1
|
Pinho de Almeida Di Maio Ferreira FC, Nielsen-Saines K, Lopes Moreira ME, Dessimoni Salgado A, Pereira Costa R, de Campos SB, Zhang D, Hüning B, Einspieler C, Marschik PB, Fuller T, Brasil P. Neurodevelopmental Follow-Up in Children with Intrauterine and Perinatal Exposure to Chikungunya Virus. J Pediatr 2025; 279:114477. [PMID: 39864503 DOI: 10.1016/j.jpeds.2025.114477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 01/10/2025] [Accepted: 01/17/2025] [Indexed: 01/28/2025]
Abstract
OBJECTIVE To investigate the effects of intrauterine and perinatal exposure to chikungunya virus (CHIKV) on neurodevelopment in infants and toddlers. STUDY DESIGN We conducted a cohort study comparing children with intrauterine or perinatal exposure to maternal CHIKV infection with unexposed controls in Rio de Janeiro, Brazil. Neurodevelopment was assessed with General Movement Assessments in the first 6 months of life, and the Bayley-III Scales of Infant and Toddler Development and Modified Checklist for Autism in Toddlers for older children. Developmental delay (DD) was defined as a Bayley score less than 70 and risk of DD as a score less than 85. RESULTS Among 60 children exposed to intrauterine or perinatal CHIKV, 20 (33%) had laboratory confirmation of CHIKV infection by reverse transcription polymerase chain reaction or immunoglobulin M serology and 40 did not; 44 exposed children (15 infected and 29 uninfected) had General Movement Assessment performed, with 19% having suboptimal or abnormal results. At 11-42 months of age, 35 exposed children and 78 unexposed controls had Bayley-III assessments. Compared with controls, exposed children had higher rates of DD (7 [20%] vs 2 [3%], P = .004) driven by the language domain, and greater risk of DD driven by motor and cognitive domains scores (10 [29%] vs 10 [13%], P = .03 and 8 [23%] vs 5 [6%], P = .02, respectively). Eight of 35 (23%), CHIKV exposed children screened positive for autism spectrum disorder. CHIKV-exposed uninfected children had 2 (9.5%) cases of DD and 5 (23.8%) cases of autism spectrum disorder. CONCLUSIONS Abnormal neurodevelopmental results were seen in both infected and uninfected children with intrauterine or perinatal CHIKV exposure. Infant neurodevelopment monitoring should be considered following exposure to maternal CHIKV infection in pregnancy to facilitate early interventions and to mitigate neurodevelopmental sequelae.
Collapse
Affiliation(s)
| | - Karin Nielsen-Saines
- Division of Pediatric Infectious Diseases, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Maria Elisabeth Lopes Moreira
- Department of Clinical Research, Fernandes Figueira National Institute of Children's, Adolescents', and Women's Health, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Aline Dessimoni Salgado
- Department of Neonatal Intensive Care, Gaffrée and Guinle University Hospital, Federal University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Roozemeria Pereira Costa
- Department of Acute Febrile Illnesses, Evandro Chagas National Institute of Infectious Diseases, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Simone B de Campos
- Department of Physiotherapy and Occupational Therapy, Gaffrée and Guinle University Hospital, Federal University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Dajie Zhang
- Department of Child and Adolescent Psychiatry, University Hospital Heidelberg, Heidelberg University, Heidelberg, Germany; Child and Adolescent Psychiatry and Psychotherapy, University Medical Center Göttingen, German Center for Child and Adolescent Health (DZKJ) and Leibniz Science Campus Primate Cognition, Göttingen, Germany; interdisciplinary Developmental Neuroscience (iDN), Division of Phoniatrics, Medical University of Graz, Graz, Austria
| | - Britta Hüning
- Child and Adolescent Psychiatry and Psychotherapy, University Medical Center Göttingen, German Center for Child and Adolescent Health (DZKJ) and Leibniz Science Campus Primate Cognition, Göttingen, Germany
| | - Christa Einspieler
- interdisciplinary Developmental Neuroscience (iDN), Division of Phoniatrics, Medical University of Graz, Graz, Austria
| | - Peter B Marschik
- Department of Child and Adolescent Psychiatry, University Hospital Heidelberg, Heidelberg University, Heidelberg, Germany; Child and Adolescent Psychiatry and Psychotherapy, University Medical Center Göttingen, German Center for Child and Adolescent Health (DZKJ) and Leibniz Science Campus Primate Cognition, Göttingen, Germany; interdisciplinary Developmental Neuroscience (iDN), Division of Phoniatrics, Medical University of Graz, Graz, Austria
| | - Trevon Fuller
- Institute of the Environment and Sustainability, University of California, Los Angeles, Los Angeles, CA
| | - Patricia Brasil
- Department of Acute Febrile Illnesses, Evandro Chagas National Institute of Infectious Diseases, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| |
Collapse
|
2
|
Soares-Marangoni DA, Arguelho ADO, Mendonça ASGB, Wiesiolek CC, de Lima-Alvarez CD, Dos Chiquetti EM, de Oliveira EF, de Medeiros MJ, Pereira SA, Hasue RH. STORCH Brazil: multicenter cohort study protocol to investigate neurodevelopmental paths and functioning in infants exposed to STORCH in Brazil. BMC Pediatr 2025; 25:217. [PMID: 40108576 PMCID: PMC11921659 DOI: 10.1186/s12887-025-05548-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 02/26/2025] [Indexed: 03/22/2025] Open
Abstract
BACKGROUND The acronym STORCH encompasses gestational infections that can lead to congenital syndromes or adverse neurological outcomes in children. In Brazil and worldwide, there has been an alarming increase in confirmed cases of STORCH in recent years. However, no study has examined the impact of STORCH on infants' neurodevelopmental outcomes in a large, multi-center cohort, recruiting a substantial number of participants, with analysis across a broad set of variables and ages and based on the International Classification of Functioning, Disability and Health (ICF) model. OBJECTIVE To examine the association between the exposure to classic STORCH (syphilis, toxoplasmosis, rubella, cytomegalovirus infection, and herpes simplex) on components of functioning in infants from 3 to 24 months old in Brazil. METHODS We propose a multi-center prospective cohort study that includes data collection in at least one city from each geographical region of Brazil. A proposed total sample size of 296 infants will be included at 3 months (12-15 weeks post term). They will be equitably divided into: (a) an exposed group (n = 148), consisting of those diagnosed with any congenital STORCH infection or whose mothers experienced prenatal STORCH infection; (b) an unexposed group (n = 148). Assessments are carried out longitudinally at 3, 6, 9, 12, 18, and 24 months of age. Assessment tools include Prechtl's General Movements Assessment, Hammersmith Infant Neurological Examination, Alberta Infant Motor Scale; Bayley Scales of Infant and Toddler Development; Survey of Well-being of Young Children; Autism Observational Scale for Infants; Modified Checklist for Autism in Toddlers; Child Behavior Checklist; and Young Children's Participation and Environment Measure. Descriptive analyses, including the calculation of relative risk, and logistic regressions will be conducted to examine the association between gestational exposure to STORCH agents and infants' responses/outcomes. DISCUSSION The STORCH Brazil study will investigate the impact of STORCH exposure on functioning, including neurodevelopmental trajectories, in infants during their first two years, aligning with the ICF framework. This will enhance understanding of the characteristics and needs of STORCH-exposed infants, aiding therapists in making informed clinical decisions. The results might support public policies tailored to this population. Findings will be disseminated to ensure knowledge translation. CLINICAL TRIAL NUMBER Not applicable.
Collapse
Affiliation(s)
- Daniele Almeida Soares-Marangoni
- Graduate Program in Movement Sciences, Institute of Health, Federal University of Mato, Grosso do Sul, Campo Grande, MS, Brazil.
- Graduate Program in Health and Development, Faculty of Medicine, Federal University of Mato Grosso do Sul, Campo Grande, MS, Brazil.
- , Av. Costa e Silva, s/n, Cidade Universitária, INISA, Campo Grande, MS, 79070-900, Brazil.
| | - Amanda de Oliveira Arguelho
- Graduate Program in Health and Development, Faculty of Medicine, Federal University of Mato Grosso do Sul, Campo Grande, MS, Brazil
| | | | | | - Carolina Daniel de Lima-Alvarez
- Graduate Program in Physical Therapy, Department of Physical Therapy, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | | | - Everton Falcão de Oliveira
- Graduate Program in Infectious and Parasitic Diseases, Faculty of Medicine, Federal University of Mato Grosso do Sul, Campo Grande, MS, Brazil
| | | | - Silvana Alves Pereira
- Graduate Program in Physical Therapy, Department of Physical Therapy, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Renata Hydee Hasue
- Graduate Program in Rehabilitation Sciences, Faculty of Medicine, University of São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
3
|
de Carvalho AKP, Cruz ACR, Quaresma JAS, Filho AJM, Durans DDBS, Amador Neto OP, de Lima LDSO, Assunçao NSDCF, Franco ECS, Cohen PB, da Silva EVP. Impact of Zika and Chikungunya Viruses on Spontaneous Abortions: Insights from a Reference Maternity Hospital. Microorganisms 2025; 13:678. [PMID: 40142570 PMCID: PMC11945089 DOI: 10.3390/microorganisms13030678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/10/2024] [Accepted: 12/11/2024] [Indexed: 03/28/2025] Open
Abstract
To investigate the association between miscarriage and ZIKV and CHIKV infection. The study population consisted of pregnant women who had miscarriages between 2015, 2016 and 2017, comprising a total of 30 women who were treated at the Santa Casa de Misericórdia do Pará Foundation (FSCMPA). The processed samples came from already paraffinized material containing placental and fetal remains, where they were tested with hematoxylin-eosin and immunohistochemistry for ZIKV and CHIKV. Regarding the sociodemographic, clinical and obstetric characteristics of the patients, they correspond to the age group between 20 and 29 years of age; of brown color; women who had abortions for the first time; miscarriages occurring in the first trimester of pregnancy; women belonging to the metropolitan region of Belém; diagnosed with incomplete abortion and who had undergone uterine curettage procedure. Regarding the histopathologic and immunohistochemical findings, an inflammatory infiltrate rich in neutrophils and lymphocytes, among others, was found in the endometrial fragments and chorionic membranes. In addition, placental areas consisting of edema, necrosis and hemorrhage were found. The study identified ZIKV and CHIKV in 40% (n = 12) of samples from spontaneous abortion specimens, and CHIKV was the most prevalent virus in the study, representing 36.11% of the total specimens, with reddish granular material in the cytoplasm of decidua cells and placental villi suggesting that the viruses may be present in these regions of the placenta.
Collapse
Affiliation(s)
- Anne Kerollen Pinheiro de Carvalho
- Instituto Evandro Chagas, Seção de Arbovirologia e Febres Hemorrágicas, Ananindeua 67030-000, PA, Brazil; (A.K.P.d.C.); (A.C.R.C.); (D.d.B.S.D.)
| | - Ana Cecília Ribeiro Cruz
- Instituto Evandro Chagas, Seção de Arbovirologia e Febres Hemorrágicas, Ananindeua 67030-000, PA, Brazil; (A.K.P.d.C.); (A.C.R.C.); (D.d.B.S.D.)
| | | | - Arnaldo Jorge Martins Filho
- Instituto Evandro Chagas, Seção de Patologia, Ananindeua 67140-000, PA, Brazil; (A.J.M.F.); (O.P.A.N.); (L.d.S.O.d.L.); (E.C.S.F.)
| | - Darlene de Brito Simith Durans
- Instituto Evandro Chagas, Seção de Arbovirologia e Febres Hemorrágicas, Ananindeua 67030-000, PA, Brazil; (A.K.P.d.C.); (A.C.R.C.); (D.d.B.S.D.)
| | - Orlando Pereira Amador Neto
- Instituto Evandro Chagas, Seção de Patologia, Ananindeua 67140-000, PA, Brazil; (A.J.M.F.); (O.P.A.N.); (L.d.S.O.d.L.); (E.C.S.F.)
| | | | | | - Edna Cristina Santos Franco
- Instituto Evandro Chagas, Seção de Patologia, Ananindeua 67140-000, PA, Brazil; (A.J.M.F.); (O.P.A.N.); (L.d.S.O.d.L.); (E.C.S.F.)
| | - Patrícia Brazão Cohen
- Department of Pathology, State University of Pará, Belém 66075-110, PA, Brazil; (J.A.S.Q.); (P.B.C.)
| | - Eliana Vieira Pinto da Silva
- Instituto Evandro Chagas, Seção de Arbovirologia e Febres Hemorrágicas, Ananindeua 67030-000, PA, Brazil; (A.K.P.d.C.); (A.C.R.C.); (D.d.B.S.D.)
| |
Collapse
|
4
|
Quintans MDS, Vianna RADO, Velarde LGC, de Oliveira SA, Fernandes AR, Bueno AC, Cardoso CAA. Neurodevelopmental Outcomes in Children Vertically Exposed to Chikungunya Virus: A Two Years Follow-up Study. Pediatr Infect Dis J 2025; 44:154-160. [PMID: 39264193 DOI: 10.1097/inf.0000000000004534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
OBJECTIVES To monitor by the first 24 months of life, children born to mothers with laboratory evidence of chikungunya virus (CHIKV) infection during pregnancy or up to 8 weeks before it, and to describe abnormalities in head circumference (HC), auditory and ophthalmological assessments and neuroimaging tests during the follow-up period. METHOD This is a observational, descriptive, longitudinal and prospective study of children born to mothers who had a rash and a positive test for CHIKV during pregnancy or up to 8 weeks before it. They were admitted between November 2015 and May 2019 in the outpatient multidisciplinary clinic to investigate acute exanthematous disease. The exposed children were followed up by a multidisciplinary team and underwent periodic measurements of the HC. The Denver II test was applied, in addition to transfontanellar ultrasound (TU) to evaluate neurodevelopmental outcomes during the study period. Ophthalmological and auditory examinations, echocardiography and laboratory tests were also included. RESULTS We included in the study 27 children vertically exposed to CHIKV. All children had a negative polymerase chain reaction test for the virus collected at the first outpatient visit (mean age of 16.8 days and standard deviation of 8 days). No clinical condition compatible with congenital infection at birth was reported. A change in HC characterized by macrocephaly and mild global delay development was observed in a 1-year-old child whose mother was infected in the peripartum, but with normal TU. Changes in the TU were observed in 2 other children with nonspecific subependymal cystic malformation that was not evident by the cranial computed tomography. The other children monitored showed normal results in the Denver II test, in the HC and TU. No changes were identified on ocular ophthalmoscopy or auditory brainstem response test. Two children had an increase in serum ferritin levels during the first year of life, with the others' inflammatory disease markers normal. CONCLUSIONS Our study added knowledge about the neurodevelopment of children exposed to CHIKV during pregnancy by a longitudinal and prospective follow-up, throughout their first 24 months of life. We did not observe a negative impact of exposure to the virus on the neurological examination, global developmental test or measurements of the HC of these children.
Collapse
Affiliation(s)
- Maria D S Quintans
- From the Maternal and Child Department, School of Medicine, Universidade Federal Fluminense
| | - Renata A de O Vianna
- From the Maternal and Child Department, School of Medicine, Universidade Federal Fluminense
| | - Luis G C Velarde
- Department of Statistics, Universidade Federal Fluminense
- Multi-User Laboratory for Support in Nephrology and Medical Sciences (LAMAP), School of Medicine, Universidade Federal Fluminense
| | - Solange A de Oliveira
- Multi-User Laboratory for Support in Nephrology and Medical Sciences (LAMAP), School of Medicine, Universidade Federal Fluminense
- Department of Clinical Medicine, School of Medicine, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
| | - Alexandre R Fernandes
- From the Maternal and Child Department, School of Medicine, Universidade Federal Fluminense
| | - Arnaldo C Bueno
- From the Maternal and Child Department, School of Medicine, Universidade Federal Fluminense
| | - Claudete A A Cardoso
- From the Maternal and Child Department, School of Medicine, Universidade Federal Fluminense
- Multi-User Laboratory for Support in Nephrology and Medical Sciences (LAMAP), School of Medicine, Universidade Federal Fluminense
| |
Collapse
|
5
|
Martins MM, Medronho RDA, Raymundo CE, Prata-Barbosa A, da Cunha AJLA. Neonatal Microcephaly and Central Nervous System Abnormalities During the Zika Outbreak in Rio de Janeiro. Viruses 2025; 17:208. [PMID: 40006962 PMCID: PMC11860663 DOI: 10.3390/v17020208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/25/2025] [Accepted: 01/26/2025] [Indexed: 02/27/2025] Open
Abstract
This retrospective cohort study analyzed 7870 pregnant women, including 2269 with confirmed Zika virus (ZIKV) infection and 5601 without Zika infection, along with their fetuses and newborns. Data were sourced from multiple databases in the state of Rio de Janeiro, Brazil. A propensity score model was employed to control confounding factors and stratify outcomes by pregnancy trimester. Among ZIKV+ pregnant women, 49 cases of congenital microcephaly or congenital nervous system (CNS) abnormalities were identified (2.16%, or 193.9 cases in 10,000 live births), whereas 44 cases were identified among ZIKV- women (0.78%, or 71.4 cases in 10,000 live births). Multivariable analysis yielded an odds ratio of 2.46 (95% CI 1.30-4.64) overall, with 4.29 (95% CI 1.93-9.53) in the first trimester, 5.29 (95% CI 1.08-25.95) in the second trimester, and 0.68 (95% CI 0.21-2.14) in the third trimester. The most frequent findings among ZIKV+ cases included intracranial calcifications, ventriculomegaly, posterior fossa malformations, reduced brain volume, corpus callosum malformations, cortex dysplasia, lissencephaly, and pachygyria. Ophthalmologic abnormalities were detected in 55.5% of cases, and brainstem auditory evoked potential anomalies were reported in 33.3%. ZIKV infection can result in structural or functional anomalies. Given the absence of specific treatment for congenital Zika syndrome (CZS), clinical care should prioritize monitoring and managing neurological, motor, auditory, visual, and orthopedic disorders in all children with in utero ZIKV exposure, especially during the first and second trimesters of pregnancy.
Collapse
Affiliation(s)
- Marlos Melo Martins
- Division of Pediatric Neurology, Martagão Gesteira Institute of Childcare and Pediatrics, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-912, Brazil;
| | - Roberto de Andrade Medronho
- Department of Epidemiology and Public Health, School of Medicine, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-592, Brazil; (R.d.A.M.); (C.E.R.)
| | - Carlos Eduardo Raymundo
- Department of Epidemiology and Public Health, School of Medicine, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-592, Brazil; (R.d.A.M.); (C.E.R.)
| | - Arnaldo Prata-Barbosa
- Department of Pediatrics, D’Or Institute for Research and Education (IDOR), Rio de Janeiro 2281-100, Brazil
| | | |
Collapse
|
6
|
Logiudice J, Alberti M, Ciccarone A, Rossi B, Tiecco G, De Francesco MA, Quiros-Roldan E. Introduction of Vector-Borne Infections in Europe: Emerging and Re-Emerging Viral Pathogens with Potential Impact on One Health. Pathogens 2025; 14:63. [PMID: 39861024 PMCID: PMC11768692 DOI: 10.3390/pathogens14010063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 01/09/2025] [Accepted: 01/10/2025] [Indexed: 01/27/2025] Open
Abstract
The rise and resurgence of vector-borne diseases (VBDs) in Europe pose an expanding public health challenge, exacerbated by climate change, globalization, and ecological disruptions. Both arthropod-borne viruses (arboviruses) transmitted by ticks such as Crimean-Congo hemorrhagic fever and arboviruses transmitted by mosquitoes like dengue, Chikungunya, Zika, and Japanese encephalitis have broadened their distribution due to rising temperatures, changes in rainfall, and increased human mobility. By emphasizing the importance of interconnected human, animal, and environmental health, integrated One Health strategies are crucial in addressing this complex issue. Europe faces increased risk due to the expanding habitats of disease-carrying organisms, the spread of new species like Aedes albopictus since 2013, and increased movement of infected individuals between countries, leading European countries to implement strategies such as enhanced surveillance systems, public awareness campaigns, and prompt outbreak response strategies. However, the lack of both targeted antiviral therapies and vaccines for many arboviruses, together with undetected or asymptomatic cases, hamper containment efforts. Therefore, it is important to have integrated strategies that combine climate modeling, disease surveillance, and public health interventions to address expected changes in disease patterns due to global changes. This review explores the spread of arboviruses in Europe, highlighting their historical context, current transmission dynamics, and their impact on public health.
Collapse
Affiliation(s)
- Jacopo Logiudice
- Department of Clinical and Experimental Sciences, Unit of Infectious and Tropical Diseases, University of Brescia, ASST Spedali Civili di Brescia, 25123 Brescia, Italy; (J.L.); (M.A.); (A.C.); (G.T.); (E.Q.-R.)
| | - Maria Alberti
- Department of Clinical and Experimental Sciences, Unit of Infectious and Tropical Diseases, University of Brescia, ASST Spedali Civili di Brescia, 25123 Brescia, Italy; (J.L.); (M.A.); (A.C.); (G.T.); (E.Q.-R.)
| | - Andrea Ciccarone
- Department of Clinical and Experimental Sciences, Unit of Infectious and Tropical Diseases, University of Brescia, ASST Spedali Civili di Brescia, 25123 Brescia, Italy; (J.L.); (M.A.); (A.C.); (G.T.); (E.Q.-R.)
| | - Benedetta Rossi
- Unit of Infectious and Tropical Diseases, ASST Spedali Civili di Brescia, 25123 Brescia, Italy;
- Department of Experimental Medicine and Public Health, School of Advanced Studies, University of Camerino, 62032 Camerino, Italy
| | - Giorgio Tiecco
- Department of Clinical and Experimental Sciences, Unit of Infectious and Tropical Diseases, University of Brescia, ASST Spedali Civili di Brescia, 25123 Brescia, Italy; (J.L.); (M.A.); (A.C.); (G.T.); (E.Q.-R.)
| | - Maria Antonia De Francesco
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia, ASST Spedali Civili, 25123 Brescia, Italy
| | - Eugenia Quiros-Roldan
- Department of Clinical and Experimental Sciences, Unit of Infectious and Tropical Diseases, University of Brescia, ASST Spedali Civili di Brescia, 25123 Brescia, Italy; (J.L.); (M.A.); (A.C.); (G.T.); (E.Q.-R.)
| |
Collapse
|
7
|
Zhou F, Xu Y, Liu X, Xu Y, Wang Y, Jiang D, Du P. Zika and Dengue Virus Autoimmunity: An Overview of Related Disorders and Their Potential Mechanisms. Rev Med Virol 2025; 35:e70014. [PMID: 39779915 DOI: 10.1002/rmv.70014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/10/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025]
Abstract
Zika virus (ZIKV) and dengue virus (DENV) are two major mosquito-borne flaviviruses that pose a significant threat to the global public health system, particularly in tropical regions. The clinical outcomes related to these viral pathogens can vary from self-limiting asymptomatic infections to various forms of life-threatening pathological conditions such as haemorrhagic disorders. In addition to the direct effects of the viral pathogens, immune processes play also a significant function in the development of diseases mediated by ZIKV and DENV. Studing these processes is important for developing safer vaccines and targeted therapeutic strategies. These viruses have been reported to trigger various autoimmune disorders affecting different parts of human organ systems. It also has been shown that preexisting immunity to ZIKV or DENV can impact the outcome of subsequent infections caused by another virus. ZIKV and DENV infection can promote the development of autoimmune disorders by different mechanisms, such as molecular mimicry and autoantibody formation. The present review provides an overview of various autoimmune disorders associated with ZIKV and DENV infection and their potential underlying mechanisms.
Collapse
Affiliation(s)
- Feifan Zhou
- Department of Critical Care Medicine, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Yuanze Xu
- The Second Clinical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xing Liu
- Department of Critical Care Medicine, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Yan Xu
- Department of Stomach Enterochirurgia, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Yan Wang
- Department of Critical Care Medicine, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Donghui Jiang
- Department of Critical Care Medicine, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Pengfei Du
- Department of Critical Care Medicine, Affiliated Hospital of Jiangnan University, Wuxi, China
| |
Collapse
|
8
|
Ferreira FCPADM, de Filippis AMB, Moreira MEL, de Campos SB, Fuller T, Lopes FCR, Brasil P. Perinatal and Neonatal Chikungunya Virus Transmission: A Case Series. J Pediatric Infect Dis Soc 2024; 13:576-584. [PMID: 39360854 PMCID: PMC11599154 DOI: 10.1093/jpids/piae102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 10/02/2024] [Indexed: 11/28/2024]
Abstract
BACKGROUND Large-scale epidemics in countries with high birth rates can create a concerning scenario where pregnant people are more likely to transmit the virus. In addition, increased international mobility has made arboviruses a growing problem for travelers. The increased risk of vertical transmission has been related to maternal viremia near delivery. Such transmission leads to severe infection of newborns and may be associated with subsequent neurological impairment including cerebral palsy. This case series provides an overview of clinical and laboratory findings in pregnant individuals with confirmed chikungunya virus (CHIKV) infection as well as the clinical effects on their newborn emphasizing the severity of neonatal chikungunya. METHODS An ambispective case series enrolled newborns with confirmed exposure to CHIKV in utero or in the neonatal period. RESULTS During the delivery period, the transmission rate among viremic individuals was approximately 62% (18/29). Fever, irritability, rash, and poor feeding in the first week of life were critical signs of neonatal chikungunya, highlighting its severity. CONCLUSION Close monitoring of healthy newborns during the first week of life is essential in areas affected by CHIKV epidemics, and in offspring of pregnant travelers who visited the outbreaks zones. This case series is intended to increase neonatologists' awareness of the possibility of mother-to-child transmission of CHIKV among newborns with a sepsis-like presentation. Prioritizing CHIKV vaccination for women of childbearing age should also be considered.
Collapse
Affiliation(s)
- Fátima C P A Di Maio Ferreira
- Follow-up Clinic, Neonatal Intensive Care Unit, Hospital Universtário Gaffrée e Guinle, Universidade Federal do Estado do Rio de Janeiro, Department of Pediatrics and Neonatology (UNIRIO), Rio de Janeiro, Brazil
| | - Ana M Bispo de Filippis
- Laboratório de Flavivírus, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | - Maria Elisabeth L Moreira
- Pesquisa Clínica Aplicada, Instituto Nacional da Saúde da Mulher, da Criança e do Adolescente Fernandes Figueira, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | - Simone B de Campos
- Follow-up Clinic, Physiotherapy and Occupational Therapy Clinic, Hospital Universtário Gaffrée e Guinle, Universidade Federal do Estado do Rio de Janeiro (UNIRIO, Physiotherapy Departament), Rio de Janeiro, Brazil
| | - Trevon Fuller
- UCLA Institute for the Enviroment and Sustainability, Los Angeles, CA, USA
| | - Fernanda C R Lopes
- Departament of Radiology, Hospital Universitário Antônio Pedro, Universidade Federal Fluminense (UFF), Rio de Janeiro, Brazil
| | - Patrícia Brasil
- Laboratório de Doenças Febris Agudas, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| |
Collapse
|
9
|
Zhu QX, Zhang YN, Zhang HQ, Leng C, Deng CL, Wang X, Li JJ, Ye XL, Zhang B, Li XD. A single dose recombinant AAV based CHIKV vaccine elicits robust and durable protective antibody responses in mice. PLoS Negl Trop Dis 2024; 18:e0012604. [PMID: 39495779 PMCID: PMC11563480 DOI: 10.1371/journal.pntd.0012604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 11/14/2024] [Accepted: 10/04/2024] [Indexed: 11/06/2024] Open
Abstract
BACKGROUND Chikungunya virus (CHIKV) is a mosquito-borne alphavirus that is responsible for Chikungunya fever, which is characterized by fever, rash, and debilitating polyarthralgia. Since its re-emergence in 2004, CHIKV has continued to spread to new regions and become a severe health threat to global public. Development of safe and single dose vaccines that provide durable protection is desirable to control the spread of virus. The recombinant adeno-associated virus (rAAV) vectors represent promising vaccine platform to provide prolonged protection with a single-dose immunization. In this study, we developed a rAAV capsid serotype 1 vector based CHIKV vaccine and evaluated its protection effect against CHIKV challenge. METHODOLOGY The recombinant AAV1 encoding the full-length structural proteins of CHIKV (named as rAAV1-CHIKV-SP) was generated in vitro by transfecting the plasmids of AAV helper-free system into HEK-293T cells. The safety and immunogenicity of rAAV1-CHIKV-SP were tested in 4-week-old C57BL/6 mice. The antibody responses of the mice receiving prime-boost or single-dose immunization of the vaccine were determined by ELISA and plaque reduction neutralizing test. The immunized mice were challenged with CHIKV to evaluate the protection effect of the vaccine. CONCLUSIONS The rAAV1-CHIKV-SP showed remarkable safety and immunogenicity in C57BL/6 mice. A single dose intramuscular injection of rAAV1-CHIKV-SP elicited high level and long-lasting antibody responses, and conferred complete protection against a heterologous CHIKV strain challenge. These results suggest rAAV1-CHIKV-SP represents a promising vaccine candidate against different CHIKV clades with a simplified immunization strategy.
Collapse
Affiliation(s)
- Qin-Xuan Zhu
- School of Medical Technology and Translational Medicine, Hunan Normal University, Changsha, China
| | - Ya-Nan Zhang
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Hong-Qing Zhang
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing China
| | - Chao Leng
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Cheng-Lin Deng
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Xin Wang
- School of Medical Technology and Translational Medicine, Hunan Normal University, Changsha, China
| | - Jia-Jia Li
- School of Medical Technology and Translational Medicine, Hunan Normal University, Changsha, China
| | - Xiang-Li Ye
- School of Medical Technology and Translational Medicine, Hunan Normal University, Changsha, China
| | - Bo Zhang
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Xiao-Dan Li
- School of Medical Technology and Translational Medicine, Hunan Normal University, Changsha, China
| |
Collapse
|
10
|
Bangoura ST, Sidibé S, Kaba L, Mbaye A, Hounmenou CG, Diallo A, Camara SC, Diaby M, Kadio KJJO, D’Ortenzio E, Camara A, Vanhems P, Delamou A, Delaporte E, Keita AK, Ottmann M, Touré A, Khanafer N. Seroprevalence of seven arboviruses of public health importance in sub-Saharan Africa: a systematic review and meta-analysis. BMJ Glob Health 2024; 9:e016589. [PMID: 39486798 PMCID: PMC11529691 DOI: 10.1136/bmjgh-2024-016589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/26/2024] [Indexed: 11/04/2024] Open
Abstract
BACKGROUND The arboviruses continue to be a threat to public health and socioeconomic development in sub-Saharan Africa (SSA). Seroprevalence surveys can be used as a population surveillance strategy for arboviruses in the absence of treatment and vaccines for most arboviruses, guiding the public health interventions. The objective of this study was to analyse the seroprevalence of arboviruses in SSA through a systematic review and meta-analysis. METHODS We searched PubMed/MEDLINE, Web of Science, Embase, Scopus and ScienceDirect databases for articles published between 2000 and 2022 reporting the seroprevalence of immunoglobulin G (IgG) antibodies to seven arboviruses in various human populations residing in SSA. The included studies were assessed using the checklist for assessing the risk of bias in prevalence studies, and the data were extracted using a standard form. A random effects model was used to estimate pooled seroprevalences. The potential sources of heterogeneity were explored through subgroup analyses and meta-regression. The protocol had been previously registered on International Prospective Register of Systematic Reviews with the identifier: CRD42022377946. RESULTS A total of 165 studies from 27 countries, comprising 186 332 participants, were included. Of these, 141 were low-risk and 24 were moderate-risk. The pooled IgG seroprevalence was 23.7% (17.9-30.0%) for Chikungunya virus, 22.7% (17.5-28.4%) for dengue virus, 22.6% (14.1-32.5%) for West Nile virus, 16.4% (7.1-28.5%) for yellow fever virus, 13.1% (6.4-21.7%) for Zika virus, 9.2% (6.5-12.3%) for Rift Valley fever virus and 6.0% (3.1-9.7) for Crimean-Congo haemorrhagic fever virus. Subgroup and meta-regression analyses showed that seroprevalence differed considerably between countries, study populations, specific age categories, sample sizes and laboratory methods. CONCLUSION This SRMA provides information on the significant circulation of various arboviruses in SSA, which is essential for the adoption and planning of vaccines. These findings suggest the need to invest in surveillance and research activities on arbovirus in SSA countries to increase our understanding of their epidemiology to prevent and respond to future epidemics.
Collapse
Affiliation(s)
- Salifou Talassone Bangoura
- Centre de Recherche et de Formation en Infectiologie de Guinée, Conakry, Guinea
- Public Health Department, Faculty of Sciences and Health Techniques, Gamal Abdel Nasser University, Conakry, Guinea
| | - Sidikiba Sidibé
- Public Health Department, Faculty of Sciences and Health Techniques, Gamal Abdel Nasser University, Conakry, Guinea
| | - Lanceï Kaba
- Centre de Recherche et de Formation en Infectiologie de Guinée, Conakry, Guinea
| | - Aminata Mbaye
- Centre de Recherche et de Formation en Infectiologie de Guinée, Conakry, Guinea
| | | | - Alhassane Diallo
- Public Health Department, Faculty of Sciences and Health Techniques, Gamal Abdel Nasser University, Conakry, Guinea
| | | | - Maladho Diaby
- Centre de Recherche et de Formation en Infectiologie de Guinée, Conakry, Guinea
- Public Health Department, Faculty of Sciences and Health Techniques, Gamal Abdel Nasser University, Conakry, Guinea
| | - Kadio Jean-Jacques Olivier Kadio
- Centre de Recherche et de Formation en Infectiologie de Guinée, Conakry, Guinea
- Public Health Department, Faculty of Sciences and Health Techniques, Gamal Abdel Nasser University, Conakry, Guinea
| | - Eric D’Ortenzio
- ANRS Maladies infectieuses émergentes (ANRS MIE), Inserm, Paris, France
- AP-HP, Hôpital Bichat, Service de maladies infectieuses et tropicales, Paris, France
| | - Alioune Camara
- Public Health Department, Faculty of Sciences and Health Techniques, Gamal Abdel Nasser University, Conakry, Guinea
| | - Philippe Vanhems
- Infection Control Unit, Hôpital Edouard Herriot, Hospices Civils de Lyon, Lyon, France
- PHE3ID team, Centre International de Recherche en Infectiologie, Inserm U1111, CNRS UMR5308, ENS de Lyon, Lyon 1 University, Lyon, France
| | - Alexandre Delamou
- African Centre of Excellence in the Prevention and Control of Communicable Diseases (CEA-PCMT), Faculty of Sciences and Health Techniques, Gamal Abdel Nasser University, Conakry, Guinea
- National Center for Training and Research in Rural Health of Maferinyah, Forécariah, Guinea
| | - Eric Delaporte
- TransVIHMI, Université de Montpellier-INSERM-IRD, Montpellier, France
| | - Alpha-Kabinet Keita
- Centre de Recherche et de Formation en Infectiologie de Guinée, Conakry, Guinea
| | - Michèle Ottmann
- CIRI, Centre International de Recherche en Infectiologie (Team VirPath), Inserm U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, ENS de Lyon, Lyon, France
| | - Abdoulaye Touré
- Centre de Recherche et de Formation en Infectiologie de Guinée, Conakry, Guinea
- Public Health Department, Faculty of Sciences and Health Techniques, Gamal Abdel Nasser University, Conakry, Guinea
| | - Nagham Khanafer
- Infection Control Unit, Hôpital Edouard Herriot, Hospices Civils de Lyon, Lyon, France
- PHE3ID team, Centre International de Recherche en Infectiologie, Inserm U1111, CNRS UMR5308, ENS de Lyon, Lyon 1 University, Lyon, France
| |
Collapse
|
11
|
Flandes X, Hansen CA, Palani S, Abbas K, Bennett C, Caro WP, Hutubessy R, Khazhidinov K, Lambach P, Maure C, Marshall C, Rojas DP, Rosewell A, Sahastrabuddhe S, Tufet M, Wilder-Smith A, Beasley DWC, Bourne N, Barrett ADT. Vaccine value profile for Chikungunya. Vaccine 2024; 42:S9-S24. [PMID: 38407992 PMCID: PMC11554007 DOI: 10.1016/j.vaccine.2023.07.069] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 07/05/2023] [Accepted: 07/28/2023] [Indexed: 02/28/2024]
Abstract
Chikungunya virus (CHIKV) a mosquito-borne alphavirus is the causative agent of Chikungunya (CHIK), a disease with low mortality but high acute and chronic morbidity resulting in a high overall burden of disease. After the acute disease phase, chronic disease including persistent arthralgia is very common, and can cause fatigue and pain that is severe enough to limit normal activities. On average, around 40% of people infected with CHIKV will develop chronic arthritis, which may last for months or years. Recommendations for protection from CHIKV focus on infection control through preventing mosquito proliferation. There is currently no licensed antiviral drug or vaccine against CHIKV. Therefore, one of the most important public health impacts of vaccination would be to decrease burden of disease and economic losses in areas impacted by the virus, and prevent or reduce chronic morbidity associated with CHIK. This benefit would particularly be seen in Low and Middle Income Countries (LMIC) and socio-economically deprived areas, as they are more likely to have more infections and more severe outcomes. This 'Vaccine Value Profile' (VVP) for CHIK is intended to provide a high-level, holistic assessment of the information and data that are currently available to inform the potential public health, economic and societal value of vaccines in the development pipeline and vaccine-like products.This VVP was developed by a working group of subject matter experts from academia, non-profit organizations, public private partnerships, and multi-lateral organizations. All contributors have extensive expertise on various elements of the CHIK VVP and collectively aimed to identify current research and knowledge gaps.The VVP was developed using only existing and publicly available information.
Collapse
Affiliation(s)
- Ximena Flandes
- Department of Preventative Medicine and Population Health and University of Texas Medical Branch, Galveston, TX, United States
| | - Clairissa A Hansen
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
| | - Sunil Palani
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
| | - Kaja Abbas
- Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, United Kingdom; School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan
| | | | | | | | | | | | - Clara Maure
- International Vaccine Institute, Seoul, Republic of Korea
| | | | | | | | | | - Marta Tufet
- Gavi the Vaccine Alliance, Geneva, Switzerland
| | | | - David W C Beasley
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States; Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX, United States.
| | - Nigel Bourne
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX, United States; Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, United States.
| | - Alan D T Barrett
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States; Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, United States.
| |
Collapse
|
12
|
Ramphal Y, Tegally H, San JE, Reichmuth ML, Hofstra M, Wilkinson E, Baxter C, de Oliveira T, Moir M. Understanding the Transmission Dynamics of the Chikungunya Virus in Africa. Pathogens 2024; 13:605. [PMID: 39057831 PMCID: PMC11279734 DOI: 10.3390/pathogens13070605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/09/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
The Chikungunya virus (CHIKV) poses a significant global public health concern, especially in Africa. Since its first isolation in Tanzania in 1953, CHIKV has caused recurrent outbreaks, challenging healthcare systems in low-resource settings. Recent outbreaks in Africa highlight the dynamic nature of CHIKV transmission and the challenges of underreporting and underdiagnosis. Here, we review the literature and analyse publicly available cases, outbreaks, and genomic data, providing insights into the epidemiology, genetic diversity, and transmission dynamics of CHIKV in Africa. Our analyses reveal the circulation of geographically distinct CHIKV genotypes, with certain regions experiencing a disproportionate burden of disease. Phylogenetic analysis of sporadic outbreaks in West Africa suggests repeated emergence of the virus through enzootic spillover, which is markedly different from inferred transmission dynamics in East Africa, where the virus is often introduced from Asian outbreaks, including the recent reintroduction of the Indian Ocean lineage from the Indian subcontinent to East Africa. Furthermore, there is limited evidence of viral movement between these two regions. Understanding the history and transmission dynamics of outbreaks is crucial for effective public health planning. Despite advances in surveillance and research, diagnostic and surveillance challenges persist. This review and secondary analysis highlight the importance of ongoing surveillance, research, and collaboration to mitigate the burden of CHIKV in Africa and improve public health outcomes.
Collapse
Affiliation(s)
- Yajna Ramphal
- Centre for Epidemic Response Innovation (CERI), School for Data Science and Computational Thinking, Stellenbosch University, Stellenbosch 7600, South Africa; (Y.R.); (H.T.); (M.H.); (E.W.); (C.B.)
| | - Houriiyah Tegally
- Centre for Epidemic Response Innovation (CERI), School for Data Science and Computational Thinking, Stellenbosch University, Stellenbosch 7600, South Africa; (Y.R.); (H.T.); (M.H.); (E.W.); (C.B.)
| | | | | | - Marije Hofstra
- Centre for Epidemic Response Innovation (CERI), School for Data Science and Computational Thinking, Stellenbosch University, Stellenbosch 7600, South Africa; (Y.R.); (H.T.); (M.H.); (E.W.); (C.B.)
| | - Eduan Wilkinson
- Centre for Epidemic Response Innovation (CERI), School for Data Science and Computational Thinking, Stellenbosch University, Stellenbosch 7600, South Africa; (Y.R.); (H.T.); (M.H.); (E.W.); (C.B.)
| | - Cheryl Baxter
- Centre for Epidemic Response Innovation (CERI), School for Data Science and Computational Thinking, Stellenbosch University, Stellenbosch 7600, South Africa; (Y.R.); (H.T.); (M.H.); (E.W.); (C.B.)
| | | | - Tulio de Oliveira
- Centre for Epidemic Response Innovation (CERI), School for Data Science and Computational Thinking, Stellenbosch University, Stellenbosch 7600, South Africa; (Y.R.); (H.T.); (M.H.); (E.W.); (C.B.)
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), University of KwaZulu-Natal, Durban 4001, South Africa
| | - Monika Moir
- Centre for Epidemic Response Innovation (CERI), School for Data Science and Computational Thinking, Stellenbosch University, Stellenbosch 7600, South Africa; (Y.R.); (H.T.); (M.H.); (E.W.); (C.B.)
| |
Collapse
|
13
|
Ngwe Tun MM, Luvai EAC, Toizumi M, Moriuchi M, Takamatsu Y, Inoue S, Urano T, Bui MX, Thai Hung D, Thi Nguyen HA, Anh DD, Yoshida LM, Moriuchi H, Morita K. Possible vertical transmission of Chikungunya virus infection detected in the cord blood samples from a birth cohort in Vietnam. J Infect Public Health 2024; 17:1050-1056. [PMID: 38688178 DOI: 10.1016/j.jiph.2024.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 04/06/2024] [Accepted: 04/15/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND Chikungunya virus (CHIKV) is an alphavirus (genus Alphavirus, family Togaviridae) that is primarily transmitted to humans by Aedes mosquitoes, and can be transmitted from mother to child. Little is known about CHIKV transmission in Vietnam, where dengue is endemic and Aedes mosquitoes are abundant. This study aimed to determine the prevalence and characteristics of vertical CHIKV infection in a birth cohort, and seroprevalence of anti-CHIKV antibodies with or without confirmation by neutralization tests among women bearing children in Vietnam. METHODS We collected umbilical cord blood plasma samples from each newly delivered baby in Nha Trang, Central Vietnam, between July 2017 and September 2018. Samples were subjected to molecular assay (quantitative real-time RT-PCR) and serological tests (anti-CHIKV IgM capture and IgG indirect enzyme-linked immunosorbent assay, and neutralization tests). RESULTS Of the 2012 tested cord blood samples from newly delivered babies, the CHIKV viral genome was detected in 6 (0.3%) samples by RT-PCR, whereas, 15 samples (0.7%) were anti-CHIKV-IgM positive. Overall, 18 (0.9%, 95% CI: 0.6-1.5) samples, including three positives for both CHIKV IgM and viral genome on RT-PCR, were regarded as vertical transmission of CHIKV infection. Of the 2012 cord blood samples, 10 (0.5%, 95% CI: 0.2-0.9) were positive for both anti-CHIKV IgM and IgG. Twenty-nine (1.4%, 95% CI: 1.0-2.1) were seropositive for anti-CHIKV IgG while 26 (1.3%, 95% CI: 0.8-1.9) of them were also positive for neutralizing antibodies, and regarded as seropositive with neutralization against CHIKV infection. CONCLUSION This is the first report of a possible CHIKV maternal-neonatal infection in a birth cohort in Vietnam. The findings indicate that follow-up and a differential diagnosis of CHIKV infection in pregnant women are needed to clarify the potential for CHIKV vertical transmission and its impact in the newborn.
Collapse
Affiliation(s)
- Mya Myat Ngwe Tun
- Department of Virology, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan; Department of Tropical Viral Vaccine Development, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan; Center for Vaccines and Therapeutic Antibodies for Emerging Infectious Diseases, Shimane University, Izumo, Japan.
| | - Elizabeth Ajema Chebichi Luvai
- Department of Virology, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan; Department of Biomedical Sciences and Technology, Technical University of Kenya, Nairobi, Kenya
| | - Michiko Toizumi
- Department of Pediatric Infectious Diseases, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Masako Moriuchi
- Department of Pediatrics, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Yuki Takamatsu
- Department of Virology, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan; Department of Tropical Viral Vaccine Development, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Shingo Inoue
- Kenya Research Station, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Takeshi Urano
- Center for Vaccines and Therapeutic Antibodies for Emerging Infectious Diseases, Shimane University, Izumo, Japan
| | - Minh Xuan Bui
- Khanh Hoa Provincial Public Health Service, Nha Trang, Viet Nam
| | - Do Thai Hung
- Pasteur Institute in Nha Trang, Nha Trang, Viet Nam
| | | | - Dang Duc Anh
- National Institute of Hygiene and Epidemiology, Hanoi, Viet Nam
| | - Lay-Myint Yoshida
- Department of Pediatric Infectious Diseases, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Hiroyuki Moriuchi
- Department of Pediatrics, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan.
| | - Kouichi Morita
- Department of Virology, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan; Department of Tropical Viral Vaccine Development, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan; DEJIMA Infectious Disease Research Alliance, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
14
|
Gonzales Y Tucker RD, Addepalli A. Fever and Rash. Emerg Med Clin North Am 2024; 42:303-334. [PMID: 38641393 DOI: 10.1016/j.emc.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2024]
Abstract
Infectious causes of fever and rash pose a diagnostic challenge for the emergency provider. It is often difficult to discern rashes associated with rapidly progressive and life-threatening infections from benign exanthems, which comprise the majority of rashes seen in the emergency department. Physicians must also consider serious noninfectious causes of fever and rash. A correct diagnosis depends on an exhaustive history and head-to-toe skin examination as most emergent causes of fever and rash remain clinical diagnoses. A provisional diagnosis and immediate treatment with antimicrobials and supportive care are usually required prior to the return of confirmatory laboratory testing.
Collapse
Affiliation(s)
- Richard Diego Gonzales Y Tucker
- Department of Emergency Medicine, University of California San Francisco, Box 0209, 505 Parnassus Avenue, San Francisco, CA 94143, USA; Department of Emergency Medicine, Alameda Health System - Wilma Chan Highland Hospital, 1411 E 31st Street, Oakland, CA 94602, USA.
| | - Aravind Addepalli
- Department of Emergency Medicine, University of California San Francisco, Box 0209, 505 Parnassus Avenue, San Francisco, CA 94143, USA
| |
Collapse
|
15
|
Faria BS, da Silva LB, Avelar CFR, de Morais PAS, Bentes AA. Vertical transmission of chikungunya virus: a worldwide concern. Braz J Infect Dis 2024; 28:103747. [PMID: 38723664 PMCID: PMC11169065 DOI: 10.1016/j.bjid.2024.103747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/17/2024] [Accepted: 04/21/2024] [Indexed: 06/03/2024] Open
Abstract
The Chikungunya Virus (CHIKV) already has endemic circulation in about 100 countries and the number of infected patients increases every year, due to the effectiveness of the vector and human universal susceptibility to infection. The virus can also be transmitted from mother to child, more frequently intrapartum. About 50 % of neonates with CHIKV symptoms will have neurodevelopmental delay. It is therefore an infection of worldwide concern with a great impact on people's quality of life. The objective of this work is to describe two cases of confirmed vertical transmission by chikungunya virus, one of them with intrauterine infection and death of the neonate. Neonates with vertical chikungunya infection may present with clinical sepsis in the first few days of life, which is why this is a very important diagnosis, especially during outbreaks of the infection.
Collapse
Affiliation(s)
| | - Lívia Barbosa da Silva
- Hospital Maternidade Sofia Feldman, Minas Gerais, MG, Brazil; Hospital Infantil João Paulo II, FHEMIG, Minas Gerais, MG, Brazil.
| | | | | | | |
Collapse
|
16
|
Inban P, Chandrasekaran SH, Yadav PK, Vijayakumar R, Elavia Z, Singh M. A rare case of chikungunya encephalitis and its management: A case report and literature review. Clin Case Rep 2024; 12:e8656. [PMID: 38476832 PMCID: PMC10927602 DOI: 10.1002/ccr3.8656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/23/2024] [Accepted: 03/01/2024] [Indexed: 03/14/2024] Open
Abstract
Key Clinical Message Chikungunya encephalitis, though rare, warrants clinical attention due to its severe complications. Early identification and appropriate management are crucial for improved outcomes in patients with this rare manifestation of chikungunya virus (CHIKV) infection. Abstract CHIKV infection is commonly associated with fever and joint pains, but neurological complications such as encephalitis are rare. Here, we present a unique case of confirmed chikungunya encephalitis in a 12-year-old male exhibiting atypical neurological symptoms. The diagnostic journey involved comprehensive neuroimaging and serological investigations, revealing intriguing findings on magnetic resonance imaging and positive CHIKV RNA in serum and cerebrospinal fluid. We discuss the clinical presentation, radiological characteristics, and management strategies, emphasizing the importance of recognizing this uncommon neurological manifestation of CHIKV infection.
Collapse
Affiliation(s)
- Pugazhendi Inban
- Department of MedicineGovernment Medical College OmandurarChennaiIndia
| | | | | | | | - Zenia Elavia
- Department of MedicineNnamdi Azikiwe UniversityAwkaNigeria
| | - Mansi Singh
- Department of MedicineBogomolets National Medical UniversityKyivUkraine
| |
Collapse
|
17
|
Sagay AS, Hsieh SC, Dai YC, Chang CA, Ogwuche J, Ige OO, Kahansim ML, Chaplin B, Imade G, Elujoba M, Paul M, Hamel DJ, Furuya H, Khouri R, Boaventura VS, de Moraes L, Kanki PJ, Wang WK. Chikungunya virus antepartum transmission and abnormal infant outcomes in a cohort of pregnant women in Nigeria. Int J Infect Dis 2024; 139:92-100. [PMID: 38056689 PMCID: PMC10843725 DOI: 10.1016/j.ijid.2023.11.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/07/2023] [Accepted: 11/28/2023] [Indexed: 12/08/2023] Open
Abstract
OBJECTIVES Chikungunya virus (CHIKV), a reemerging global public health concern, which causes acute febrile illness, rash, and arthralgia and may affect both mothers and infants during pregnancy. Mother-to-child transmission (MTCT) of CHIKV in Africa remains understudied. METHODS Our cohort study screened 1006 pregnant women with a Zika/dengue/CHIKV rapid test at two clinics in Nigeria between 2019 and 2022. Women who tested positive for the rapid test were followed through their pregnancy and their infants were observed for 6 months, with a subset tested by reverse transcription-polymerase chain reaction (RT-PCR) and neutralization, to investigate seropositivity rates and MTCT of CHIKV. RESULTS Of the 1006, 119 tested positive for CHIKV immunoglobulin (Ig)M, of which 36 underwent detailed laboratory tests. While none of the IgM reactive samples were RT-PCR positive, 14 symptomatic pregnant women were confirmed by CHIKV neutralization test. Twelve babies were followed with eight normal and four abnormal outcomes, including stillbirth, cleft lip/palate with microcephaly, preterm delivery, polydactyly with sepsis, and jaundice. CHIKV IgM testing identified three possible antepartum transmissions. CONCLUSION In Nigeria, we found significant CHIKV infection in pregnancy and possible CHIKV antepartum transmission associated with birth abnormalities.
Collapse
Affiliation(s)
- Atiene S Sagay
- Jos University Teaching Hospital, University of Jos, Jos, Nigeria
| | - Szu-Chia Hsieh
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, USA
| | - Yu-Ching Dai
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, USA
| | - Charlotte Ajeong Chang
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, USA
| | | | - Olukemi O Ige
- Jos University Teaching Hospital, University of Jos, Jos, Nigeria
| | | | - Beth Chaplin
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, USA
| | - Godwin Imade
- Jos University Teaching Hospital, University of Jos, Jos, Nigeria
| | | | - Michael Paul
- Jos University Teaching Hospital, University of Jos, Jos, Nigeria
| | - Donald J Hamel
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, USA
| | - Hideki Furuya
- Department of Biomedical Science, Cedars-Sinai Medical Center, Los Angeles, USA
| | - Ricardo Khouri
- Instituto Gonçalo Moniz -Oswaldo Cruz Foundation (FIOCRUZ), Bahia, Brazil
| | | | - Laíse de Moraes
- Instituto Gonçalo Moniz -Oswaldo Cruz Foundation (FIOCRUZ), Bahia, Brazil
| | - Phyllis J Kanki
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, USA.
| | - Wei-Kung Wang
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, USA
| |
Collapse
|
18
|
Chitre SD, Crews CM, Tessema MT, Plėštytė-Būtienė I, Coffee M, Richardson ET. The impact of anthropogenic climate change on pediatric viral diseases. Pediatr Res 2024; 95:496-507. [PMID: 38057578 PMCID: PMC10872406 DOI: 10.1038/s41390-023-02929-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/12/2023] [Accepted: 11/16/2023] [Indexed: 12/08/2023]
Abstract
The adverse effects of climate change on human health are unfolding in real time. Environmental fragmentation is amplifying spillover of viruses from wildlife to humans. Increasing temperatures are expanding mosquito and tick habitats, introducing vector-borne viruses into immunologically susceptible populations. More frequent flooding is spreading water-borne viral pathogens, while prolonged droughts reduce regional capacity to prevent and respond to disease outbreaks with adequate water, sanitation, and hygiene resources. Worsening air quality and altered transmission seasons due to an increasingly volatile climate may exacerbate the impacts of respiratory viruses. Furthermore, both extreme weather events and long-term climate variation are causing the destruction of health systems and large-scale migrations, reshaping health care delivery in the face of an evolving global burden of viral disease. Because of their immunological immaturity, differences in physiology (e.g., size), dependence on caregivers, and behavioral traits, children are particularly vulnerable to climate change. This investigation into the unique pediatric viral threats posed by an increasingly inhospitable world elucidates potential avenues of targeted programming and uncovers future research questions to effect equitable, actionable change. IMPACT: A review of the effects of climate change on viral threats to pediatric health, including zoonotic, vector-borne, water-borne, and respiratory viruses, as well as distal threats related to climate-induced migration and health systems. A unique focus on viruses offers a more in-depth look at the effect of climate change on vector competence, viral particle survival, co-morbidities, and host behavior. An examination of children as a particularly vulnerable population provokes programming tailored to their unique set of vulnerabilities and encourages reflection on equitable climate adaptation frameworks.
Collapse
Affiliation(s)
- Smit D Chitre
- Department of Global Health and Social Medicine, Harvard Medical School, Boston, MA, USA
| | - Cecilia M Crews
- Heilbrunn Department of Population & Family Health, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Mesfin Teklu Tessema
- Heilbrunn Department of Population & Family Health, Columbia University Mailman School of Public Health, New York, NY, USA.
- International Rescue Committee, New York, NY, USA.
| | | | - Megan Coffee
- Heilbrunn Department of Population & Family Health, Columbia University Mailman School of Public Health, New York, NY, USA
- International Rescue Committee, New York, NY, USA
- New York University Grossman School of Medicine, New York, NY, USA
| | - Eugene T Richardson
- Department of Global Health and Social Medicine, Harvard Medical School, Boston, MA, USA
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| |
Collapse
|
19
|
Torres dos Santos Lopes D, Cerutti Junior C, Areias Cabidelle A, Espinosa Miranda A, Drumond Louro I, Pamplona de Góes Cavalcanti L, Vicente CR. Factors associated with hospitalization in the acute phase of Chikungunya. PLoS One 2023; 18:e0296131. [PMID: 38134205 PMCID: PMC10745164 DOI: 10.1371/journal.pone.0296131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
OBJECTIVE Determine characteristics associated with hospitalization in the acute phase of Chikungunya. METHODS Cross-sectional study including data on Chikungunya cases reported in Vitória, Espírito Santo state, Brazil, between March 2016 and December 2021. RESULTS Hospitalizations accounted for 1.42% (n = 41) of the 2,868 cases included. There were statistically significant differences between hospitalized and non-hospitalized regarding age (P 0.001), which was lower among hospitalized patients, and pregnancy, which was more frequent in the hospitalized group (P 0.010). Patients younger than two years old and older than 65 years corresponded to 31.7% of hospitalizations. Back pain (OR = 0.134; 95% CI = 0.044-0.409) and arthralgia (OR = 0.226; 95% CI = 0.083-0.613) were protective factors for hospitalization. CONCLUSION Groups at risk of severe Chikungunya, including those under two and over 65 years of age, may require more hospitalization, even with milder manifestations.
Collapse
Affiliation(s)
| | - Crispim Cerutti Junior
- Postgraduate Program in Infectious Disease, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
- Department of Social Medicine, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
| | - Aline Areias Cabidelle
- Health Surveillance Sector, Health Department of Vitória, Vitória, Espírito Santo, Brazil
| | - Angelica Espinosa Miranda
- Postgraduate Program in Infectious Disease, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
- Department of Social Medicine, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
| | - Iuri Drumond Louro
- Postgraduate Program in Biotechnology, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
- Department of Biology, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
| | | | - Creuza Rachel Vicente
- Postgraduate Program in Infectious Disease, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
- Department of Social Medicine, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
| |
Collapse
|
20
|
Oberlin AM, Wylie BJ. Vector-borne disease, climate change and perinatal health. Semin Perinatol 2023; 47:151841. [PMID: 37852894 DOI: 10.1016/j.semperi.2023.151841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Vector-borne diseases (VBDs) are caused by infectious pathogens that spread from an infected human or animal reservoir to an uninfected human via a vector (mosquito, tick, rodent, others) and remain an important cause of morbidity and mortality worldwide. Pregnant individuals and their fetuses are especially at risk, as certain pathogens, such as Zika virus, have specific implications in pregnancy and for neonatal health. Global climate change is affecting the incidence and geographic spread of many VBDs. Thus, it is important for clinicians in the fields of obstetrics/gynecology and newborn medicine, regardless of geographic location, to familiarize themselves with a basic understanding of these conditions and how climate change is altering their distributions. In this chapter, we review the incidence, clinical presentation, implications during pregnancy and intersection with climate change for four of the most important VBDs in pregnancy: malaria, Zika, dengue and Chagas disease. Although not exhaustive of all VBDs, a more extensive table is included for reference, and our discussion provides a helpful framework for understanding other vector-borne pathogens and perinatal health.
Collapse
Affiliation(s)
- Austin M Oberlin
- Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, NY, United States
| | - Blair J Wylie
- Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, NY, United States; Founding Director, The Collaborative for Women's Environmental Health at Columbia University, United States.
| |
Collapse
|
21
|
Mironov AA, Savin MA, Zaitseva AV, Dimov ID, Sesorova IS. Mechanisms of Formation of Antibodies against Blood Group Antigens That Do Not Exist in the Body. Int J Mol Sci 2023; 24:15044. [PMID: 37894724 PMCID: PMC10606600 DOI: 10.3390/ijms242015044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/03/2023] [Accepted: 10/05/2023] [Indexed: 10/29/2023] Open
Abstract
The system of the four different human blood groups is based on the oligosaccharide antigens A or B, which are located on the surface of blood cells and other cells including endothelial cells, attached to the membrane proteins or lipids. After transfusion, the presence of these antigens on the apical surface of endothelial cells could induce an immunological reaction against the host. The final oligosaccharide sequence of AgA consists of Gal-GlcNAc-Gal (GalNAc)-Fuc. AgB contains Gal-GlcNAc-Gal (Gal)-Fuc. These antigens are synthesised in the Golgi complex (GC) using unique Golgi glycosylation enzymes (GGEs). People with AgA also synthesise antibodies against AgB (group A [II]). People with AgB synthesise antibodies against AgA (group B [III]). People expressing AgA together with AgB (group AB [IV]) do not have these antibodies, while people who do not express these antigens (group O [0; I]) synthesise antibodies against both antigens. Consequently, the antibodies are synthesised against antigens that apparently do not exist in the body. Here, we compared the prediction power of the main hypotheses explaining the formation of these antibodies, namely, the concept of natural antibodies, the gut bacteria-derived antibody hypothesis, and the antibodies formed as a result of glycosylation mistakes or de-sialylation of polysaccharide chains. We assume that when the GC is overloaded with lipids, other less specialised GGEs could make mistakes and synthesise the antigens of these blood groups. Alternatively, under these conditions, the chylomicrons formed in the enterocytes may, under this overload, linger in the post-Golgi compartment, which is temporarily connected to the endosomes. These compartments contain neuraminidases that can cleave off sialic acid, unmasking these blood antigens located below the acid and inducing the production of antibodies.
Collapse
Affiliation(s)
- Alexander A. Mironov
- Department of Cell Biology, IFOM ETS—The AIRC Institute of Molecular Oncology, Via Adamello, 16, 20139 Milan, Italy
| | - Maksim A. Savin
- The Department for Welding Production and Technology of Constructional Materials, Perm National Research Polytechnic University, Komsomolsky Prospekt, 29, 614990 Perm, Russia;
| | - Anna V. Zaitseva
- Department of Anatomy, Saint Petersburg State Pediatric Medical University, 194100 Saint Petersburg, Russia
| | - Ivan D. Dimov
- Department of Cell Biology, IFOM ETS—The AIRC Institute of Molecular Oncology, Via Adamello, 16, 20139 Milan, Italy
| | - Irina S. Sesorova
- Department of Anatomy, Ivanovo State Medical Academy, 153012 Ivanovo, Russia
| |
Collapse
|
22
|
Gotay W, Rodrigues R, Yaochite J. Influence of host genetic polymorphisms involved in immune response and their role in the development of Chikungunya disease: a review. Braz J Med Biol Res 2023; 56:e12557. [PMID: 37703107 PMCID: PMC10496760 DOI: 10.1590/1414-431x2023e12557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 07/22/2023] [Indexed: 09/15/2023] Open
Abstract
Chikungunya virus (CHIKV) is transmitted by the bite of infected mosquitoes and can cause significant pathogenicity in humans. Moreover, its importance has increased in the Americas since 2013. The primary vectors for viral delivery are the mosquito species Aedes aegypti and Aedes albopictus. Several factors, including host genetic variations and immune response against CHIKV, influence the outcomes of Chikungunya disease. This work aimed to gather information about different single nucleotide polymorphisms (SNPs) in genes that influence the host immune response during an infection by CHIKV. The viral characteristics, disease epidemiology, clinical manifestations, and immune response against CHIKV are also addressed. The main immune molecules related to this arboviral disease elucidated in this review are TLR3/7/8, DC-SIGN, HLA-DRB1/HLA-DQB1, TNF, IL1RN, OAS2/3, and CRP. Advances in knowledge about the genetic basis of the immune response during CHIKV infection are essential for expanding the understanding of disease pathophysiology, providing new genetic markers for prognosis, and identifying molecular targets for the development of new drug treatments.
Collapse
Affiliation(s)
- W.J.P. Gotay
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Odontologia e Enfermagem, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - R.O. Rodrigues
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Odontologia e Enfermagem, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - J.N.U. Yaochite
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Odontologia e Enfermagem, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| |
Collapse
|
23
|
Hills SL, Wong JM, Staples JE. Arboviral vaccines for use in pregnant travelers. Travel Med Infect Dis 2023; 55:102624. [PMID: 37517630 DOI: 10.1016/j.tmaid.2023.102624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/20/2023] [Accepted: 07/26/2023] [Indexed: 08/01/2023]
Abstract
Pregnant women traveling abroad can be exposed to a variety of arboviruses, primarily spread by mosquitoes or ticks. Some arboviral infections can be of particular concern for pregnant women or their fetuses. Vaccination is one preventive measure that can reduce the risk for infection. Several arboviral vaccines have been licensed for many years and can be used to prevent infection in travelers, namely Japanese encephalitis, yellow fever, and tick-borne encephalitis vaccines. Recommendations on use of these vaccines in pregnancy vary. Other arboviral vaccines have been licensed but are not indicated for use in pregnant travelers (e.g., dengue vaccines) or are in development (e.g., chikungunya, Zika vaccines). This review describes arboviral vaccines for travelers, focusing on women who are pregnant and those planning travel during pregnancy.
Collapse
Affiliation(s)
- S L Hills
- Arboviral Diseases Branch, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, USA.
| | - J M Wong
- Dengue Branch, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, San Juan, PR, USA
| | - J E Staples
- Arboviral Diseases Branch, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, USA
| |
Collapse
|
24
|
Recaioglu H, Kolk SM. Developing brain under renewed attack: viral infection during pregnancy. Front Neurosci 2023; 17:1119943. [PMID: 37700750 PMCID: PMC10493316 DOI: 10.3389/fnins.2023.1119943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 04/26/2023] [Indexed: 09/14/2023] Open
Abstract
Living in a globalized world, viral infections such as CHIKV, SARS-COV-2, and ZIKV have become inevitable to also infect the most vulnerable groups in our society. That poses a danger to these populations including pregnant women since the developing brain is sensitive to maternal stressors including viral infections. Upon maternal infection, the viruses can gain access to the fetus via the maternofetal barrier and even to the fetal brain during which factors such as viral receptor expression, time of infection, and the balance between antiviral immune responses and pro-viral mechanisms contribute to mother-to-fetus transmission and fetal infection. Both the direct pro-viral mechanisms and the resulting dysregulated immune response can cause multi-level impairment in the maternofetal and brain barriers and the developing brain itself leading to dysfunction or even loss of several cell populations. Thus, maternal viral infections can disturb brain development and even predispose to neurodevelopmental disorders. In this review, we discuss the potential contribution of maternal viral infections of three relevant relative recent players in the field: Zika, Chikungunya, and Severe Acute Respiratory Syndrome Coronavirus-2, to the impairment of brain development throughout the entire route.
Collapse
Affiliation(s)
| | - Sharon M. Kolk
- Faculty of Science, Donders Institute for Brain, Cognition and Behavior, Radboud University, Nijmegen, Netherlands
| |
Collapse
|
25
|
Sagay AS, Hsieh SC, Dai YC, Chang CA, Ogwuche J, Ige OO, Kahansim ML, Chaplin B, Imade G, Elujoba M, Paul M, Hamel DJ, Furuya H, Khoury R, Boaventura VS, de Moraes L, Kanki PJ, Wang WK. Chikungunya virus antepartum transmission and abnormal infant outcomes in Nigeria. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.08.05.23293675. [PMID: 37609297 PMCID: PMC10441498 DOI: 10.1101/2023.08.05.23293675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Chikungunya virus (CHIKV) has become a global public health concern since the reemergence of the Indian Ocean lineage and expansion of the Asian genotype. CHIKV infection causes acute febrile illness, rash, and arthralgia and during pregnancy may affect both mothers and infants. The mother-to-child transmission (MTCT) of CHIKV in Africa remains understudied. We screened 1006 pregnant women at two clinics in Nigeria between 2019 and 2022 and investigated the prevalence and MTCT of CHIKV. Of the 1006, 119 tested positive for CHIKV IgM, of which 36 underwent detailed laboratory tests. While none of the IgM reactive samples were RT-PCR positive, 14 symptomatic pregnant women were confirmed by CHIKV neutralization test. Twelve babies were followed with 8 normal and 4 abnormal outcomes, including stillbirth, cleft lip/palate with microcephaly, preterm delivery, polydactyly with sepsis and jaundice. CHIKV IgM testing identified 3 antepartum transmissions, further studies will determine its impact in antepartum infection.
Collapse
|
26
|
Kiener M, Cudjoe N, Evans R, Mapp-Alexander V, Tariq A, Macpherson C, Noël T, Gérardin P, Waechter R, LaBeaud AD. Factors Associated with Chikungunya Infection among Pregnant Women in Grenada, West Indies. Am J Trop Med Hyg 2023; 109:123-125. [PMID: 37253436 PMCID: PMC10324015 DOI: 10.4269/ajtmh.23-0157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 04/21/2023] [Indexed: 06/01/2023] Open
Abstract
Neonates are vulnerable to vector-borne diseases given the potential for mother-to-child congenital transmission. To determine factors associated with chikungunya virus (CHIKV) infection among pregnant women in Grenada, West Indies, a retrospective cohort study enrolled women who were pregnant during the 2014 CHIKV epidemic. In all, 520/688 women (75.5%) were CHIKV IgG positive. Low incomes, use of pit latrines, lack of home window screens, and subjective reporting of frequent mosquito bites were associated with increased risk of CHIKV infection in bivariate analyses. In the multivariate modified Poisson regression model, low income (adjusted relative risk [aRR]: 1.05 [95% CI: 1.01-1.10]) and frequent mosquito bites (aRR: 1.05 [95% CI: 1.01-1.10]) were linked to increased infection risk. In Grenada, markers of low socioeconomic status are associated with CHIKV infection among pregnant women. Given that Grenada will continue to face vector-borne outbreaks, interventions dedicated to improving living conditions of the most disadvantaged will help reduce the incidence of arboviral infections.
Collapse
Affiliation(s)
- Melanie Kiener
- Division of Infectious Diseases, Department of Medicine, Stanford University, Stanford, California
| | - Nikita Cudjoe
- Windward Islands Research and Education Foundation, St. George’s, Grenada
| | - Roberta Evans
- Windward Islands Research and Education Foundation, St. George’s, Grenada
| | | | - Amna Tariq
- Division of Infectious Diseases, Department of Pediatrics, Stanford University, Stanford, California
| | - Calum Macpherson
- Windward Islands Research and Education Foundation, St. George’s, Grenada
| | - Trevor Noël
- Windward Islands Research and Education Foundation, St. George’s, Grenada
| | - Patrick Gérardin
- INSERM CIC1410/Plateforme de Recherche Clinique et Translationnelle, Centre Hospitalier Universitaire Réunion, Saint-Pierre, France
| | - Randall Waechter
- Windward Islands Research and Education Foundation, St. George’s, Grenada
| | - A. Desiree LaBeaud
- Division of Infectious Diseases, Department of Pediatrics, Stanford University, Stanford, California
| |
Collapse
|
27
|
Alguridi HI, Alzahrani F, Altayb HN, Almalki S, Zaki E, Algarni S, Assiri A, Memish ZA. The First Genomic Characterization of the Chikungunya Virus in Saudi Arabia. J Epidemiol Glob Health 2023; 13:191-199. [PMID: 37029884 PMCID: PMC10272072 DOI: 10.1007/s44197-023-00098-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 03/30/2023] [Indexed: 04/09/2023] Open
Abstract
BACKGROUND Chikungunya is an arboviral infection caused by the Chikungunya virus (CHIKV) transmitted to humans by mosquitoes of Aedes spp. CHIKV has been confined to African countries and South-East Asia up to 2004, but since then, the pathogen has become more global, and its high morbidity rate has become more visible. Saudi Arabia is not an endemic region of CHIKV, and the virus's origin is not yet fully understood. This study aimed to characterize the genome of CHIKV from samples detected in Jeddah in 2018. METHOD Twenty-two sets of primers were designed to amplify near-full length genome of CHIKV. RT-PCR was conducted from clinical samples. Two samples were used for studying near complete genome sequence while the remaining samples were used to study the E1 gene. Different bioinformatics tools were utilized. RESULTS Phylogenetic analysis showed that the CHIKV strains clustered with strains isolated from Kenya during 2017-2018 and belonged to ECSA genotype. E1: L136F, K211E and I317V mutations were identified in our strains. Also, E2: M74I, A76T, and V264A mutations were documented. Additionally, the capsid N79S substitution was also detected. CONCLUSION The genome of CHIKV was analyzed for the first time in Saudi Arabia to better understand the origin of the CHIKV and its genetic diversity, which showed high similarity with IE-a subclade of CHIKV strains detected in Mombasa (Kenya) indicating its possible origin.
Collapse
Affiliation(s)
- Hassan I. Alguridi
- Molecular Biology Department, Jeddah Regional Laboratory, Ministry of Health, P.O. Box: 17040, Jeddah, 21484 Saudi Arabia
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Faisal Alzahrani
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Centre for Artificial Intelligence in Precision Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- King Fahd Medical Research Center, Embryonic Stem Cells Unit, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hisham N. Altayb
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Centre for Artificial Intelligence in Precision Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Safar Almalki
- Molecular Biology Department, Jeddah Regional Laboratory, Ministry of Health, P.O. Box: 17040, Jeddah, 21484 Saudi Arabia
- Laboratories and Blood Banks Administration, Ministry of Health, Jeddah, Saudi Arabia
| | - Eitezaz Zaki
- Molecular Biology Department, Jeddah Regional Laboratory, Ministry of Health, P.O. Box: 17040, Jeddah, 21484 Saudi Arabia
| | | | - Abdullah Assiri
- Deputy Ministry for Public Health, Ministry of Health, Riyadh, Saudi Arabia
| | - Ziad A. Memish
- Research and Innovation Center, King Saud Medical City, Ministry of Health, Jeddah, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
- Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA USA
| |
Collapse
|
28
|
Bartholomeeusen K, Daniel M, LaBeaud DA, Gasque P, Peeling RW, Stephenson KE, Ng LFP, Ariën KK. Chikungunya fever. Nat Rev Dis Primers 2023; 9:17. [PMID: 37024497 PMCID: PMC11126297 DOI: 10.1038/s41572-023-00429-2] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/10/2023] [Indexed: 04/08/2023]
Abstract
Chikungunya virus is widespread throughout the tropics, where it causes recurrent outbreaks of chikungunya fever. In recent years, outbreaks have afflicted populations in East and Central Africa, South America and Southeast Asia. The virus is transmitted by Aedes aegypti and Aedes albopictus mosquitoes. Chikungunya fever is characterized by severe arthralgia and myalgia that can persist for years and have considerable detrimental effects on health, quality of life and economic productivity. The effects of climate change as well as increased globalization of commerce and travel have led to growth of the habitat of Aedes mosquitoes. As a result, increasing numbers of people will be at risk of chikungunya fever in the coming years. In the absence of specific antiviral treatments and with vaccines still in development, surveillance and vector control are essential to suppress re-emergence and epidemics.
Collapse
Affiliation(s)
- Koen Bartholomeeusen
- Virology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine Antwerp, Antwerp, Belgium
| | - Matthieu Daniel
- Unité de Recherche en Pharmaco-Immunologie (UR-EPI), Université et CHU de La Réunion, Saint-Denis, France
- Service de Médecine d'Urgences-SAMU-SMUR, CHU de La Réunion, Saint-Denis, France
| | - Desiree A LaBeaud
- Department of Pediatrics, Division of Infectious Disease, Stanford University School of Medicine, Stanford, CA, USA
| | - Philippe Gasque
- Unité de Recherche en Pharmaco-Immunologie (UR-EPI), Université et CHU de La Réunion, Saint-Denis, France
- Laboratoire d'Immunologie Clinique et Expérimentale Océan Indien LICE-OI, Université de La Réunion, Saint-Denis, France
| | - Rosanna W Peeling
- Clinical Research Department, London School of Hygiene and Tropical Medicine, London, UK
| | - Kathryn E Stephenson
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Lisa F P Ng
- A*STAR Infectious Diseases Labs, Agency for Science, Technology and Research, Singapore, Singapore
- National Institute of Health Research, Health Protection Research Unit in Emerging and Zoonotic Infections, University of Liverpool, Liverpool, UK
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Kevin K Ariën
- Virology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine Antwerp, Antwerp, Belgium.
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
29
|
Mourad O, Makhani L, Chen LH. Chikungunya: An Emerging Public Health Concern. Curr Infect Dis Rep 2022; 24:217-228. [DOI: 10.1007/s11908-022-00789-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2022] [Indexed: 11/18/2022]
Abstract
Abstract
Purpose of Review
The worldwide spread of chikungunya over the past two decades calls for greater knowledge and awareness of the virus, its route of transmission, methods of diagnosis, and the use of available treatment and prevention measures.
Recent Findings
Chikungunya virus infection, an Aedes mosquito-borne febrile disease, has spread from Africa and Asia to Europe and the Americas and from the tropics and subtropics to temperate regions. International travel is a pivotal influence in the emergence of chikungunya as a global public health threat, as evidenced by a growing number of published reports on travel-related chikungunya infections. The striking features of chikungunya are arthralgia and arthritis, and the disease is often mistaken for dengue. Although mortality is low, morbidity can be profound and persistent. Current treatment for chikungunya is supportive; chikungunya vaccines and therapeutics are in development. Travelers planning to visit areas where the mosquito vectors are present should be advised on preventive measures.
Summary
Chikungunya is an emerging disease in the Americas. Frequent travel, the presence of at least two competent mosquito species, and a largely naïve human population in the Western Hemisphere create a setting conducive to future outbreaks. Awareness of the disease and its manifestations is critical to effectively and safely manage and limit its impact. Vaccines in late-stage clinical trials offer a new pathway to prevention.
Collapse
|
30
|
Faustino R, Carvalho FR, Medeiros T, Familiar-Macedo D, Vianna RADO, Leite PEC, Pereira IR, Cardoso CAA, De Azeredo EL, Silva AA. Pro-Inflammatory Profile of Children Exposed to Maternal Chikungunya Virus Infection during the Intrauterine Period: A One-Year Follow-Up Study. Viruses 2022; 14:v14091881. [PMID: 36146688 PMCID: PMC9501274 DOI: 10.3390/v14091881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/18/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
Chikungunya virus (CHIKV) vertical transmission occurs due to maternal viremia in the prepartum. Clinical presentation in neonates can be varied; however, the consequences of intrauterine exposure on the immune response are unclear. Thus, we aimed to analyze inflammatory alterations in children exposed to maternal CHIKV infection. This is a cross-sectional study that included children exposed to maternal CHIKV infection (confirmed by RT-qPCR and/or IgM). Circulant immune mediators were analyzed by a multiplex assay. RESULTS: We included 33 children, with a mean age of 3 ± 2.9 months-old, and 19 (57.6%) were male. Only one child presented neurological alterations. CHIKV-exposed infants showed elevated levels of MIP-1α, MIP-1β, and CCL-2 (p < 0.05). Pro-inflammatory cytokines such as TNFα, IL-6, and IL-7 (p < 0.0001) were also increased. In addition, lower levels of PDGF-BB and GM-CSF were observed in the same group (p < 0.0001). Principal component (PC) analysis highlighted a distinction in the inflammatory profile between groups, where PC explained 56.6% of the alterations. Our findings suggest that maternal exposure to CHIKV can affect the circulating levels of pro-inflammatory cytokines during the infants’ first year of life. The long-term clinical consequences of these findings should be investigated.
Collapse
Affiliation(s)
- Renan Faustino
- Multiuser Laboratory for Research Support in Nephrology and Medical Sciences (LAMAP), Hospital Universitario Antonio Pedro, Faculty of Medicine, Universidade Federal Fluminense, Niteroi 24033-900, Brazil
| | - Fabiana Rabe Carvalho
- Multiuser Laboratory for Research Support in Nephrology and Medical Sciences (LAMAP), Hospital Universitario Antonio Pedro, Faculty of Medicine, Universidade Federal Fluminense, Niteroi 24033-900, Brazil
| | - Thalia Medeiros
- Multiuser Laboratory for Research Support in Nephrology and Medical Sciences (LAMAP), Hospital Universitario Antonio Pedro, Faculty of Medicine, Universidade Federal Fluminense, Niteroi 24033-900, Brazil
- Department of Pathology, Faculty of Medicine, Universidade Federal Fluminense, Niterói 24033-900, Brazil
| | - Débora Familiar-Macedo
- Viral Immunology Laboratory, Oswaldo Cruz Institute, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil
| | - Renata Artimos de Oliveira Vianna
- Multiuser Laboratory for Research Support in Nephrology and Medical Sciences (LAMAP), Hospital Universitario Antonio Pedro, Faculty of Medicine, Universidade Federal Fluminense, Niteroi 24033-900, Brazil
| | | | - Isabela Resende Pereira
- Department of Pathology, Faculty of Medicine, Universidade Federal Fluminense, Niterói 24033-900, Brazil
| | - Claudete Aparecida Araújo Cardoso
- Multiuser Laboratory for Research Support in Nephrology and Medical Sciences (LAMAP), Hospital Universitario Antonio Pedro, Faculty of Medicine, Universidade Federal Fluminense, Niteroi 24033-900, Brazil
- Department of Maternal and Child, Faculty of Medicine, Universidade Federal Fluminense, Niterói 24033-900, Brazil
| | - Elzinandes Leal De Azeredo
- Viral Immunology Laboratory, Oswaldo Cruz Institute, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil
- Correspondence: (E.L.D.A.); (A.A.S.); Tel.: +55-(21)-3674-7285 (A.A.S.)
| | - Andrea Alice Silva
- Multiuser Laboratory for Research Support in Nephrology and Medical Sciences (LAMAP), Hospital Universitario Antonio Pedro, Faculty of Medicine, Universidade Federal Fluminense, Niteroi 24033-900, Brazil
- Department of Pathology, Faculty of Medicine, Universidade Federal Fluminense, Niterói 24033-900, Brazil
- Correspondence: (E.L.D.A.); (A.A.S.); Tel.: +55-(21)-3674-7285 (A.A.S.)
| |
Collapse
|
31
|
A Retrospective Study of the Seroprevalence of Dengue Virus and Chikungunya Virus Exposures in Nigeria, 2010–2018. Pathogens 2022; 11:pathogens11070762. [PMID: 35890007 PMCID: PMC9318586 DOI: 10.3390/pathogens11070762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/25/2022] [Accepted: 06/30/2022] [Indexed: 02/01/2023] Open
Abstract
Arboviruses are important public health threats in many regions of the world. Nigeria has experienced outbreaks of arboviruses over the past decades, leading to concerns of widespread endemicity, which are frequently misdiagnosed. This study aimed to determine the seroprevalence of dengue virus (DENV) (a flavivirus) and chikungunya virus (CHIKV) (an alphavirus) infections in three major population centers of Nigeria. A convenience sample of 701 sera was collected from both healthy and febrile participants between August 2010 and March 2018. Sera were tested for prior exposure to CHIKV virus and DENV using indirect IgG ELISA. Results showed that 54.1% (379/701) of participants were seropositive for anti-DENV antibodies, 41.3% (290/701) were seropositive for anti-CHIKV antibodies, and 20.1% (141/701) had previous exposure to both. The seropositivity for prior CHIKV exposure and prior exposure to DENV and CHIKV was significantly associated with age (CHIKV: OR = 2.7 (95% CI: 1.7–4.3); DENV and CHIKV: OR = 2.2 (95% CI: 1.2–4.0) for adults compared to participants under 18 years old). Overall, the high seropositivity across all age groups suggests that arboviral infections are prevalent in Nigeria and indicates that surveillance and further epidemiological studies are required to determine the true burden of these infections and the spectrum of diseases associated with these exposures.
Collapse
|
32
|
A Brighton Collaboration standardized template with key considerations for a benefit/risk assessment for an inactivated viral vaccine against Chikungunya virus. Vaccine 2022; 40:5263-5274. [PMID: 35715351 PMCID: PMC9197579 DOI: 10.1016/j.vaccine.2022.06.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 06/02/2022] [Indexed: 11/23/2022]
Abstract
Inactivated viral vaccines have long been used in humans for diseases of global health threat (e.g., poliomyelitis and pandemic and seasonal influenza) and the technology of inactivation has more recently been used for emerging diseases such as West Nile, Chikungunya, Ross River, SARS and especially for COVID-19. The Brighton Collaboration Benefit-Risk Assessment of VAccines by TechnolOgy (BRAVATO) Working Group has prepared standardized templates to describe the key considerations for the benefit and risk of several vaccine platform technologies, including inactivated viral vaccines. This paper uses the BRAVATO inactivated virus vaccine template to review the features of an inactivated whole chikungunya virus (CHIKV) vaccine that has been evaluated in several preclinical studies and clinical trials. The inactivated whole CHIKV vaccine was cultured on Vero cells and inactivated by ß-propiolactone. This provides an effective, flexible system for high-yield manufacturing. The inactivated whole CHIKV vaccine has favorable thermostability profiles, compatible with vaccine supply chains. Safety data are compiled in the current inactivated whole CHIKV vaccine safety database with unblinded data from the ongoing studies: 850 participants from phase II study (parts A and B) outside of India, and 600 participants from ongoing phase II study in India, and completed phase I clinical studies for 60 subjects. Overall, the inactivated whole CHIKV vaccine has been well tolerated, with no significant safety issues identified. Evaluation of the inactivated whole CHIKV vaccine is continuing, with 1410 participants vaccinated as of 20 April 2022. Extensive evaluation of immunogenicity in humans shows strong, durable humoral immune responses.
Collapse
|
33
|
Zilio G, Kaltz O, Koella JC. Resource availability for the mosquito Aedes aegypti affects the transmission mode evolution of a microsporidian parasite. Evol Ecol 2022. [DOI: 10.1007/s10682-022-10184-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AbstractEcological conditions may greatly affect the relative importance of vertical and horizontal transmission, in particular for parasites with a mixed mode of transmission. Resource availability is one important environmental factor, affecting host growth and fecundity, but also the parasite’s own development. The consequences for the potential of vertical and horizontal transmission and for the evolution of transmission mode are largely unknown. We let the mixed-mode microsporidian parasite Edhazardia aedis evolve on its mosquito host Aedes aegypti under high-food or low-food conditions, representing permissive and restricted conditions. These alter the timing of development of infected larvae and thereby the probabilities for the parasites to enter the vertical or horizontal transmission pathways. After 10 generations, evolved parasites were assayed under the two food levels. There was an ecological trade-off between transmission modes, mediated by nutrient effects on host development, resulting in a higher vertical transmission (VT) potential under high-food and a higher horizontal transmission (HT) potential under low-food test conditions. Evolution under high food increased the VT potential of the parasite, particularly if it was tested at low food. This involved higher probability of carrying binucleate spores for the emerging females, greater fecundity and a longer life compared to parasites that were tested in the same conditions but had evolved under low food. The changes are related to the developmental regulation and switch in the production of two spore types, affecting investment in VT or HT. In contrast, the HT potential remained relatively unaffected by the parasite’s evolutionary history, suggesting that, within our experiential design, the VT mode evolved independently of the HT mode. Our work illustrates the possible links between resource availability, within-host developmental processes and the evolution of parasite transmission investment. Future work, theoretical and experimental, should scale up from within-host to between-host levels, including eco-evolutionary and epidemiological dynamics.
Collapse
|
34
|
Hopkins HK, Traverse EM, Barr KL. Chikungunya Encephalitis: an Inconsistently Reported Headache and Cause of Death in Patients with Pre-Existing Conditions. CURRENT TROPICAL MEDICINE REPORTS 2022. [DOI: 10.1007/s40475-022-00258-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
AbstractChikungunya virus (CHIKV) is an alphavirus of the family Togaviridae with outbreaks occurring across Africa, Asia, parts of Europe, and South and Central America. There are three main lineages of CHIKV, including the West African lineage, the East Central South African (ECSA) lineage, and the Asian lineage. While CHIKV infection usually results in a self-limited febrile illness, there have been reports of concerning neurological manifestations, including encephalitis. Herein we discuss findings of over 700 cases of CHIKV encephalitis and risk factors for death. Additionally, we examined the genotypes of CHIKV associated with encephalitis and found that both the Asian and ECSA lineages were responsible for encephalitis but not the West African lineage. Protein analysis of consensus sequences of CHIKV strains associated with encephalitis identified mutations in the nsP1, nsP2, and nsP3 proteins. Reports and manuscripts of CHIKV encephalitis were inconsistent in reporting viral, demographic, and clinical features which complicated the delineation of risk factors associated with the disease and viral evolution. As climate change contributes to the range expansion of natural vectors, it is important for researchers and clinicians to consistently report patient and viral data to facilitate research and countermeasures for the ecology and epidemiology of CHIKV due to the lack of a targeted treatment or vaccine.
Collapse
|
35
|
Nyamwaya DK, Otiende M, Mwango L, Kariuki SM, Otieno B, Omuoyo DO, Githinji G, Kitsao BS, Karanja HK, Gitonga JN, de Laurent ZR, Davies A, Mwarumba S, Agoti CN, Thumbi SM, Hamaluba MM, Newton CR, Bejon P, Warimwe GM. Incidence of chikungunya virus infections among Kenyan children with neurological disease, 2014-2018: A cohort study. PLoS Med 2022; 19:e1003994. [PMID: 35550620 PMCID: PMC9135332 DOI: 10.1371/journal.pmed.1003994] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/26/2022] [Accepted: 04/19/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Neurological complications due to chikungunya virus (CHIKV) infection have been described in different parts of the world, with children being disproportionately affected. However, the burden of CHIKV-associated neurological disease in Africa is currently unknown and given the lack of diagnostic facilities in routine care it is possible that CHIKV is an unrecognized etiology among children with encephalitis or other neurological illness. METHODS AND FINDINGS We estimated the incidence of CHIKV infection among children hospitalized with neurological disease in Kilifi County, coastal Kenya. We used reverse transcriptase polymerase chain reaction (RT-PCR) to systematically test for CHIKV in cerebrospinal fluid (CSF) samples from children aged <16 years hospitalized with symptoms of neurological disease at Kilifi County Hospital between January 2014 and December 2018. Clinical records were linked to the Kilifi Health and Demographic Surveillance System and population incidence rates of CHIKV infection estimated. There were 18,341 pediatric admissions for any reason during the 5-year study period, of which 4,332 (24%) had CSF collected. The most common clinical reasons for CSF collection were impaired consciousness, seizures, and coma (47%, 22%, and 21% of all collections, respectively). After acute investigations done for immediate clinical care, CSF samples were available for 3,980 admissions, of which 367 (9.2%) were CHIKV RT-PCR positive. Case fatality among CHIKV-positive children was 1.4% (95% CI 0.4, 3.2). The annual incidence of CHIKV-associated neurological disease varied between 13 to 58 episodes per 100,000 person-years among all children <16 years old. Among children aged <5 years, the incidence of CHIKV-associated neurological disease was 77 per 100,000 person-years, compared with 20 per 100,000 for cerebral malaria and 7 per 100,000 for bacterial meningitis during the study period. Because of incomplete case ascertainment due to children not presenting to hospital, or not having CSF collected, these are likely minimum estimates. Study limitations include reliance on hospital-based surveillance and limited CSF sampling in children in coma or other contraindications to lumbar puncture, both of which lead to under-ascertainment of incidence and of case fatality. CONCLUSIONS In this study, we observed that CHIKV infections are relatively more common than cerebral malaria and bacterial meningitis among children hospitalized with neurological disease in coastal Kenya. Given the wide distribution of CHIKV mosquito vectors, studies to determine the geographic extent of CHIKV-associated neurological disease in Africa are essential.
Collapse
Affiliation(s)
| | - Mark Otiende
- KEMRI-Wellcome Trust Research Programme, Nairobi, Kenya
| | - Lilian Mwango
- KEMRI-Wellcome Trust Research Programme, Nairobi, Kenya
| | | | | | | | | | | | | | | | | | - Alun Davies
- KEMRI-Wellcome Trust Research Programme, Nairobi, Kenya
| | | | | | - Samuel M. Thumbi
- Paul G Allen School for Global Animal Health, Washington State University, Washington, United States of America
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, United Kingdom
- Center for Epidemiological Modelling and Analysis, Institute of Tropical and Infectious Diseases, University of Nairobi, Nairobi, Kenya
| | | | | | - Philip Bejon
- KEMRI-Wellcome Trust Research Programme, Nairobi, Kenya
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
| | - George M. Warimwe
- KEMRI-Wellcome Trust Research Programme, Nairobi, Kenya
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
36
|
Placental Alterations in a Chikungunya-Virus-Infected Pregnant Woman: A Case Report. Microorganisms 2022; 10:microorganisms10050872. [PMID: 35630317 PMCID: PMC9144120 DOI: 10.3390/microorganisms10050872] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 02/04/2023] Open
Abstract
Chikungunya virus (CHIKV) is an arthropod-borne virus first isolated in Tanzania, Africa. The virus has spread to Asia as well as South and Central America through infected Aedes mosquitoes. Vertical transmission may also occur, and was first documented during a chikungunya outbreak in La Réunion Island in 2005. Since then, some authors have been discussing the role of the placenta in maternal–fetal CHIKV transmission. CHIKV infection is characterized by fever, headache, rash, and arthralgia. However, atypical manifestations and clinical complications, including neurological, cardiac, renal, ocular, and dermal, may occur in some cases. In this report, we describe the case of a pregnant woman infected by CHIKV during the third trimester of gestation, who presented with severe dermatological manifestations during the epidemic in Rio de Janeiro, Brazil in 2019. CHIKV RNA and antigens were detected in the placental tissue, which presented with histopathological (deciduitis, fibrin deposition, edema, fetal vessel thickening, and chorioamnionitis) and ultrastructural alterations (cytotrophoblast with mitochondrial swelling and dilated cisterns in endoplasmic reticulum, vesicles in syncytiotrophoblasts, and thickening of the basement membrane of the endothelium).
Collapse
|
37
|
Corrêa DG, Freddi TDAL, Chaves CG, Hygino da Cruz LC. Neuroimaging features of arboviral infections in the Americas. Clin Imaging 2022; 85:64-73. [PMID: 35247791 DOI: 10.1016/j.clinimag.2022.02.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 02/25/2022] [Indexed: 11/03/2022]
Abstract
Arboviruses are zoonotic RNA viruses maintained in nature in cycles that involve arthropod vectors. The arboviruses that cause disease in humans are members of the Bunyaviridae, Togaviridae, Flaviviridae, and Reoviridae families. These viral species have geographically and climatically restricted distributions due to particular ecological and vector features. The main emerging arboviruses in the Americas are dengue, zika, yellow fever (Flaviviridae), and chikungunya (Togaviridae). All of these viruses can be transmitted by the Aedes aegypti and Aedes albopictus mosquitoes. Although not commonly, these infections are associated with neurological complications, characterized mainly by hemorrhage, encephalitis, myelitis, acute disseminated encephalomyelitis, Guillain-Barré syndrome, and/or congenital malformations. This review describes the imaging features of the neurological complications of these emerging arbovirus infections.
Collapse
Affiliation(s)
- Diogo Goulart Corrêa
- Department of Radiology, Clínica de Diagnóstico por Imagem (CDPI)/DASA, Avenida das Américas, 4666, 302A, 303, 307, 325, 326, Barra da Tijuca, Rio de Janeiro, RJ 2640-102, Brazil; Department of Radiology, Federal Fluminense University, Rua Marquês de Paraná, 303, Centro, Niterói, RJ 24070-035, Brazil.
| | | | - Cínthia Guedes Chaves
- Department of Radiology, Hospital das Américas, United Health Group, Avenida Jorge Curi, 550, Barra da Tijuca, Rio de Janeiro, RJ 22775-001, Brazil
| | - Luiz Celso Hygino da Cruz
- Department of Radiology, Clínica de Diagnóstico por Imagem (CDPI)/DASA, Avenida das Américas, 4666, 302A, 303, 307, 325, 326, Barra da Tijuca, Rio de Janeiro, RJ 2640-102, Brazil
| |
Collapse
|
38
|
High titer self-propagating capsidless Chikungunya virus generated in Vero cells as a strategy for alphavirus vaccine development. J Virol 2022; 96:e0148021. [PMID: 35107379 DOI: 10.1128/jvi.01480-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In our previous study, we found a new type of Chikungunya virus particle with a complete capsid deletion (ΔC-CHIKV) is still infectious in BHK-21 cells and demonstrated its potential as a live attenuated vaccine candidate. However, the low yield as well as the disability to propagate in vaccine production cell line Vero of ΔC-CHIKV are not practical for commercial vaccine development. In this study, we not only achieved the successful propagation of the viral particle in Vero cells, but significantly improved its yield through construction of a chimeric VEEV-ΔC-CHIKV and extensive passage in Vero cells. Mechanistically, high production of VEEV-ΔC-CHIKV is due to the improvement of viral RNA packaging efficiency conferred by adaptive mutations, especially those in envelope proteins. Similar to ΔC-CHIKV, the passaged VEEV-ΔC-CHIKV is safe, immunogenic and efficacious which protects mice from CHIKV challenge after only one shot of immunization. Our study demonstrates that the utilization of infectious capsidless viral particle of CHIKV as a vaccine candidate is a practical strategy for the development of alphavirus vaccine. IMPORTANCE Chikungunya virus (CHIKV) is one of important emerging alphaviruses. Currently, there are no licensed vaccines against CHIKV infection. We have previously found a new type of Chikungunya virus particle with a complete capsid deletion (ΔC-CHIKV) as a live attenuated vaccine candidate which is not suitable for commercial vaccine development with the low viral titer production. In this study, we significantly improved its production through construction of a chimeric VEEV-ΔC-CHIKV. Our results proved that the utilization of infectious capsidless viral particle of CHIKV as a safe and practical vaccine candidate.
Collapse
|
39
|
Gupta A, Jain P, Venkatesh V, Agarwal A, Reddy DH, Jain A. Prevalence of Dengue, Chikungunya, and Zika Viruses in Febrile Pregnant Women: An Observational Study at a Tertiary Care Hospital in North India. Am J Trop Med Hyg 2022; 106:168-173. [PMID: 34607306 PMCID: PMC8733538 DOI: 10.4269/ajtmh.21-0584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/10/2021] [Indexed: 01/03/2023] Open
Abstract
Dengue virus (DENV), chikungunya virus (CHIKV), and Zika virus (ZIKV) are arboviruses that can affect maternal and fetal outcome if acquired during pregnancy. This study was done to estimate the positivity of DENV, CHIKV, and ZIKV in febrile pregnant women attending a tertiary care hospital in north India. Symptomatic pregnant women were tested for these viruses by IgM ELISA and/or by Trioplex real-time polymerase chain reaction. Their symptoms and laboratory parameters were recorded and were followed up till delivery to know their immediate delivery outcome. Of 104 women tested, 50 (48.1%) were positive for viral markers. Of these, evidence of infection by DENV, CHIKV, and both was found in 34 (32.7%), 10 (9.6%), and 6 (5.8%), respectively. ZIKV was not detected in any woman. Maximum DENV positivity occurred in the third trimester of pregnancy and in women residing in urban than rural areas. Chills and rigors, arthralgia, retro-orbital pain, anemia, and vaginal bleeding were more commonly associated with DENV positivity. Backache, arthralgia, jaundice, and vaginal bleeding were more common in CHIKV positives but the difference between positives and nonpositives regarding these symptoms was not statistically significant. Dengue infections were associated with more frequent hospitalizations (OR = 8.38, 95% confidence intervals [CI] = 3.29-21.30) and mortality (OR = 19.0, 95% CI = 1.01-357.10). Hence, to conclude, in India wherever possible, all symptomatic pregnant women should be screened for DENV, CHIKV, and ZIKV as part of sentinel surveillance for ZIKV.
Collapse
Affiliation(s)
- Akanksha Gupta
- Department of Microbiology, King George’s Medical University, Lucknow, India
| | - Parul Jain
- Department of Microbiology, King George’s Medical University, Lucknow, India
| | - Vimala Venkatesh
- Department of Microbiology, King George’s Medical University, Lucknow, India;,Address correspondence to Vimala Venkatesh, Department of Microbiology, King George’s Medical University, Lucknow 226003, India. E-mail:
| | - Anjoo Agarwal
- Department of Gynaecology and Obstetrics, King George’s Medical University, Lucknow, India
| | - D. Himanshu Reddy
- Department of Medicine, King George’s Medical University, Lucknow, India
| | - Amita Jain
- Department of Microbiology, King George’s Medical University, Lucknow, India
| |
Collapse
|
40
|
Khongwichit S, Chansaenroj J, Chirathaworn C, Poovorawan Y. Chikungunya virus infection: molecular biology, clinical characteristics, and epidemiology in Asian countries. J Biomed Sci 2021; 28:84. [PMID: 34857000 PMCID: PMC8638460 DOI: 10.1186/s12929-021-00778-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 11/21/2021] [Indexed: 02/03/2023] Open
Abstract
Chikungunya virus (CHIKV) is a re-emerging mosquito-borne human pathogen that causes chikungunya fever, which is typically accompanied by severe joint pain. In Asia, serological evidence indicated that CHIKV first emerged in 1954. From the 1950’s to 2005, sporadic CHIKV infections were attributed to the Asian genotype. However, the massive outbreak of CHIKV in India and the Southwest Indian Ocean Islands in 2005 has since raised chikungunya as a worldwide public health concern. The virus is spreading globally, but mostly in tropical and subtropical regions, particularly in South and Southeast Asia. The emergence of the CHIKV East/Central/South African genotype-Indian Ocean lineage (ECSA-IOL) has caused large outbreaks in South and Southeast Asia affected more than a million people over a decade. Notably, the massive CHIKV outbreaks before 2016 and the more recent outbreak in Asia were driven by distinct ECSA lineages. The first significant CHIKV ECSA strains harbored the Aedes albopictus-adaptive mutation E1: A226V. More recently, another mass CHIKV ECSA outbreak in Asia started in India and spread beyond South and Southeast Asia to Kenya and Italy. This virus lacked the E1: A226V mutation but instead harbored two novel mutations (E1: K211E and E2: V264A) in an E1: 226A background, which enhanced its fitness in Aedes aegypti. The emergence of a novel ECSA strain may lead to a more widespread geographical distribution of CHIKV in the future. This review summarizes the current CHIKV situation in Asian countries and provides a general overview of the molecular virology, disease manifestation, diagnosis, prevalence, genotype distribution, evolutionary relationships, and epidemiology of CHIKV infection in Asian countries over the past 65 years. This knowledge is essential in guiding the epidemiological study, control, prevention of future CHIKV outbreaks, and the development of new vaccines and antivirals targeting CHIKV.
Collapse
Affiliation(s)
- Sarawut Khongwichit
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Jira Chansaenroj
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Chintana Chirathaworn
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand.,Tropical Medicine Cluster, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Yong Poovorawan
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
41
|
Luvai EAC, Kyaw AK, Sabin NS, Yu F, Hmone SW, Thant KZ, Inoue S, Morita K, Ngwe Tun MM. Evidence of Chikungunya virus seroprevalence in Myanmar among dengue-suspected patients and healthy volunteers in 2013, 2015, and 2018. PLoS Negl Trop Dis 2021; 15:e0009961. [PMID: 34851949 PMCID: PMC8635363 DOI: 10.1371/journal.pntd.0009961] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 11/01/2021] [Indexed: 01/09/2023] Open
Abstract
INTRODUCTION Chikungunya virus (CHIKV) is a mosquito-borne virus known to cause acute febrile illness associated with debilitating polyarthritis. In 2019, several institutions in Myanmar reported a CHIKV outbreak. There are no official reports of CHIKV cases between 2011 and 2018. Therefore, this study sought to determine the seroprevalence of CHIKV infection before the 2019 outbreak. METHODS A total of 1,544 serum samples were collected from healthy volunteers and patients with febrile illnesses in Yangon, Mandalay, and the Myeik district in 2013, 2015, and 2018. Participants ranged from one month to 65 years of age. Antibody screening was performed with in-house anti-CHIKV IgG and IgM ELISA. A neutralization assay was used as a confirmatory test. RESULTS The seroprevalence of anti-CHIKV IgM and anti-CHIKV IgG was 8.9% and 28.6%, respectively, with an overall seropositivity rate of 34.5%. A focus reduction neutralization assay confirmed 32.5% seroprevalence of CHIKV in the study population. Age, health status, and region were significantly associated with neutralizing antibodies (NAbs) and CHIKV seropositivity (p < 0.05), while gender was not (p = 0.9). Seroprevalence in 2013, 2015, and 2018 was 32.1%, 28.8%, and 37.3%, respectively. Of the clinical symptoms observed in participants with fevers, arthralgia was mainly noted in CHIKV-seropositive patients. CONCLUSION The findings in this study reveal the circulation of CHIKV in Myanmar's Mandalay, Yangon, and Myeik regions before the 2019 CHIKV outbreak. As no treatment or vaccine for CHIKV exists, the virus must be monitored through systematic surveillance in Myanmar.
Collapse
Affiliation(s)
- Elizabeth Ajema Chebichi Luvai
- Department of Virology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
- Program for Nurturing Global Leaders in Tropical and Emerging Communicable Diseases, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
- Department of Biomedical Sciences and Technology, School of Health and Biomedical Sciences, The Technical University of Kenya, Nairobi, Kenya
| | - Aung Kyaw Kyaw
- Department of Medical Research, Ministry of Health and Sports, Yangon, Myanmar
| | - Nundu Sabiti Sabin
- Program for Nurturing Global Leaders in Tropical and Emerging Communicable Diseases, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Fuxun Yu
- Guizhou Provincial People’s Hospital, Guiyang City, Guizhou Province, China
| | - Saw Wut Hmone
- Department of Pathology, University of Medicine-1, Lanmadaw township, Yangon, Myanmar
| | - Kyaw Zin Thant
- Department of Medical Research, Ministry of Health and Sports, Yangon, Myanmar
| | - Shingo Inoue
- Department of Virology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
| | - Kouichi Morita
- Department of Virology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
- Program for Nurturing Global Leaders in Tropical and Emerging Communicable Diseases, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Mya Myat Ngwe Tun
- Department of Virology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
| |
Collapse
|
42
|
Chikungunya and arthritis: An overview. Travel Med Infect Dis 2021; 44:102168. [PMID: 34563686 DOI: 10.1016/j.tmaid.2021.102168] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 09/08/2021] [Accepted: 09/15/2021] [Indexed: 12/22/2022]
Abstract
Chikungunya is caused by CHIKV (chikungunya virus), an emerging and re-emerging arthropod-vectored viral infection that causes a febrile disease with primarily long term sequelae of arthralgia and myalgia and is fatal in a small fraction of infected patients. Sporadic outbreaks have been reported from different parts of the world chiefly Africa, Asia, the Indian and Pacific ocean regions, Europe and lately even in the Americas. Currently, treatment is primarily symptomatic as no vaccine, antibody-mediated immunotherapy or antivirals are available. Chikungunya belongs to a family of arthritogenic alphaviruses which have many pathophysiological similarities. Chikungunya arthritis has similarities and differences with rheumatoid arthritis. Although research into arthritis caused by these alphaviruses have been ongoing for decades and significant progress has been made, the mechanisms underlying viral infection and arthritis are not well understood. In this review, we give a background to chikungunya and the causative virus, outline the history of alphavirus arthritis research and then give an overview of findings on arthritis caused by CHIKV. We also discuss treatment options and the research done so far on various therapeutic intervention strategies.
Collapse
|
43
|
Maternal and perinatal outcomes during a Chikungunya outbreak in Kassala, eastern Sudan. Arch Gynecol Obstet 2021; 305:855-858. [PMID: 34448947 DOI: 10.1007/s00404-021-06204-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 08/20/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Arboviruses (dengue, Zika, and chikungunya) have recently emerged as an important public health issue and can lead to adverse obstetrics outcomes. The current study was conducted to assess maternal and perinatal outcomes following chikungunya fever/infection and to compare adverse pregnancy outcomes with data from the community collected in a previous study. METHODS This study was performed during a chikungunya infection epidemic in Kassala, Sudan by recruiting all pregnant women with a confirmed chikungunya fever diagnosis by using antibodies/detection viral RNA using reverse transcriptase-polymerase chain reaction. RESULTS Ninety-three pregnant women with confirmed chikungunya infection were enrolled. Their mean (standard deviation) age and parity were 31.6 (3.4) years and 3.5 (1.4), respectively. Of the 93 women, 58 (62.4%) delivered a live infant at term and 18 (19.4%), 13 (13.9%), and 4 (4.3%) women experienced miscarriage, preterm birth, and stillbirth, respectively. In the logistic regression model, severe thrombocytopenia (platelets < 50,000 cells/mm3 (odds ratio [OR] = 5.1; confidence interval [CI] 1.8-14; P = 0.001) and leukopenia (OR = 4.5; CI 2.2-8.8; P < 0.001) were predictors for poor obstetric outcomes in pregnant women with chikungunya fever. The rates of miscarriage (18/93 [19.3%] vs. 1/71 [1.4%], P < 0.001) and preterm birth (13/93 [13.9%] vs. 2/71 [2.8%], P = 0.003) were significantly higher in the current study compared with the rate in the community. CONCLUSION Chikungunya infections during pregnancy were associated with miscarriage and preterm birth. Women with severe thrombocytopenia and leukopenia were at higher risk of poor obstetric outcomes. Women with severe thrombocytopenia and leukopenia were at higher risk of poor obstetric outcomes.
Collapse
|
44
|
Li N, Wang Z, Wang R, Zhang ZR, Zhang YN, Deng CL, Zhang B, Shang LQ, Ye HQ. In Vitro Inhibition of Alphaviruses by Lycorine. Virol Sin 2021; 36:1465-1474. [PMID: 34374926 PMCID: PMC8353614 DOI: 10.1007/s12250-021-00438-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 06/08/2021] [Indexed: 11/25/2022] Open
Abstract
Chikungunya virus (CHIKV) is a mosquito-borne alphavirus. As an emerging virus, CHIKV imposes a threat to public health. Currently, there are no vaccines or antivirals available for the prevention of CHIKV infection. Lycorine, an alkaloid from Amaryllidaceae plants, has antiviral activity against a number of viruses such as coronavirus, flavivirus and enterovirus. In this study, we found that lycorine could inhibit CHIKV in cell culture at a concentration of 10 μmol/L without apparent cytotoxicity. In addition, it exhibited broad-spectrum anti-alphavirus activity, including Sindbis virus (SINV), Semliki Forest virus (SFV), and Venezuelan equine encephalomyelitis virus (VEEV). The time of addition studies indicated that lycorine functions at an early post-entry stage of CHIKV life cycle. The results based on two different CHIKV replicons provided further evidence that lycorine exerts its antiviral activity mainly by inhibiting CHIKV translation. Overall, our study extends the antiviral spectrum of lycorine.
Collapse
Affiliation(s)
- Na Li
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Zhen Wang
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Rui Wang
- College of Pharmacy and Drug Discovery Center for Infectious Diseases, Nankai University, Tianjin, 300350, China
| | - Zhe-Rui Zhang
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Ya-Nan Zhang
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Cheng-Lin Deng
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Bo Zhang
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China. .,College of Pharmacy and Drug Discovery Center for Infectious Diseases, Nankai University, Tianjin, 300350, China.
| | - Lu-Qing Shang
- College of Pharmacy and Drug Discovery Center for Infectious Diseases, Nankai University, Tianjin, 300350, China.
| | - Han-Qing Ye
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.
| |
Collapse
|
45
|
Sharif N, Sarkar MK, Ferdous RN, Ahmed SN, Billah MB, Talukder AA, Zhang M, Dey SK. Molecular Epidemiology, Evolution and Reemergence of Chikungunya Virus in South Asia. Front Microbiol 2021; 12:689979. [PMID: 34163459 PMCID: PMC8215147 DOI: 10.3389/fmicb.2021.689979] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 05/10/2021] [Indexed: 11/23/2022] Open
Abstract
Chikungunya virus (CHIKV) is a vector (mosquito)-transmitted alphavirus (family Togaviridae). CHIKV can cause fever and febrile illness associated with severe arthralgia and rash. Genotypic and phylogenetic analysis are important to understand the spread of CHIKV during epidemics and the diversity of circulating strains for the prediction of effective control measures. Molecular epidemiologic analysis of CHIKV is necessary to understand the complex interaction of vectors, hosts and environment that influences the genotypic evolution of epidemic strains. In this study, different works published during 1950s to 2020 concerning CHIKV evolution, epidemiology, vectors, phylogeny, and clinical outcomes were analyzed. Outbreaks of CHIKV have been reported from Bangladesh, Bhutan, India, Pakistan, Sri Lanka, Nepal, and Maldives in South Asia during 2007–2020. Three lineages- Asian, East/Central/South African (ECSA), and Indian Ocean Lineage (IOL) are circulating in South Asia. Lineage, ECSA and IOL became predominant over Asian lineage in South Asian countries during 2011–2020 epidemics. Further, the mutant E1-A226V is circulating in abundance with Aedes albopictus in India, Bangladesh, Nepal, and Bhutan. CHIKV is underestimated as clinical symptoms of CHIKV infection merges with the symptoms of dengue fever in South Asia. Failure to inhibit vector mediated transmission and predict epidemics of CHIKV increase the risk of larger global epidemics in future. To understand geographical spread of CHIKV, most of the studies focused on CHIKV outbreak, biology, pathogenesis, infection, transmission, and treatment. This updated study will reveal the collective epidemiology, evolution and phylogenies of CHIKV, supporting the necessity to investigate the circulating strains and vectors in South Asia.
Collapse
Affiliation(s)
- Nadim Sharif
- Department of Microbiology, Jahangirnagar University, Savar, Bangladesh
| | | | - Rabeya Nahar Ferdous
- Department of Microbiology, Bangladesh University of Health Sciences, Dhaka, Bangladesh
| | | | - Md Baki Billah
- Department of Zoology, Jahangirnagar University, Savar, Bangladesh
| | - Ali Azam Talukder
- Department of Microbiology, Jahangirnagar University, Savar, Bangladesh
| | - Ming Zhang
- Department of Epidemiology and Biostatistics, College of Public Health, University of Georgia, Athens, GA, United States
| | - Shuvra Kanti Dey
- Department of Microbiology, Jahangirnagar University, Savar, Bangladesh
| |
Collapse
|
46
|
de St Maurice A, Ervin E, Chu A. Ebola, Dengue, Chikungunya, and Zika Infections in Neonates and Infants. Clin Perinatol 2021; 48:311-329. [PMID: 34030816 DOI: 10.1016/j.clp.2021.03.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Emerging infectious diseases, including Ebola, chikungunya, Zika, and dengue, may have significant impacts on maternal-fetal dyads and neonatal outcomes. Pregnant women infected with Ebola demonstrate high mortality and very low evidence of neonatal survival. Maternal chikungunya infection can result in high rates of perinatal transmission, and infected neonates demonstrate variable disease severity. Dengue can be transmitted to neonates via vertical transmission or perinatal transmission. Zika is characterized by mild disease in pregnant women, but congenital infection can be severe. Treatment largely is supportive for these diseases, and vaccine development remains under way, with promising recent advances, notably for Ebola.
Collapse
Affiliation(s)
- Annabelle de St Maurice
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Los Angeles, 924 Westwood Boulevard, Suite 900, CA 90095, USA.
| | - Elizabeth Ervin
- Post-baccalaureate Premedical Program, University of Michigan, Office of Graduate and Postdoctoral Studies, 2960 Taubman Health Science Library, 1135 Catherine Street, Ann Arbor, MI 48109, USA
| | - Alison Chu
- Division of Neonatology and Developmental Biology, Department of Pediatrics, 10833 Le Conte Avenue, MDCC B2-411, Los Angeles, CA 90095, USA
| |
Collapse
|
47
|
Gupta V, Gupta N, Pandita A. Neonate with chikungunya. Clin Case Rep 2021; 9:e04351. [PMID: 34136251 PMCID: PMC8190531 DOI: 10.1002/ccr3.4351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 03/31/2021] [Accepted: 05/03/2021] [Indexed: 11/27/2022] Open
Abstract
Chikungunya although rare should be considered in any neonate presenting with fever and facial hyperpigmentation or encephalopathy especially in endemic areas.
Collapse
|
48
|
"Kankasha" in Kassala: A prospective observational cohort study of the clinical characteristics, epidemiology, genetic origin, and chronic impact of the 2018 epidemic of Chikungunya virus infection in Kassala, Sudan. PLoS Negl Trop Dis 2021; 15:e0009387. [PMID: 33930028 PMCID: PMC8115788 DOI: 10.1371/journal.pntd.0009387] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 05/12/2021] [Accepted: 04/14/2021] [Indexed: 12/14/2022] Open
Abstract
Background The public health impact of Chikungunya virus (CHIKV) is often underestimated. Usually considered a mild condition of short duration, recent outbreaks have reported greater incidence of severe illness, fatality, and longer-term disability. In 2018/19, Eastern Sudan experienced the largest epidemic of CHIKV in Africa to date, affecting an estimated 487,600 people. Known locally as Kankasha, this study examines clinical characteristics, risk factors, and phylogenetics of the epidemic in Kassala City. Methodology/Principal findings A prospective cohort of 102 adults and 40 children presenting with chikungunya-like illness were enrolled at Kassala Teaching Hospital in October 2018. Clinical information, socio-demographic data, and sera samples were analysed to confirm diagnosis, characterise illness, and identify viral strain. CHIKV infection was confirmed by real-time reverse transcription-PCR in 84.5% (120/142) of participants. Nine (7.5%) CHIKV-positive participants had concurrent Dengue virus (DENV) infection; 34/118 participants (28.8%) had a positive Rapid Diagnostic Test for Plasmodium falciparum; six (5.0%) had haemorrhagic symptoms including two children with life-threatening bleeding. One CHIKV-positive participant died with acute renal injury. Age was not associated with severity of illness although CHIKV-infected participants were younger (p = 0.003). Two to four months post-illness, 63% of adults available for follow-up (30) were still experiencing arthralgia in one or more joints, and 11% remained moderately disabled on Rapid3 assessment. Phylogenetic analysis showed all CHIKV sequences from this study belonged to a single clade within the Indian Ocean Lineage (IOL) of the East/Central/South African (ECSA) genotype. History of contact with an infected person was the only factor associated with infection (p = 0.01), and likely related to being in the same vector environment. Conclusions/Significance Vulnerability to CHIKV remains in Kassala and elsewhere in Sudan due to widespread Aedes aegypti presence and mosquito-fostering household water storage methods. This study highlights the importance of increasing awareness of the severity and impact of CHIKV outbreaks, and the need for urgent actions to reduce transmission risk in households. Chikungunya is an arboviral disease transmitted to humans by infected mosquitoes and characterised by fever and arthralgia. Although it is generally considered a short self-limiting infection, long term sequelae and severe disease are increasingly recognised. In 2018/19, Eastern Sudan experienced the largest epidemic of Chikungunya in Africa to date, affecting approximately 500,000 people. We undertook a prospective hospital-based cohort study of patients presenting with undifferentiated febrile illness in Kassala city, Sudan, supported by next-generation sequencing. We confirmed that CHIKV was the dominant pathogen, with positive CHIKV RT-PCR in 85% of patients presenting during the 7-day study period. Dengue virus was also circulating with nine CHIKV RT-PCR-positive patients co-infected, and we identified high rates of Plasmodium falciparum infection and CHIKV/P.falciparum co-infection. Genetic sequencing confirmed Indian Ocean Lineage of the East/Central/South African CHIKV genotype. A quarter of participants available for follow-up (16/60, 26.6%) reported being admitted to hospital including two children with haemorrhage, reflecting the severe phenotype linked to this genotype. Increased understanding of the health and economic burden of Chikungunya is needed, and recognition that severe and occasionally fatal infection exists. With widespread presence of Ae. aegypti and household water storage practices that encourage mosquito breeding, timely actions will be essential to prevent further large outbreaks.
Collapse
|
49
|
Vertical transmission of chikungunya virus: A systematic review. PLoS One 2021; 16:e0249166. [PMID: 33891622 PMCID: PMC8064608 DOI: 10.1371/journal.pone.0249166] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 03/13/2021] [Indexed: 01/23/2023] Open
Abstract
Objectives To describe and estimate the frequency of pregnancy outcomes, clinical and laboratory characteristics of vertical transmission of CHIKV in the neonate. Study design We performed a systematic review evaluating the clinical presentation of perinatally-acquired CHIKV infection in neonates. The search was performed using Medline (via PubMed), LILACS, Web of Science, Scielo, Google Scholar and Open grey to identify studies assessing vertical transmission of CHIKV up to November 3, 2020. There were no search restrictions regarding the study type, the publication date or language. Studies with no documented evidence of CHIKV infection in neonates (negative RT-PCR or absence of IgM) were excluded. Results From the 227 studies initially identified, 42 were selected as follows: 28 case reports, 7 case series, 2 cross-sectional studies and 5 cohort studies, for a total of 266 CHIKV infected neonates confirmed by serological and/or molecular tests. The vertical transmission rate was 50% in the Reunion Island outbreak, which was the subject of the majority of the studies; the premature delivery were reported in 19 (45.2%) studies; the rate of fetal distress was 19.6% of infected babies and fetal loss occurred in 2% of the cases. Approximately 68.7% of newborns were diagnosed with encephalopathy or encephalitis after perinatally acquired CHIKV. Most of the infected neonates were born healthy, developing CHIKV sepsis clinical syndrome within the first week of life. Conclusions We alert neonatologists to the late manifestations of neonatal CHIKV infection, relevant to the management and reduction of morbidity. A limitation of our review was that it was not possible to carry out meta-analysis due to differences in study design and the small number of participants.
Collapse
|
50
|
Jacques IJAA, Katz L, Sena MA, Guimarães ABG, Silva YL, Albuquerque GDM, Pereira RO, de Albuquerque CAMC, Silva MAL, Oliveira PAS, Albuquerque MDFPM, Cordeiro MT, Marques ETA, França RFO, Martelli CMT, Castanha PMS, Braga C. High Incidence of Zika or Chikungunya Infection among Pregnant Women Hospitalized Due to Obstetrical Complications in Northeastern Brazil-Implications for Laboratory Screening in Arbovirus Endemic Area. Viruses 2021; 13:v13050744. [PMID: 33922819 PMCID: PMC8145990 DOI: 10.3390/v13050744] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/11/2021] [Accepted: 04/20/2021] [Indexed: 12/16/2022] Open
Abstract
The diagnostic of arbovirus-related obstetric complications in high-risk pregnancy and childbirth care is challenging, especially in endemic areas. We conducted a prospective study to track active or recent Zika (ZIKV), dengue (DENV), or chikungunya (CHIKV) virus infection among hospitalized pregnant women (PW) with obstetric complications in a hospital at the epicenter of Zika outbreak and ZIKV-related microcephaly in Brazil. Clinical data and blood samples were collected at enrollment and 10 days after the admission of study participants, between October 2018 and May 2019. Further clinical data were extracted from medical records. Samples were screened by molecular and serological tests. Out of 780 participants, 93.1% (95% CI: 91.1–94.7%) presented previous DENV exposure (IgG). ZIKV, CHIKV, and/or DENV laboratory markers of recent or active infection were detected in 130 PW, yielding a prevalence of 16.6% (95% CI: 14.2–19.5%); 9.4% (95% CI: 7.4–11.7%), 7.4% (95% CI: 5.7–9.7%), and 0.38% (95% CI: 0.1–1.2%) of CHIKV, ZIKV, and DENV infections, respectively. Most ZIKV infections were detected by molecular assays (89.6%), while CHIKV infections were detected by serology (95.9%). Our findings highlight the need for arbovirus infections screening in PW with obstetrical complications, potentially associated to these infections in endemic areas regardless of the signs or symptoms suggestive of arboviral disease.
Collapse
Affiliation(s)
- Iracema J. A. A. Jacques
- Instituto Aggeu Magalhães, Fundação Oswaldo Cruz Pernambuco, Recife CEP 50740-465, PE, Brazil; (I.J.A.A.J.); (M.A.S.); (A.B.G.G.); (Y.L.S.); (M.A.L.S.); (P.A.S.O.); (M.d.F.P.M.A.); (M.T.C.); (R.F.O.F.); (C.M.T.M.)
| | - Leila Katz
- Instituto de Medicina Integral Prof. Fernando Figueira, Recife CEP 50070-550, PE, Brazil; (L.K.); (G.D.M.A.); (R.O.P.); (C.A.M.C.d.A.)
| | - Marília A. Sena
- Instituto Aggeu Magalhães, Fundação Oswaldo Cruz Pernambuco, Recife CEP 50740-465, PE, Brazil; (I.J.A.A.J.); (M.A.S.); (A.B.G.G.); (Y.L.S.); (M.A.L.S.); (P.A.S.O.); (M.d.F.P.M.A.); (M.T.C.); (R.F.O.F.); (C.M.T.M.)
| | - Ana B. G. Guimarães
- Instituto Aggeu Magalhães, Fundação Oswaldo Cruz Pernambuco, Recife CEP 50740-465, PE, Brazil; (I.J.A.A.J.); (M.A.S.); (A.B.G.G.); (Y.L.S.); (M.A.L.S.); (P.A.S.O.); (M.d.F.P.M.A.); (M.T.C.); (R.F.O.F.); (C.M.T.M.)
| | - Yasmim L. Silva
- Instituto Aggeu Magalhães, Fundação Oswaldo Cruz Pernambuco, Recife CEP 50740-465, PE, Brazil; (I.J.A.A.J.); (M.A.S.); (A.B.G.G.); (Y.L.S.); (M.A.L.S.); (P.A.S.O.); (M.d.F.P.M.A.); (M.T.C.); (R.F.O.F.); (C.M.T.M.)
| | - Gabriela D. M. Albuquerque
- Instituto de Medicina Integral Prof. Fernando Figueira, Recife CEP 50070-550, PE, Brazil; (L.K.); (G.D.M.A.); (R.O.P.); (C.A.M.C.d.A.)
| | - Raisa O. Pereira
- Instituto de Medicina Integral Prof. Fernando Figueira, Recife CEP 50070-550, PE, Brazil; (L.K.); (G.D.M.A.); (R.O.P.); (C.A.M.C.d.A.)
| | - Camila A. M. C. de Albuquerque
- Instituto de Medicina Integral Prof. Fernando Figueira, Recife CEP 50070-550, PE, Brazil; (L.K.); (G.D.M.A.); (R.O.P.); (C.A.M.C.d.A.)
| | - Maria Almerice L. Silva
- Instituto Aggeu Magalhães, Fundação Oswaldo Cruz Pernambuco, Recife CEP 50740-465, PE, Brazil; (I.J.A.A.J.); (M.A.S.); (A.B.G.G.); (Y.L.S.); (M.A.L.S.); (P.A.S.O.); (M.d.F.P.M.A.); (M.T.C.); (R.F.O.F.); (C.M.T.M.)
| | - Paula A. S. Oliveira
- Instituto Aggeu Magalhães, Fundação Oswaldo Cruz Pernambuco, Recife CEP 50740-465, PE, Brazil; (I.J.A.A.J.); (M.A.S.); (A.B.G.G.); (Y.L.S.); (M.A.L.S.); (P.A.S.O.); (M.d.F.P.M.A.); (M.T.C.); (R.F.O.F.); (C.M.T.M.)
| | - Maria de Fátima P. M. Albuquerque
- Instituto Aggeu Magalhães, Fundação Oswaldo Cruz Pernambuco, Recife CEP 50740-465, PE, Brazil; (I.J.A.A.J.); (M.A.S.); (A.B.G.G.); (Y.L.S.); (M.A.L.S.); (P.A.S.O.); (M.d.F.P.M.A.); (M.T.C.); (R.F.O.F.); (C.M.T.M.)
| | - Marli T. Cordeiro
- Instituto Aggeu Magalhães, Fundação Oswaldo Cruz Pernambuco, Recife CEP 50740-465, PE, Brazil; (I.J.A.A.J.); (M.A.S.); (A.B.G.G.); (Y.L.S.); (M.A.L.S.); (P.A.S.O.); (M.d.F.P.M.A.); (M.T.C.); (R.F.O.F.); (C.M.T.M.)
| | - Ernesto T. A. Marques
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, PA 15261, USA; (E.T.A.M.J.); (P.M.S.C.)
| | - Rafael F. O. França
- Instituto Aggeu Magalhães, Fundação Oswaldo Cruz Pernambuco, Recife CEP 50740-465, PE, Brazil; (I.J.A.A.J.); (M.A.S.); (A.B.G.G.); (Y.L.S.); (M.A.L.S.); (P.A.S.O.); (M.d.F.P.M.A.); (M.T.C.); (R.F.O.F.); (C.M.T.M.)
| | - Celina M. T. Martelli
- Instituto Aggeu Magalhães, Fundação Oswaldo Cruz Pernambuco, Recife CEP 50740-465, PE, Brazil; (I.J.A.A.J.); (M.A.S.); (A.B.G.G.); (Y.L.S.); (M.A.L.S.); (P.A.S.O.); (M.d.F.P.M.A.); (M.T.C.); (R.F.O.F.); (C.M.T.M.)
| | - Priscila M. S. Castanha
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, PA 15261, USA; (E.T.A.M.J.); (P.M.S.C.)
- Faculdade de Ciências Médicas, Universidade de Pernambuco, Recife CEP 50100-130, PE, Brazil
| | - Cynthia Braga
- Instituto Aggeu Magalhães, Fundação Oswaldo Cruz Pernambuco, Recife CEP 50740-465, PE, Brazil; (I.J.A.A.J.); (M.A.S.); (A.B.G.G.); (Y.L.S.); (M.A.L.S.); (P.A.S.O.); (M.d.F.P.M.A.); (M.T.C.); (R.F.O.F.); (C.M.T.M.)
- Instituto de Medicina Integral Prof. Fernando Figueira, Recife CEP 50070-550, PE, Brazil; (L.K.); (G.D.M.A.); (R.O.P.); (C.A.M.C.d.A.)
- Correspondence: ; Tel.: +55-81-2101-2577
| |
Collapse
|