388 ± 0.046), expected heterozygosity (He, 0.363 ± 0.02), and the largest effective population size. In comparison, in the neighboring northeast Myanmar, the more recent samples in 2018 showed the lowest values (π, 0.224 ± 0.036; He, 0.220 ± 0.026). Furthermore, the 2018 northeast Myanmar parasites showed high and moderate genetic differentiation from other populations with FST values of 0.162-0.252, whereas genetic differentiation among other populations was relatively low (FST ≤ 0.059). Principal component analysis, phylogeny, and STRUCTURE analysis showed that the P. vivax population in northeast Myanmar in 2018 substantially diverged from other populations. Although the 42 SNP barcode is a valuable tool for tracking parasite origins of worldwide parasite populations, a more extended barcode with additional SNPs is needed to distinguish the more related parasite populations in the western GMS.
Collapse
Affiliation(s)
- Yubing Hu
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
| | - Yuling Li
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
- Emergency Department, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Awtum M. Brashear
- Division of Infectious Disease and International Medicine, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States of America
| | - Weilin Zeng
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, China
| | - Zifang Wu
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
| | - Lin Wang
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
| | - Haichao Wei
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
| | - Myat Thu Soe
- Myanmar Health Network Organization, Yangon, Myanmar
| | | | - Jetsumon Sattabongkot
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | | | - Zhaoqing Yang
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, China
| | - Yan Zhao
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
| | - Liwang Cui
- Division of Infectious Disease and International Medicine, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States of America
| | - Yaming Cao
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
4
|
Khulmanee T, Thita T, Kritsiriwutinan K, Boonyuen U, Saai A, Inkabjan K, Chakrabarti R, Rathod PK, Krudsood S, Mungthin M, Patrapuvich R. Low Genetic Diversity of Plasmodium vivax Circumsporozoite Surface Protein in Clinical Isolates from Southern Thailand. Trop Med Infect Dis 2024; 9:94. [PMID: 38787027 PMCID: PMC11125738 DOI: 10.3390/tropicalmed9050094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/13/2024] [Accepted: 04/23/2024] [Indexed: 05/25/2024] Open
Abstract
The genetic diversity within the circumsporozoite surface protein (PvCSP) of Plasmodium vivax, the predominant malaria species in Thailand, is primarily observed in the northwestern region along the Thailand-Myanmar border. However, as P. vivax cases shift to southern provinces, particularly Yala Province near the Thailand-Malaysia border, PvCSP diversity remains understudied. Between 2018 and 2020, 89 P. vivax isolates were collected in Yala Province, a significant malaria hotspot. Employing polymerase chain reaction amplification, restriction fragment length polymorphism (PCR-RFLP), and DNA sequencing, the gene encoding PvCSP (Pvcsp) was analyzed. All Yala P. vivax isolates belonged to the VK210 type, distinct from strains in the western region near the Myanmar border. The central repeat region of Pvcsp revealed two common peptide repeat motifs-GDRADGQPA and GDRAAGQPA-across all southern isolates. Sequence analysis identified two subtypes, with S1 more prevalent (92%) than S2 (8%). This study underscores the limited diversity of VK210 variants of P. vivax populations in southern Thailand. These baseline findings facilitate monitoring for potential new parasite variants, aiding in the future control and management of P. vivax in the region.
Collapse
Affiliation(s)
- Tachin Khulmanee
- Drug Research Unit for Malaria, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Thanyapit Thita
- Drug Research Unit for Malaria, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | | | - Usa Boonyuen
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | | | | | - Rimi Chakrabarti
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| | | | - Srivicha Krudsood
- Clinical Malaria Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Mathirut Mungthin
- Department of Parasitology, Phramongkutklao College of Medicine, Bangkok 10400, Thailand
| | - Rapatbhorn Patrapuvich
- Drug Research Unit for Malaria, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
5
|
Tapaopong P, da Silva G, Chainarin S, Suansomjit C, Manopwisedjaroen K, Cui L, Koepfli C, Sattabongkot J, Nguitragool W. Genetic diversity and molecular evolution of Plasmodium vivax Duffy Binding Protein and Merozoite Surface Protein-1 in northwestern Thailand. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023; 113:105467. [PMID: 37330027 PMCID: PMC10548344 DOI: 10.1016/j.meegid.2023.105467] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/22/2023] [Accepted: 06/14/2023] [Indexed: 06/19/2023]
Abstract
The local diversity and population structure of malaria parasites vary across different regions of the world, reflecting variations in transmission intensity, host immunity, and vector species. This study aimed to use amplicon sequencing to investigate the genotypic patterns and population structure of P. vivax isolates from a highly endemic province of Thailand in recent years. Amplicon deep sequencing was performed on 70 samples for the 42-kDa region of pvmsp1 and domain II of pvdbp. Unique haplotypes were identified and a network constructed to illustrate genetic relatedness in northwestern Thailand. Based on this dataset of 70 samples collected between 2015 and 2021, 16 and 40 unique haplotypes were identified in pvdbpII and pvmsp142kDa, respectively. Nucleotide diversity was higher in pvmsp142kDa than in pvdbpII (π = 0.027 and 0.012), as was haplotype diversity (Hd = 0.962 and 0.849). pvmsp142kDa also showed a higher recombination rate and higher levels of genetic differentiation (Fst) in northwestern Thailand versus other regions (0.2761-0.4881). These data together suggested that the genetic diversity of P. vivax in northwestern Thailand at these two studied loci evolved under a balancing selection, most likely host immunity. The lower genetic diversity of pvdbpII may reflect its stronger functional constrain. In addition, despite the balancing selection, a decrease in genetic diversity was observed. Hd of pvdbpII decreased from 0.874 in 2015-2016 to 0.778 in 2018-2021; π of pvmsp142kDa decreased from 0.030 to 0.022 over the same period. Thus, the control activities must have had a strong impact on the parasite population size. The findings from this study provide an understanding of P. vivax population structure and the evolutionary force on vaccine candidates. They also established a new baseline for tracking future changes in P. vivax diversity in the most malarious area of Thailand.
Collapse
Affiliation(s)
- Parsakorn Tapaopong
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Gustavo da Silva
- Department of Biological Sciences, Eck Institute for Global Health, Galvin Life Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Sittinont Chainarin
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Chayanut Suansomjit
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | | | - Liwang Cui
- Division of Infectious Diseases and International Medicine, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Cristian Koepfli
- Department of Biological Sciences, Eck Institute for Global Health, Galvin Life Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Jetsumon Sattabongkot
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Wang Nguitragool
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
6
|
Cui L, Sattabongkot J, Aung PL, Brashear A, Cao Y, Kaewkungwal J, Khamsiriwatchara A, Kyaw MP, Lawpoolsri S, Menezes L, Miao J, Nguitragool W, Parker D, Phuanukoonnon S, Roobsoong W, Siddiqui F, Soe MT, Sriwichai P, Yang Z, Zhao Y, Zhong D. Multidisciplinary Investigations of Sustained Malaria Transmission in the Greater Mekong Subregion. Am J Trop Med Hyg 2022; 107:138-151. [PMID: 36228909 DOI: 10.4269/ajtmh.21-1267] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 05/28/2022] [Indexed: 11/07/2022] Open
Abstract
In the course of malaria elimination in the Greater Mekong Subregion (GMS), malaria epidemiology has experienced drastic spatiotemporal changes with residual transmission concentrated along international borders and the rising predominance of Plasmodium vivax. The emergence of Plasmodium falciparum parasites resistant to artemisinin and partner drugs renders artemisinin-based combination therapies less effective while the potential spread of multidrug-resistant parasites elicits concern. Vector behavioral changes and insecticide resistance have reduced the effectiveness of core vector control measures. In recognition of these problems, the Southeast Asian International Center of Excellence for Malaria Research (ICEMR) has been conducting multidisciplinary research to determine how human migration, antimalarial drug resistance, vector behavior, and insecticide resistance sustain malaria transmission at international borders. These efforts allow us to comprehensively understand the ecology of border malaria transmission and develop population genomics tools to identify and track parasite introduction. In addition to employing in vivo, in vitro, and molecular approaches to monitor the emergence and spread of drug-resistant parasites, we also use genomic and genetic methods to reveal novel mechanisms of antimalarial drug resistance of parasites. We also use omics and population genetics approaches to study insecticide resistance in malaria vectors and identify changes in mosquito community structure, vectorial potential, and seasonal dynamics. Collectively, the scientific findings from the ICEMR research activities offer a systematic view of the factors sustaining residual malaria transmission and identify potential solutions to these problems to accelerate malaria elimination in the GMS.
Collapse
Affiliation(s)
- Liwang Cui
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | | | | | - Awtum Brashear
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Yaming Cao
- Department of Immunology, China Medical University, Shenyang, China
| | | | | | | | | | - Lynette Menezes
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Jun Miao
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Wang Nguitragool
- Mahidol Vivax Research Unit, Mahidol University, Bangkok, Thailand
| | - Daniel Parker
- Department of Epidemiology, University of California at Irvine, Irvine, California
| | | | | | - Faiza Siddiqui
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Myat Thu Soe
- Myanmar Health Network Organization, Yangon, Myanmar
| | - Patchara Sriwichai
- Department of Medical Entomology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Zhaoqing Yang
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, China
| | - Yan Zhao
- Department of Immunology, China Medical University, Shenyang, China
| | - Daibin Zhong
- Program in Public Health, University of California at Irvine, Irvine, California
| |
Collapse
|
7
|
Brashear AM, Cui L. Population genomics in neglected malaria parasites. Front Microbiol 2022; 13:984394. [PMID: 36160257 PMCID: PMC9493318 DOI: 10.3389/fmicb.2022.984394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Malaria elimination includes neglected human malaria parasites Plasmodium vivax, Plasmodium ovale spp., and Plasmodium malariae. Biological features such as association with low-density infection and the formation of hypnozoites responsible for relapse make their elimination challenging. Studies on these parasites rely primarily on clinical samples due to the lack of long-term culture techniques. With improved methods to enrich parasite DNA from clinical samples, whole-genome sequencing of the neglected malaria parasites has gained increasing popularity. Population genomics of more than 2200 P. vivax global isolates has improved our knowledge of parasite biology and host-parasite interactions, identified vaccine targets and potential drug resistance markers, and provided a new way to track parasite migration and introduction and monitor the evolutionary response of local populations to elimination efforts. Here, we review advances in population genomics for neglected malaria parasites, discuss how the rich genomic information is being used to understand parasite biology and epidemiology, and explore opportunities for the applications of malaria genomic data in malaria elimination practice.
Collapse
|
8
|
Chang HH, Chang MC, Kiang M, Mahmud AS, Ekapirat N, Engø-Monsen K, Sudathip P, Buckee CO, Maude RJ. Low parasite connectivity among three malaria hotspots in Thailand. Sci Rep 2021; 11:23348. [PMID: 34857842 PMCID: PMC8640040 DOI: 10.1038/s41598-021-02746-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 11/17/2021] [Indexed: 12/25/2022] Open
Abstract
Identifying sources and sinks of malaria transmission is critical for designing effective intervention strategies particularly as countries approach elimination. The number of malaria cases in Thailand decreased 90% between 2012 and 2020, yet elimination has remained a major public health challenge with persistent transmission foci and ongoing importation. There are three main hotspots of malaria transmission in Thailand: Ubon Ratchathani and Sisaket in the Northeast; Tak in the West; and Yala in the South. However, the degree to which these hotspots are connected via travel and importation has not been well characterized. Here, we develop a metapopulation model parameterized by mobile phone call detail record data to estimate parasite flow among these regions. We show that parasite connectivity among these regions was limited, and that each of these provinces independently drove the malaria transmission in nearby provinces. Overall, our results suggest that due to the low probability of domestic importation between the transmission hotspots, control and elimination strategies can be considered separately for each region.
Collapse
Affiliation(s)
- Hsiao-Han Chang
- grid.38348.340000 0004 0532 0580Institute of Bioinformatics and Structural Biology and Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Meng-Chun Chang
- grid.38348.340000 0004 0532 0580Institute of Bioinformatics and Structural Biology and Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Mathew Kiang
- grid.168010.e0000000419368956Department of Epidemiology and Population Health, Stanford University, Stanford, CA USA
| | - Ayesha S. Mahmud
- grid.47840.3f0000 0001 2181 7878Department of Demography, University of California, Berkeley, USA
| | - Nattwut Ekapirat
- grid.10223.320000 0004 1937 0490Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | | | - Prayuth Sudathip
- grid.415836.d0000 0004 0576 2573Division of Vector Borne Diseases, Ministry of Public Health, Nonthaburi, Thailand
| | - Caroline O. Buckee
- grid.38142.3c000000041936754XHarvard TH Chan School of Public Health, Harvard University, Boston, USA
| | - Richard J. Maude
- grid.10223.320000 0004 1937 0490Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand ,grid.38142.3c000000041936754XHarvard TH Chan School of Public Health, Harvard University, Boston, USA ,grid.4991.50000 0004 1936 8948Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
9
|
Roy S, Bhandari V, Barman M, Kumar P, Bhanot V, Arora JS, Singh S, Sharma P. Population Genetic Analysis of the Theileria annulata Parasites Identified Limited Diversity and Multiplicity of Infection in the Vaccine From India. Front Microbiol 2021; 11:579929. [PMID: 33552006 PMCID: PMC7854550 DOI: 10.3389/fmicb.2020.579929] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 12/15/2020] [Indexed: 11/13/2022] Open
Abstract
Background: Apicomplexan parasite Theileria annulata causes significant economic loss to the livestock industry in India and other tropical countries. In India, parasite control is mainly dependent on the live attenuated schizont vaccine and the drug buparvaquone. For effective disease control, it is essential to study the population structure and genetic diversity of the Theileria annulata field isolates and vaccine currently used in India. Methodology/Results: A total of 125 T. annulata isolates were genotyped using 10 microsatellite markers from four states belonging to different geographical locations of India. Limited genetic diversity was observed in the vaccine isolates when compared to the parasites in the field; a level of geographical substructuring was evident in India. The number of genotypes observed per infection was highest in India when compared to other endemic countries, suggesting high transmission intensity and abundance of ticks in the country. A reduced panel of four markers can be used for future studies in these for surveillance of the T. annulata parasites in India. Conclusion: High genetic variation between the parasite populations in the country suggests their successful spread in the field and could hamper the disease control programs. Our findings provide the baseline data for the diversity and population structure of T. annulata parasites from India. The low diversity in the vaccine advocates improving the current vaccine, possibly by increasing its heterozygosity. The reduced panel of the markers identified in this study will be helpful in monitoring parasite and its reintroduction after Theileria eradication.
Collapse
Affiliation(s)
- Sonti Roy
- National Institute of Animal Biotechnology, Hyderabad, India
- Manipal Academy of Higher Education, Manipal, India
| | | | | | - Pankaj Kumar
- Division of Livestock and Fisheries Management, ICAR-Research Complex for Eastern Region, Patna, India
| | - Vandna Bhanot
- Disease Investigation Laboratory, Lala Lajpat Rai University of Veterinary and Animal Sciences, Ambala, India
| | - Jaspreet Singh Arora
- School of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Punjab, India
| | - Satparkash Singh
- School of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Punjab, India
| | - Paresh Sharma
- National Institute of Animal Biotechnology, Hyderabad, India
| |
Collapse
|
10
|
Spatial and genetic clustering of Plasmodium falciparum and Plasmodium vivax infections in a low-transmission area of Ethiopia. Sci Rep 2020; 10:19975. [PMID: 33203956 PMCID: PMC7672087 DOI: 10.1038/s41598-020-77031-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 11/02/2020] [Indexed: 11/23/2022] Open
Abstract
The distribution of malaria infections is heterogeneous in space and time, especially in low transmission settings. Understanding this clustering may allow identification and targeting of pockets of transmission. In Adama district, Ethiopia, Plasmodium falciparum and P. vivax malaria patients and controls were examined, together with household members and immediate neighbors. Rapid diagnostic test and quantitative PCR (qPCR) were used for the detection of infections that were genetically characterized by a panel of microsatellite loci for P. falciparum (26) and P. vivax (11), respectively. Individuals living in households of clinical P. falciparum patients were more likely to have qPCR detected P. falciparum infections (22.0%, 9/41) compared to individuals in control households (8.7%, 37/426; odds ratio, 2.9; 95% confidence interval, 1.3–6.4; P = .007). Genetically related P. falciparum, but not P. vivax infections showed strong clustering within households. Genotyping revealed a marked temporal cluster of P. falciparum infections, almost exclusively comprised of clinical cases. These findings uncover previously unappreciated transmission dynamics and support a rational approach to reactive case detection strategies for P. falciparum in Ethiopia.
Collapse
|
11
|
Brashear AM, Huckaby AC, Fan Q, Dillard LJ, Hu Y, Li Y, Zhao Y, Wang Z, Cao Y, Miao J, Guler JL, Cui L. New Plasmodium vivax Genomes From the China-Myanmar Border. Front Microbiol 2020; 11:1930. [PMID: 32849480 PMCID: PMC7432439 DOI: 10.3389/fmicb.2020.01930] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 07/22/2020] [Indexed: 11/13/2022] Open
Abstract
Plasmodium vivax is increasingly the dominant species of malaria in the Greater Mekong Subregion (GMS), which is pursuing regional malaria elimination. P. vivax lineages in the GMS are poorly characterized. Currently, P. vivax reference genomes are scarce due to difficulties in culturing the parasite and lack of high-quality samples. In addition, P. vivax is incredibly diverse, necessitating the procurement of reference genomes from different geographical regions. Here we present four new P. vivax draft genomes assembled de novo from clinical samples collected in the China-Myanmar border area. We demonstrate comparable length and content to existing genomes, with the majority of structural variation occurring around subtelomeric regions and exported proteins, which we corroborated with detection of copy number variations in these regions. We predicted peptides from all PIR gene subfamilies, except for PIR D. We confirmed that proteins classically labeled as PIR D family members are not identifiable by PIR motifs, and actually bear stronger resemblance to DUF (domain of unknown function) family DUF3671, potentially pointing to a new, closely related gene family. Further, phylogenetic analyses of MSP7 genes showed high variability within the MSP7-B family compared to MSP7-A and -C families, and the result was comparable to that from whole genome analyses. The new genome assemblies serve as a resource for studying P. vivax within the GMS.
Collapse
Affiliation(s)
- Awtum M. Brashear
- Department of Internal Medicine, University of South Florida, Tampa, Tampa, FL, United States
| | - Adam C. Huckaby
- Department of Biology, University of Virginia, Charlottesville, VA, United States
| | - Qi Fan
- Dalian Institute of Science and Technology, Dalian, China
| | - Luke J. Dillard
- Department of Biology, University of Virginia, Charlottesville, VA, United States
| | - Yubing Hu
- Department of Immunology, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Yuling Li
- Department of Immunology, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Yan Zhao
- Department of Immunology, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Zenglei Wang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yaming Cao
- Department of Immunology, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Jun Miao
- Department of Internal Medicine, University of South Florida, Tampa, Tampa, FL, United States
| | - Jennifer L. Guler
- Department of Biology, University of Virginia, Charlottesville, VA, United States
| | - Liwang Cui
- Department of Internal Medicine, University of South Florida, Tampa, Tampa, FL, United States
| |
Collapse
|
12
|
Brashear AM, Fan Q, Hu Y, Li Y, Zhao Y, Wang Z, Cao Y, Miao J, Barry A, Cui L. Population genomics identifies a distinct Plasmodium vivax population on the China-Myanmar border of Southeast Asia. PLoS Negl Trop Dis 2020; 14:e0008506. [PMID: 32745103 PMCID: PMC7425983 DOI: 10.1371/journal.pntd.0008506] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 08/13/2020] [Accepted: 06/22/2020] [Indexed: 01/31/2023] Open
Abstract
Plasmodium vivax has become the predominant malaria parasite and a major challenge for malaria elimination in the Greater Mekong Subregion (GMS). Yet, our knowledge about the evolution of P. vivax populations in the GMS is fragmental. We performed whole genome sequencing on 23 P. vivax samples from the China-Myanmar border (CMB) and used 21 high-coverage samples to compare to over 200 samples from the rest of the GMS. Using genome-wide single nucleotide polymorphisms (SNPs), we analyzed population differentiation, genetic structure, migration and potential selection using an array of methods. The CMB parasites displayed a higher proportion of monoclonal infections, and 52% shared over 90% of their genomes in identity-by-descent segments with at least one other sample from the CMB, suggesting preferential expansion of certain parasite strains in this region, likely resulting from the P. vivax outbreaks occurring during this study period. Principal component, admixture, fixation index and phylogenetic analyses all identified that parasites from the CMB were genetically distinct from parasites from eastern parts of the GMS (Cambodia, Laos, Vietnam, and Thailand), whereas the eastern GMS parasite populations were largely undifferentiated. Such a genetic differentiation pattern of the P. vivax populations from the GMS parasite was largely explainable through geographic distance. Using the genome-wide SNPs, we narrowed down to a set of 36 SNPs for differentiating parasites from different areas of the GMS. Genome-wide scans to determine selection in the genome with two statistical methods identified genes potentially under drug selection, including genes associated with antifolate resistance and genes linked to chloroquine resistance in Plasmodium falciparum.
Collapse
Affiliation(s)
- Awtum M. Brashear
- Department of Internal Medicine, University of South Florida, Tampa, Florida, United States of America
- Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Qi Fan
- Dalian Institute of Technology, Dalian, Liaoning Province, China
| | - Yubing Hu
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
| | - Yuling Li
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
| | - Yan Zhao
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
| | - Zenglei Wang
- MHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Beijing Union Medical College, Beijing, China
| | - Yaming Cao
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
| | - Jun Miao
- Department of Internal Medicine, University of South Florida, Tampa, Florida, United States of America
| | - Alyssa Barry
- Infection Systems Epidemiology, School of Medicine, Faculty of Health, Deakin University, Geelong, VIC, Australia
| | - Liwang Cui
- Department of Internal Medicine, University of South Florida, Tampa, Florida, United States of America
| |
Collapse
|
13
|
Li Y, Hu Y, Zhao Y, Wang Q, Ngassa Mbenda HG, Kittichai V, Lawpoolsri S, Sattabongkot J, Menezes L, Liu X, Cui L, Cao Y. Dynamics of Plasmodium vivax populations in border areas of the Greater Mekong sub-region during malaria elimination. Malar J 2020; 19:145. [PMID: 32268906 PMCID: PMC7140319 DOI: 10.1186/s12936-020-03221-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 04/03/2020] [Indexed: 12/18/2022] Open
Abstract
Background Countries within the Greater Mekong Sub-region (GMS) of Southeast Asia have committed to eliminating malaria by 2030. Although the malaria situation has greatly improved, malaria transmission remains at international border regions. In some areas, Plasmodium vivax has become the predominant parasite. To gain a better understanding of transmission dynamics, knowledge on the changes of P. vivax populations after the scale-up of control interventions will guide more effective targeted control efforts. Methods This study investigated genetic diversity and population structures in 206 P. vivax clinical samples collected at two time points in two international border areas: the China-Myanmar border (CMB) (n = 50 in 2004 and n = 52 in 2016) and Thailand-Myanmar border (TMB) (n = 50 in 2012 and n = 54 in 2015). Parasites were genotyped using 10 microsatellite markers. Results Despite intensified control efforts, genetic diversity remained high (HE = 0.66–0.86) and was not significantly different among the four populations (P > 0.05). Specifically, HE slightly decreased from 0.76 in 2004 to 0.66 in 2016 at the CMB and increased from 0.80 in 2012 to 0.86 in 2015 at the TMB. The proportions of polyclonal infections varied significantly among the four populations (P < 0.05), and showed substantial decreases from 48.0% in 2004 to 23.7 at the CMB and from 40.0% in 2012 to 30.7% in 2015 at the TMB, with corresponding decreases in the multiplicity of infection. Consistent with the continuous decline of malaria incidence in the GMS over time, there were also increases in multilocus linkage disequilibrium, suggesting more fragmented and increasingly inbred parasite populations. There were considerable genetic differentiation and sub-division among the four tested populations. Temporal genetic differentiation was observed at each site (FST = 0.081 at the CMB and FST = 0.133 at the TMB). Various degrees of clustering were evident between the older parasite samples collected in 2004 at the CMB and the 2016 CMB and 2012 TMB populations, suggesting some of these parasites had shared ancestry. In contrast, the 2015 TMB population was genetically distinctive, which may reflect a process of population replacement. Whereas the effective population size (Ne) at the CMB showed a decrease from 4979 in 2004 to 3052 in 2016 with the infinite allele model, the Ne at the TMB experienced an increase from 6289 to 10,259. Conclusions With enhanced control efforts on malaria, P. vivax at the TMB and CMB showed considerable spatial and temporal differentiation, but the presence of large P. vivax reservoirs still sustained genetic diversity and transmission. These findings provide new insights into P. vivax transmission dynamics and population structure in these border areas of the GMS. Coordinated and integrated control efforts on both sides of international borders are essential to reach the goal of regional malaria elimination.
Collapse
Affiliation(s)
- Yuling Li
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, 110122, Liaoning, China.,Emergency Department, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, Liaoning, China
| | - Yubing Hu
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, 110122, Liaoning, China
| | - Yan Zhao
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, 110122, Liaoning, China
| | - Qinghui Wang
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, 110122, Liaoning, China
| | - Huguette Gaelle Ngassa Mbenda
- Division of Infectious Diseases and International Medicine, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA
| | - Veerayuth Kittichai
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Saranath Lawpoolsri
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Jetsumon Sattabongkot
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Lynette Menezes
- Division of Infectious Diseases and International Medicine, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA
| | - Xiaoming Liu
- Center for Global Health and Infectious Disease Research, College of Public Health, University of South Florida, Tampa, FL, 33612, USA
| | - Liwang Cui
- Division of Infectious Diseases and International Medicine, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA. .,Center for Global Health and Infectious Disease Research, College of Public Health, University of South Florida, Tampa, FL, 33612, USA.
| | - Yaming Cao
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, 110122, Liaoning, China.
| |
Collapse
|
14
|
Thanapongpichat S, Khammanee T, Sawangjaroen N, Buncherd H, Tun AW. Genetic Diversity of Plasmodium vivax in Clinical Isolates from Southern Thailand using PvMSP1, PvMSP3 (PvMSP3α, PvMSP3β) Genes and Eight Microsatellite Markers. THE KOREAN JOURNAL OF PARASITOLOGY 2019; 57:469-479. [PMID: 31715687 PMCID: PMC6851248 DOI: 10.3347/kjp.2019.57.5.469] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 09/21/2019] [Indexed: 11/23/2022]
Abstract
Plasmodium vivax is usually considered morbidity in endemic areas of Asia, Central and South America, and some part of Africa. In Thailand, previous studies indicated the genetic diversity of P. vivax in malaria-endemic regions such as the western part of Thailand bordering with Myanmar. The objective of the study is to investigate the genetic diversity of P. vivax circulating in Southern Thailand by using 3 antigenic markers and 8 microsatellite markers. Dried blood spots were collected from Chumphon, Phang Nga, Ranong and, Surat Thani provinces of Thailand. By PCR, 3 distinct sizes of PvMSP3α, 2 sizes of PvMSP3β and 2 sizes of PvMSP1 F2 were detected based on the length of PCR products, respectively. PCR/RFLP analyses of these antigen genes revealed high levels of genetic diversity. The genotyping of 8 microsatellite loci showed high genetic diversity as indicated by high alleles per locus and high expected heterozygosity (HE). The genotyping markers also showed multiple-clones of infection. Mixed genotypes were detected in 4.8% of PvMSP3α, 29.1% in PvMSP3β and 55.3% of microsatellite markers. These results showed that there was high genetic diversity of P. vivax isolated from Southern Thailand, indicating that the genetic diversity of P. vivax in this region was comparable to those observed other areas of Thailand.
Collapse
Affiliation(s)
| | - Thunchanok Khammanee
- Department of Microbiology, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Nongyao Sawangjaroen
- Department of Microbiology, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Hansuk Buncherd
- Faculty of Medical Technology, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Aung Win Tun
- Faculty of Graduate Studies, Mahidol University, Salaya, Nakhon Pathom, Thailand
| |
Collapse
|
15
|
Kittichai V, Nguitragool W, Ngassa Mbenda HG, Sattabongkot J, Cui L. Genetic diversity of the Plasmodium vivax multidrug resistance 1 gene in Thai parasite populations. INFECTION GENETICS AND EVOLUTION 2018; 64:168-177. [PMID: 29936038 DOI: 10.1016/j.meegid.2018.06.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 06/18/2018] [Accepted: 06/20/2018] [Indexed: 11/19/2022]
Abstract
Plasmodium vivax resistance to chloroquine (CQ) was first reported over 60 years ago. Here we analyzed sequence variations in the multidrug resistance 1 gene (Pvmdr1), a putative molecular marker for P. vivax CQ resistance, in field isolates collected from three sites in Thailand during 2013-2016. Several single nucleotide polymorphisms previously implicated in reduced CQ sensitivity were found. These genetic variations encode amino acids in the two nucleotide-binding domains as well as the transmembrane domains of the protein. The high level of genetic diversity of Pvmdr1 provides insights into the evolutionary history of this gene. Specifically, there was little evidence of positive selection at amino acid F1076L in global isolates to be promoted as a possible marker for CQ resistance. Population genetic analysis clearly divided the parasites into eastern and western populations, which is consistent with their geographical separation by the central malaria-free area of Thailand. With CQ-primaquine remaining as the frontline treatment for vivax malaria in all regions of Thailand, such a population subdivision could be shaped and affected by the current drugs for P. falciparum since mixed P. falciparum/P. vivax infections often occur in this region.
Collapse
Affiliation(s)
- Veerayuth Kittichai
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Faculty of Medicine, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand
| | - Wang Nguitragool
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | | | - Jetsumon Sattabongkot
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
| | - Liwang Cui
- Department of Entomology, Center for Malaria Research, Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
16
|
Mbenda HGN, Zeng W, Bai Y, Siddiqui FA, Yang Z, Cui L. Genetic diversity of the Plasmodium vivax phosphatidylinositol 3-kinase gene in two regions of the China-Myanmar border. INFECTION GENETICS AND EVOLUTION 2018; 61:45-52. [PMID: 29462718 DOI: 10.1016/j.meegid.2018.02.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 02/12/2018] [Accepted: 02/14/2018] [Indexed: 12/25/2022]
Abstract
Artemisinin resistance in Plasmodium falciparum was associated with mutations in the propeller domain of the PfK13 gene and increased phosphatidylinositol-3'-kinase (PfPI3K) activity. Assessment of the genetic diversity of the PfK13 ortholog PvK12 in Plasmodium vivax field samples from the same hotspots of P. falciparum artemisinin resistance revealed a limited genetic diversity of PvK12. Following the same logic, we analyzed genetic variations of the PvPI3K gene in 188 P. vivax field isolates from two geographic locations along the China-Myanmar border. Overall, high genetic diversity of PvPI3K was observed; parasites from Yunnan's Tengchong County had higher genetic diversity than those from Laiza Township, Kachin State, Myanmar. Almost all the neutrality tests applied detected statistically significant deviation from zero. The negative Tajima's D values in both populations implicated that PvPI3K gene might have experienced either a directional selection or an expansion in population size. There was low linkage disequilibrium between the PvPI3K mutations in both populations, suggesting the existence of large, almost panmictic, parasite populations that enabled effective recombination. This later result was confirmed by the detection of a minimum of five recombination events in each population with two major breakpoints. Multiple tests for selection confirmed a signature of purifying selection on PvPI3K. All the amino acid mutations were predicted to be neutral for the PI3K protein's function. These findings provide insights on the genetic diversity of P. vivax populations along the China-Myanmar border.
Collapse
Affiliation(s)
| | - Weilin Zeng
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, China
| | - Yao Bai
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, China
| | - Faiza Amber Siddiqui
- Department of Entomology, Pennsylvania State University, 501 ASI Building, University Park, PA 16802, USA
| | - Zhaoqing Yang
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, China.
| | - Liwang Cui
- Department of Entomology, Pennsylvania State University, 501 ASI Building, University Park, PA 16802, USA.
| |
Collapse
|